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High computational cost has been a major impediment to the widespread use of 

evolutionary algorithms in industry. While the clock time for optimization using the GA can 

be reduced by parallelization, the computational cost can only be improved by reducing the 

number of function evaluations. For single objective optimization problems, the convergence 

curve can be utilized to obtain a suitable compromise between the computational cost and 

the quality of the solution. A non-domination criterion based metric that tracks the growth 

of an archive of non-dominated solutions over a few generations is proposed to generate a 

convergence curve for multi-objective evolutionary algorithms. Two analytical and two 

crashworthiness optimization problems were used to demonstrate the practical utility of this 

measure. It was observed that, similar to single-objective optimization problems, there were 

significant advances towards the POF in the early phase of evolution and relatively smaller 

improvements were obtained as the population matured. This information was used to 

terminate the search to obtain a good trade-off between the computational cost and the 

quality of the solutions. The paper also demonstrates the successful use of compute clusters 

for parallel processing to significantly reduce the clock time for optimization. 

I. Introduction 

Most practical engineering problems involve multiple design objectives and constraints. The optimization of 

such systems with more than one objective function is called multi-objective optimization. These objectives are 

often in conflict. Contrary to the single-objective optimization problem (SOP), the multi-objective optimization 

problem (MOP) does not result in a single optimum solution. Instead, it results in a set of optimum solutions that 

represent different trade-offs among the objectives. These solutions are known as Pareto optimal solutions or 

constitute the Pareto optimal solution set [1]. The function space representation of the Pareto optimal solution set is 

known as the Pareto optimal front. The most common strategy to find Pareto optimal solutions is to convert the 

multi-objective optimization problem to a single objective optimization problem and then find a single trade-off 

solution. There are multiple ways of converting a MOP to a SOP, namely, the weighted sum strategy, inverted utility 

functions, goal programming, ε-constraint strategy etc [1]-[3]. This biggest drawback of these conversion strategies 

is that each optimization simulation results in a single trade-off. Besides, multiple runs may not yield sufficiently 

diverse trade-off solutions [2]. 

Genetic algorithms (GAs) have been demonstrated to efficiently solve multi-objective optimization problems 

because they result in a diverse set of trade-off solutions in a single simulation run [2]. However, the GA requires 

tens of thousands of simulations to converge to the global Pareto optimal front. Though a recent study highlighted 

the application of a multi-objective GA with a small number of simulations [4], the high computational cost remains 

the biggest potential drawback for solving engineering problems that may involve impact or other expensive 

simulations to analyze the problem.  

The continual reduction in the cost of the hardware, the clusters of processors have become increasingly 

common. Such systems are particularly useful for running genetic algorithms that are inherently suited to 

parallelization. One can reduce the clock time significantly by concurrently running many individuals (simulations) 

in a GA population. The time to analyze each design can be reduced further if the analysis code can utilize multiple 

processors as for instance is the case with the MPP version of LS-DYNA
®

 [5] used in this study. While this two 

level parallelization has a multiplicative effect on the clock time-savings, the ever-increasing complexity of 

computational models may easily offset the potential gains of parallelization [6].  
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Most recent efforts in reducing the computational cost have been focused on developing more efficient 

algorithms (e.g., micro GA [7], ParEGO [8]), improving efficiency of existing algorithms [9], using a combination 

of local search methods with GA [10]-[12], or using approximation models [13]-[20] for fitness evaluation but the 

influence of a stopping criterion on the computational cost of the GA has largely been overlooked. The maximum 

number of generations is by far the most popular termination criterion for both single- and multi-objective GA. 

There have been some efforts in developing the bounds on the number of generations for single objective genetic 

algorithms [21]-[23]. Some early research work [24]-[27] also provided conditions for convergence for the multi-

objective evolutionary algorithms (MOEA).  

This paper attempts to reduce the total computation time for solving industrial multi-objective optimization 

problems by exploiting the convergence properties of the multi-objective evolutionary algorithm [28]. It is well 

known that for single-objective optimization, there is a considerable improvement in the quality of solutions in the 

initial phases of the GA simulation and incremental improvements are observed later on. One can terminate the GA 

search once a reasonable improvement is obtained thus saving a significant computational expense required to 

converge to the global optimal solution. In the last few years, researchers have started exploring efficient stopping 

criteria for multi-objective evolutionary algorithms [28]-[34].  

