

LS-OPT User’s Manual

A DESIGN OPTIMIZATION AND
PROBABILISTIC ANALYSIS TOOL
FOR THE ENGINEERING ANALYST

NIELEN STANDER, Ph.D.
WILLEM ROUX, Ph.D.

TRENT EGGLESTON, Ph.D.
KEN CRAIG, Ph.D.

April, 2007

Version 3.2

Copyright © 1999-2007
LIVERMORE SOFTWARE

TECHNOLOGY CORPORATION
All Rights Reserved

Mailing address:
Livermore Software Technology Corporation

2876 Waverley Way
Livermore, California 94551

Support Address:

Livermore Software Technology Corporation
7374 Las Positas Road

Livermore, California 94551

 FAX: 925-449-2507
 TEL: 925-449-2500

EMAIL: sales@lstc.com

Copyright © 1999-2007 by Livermore Software Technology Corporation
All Rights Reserved

LS-DYNA®, LS-OPT® and LS-PREPOST® are registered trademarks of

Livermore Software Technology Corporation

mailto:sales@lstc.com

 iii

Contents

Contents .. iii

Preface to Version 1 ... xxi

Preface to Version 2 ... xxi

Preface to Version 3 .. xxii

1. Introduction 1

THEORETICAL MANUAL.. 3

2. Optimization Methodology 5

2.1 Introduction... 5

2.2 Theory of Optimization .. 7

2.3 Gradient Computation and the Solution of Optimization Problems... 8

2.4 Normalization of constraints and variables .. 9

2.5 Response Surface Methodology ... 10

2.5.1 Approximating the response ... 11

2.5.2 Factors governing the accuracy of the response surface... 12

2.5.3 Advantages of the method .. 12

2.5.4 Other types of response surfaces .. 12

2.6 Experimental design ... 13

2.6.1 Factorial design... 13

2.6.2 Koshal design.. 13

First order model... 13

Second order model .. 13

2.6.3 Central Composite design... 14

2.6.4 D-optimal design .. 15

CONTENTS

iv LS-OPT Version 3

2.6.5 Latin Hypercube Sampling (LHS).. 15

Maximin.. 16

Centered L2-discrepancy .. 16

2.6.6 Space-filling designs... 17

Discussion of algorithms .. 19

2.6.7 Random number generator ... 20

2.7 Reasonable experimental designs* ... 20

2.8 Model adequacy checking .. 21

2.8.1 Residual sum of squares ... 21

2.8.2 RMS error ... 21

2.8.3 Maximum residual .. 21

2.8.4 Prediction error ... 22

2.8.5 PRESS residuals ... 22

2.8.6 The coefficient of multiple determination R2 ... 22

2.8.7 R2 for Prediction ... 23

2.8.8 Iterative design and prediction accuracy .. 23

2.9 ANOVA.. 23

2.9.1 The confidence interval of the regression coefficients ... 24

2.9.2 The significance of a regression coefficient bj ... 24

2.10 Metamodeling techniques ... 25

2.10.1 Neural network approximations* ... 25

Model adequacy checking .. 27

Feed-forward neural networks .. 29

Variability of Feedforward Neural Networks... 32

2.10.2 Kriging*.. 32

2.10.3 Concluding remarks: which metamodel? ... 34

CONTENTS

LS-OPT Version 3 v

2.11 Core optimization algorithm (LFOPC)... 34

2.12 Successive response surface method (SRSM) .. 35

2.13 Sequential random search (SRS) .. 38

2.14 Discrete optimization.. 39

2.14.1 Discrete variables.. 39

2.14.2 Discrete optimization.. 39

2.14.3 Mixed-discrete optimization... 40

2.14.4 Discrete optimization algorithm: genetic algorithm ... 40

2.14.5 Objective function for discrete optimization .. 40

2.14.6 Sequential strategy.. 40

2.15 Summary of the optimization process .. 41

2.15.1 Convergence to an optimal point .. 41

2.15.2 Design exploration.. 42

3. Applications of Optimization 43

3.1 Multicriteria Design Optimization.. 43

3.1.1 Euclidean Distance Function .. 43

3.1.2 Maximum distance.. 44

3.2 Multidisciplinary Design Optimization .. 45

3.3 System Identification using nonlinear regression... 46

3.3.1 Nonlinear regression: minimizing Mean Squared Error (MSE)... 46

3.3.2 Minimizing the maximum residual (Min-Max).. 47

3.3.3 Nonlinear regression: confidence intervals .. 48

3.4 Worst-case design ... 49

3.5 Reliability-based design optimization (RBDO)*.. 50

4. Probabilistic Fundamentals 53

CONTENTS

vi LS-OPT Version 3

4.1 Introduction... 53

4.2 Probabilistic variables... 53

4.2.1 Variable linking .. 54

4.3 Basic computations ... 54

4.3.1 Mean, variance, standard deviation, and coefficient of variation... 54

4.3.2 Correlation of responses ... 55

4.3.3 Confidence intervals ... 55

4.4 Probabilistic methods.. 56

4.4.1 Monte Carlo analysis .. 56

4.4.2 Monte Carlo analysis using metamodels .. 58

4.4.3 First-Order Second-Moment Method (FOSM)... 58

4.4.4 The most probable point ... 59

4.4.5 FORM (First Order Reliability Method) .. 61

4.4.6 Design sensitivity of the most probable point .. 61

4.5 Required number of simulations... 62

4.5.1 Overview... 62

4.5.2 Background... 62

4.5.3 Competing role of variance and bias .. 63

4.5.4 Confidence interval on the mean .. 64

4.5.5 Confidence interval on a new evaluation.. 64

4.5.6 Confidence interval on the random deviation (σ2).. 65

4.5.7 Probability of observing a specific failure mode .. 66

4.6 Outlier analysis ... 66

4.7 Stochastic contribution analysis.. 68

4.7.1 Linear Estimation.. 68

CONTENTS

LS-OPT Version 3 vii

4.7.2 Second and higher order estimation ... 68

4.8 Robust parameter design... 69

4.8.1 Fundamentals .. 70

4.8.2 Methodology... 71

4.8.3 Experimental Design .. 72

USER’S MANUAL ... 73

5. Design Optimization Process 75

5.1 LS-OPT Features .. 75

5.2 A modus operandi for design using response surfaces ... 76

5.2.1 Preparation for design... 76

5.2.2 A step-by-step design optimization procedure ... 77

5.3 Recommended test procedure... 79

5.4 Pitfalls in design optimization .. 79

5.5 Advanced methods for design optimization ... 80

5.5.1 Neural Nets and Kriging*... 80

6. Graphical User Interface and Command Language 83

6.1 LS-OPT user interface (LS-OPTui) .. 83

6.2 Problem description and author name .. 84