Rudenko and Schoenauer [29] proposed the standard deviation of maximum crowding distance criterion to 

detect stabilization of the NSGA-II algorithm for two objective optimization problems. Marti et al. [30], [34] 

estimated the rate of improvement (MGBM criterion) using the measured rate of improvement based on the ratio of 

dominated solutions in a population as well as Kalman filters. The simulations were stopped when the estimated rate 

fell below the threshold value. While this measure performed reasonably on low dimension problems, the authors 

noted difficulty with a 10-objectives problem. This measure required a user-defined parameter to control the 

estimated rate of improvement.   

Trautmann et al. [31] used the Kolmogorov-Smirnov test to statistically ascertain the convergence by comparing 

the generational distance [35], hyper-volume [36], and spread [37] metrics for a few generations. In a follow-up 

paper, Wagner et al. [32] advanced this idea to develop an online convergence detection (OCD) criterion by carrying 

out χ
2
-variance test and t-test for linear behavior on different performance metrics. They stopped simulation when 

either of the tests indicated convergence. Later Naujoks and Trautmann applied the OCD criterion for the design of 

airfoil surfaces that minimize drag at different flow conditions. This method is complex and requires selecting many 

parameters. 

While researchers have assumed that the MOEAs improve the solutions in the early phase of evolution, this was 

never demonstrated. In this paper, i) the convergence properties of multi-objective evolutionary algorithms were 

studied, and ii) a simple termination criterion/criteria were developed to stop the GA simulations when a reasonably 

good local Pareto optimal front was obtained instead of attempting to locate the global Pareto optimal front. 

Specifically, the elitist non-dominated sorting genetic algorithm (NSGA-II) [38] augmented with an archiving [16] 

strategy (NSGA-IIa) was used as the MOEA. Two analytical problems and two engineering problems were used to 

illustrate the main concepts. The engineering problems were represented by two crashworthiness examples analyzed 

using the nonlinear dynamic finite element analysis program LS-DYNA. It was demonstrated that there were 

significant improvements in the quality of local Pareto optimal front in the early stage of simulations. Using a 

stopping criterion based on novel convergence and diversity metric, the evolutionary search was terminated such 

that a reasonable trade-off in the quality of solutions and the computational cost was found.  

The paper is organized as follows. The analytical and crashworthiness optimization test problems are described 

in the next section. The details of the simulation setup and performance metrics are furnished in the Section Test 

Setup and Performance Metrics. The main results of this study are documented in the Results section, and major 

findings are summarized in the Summary section. 

II. Test Problems 

This section lists different test problems used to illustrate the convergence behavior of the NSGA-IIa. The salient 

features and challenges of the two analytical problems and two crashworthiness problems are described in detail as 

follows.  

A. Analytical Problems 

 

1. T�K [39] Problem 

 

Minimize: 



  3 

,)(

,)(

22

11

xf

xf

=

=

x

x
 

 

  Subject to: 

 

( )

.,0

,0)5.0()5.0(5.0)(

,0)/arctan(16cos1.01)(

21

2

2

2

12

21

2

2

2

11

π≤≤

≥−−−−≡

≥−−+≡

xx

xxC

xxxxC

x

x

 

This problem results in a non-convex, discontinuous global Pareto optimal front that coincides with the boundary 

of the first constraint. It is important to note that not all the points on the constraint boundary are part of the global 

Pareto optimal front. This problem poses a difficulty in finding diverse solutions on the Pareto front.  

 

2. OSY [40] Problem 

 

Minimize: 
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This problem also has a known Pareto optimal front that lies on the constraint boundary. There are five 

connected sections of the Pareto front where different constraints are active. This problem poses great difficulty in 

finding the entire spread of the Pareto optimal front.  

B. Crashworthiness Problems 

1. Knee Bolster Design 

The first crashworthiness problem employs a finite element simulation of a typical automotive instrument panel 

(shown in Figure 1) impacting the knees [41]. The spherical objects that represent the knees move in the direction 

determined from prior physical tests. The instrument panel (IP) comprises of a knee bolster that also serves as a 

steering column cover with a styled surface, and two energy absorption brackets attached to the cross vehicle IP 

structure.  

A significant portion of the lower torso energy of the occupant is absorbed by appropriate deformation of these 

brackets. The wrap-around of the knee around the steering column is delayed by adding a device, known as the 

yoke, to the knee bolster system. The shape of the brackets and yoke are optimized without interfering with the 

styled elements. The eleven design variables are shown in Figure 2 and the ranges are given in Table 1. To keep the 

computational expense low, only the driver side instrument panel was modeled using approximately 25000 

elements; and the crash was simulated for 40ms, by which time the knees had been brought to rest. 
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Figure 1: Automotive instrument panel with knee bolster system used for knee-impact analysis. (Courtesy: 

Ford Motor Company) 
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Figure 2: Design variables of the knee bolster system. 

Table 1:  Design variables used to simulate knee-impact of automotive instrument panel structure. 

4ame Lower Baseline Upper 

L-Bracket gauge 0.7 1.1 3.0 

T-Flange depth 20.0 28.3 50.0 

F-Flange depth 20.0 27.5 50.0 

B-Flange depth 15.0 22.3 50.0 

I-Flange width 5.0 7.0 25.0 

L-Flange width 20.0 32.0 50.0 

R-Bracket gauge 0.7 1.1 3.0 

R-Flange width 20.0 32.0 50.0 

R-Bracket radius 10.0 15.0 25.0 

Bolster gauge 1.0 3.5 6.0 

Yolk radius 2.0 4.0 8.0 
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The design optimization problem accounting for the optimal occupant kinematics was formulated as follows: 

 

Minimize: 

 Maximum knee force, 

 Average knee displacement or intrusion, 

 Mass 

 

Subject to: 

Table 2: Design constraints for the Knee-impact analysis problem. 

 Upper bound 

Kinetic energy 154000 

Yoke displacement 85 

 

All responses were scaled. Knee forces were the peak SAE filtered (60 Hz) forces whereas all the displacements 

were represented by the maximum intrusion. LS-DYNA [5] was used to simulate different designs. Each simulation 

requires approximately 20 minutes on a dual-core Intel Xeon (2.66 GHz) processor with 4 GB memory. 

 

2. Multi-disciplinary optimization (MDO) 

The performance of a National Highway Transportation and Safety Association (NHTSA) vehicle was optimized 

for crashworthiness. The full frontal impact crash was simulated using a finite element model containing 

approximately 30,000 elements, shown in Figure 3(A). A modal analysis was performed on a so-called ‘body-in-

white’ model that had approximately 18,000 elements. The vibration model was depicted in Figure 3(B) in the first 

torsional vibration mode.  

 

 
A) Crash Model     B) Vibration model 

Figure 3: Finite element models for the multi-disciplinary optimization problem. 

 

Figure 4: Thickness design variables (with exploded view). 
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The tracking methodology applied to the torsional mode was described in the paper by Craig et al. [42]. The 

design variables represented gauges of the structural components in the engine compartment of the vehicle (Figure 

4). Seven gauge variables namely apron, rail-inner, rail-outer, shotgun-inner, shotgun-outer, cradle rail and cradle 

cross member were selected to optimize the performance. Twelve parts comprising aprons, rails, shotguns, cradle 

rails and the cradle cross member were affected by selected design variables. LS-DYNA [5] was used for both the 

crash and modal analysis simulations, in explicit and implicit analysis modes respectively. 

The vehicle performance is characterized by the intrusion, stage pulses, mass, and torsional frequency. A multi-

disciplinary, multi-objective optimization problem is formulated as follows: 

 

Minimize:  

 Mass,  

 Intrusion 

 

Subject to: 

Table 3: Design constraints for the MDO problem. 

 Lower bound Upper bound 

Maximum intrusion ( x crash) - 551.27mm 

Stage 1 pulse( x crash) 14.512 g - 

Stage 2 pulse( x crash) 17.586 g - 

Stage 3 pulse( x crash) 20.745 g - 

Torsional mode frequency( x NVH) 38.27Hz 39.27Hz 

Table 4: Starting values and bounds on the design variables of the MDO problem. 

4ame Lower  Baseline Upper  

Rail inner 1.0 2.0 3.0 

Rail outer 1.0 1.5 3.0 

Cradle rails 1.0 1.93 3.0 

Aprons 1.0 1.3 2.5 

Shotgun inner 1.0 1.3 2.5 

Shotgun outer 1.0 1.3 2.5 

Cradle cross member  1.0 1.93 3.0 

 

The bounds and the baseline design thickness values on the design variables were specified in Table 4. The three 

stage pulses were calculated from the SAE filtered (60Hz) acceleration x&&   and displacement x of a left rear sill node 

in the following fashion: 

                 Stage j pulse =   0.1,1for  5.0;d
)(

2

1
12

===
−

− ∫ kjkxx
dd

k d

d
&&  otherwise; 

with the limits (d1;d2) = (0;184); (184;334); (334;Max(x)) for i = 1,2,3 respectively, all displacement units were 

given in mm and the minus sign converted acceleration to deceleration.  

In summary, the optimization problem aims to minimize the mass and intrusion without compromising the crash 

and vibration criteria. The objectives and constraints were scaled using the target values to balance the violations of 

the different constraints. Each crash simulation took about 3,400 to 3,900 seconds on one core of the IBM x3455 

machine and the modal analysis took about 40 seconds.  

 

II. Test Setup and Performance Metrics 

A. Setup 

All problems were simulated using the LS-OPT
®
 [43] optimization program. For all test problems, the NSGA-IIa 

algorithm with the binary tournament selection operator, SBX crossover and polynomial mutation operators in real-

coded space was used. The parameters used for GA simulations are given in Table 5. Since the function evaluation 

expense of the analytical problems was negligible, a single processor was used for simulations. On the other hand, 
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the computational cost of analyzing crashworthiness problems was quite high so two different clusters of processors 

were used.  

Table 5: 4SGA-II parameters for different problems. 

 Pop. Size Max. Gen Pcross Pmut DIcross DImut 

TNK 100 200 1.00 0.50 10 100 

OSY 100 300 1.00 0.17 10 100 

KNEE 80 120 1.00 0.10 20 20 

MDO 80 100 0.99 0.15 5 5 

 

The analyses for the MDO problem were run on the x3455 cluster of the IBM Poughkeepsie Benchmark Center. 

Each node of this cluster had two Dual-Core AMD Opteron
(TM)

 2220 SE processors with the clock rate of 2.8 GHz. 

This cluster had a total of 40 nodes (160 cores). The job distribution was handled by the queuing system Tivoli 

Workload Scheduler LoadLeveler®. Since the chosen population size was 80 in this experiment, LS-OPT submitted 

80 crash jobs and 80 NVH jobs to LoadLeveler at each generation, and LoadLeveler arranged all jobs to optimize 

the use of the computing resource. The smaller of the two crashworthiness problems, the Knee-bolster design 

problem was simulated on the in-house cluster of 16 nodes. Each node had a single Dual-Core Intel Xeon processor 

with a clock rate of 3.6 GHz (32 cores). A shared memory of 16GB was available for all processors. The Sun Grid 

Engine
®
 v 6.1 queuing system was used for job scheduling. 

B. Performance Metrics 

The multi-objective optimization results in a set of candidate optimal solutions that span the function space. 

Unlike single objective optimization, where a simple convergence criterion is sufficient to assess the performance, 

the multi-objective optimization results are measured using two criteria, convergence to the global Pareto optimal 

front (POF) and the diversity of the solutions [2]. Special metrics used to quantify convergence and diversity of the 

solution sets are described as follows: 

  

a) Convergence to Pareto optimal front: To compare the sets of non-dominated solutions
3
 [2] from various 

generations, the number of solutions that are dominated in each set is computed using a weak non-

domination criterion. The smaller the number of dominated solutions, the better is the convergence. 

 

b) Diversity: The diversity of the Pareto front estimates how wide-spread the trade-off solutions are, (spread) 

and how uniformly the entire trade-off front is sampled (uniformity). These two measures of diversity are 

estimated by the following metrics:  

 

i. Spread: The spread of the front is calculated as the diagonal of the largest hypercube in the 

function space that encompasses all points. A large spread is desired to find diverse trade-off 

solutions. It is important to note that the spread measure is derived only based on the extreme 

solutions such that this criterion is susceptible to the presence of a few isolated points that can 

artificially improve the spread metric. An equivalent criterion might be the volume of such a 

hypercube.  

 

ii. Uniformity measure: The uniformity measure is a complimentary criterion (to the spread metric) 

that detects the presence of poorly distributed solutions by estimating how uniformly the points 

are distributed in the Pareto optimal set. The uniformity measure [2] is defined as, 

 

    .
1

;
11

∑∑
==

=
−

=∆
�

i

i

�

i

i
d

�
d

�

dd
      (1) 

 

where di is the crowding distance
4
 [2] of the solution in the function or variable space. The 

boundary points are assigned a crowding distance of twice the distance to the nearest neighbor. 

                                                           
3
 A non-dominated solution is not dominated by any other solution in the set. A solution is considered to be 

dominated if it is not better than comparing solution in all objectives and is worse in at least one objective.  
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This measure is similar to the standard deviation of the crowding distance and hence a small value 

of the uniformity measure is desired to achieve a good distribution of points.  

C. Stopping Criterion 

A novel dominance based criterion is proposed in this paper. In the proposed approach, an external archive of 

non-dominated solutions is maintained. This archive is updated after each generation: i) to remove the solutions that 

are dominated by the new evolved solutions; and ii) to add the new solutions that are also non-dominated with 

respect to the archive. Duplicate copies of the non-dominated solutions are also eliminated. 

Now to estimate the stopping criterion, the archive at a generation is compared with an older archive (obtained at 

some earlier generation). The number of solutions in the old archive that were dominated by the newer archive 

(dominated solutions) and the number of older archive members that are also present in the new archive (non-

dominated solutions), were computed. Note that the new archive included all older archive members so none of the 

new archive members would be dominated. The number of dominated solutions and non-dominated solutions are 

scaled by the size of the archive to facilitate a fair comparison among archives at different generations while using 

these metrics to determine the stopping criterion. The scaled number of dominated solutions is termed improvement-

ratio that indicates the improvement in the quality of solutions; and the scaled number of non-dominated solutions is 

called the consolidation-ratio that represents the proportion of potentially converged solutions.  

It is noted that the improvement-ratio is similar to the error ratio metric, proposed by van Veldhuizen [35], 

which calculated the percentage of the non-dominated solution set that was NOT part of the global POF. The main 

difference is that the error ratio required a priori knowledge of the global POF where as the improvement ratio does 

not require such information. Thus the information ratio metric can be universally used for both analytical and 

engineering problems.  

A sample calculation of the two metrics with the generation number for the OSY problem was shown in Figure 

5. It was obvious from Figure 5, that the archive population stabilized with evolution as convergence was 

approached; and the number of dominated solution (improvement ratio) approached zero whereas the sizes of new 

and old archives (consolidation ratio) became comparable i.e., the consolidation ratio approached unity. The 

improvement ratio and the consolidation ratio did not reach exact zero or unit values respectively due to numerical 

precision limitations. Nevertheless, a decreasing improvement-ratio and/or increasing consolidation-ratio indicated 

the convergence. Of the two metrics, one can clearly see that the improvement ratio was noisier than the 

consolidation ratio; and hence the latter was chosen as a more robust convergence metric.  

It was also observed from Figure 5, that both metrics are very strongly influenced by the locally random 

behavior of evolution when the new and old archive are separated by one generation (step = 1). The affect of noise is 

filtered by increasing the generation gap between the new and old archives to ten (step = 10) i.e., the convergence 

metrics were computed every ten generations.  

 

 
A) Consolidation ratio     B) Improvement ratio 

Figure 5: Consolidation ratio and improvement ratio metrics for the OSY problem. 
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 Crowding distance is defined as half the perimeter of the largest hypercube around a point that does not encompass 

any other solution.  
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It is proposed that the consolidation ratio metrics can be used as a stopping criterion to terminate the MOEA 

search once significant improvements in the quality of solutions are achieved to reduce the computational cost. The 

proposed criteria can be implemented with any multi-objective evolutionary algorithm in the following two ways:  

i) Firstly, one can stop the simulation when the consolidation ratio reaches a pre-determined cut-off value 

e.g., when the consolidation-ratio is greater than 0.66. Of course, the choice of the exact cut-off value may 

depend on the problem and may require some trial and error. 

ii) The second method is particularly attractive in industrial setups where each analysis takes much longer 

(hours) than the data-processing using genetic algorithms (seconds). Besides, the use of computer clusters 

is regulated to restrict a single user taking all the processing capability for long periods. In this strategy, the 

user could initialize the GA simulation with a reasonable number of generations (e.g., 40 generations) and 

track the consolidation ratio to identify the formation of a “knee” in the convergence curve. The onset of 

the “knee” indicates smaller improvements in the quality of solutions with evolution. Of course this does 

not guarantee the Pareto optimal front. If the convergence is not achieved after the initial run, the user can 

iteratively restart the MOEA simulation by adding a few generations (e.g., 10 generations) at a time. The 

number of restarts would be controlled by the desired convergence. This iterative strategy would result in 

the least computational cost to achieve a good local Pareto optimal front. This strategy was adopted here. 

 

It is important to note differences in the proposed convergence metric and those available in literature. The main 

differences are: 

i. While all other criteria [29]-[34] have used population data from each generation, the proposed criterion 

maintains an external archive
5
 of non-dominated solutions at each generation that avoids the issue of Pareto-

drift [16]. The archive also significantly reduces the noise in the non-dominated solution data and provides 

robust results.  

ii. The proposed criterion uses a non-dominance based criterion where as other researchers have used either 

diversity based criteria ([29], [31], [32]), or dominance based criteria ([30], [34]). The non-domination based 

criterion is less noisy compared to the dominance based criterion. 

iii. Other researchers have computed the so-called “online stopping criteria” at each generation but the proposed 

criterion is estimated every few generations to reduce the possibility of convergence to a local POF and 

reduce the effect of noise.  

III. Results 

In this section, the optimization results for the four test problems are described in detail.  

A. Time Savings from Parallelization 

The two crashworthiness optimization problems were analyzed using clusters of processors to reduce the clock 

time. For the MDO problem, a total of 7956 distinct designs were analyzed using LS-DYNA and 3823 designs were 

found feasible. The total number of designs was not 8000 (population 80, 100 generations) because simulations for 

duplicate designs were reused. The savings by distributing function evaluations on a cluster using the IBM cluster 

was about 7,800 hours. That is, by running 80 simulations on 80 cores of the cluster concurrently, the elapsed 

simulation time was reduced from about 7950 hours on a single core to 100 hours. Similarly, for the knee-bolster 

design problem, 9599 designs were simulated and nearly 8817 designs were found feasible. In this case, only one 

design was found to be an exact duplicate and hence was not simulated. The total elapsed time, by running 16 jobs 

in parallel and allocating two cores to each job, was 130 hours compared to 3200 hours on a single processor. 

Clearly, there were significant savings in the clock time by running the jobs in parallel.  

B. Convergence to Pareto Optimal Front 

As discussed earlier, the convergence of the GA simulation was tracked by the growth of the archive in Figure 6. 

The size of the archive usually increased with generations. Only for the MDO problem, the archive size decreased 

intermittently as significantly improved solutions evolved that dominated many solutions from the archives at 

previous generations. This phenomenon was more likely to appear when the size of the archive was smaller than the 

population size. The number of solutions of the archive that remained non-dominated also increased monotonically 

for all problems indicating the progress towards the global Pareto optimal front. The number of solutions newly 

added to the archive was expectedly high in the initial phase, and it stabilized with the increase in generations. 

                                                           
5
 One can also use the non-dominated solutions at any generation instead of the archive.  
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Similarly it was observed that the number of old archive member solutions that were dominated by the new 

individuals reduced with evolution. These results indicate the stabilization of the population in terms of 

convergence. 

To further quantify the convergence to the global POF, the stabilization ratio and the improvement ratio metrics 

proposed here were plotted in Figure 7. The consolidation-ratio, indicative of surviving old archive members, 

increased sharply in the initial phase indicating significant improvements in the convergence characteristics of the 

archive. As the evolution was carried out much longer, the consolidation-ratio stabilized to a very high proportion 

(approx 90%). This “knee-shaped” convergence curve for multi-objective optimization is very similar to that 

observed for single-objective optimization using genetic algorithms. The GA simulation could have been stopped 

soon after the formation of the knee in the consolidation-ratio curve to achieve significant cost reduction. 

 

 
A) TNK     B) OSY 

 
C) KNEE     D) MDO 

Figure 6: Growth of the archive of non-dominated solutions. Current-total indicates the total number of 

solutions in this generation, Old-dominated are the number of solutions that were part of the archive 

previously but were removed from the archive because they were dominated by the new individuals, Old-non-

dominated solutions were members of the archive that remained non-dominated with respect to the new 

solutions, and 4ew-non-dominated solutions are newly found non-dominated solutions. 

The improvement-ratio, that is the ratio of the number of previous archive members dominated by the new 

members (and hence discarded) and the total number of current archive members, was shown in Figure 7(B). As 

expected, this ratio was significantly high in the earlier generations when evolution resulted in better solutions. The 

ratio decreased with generations and showed signs of stabilization. The result for the MDO problem was noisier than 

the other problems but the trends supported the conclusion that the proportion of duplicate solutions decreased with 

evolution.  

The results shown in this section clearly demonstrated that, a) similar to the single-objective evolutionary 

algorithms, significant improvements towards convergence were obtained in the early phase of multi-objective 

evolutionary algorithms, and b) either of the two metrics, the consolidation-ratio or the improvement-ratio could be 
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used to decide on the convergence of the multi-objective evolutionary algorithm. It was noted that early termination 

of the simulation might not result in the global Pareto optimal front but the solution set obtained would likely be a 

good trade-off between the computational cost and the convergence to the global POF. 

 

 
A) Consolidation-ratio     B) Improvement ratio  

Figure 7: The two convergence metrics proposed in this paper. The consolidation-ratio is the proportion of 

old solutions that have remained non-dominated in the current generation and the improvement-ratio is the 

proportion of old solutions that were dominated by new solutions. 

C. Spread 

The diversity of solutions was quantified using the spread of the archive at each generation. The objectives for 

the OSY problem were scaled by 250 and 50 units respectively, and the MDO problem were scaled by 0.1 units each 

to provide equivalence among all problems. The scaling only affected the scale of the curve. It was observed from 

Figure 8 that the spread of the candidate Pareto optimal front usually increased in the early stage of evolution and 

then stabilized. This metric also indicated the potential advantages of stopping the search earlier.  

 

 

Figure 8: Spread of the candidate Pareto optimal front for different problems. 
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Apparently opposite trends for the OSY problem were largely due to the presence of a widely-spread local 

Pareto front (discussed later). The solutions in this non-dominated set were dominated by better solutions in the 

subsequent generations such that the spread decreased. It was also noted that the optimization search could not find 

complete Pareto front for the OSY problem in 300 generations. A gradual increase in the spread for this problem 

was observed because more solutions were being continuously evolved to traverse the Pareto optimal front. This 

behavior might not be atypical for many problems and indicated the potential lack of convergence that could be 

attributed to the early termination. However, the result obviously supported the hypothesis of significant savings in 

the computational cost by accepting a small compromise in the quality of solutions for this problem also. 

D. Uniformity Measures 

As shown in Figure 9, the uniformity measures in both function and variable spaces decreased with generations 

that indicated improvement in the distribution of solutions. The low value of the uniformity measure also confirmed 

the good distribution. The noisy behavior of the uniformity measure in the function space for the OSY problem was 

mainly due to the fact that the extreme solutions in the different regions of the Pareto optimal front were identified 

before the entire region was populated with the optimal solutions. Overall, the trends for the OSY function also 

agreed with the other problems. 

 

 
A) Function space    B) Variable space 

Figure 9 Uniformity measures in function and variable space for all problems. 

E. Validating the Stopping Criterion 

The results shown above indicated that the GA simulations could be stopped earlier using the proposed criteria to 

achieve a substantial computational cost reduction. Using the convergence criteria (Figure 7) and accounting for the 

spread (Figure 8) and uniformity measures (Figure 9), the simulations for the TNK could be stopped after 80 

generations, after 140 generations for the OSY problem and after 100 generations for crashworthiness optimization 

problems
6
. A comparison of the quality of the solutions in the archive at the proposed stopping generation and 

complete simulation results for all problems in shown in Figure 10.  

As indicated by different metrics, there were significant improvements in the quality of trade-off solutions in the 

initial phase (notice the differences in trade-off curves obtained at 10
th

 and 40
th

 generations) for all the problems. 

Many solutions in the archive after 40 generations constituted a part of the global Pareto optimal front for the 

analytical problems. The entire POF was traversed after 80 generations for the TNK problem (Fig 7(A)) and more 

points were added to the Pareto front in the subsequent generations (Fig 7(B)).  

As described earlier, the OSY problem resulted in five distinct sections of the Pareto optimal front. The local 

Pareto optimal front obtained after the termination condition at 140 generations also comprised of five sections. 

However, only two sections (f1 ranging from -260 to -130 units) were well identified after 140 generations for the 

OSY problem; the third section (f1 ranging from -110 to -40 units) was sparsely approximated. The remaining two 

sections of the local Pareto optimal front (f2 ranging from 4 to 28 units, and 50 to 80 units) were far from the global 

                                                           
6
 The result for the MDO problem was not very conclusive but more simulations could not be conducted due to the 

budget on the computational resource. 
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POF. The spread of the solutions in the third section was improved and convergence to the global POF was achieved 

by running the simulations up to 300 generations.  

The pictorial representation of archive solutions at different generations for the knee-bolster design problem is 

depicted in Figure 7(C). While it is difficult to assess the convergence pictorially for this three objectives problem, 

initial improvements were obvious. There was a very noticeable overlap in the solutions from the 100
th

 and 120
th
 

generations confirming the attainment of convergence to a local Pareto optimal front. The diversity of the solutions 

also appeared reasonably good and the same was noticed in the metrics discussed above. 

As can be seen from Figure 7(D) for the MDO problem, there were noticeable improvements in the convergence 

of the solutions in the first 80 generations after which relatively smaller improvements were found. The 

improvements between trade-off solutions obtained between the 90
th

 and 100
th
 generations were relatively small

7
. 

Apparently, the trade-off solutions at the 100
th

 generation were better distributed than the solutions obtained at the 

90
th

 generation.  

 

 
A) TNK 

 
B) OSY 

                                                           
7
 The limitations on the computational budget restricted us from running more than 100 generations for the MDO 

problem. 
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C) KNEE 

 
D) MDO 

Figure 10: 4on-dominated solutions at different generations. Gen-10 corresponds to 10
th

 generation.  

All the results presented here confirmed that i) significant improvements were obtained in the initial phase of 

evolution, and ii) the suggested stopping point based on the metrics proposed in this paper resulted in good trade-

offs between the quality of solutions and the computational cost.  

F. Selecting a Single Design 

While it is useful to identify many choices to understand the nature of the problem and different possible trade-

offs, a single solution is mostly selected as the final design. In one such scenario considered here, a design 

corresponding to equal importance of each objective was identified using a weighted sum of the objectives for each 

problem.  

Figure 11 shows the weighted sum of the objectives and corresponding objective function values with 

generations. A gradual stepped reduction, typical of a GA based optimization, in the weighted sum of the objectives 

was observed for all test problems. Figure 11 indicated that the best design (according to the unit weight criterion) at 

any generation was not obtained by monotonous improvements in individual objectives. Instead, a trade-off between 

two objectives was reflected such that an occasional increase in one objective was coupled with a larger reduction in 

other objectives. The extreme behavior of the TNK problem was attributed to the non-convex nature of the problem 

where more than one single-objective optimum could be located for the same weight structure. The change in the 
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objective function for the OSY problem was largely governed by the first objective that had a higher magnitude. For 

the knee problem, the intrusion increased slightly to accommodate a higher reduction in the maximum force. 

Similarly, there was an increase in the scaled intrusion to allow a higher mass reduction for the MDO problem. For 

all problems, significant improvements in the performance were obtained before the stopping generation indicated 

by the convergence metrics described in this paper.  

 

 
A) TNK – Weighted sum of objectives B) TNK – Function space 

 
C) OSY– Weighted sum of objectives D) OSY - Function space 

 
E) KNEE – Weighted sum of objectives F) KNEE - Function space 
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G) MDO – Weighted sum of objectives H) MDO - Function space 

Figure 11: Generation number vs. minimum equally weighted sum of objectives.  

IV. Summary 

The issue of computational cost is very important for the application of genetic algorithms to industrial 

problems, particularly for the multi-objective optimization problems. The convergence characteristics of 

evolutionary algorithms for multi-objective optimization were studied in this paper and a simple and robust stopping 

criterion was developed. Specifically, the study was focused on a popular MOEA, the elitist non-dominated sorting 

genetic algorithm (NSGA-II).  

The rate of convergence was assessed using a few metrics, proposed in this paper, which tracked the quality of 

solutions in an archive of non-dominated solutions set at each generation. The consolidation-ratio indicative of the 

proportion of the solutions in the archive that remained non-dominated with respect to new solutions was identified 

as a very reasonable metric to evaluate the relative improvements. Another metric improvement-ratio was the 

proportion of non-dominated solutions from previous generations that were dominated by the newly generated 

solutions. The diversity of the solutions was measured using a spread metric that estimated the length of the diagonal 

of the largest hyper-cube and uniformity measures that calculated the average deviation of the distances between the 

closest points. These metrics did not require a priori information about the global Pareto front and no additional 

parameter was required. 

The performance of the different metrics was studied using two analytical problems and two crashworthiness 

problems. It was demonstrated that, similar to the single-objective GA, significant improvements in the convergence 

and the diversity of the solutions were obtained in the early phase of evolution. Relatively smaller improvements 

were observed in the later phases. The convergence curve obtained by plotting the consolidation-ratio against the 

number of generations resulted in the most prominent “knee” shape. This suggested that the search could be 

terminated at the on-set of “knee” formation to reduce the computational cost for industrial problems where the goal 

was often to find a significantly improved solution rather than the absolute best optimum.  

A further analysis of the non-dominated solutions at different generations also indicated that the above metric 

resulted in a reasonable trade-off between the computational cost and the quality of the solutions. It was noted that 

early termination did not necessarily result in convergence to the global Pareto optimal front but the savings in the 

computational cost offered a very attractive trade-off for practical problems.  

The analysis of the single solution chosen by minimizing the equally weighted sum of objectives also indicated a 

monotonic decrease in the weighted sum of objectives but individual objectives were selected to provide the best 

trade-offs. Lastly, a significant reduction in clock time was also realized by utilizing a parallel computing 

framework.  
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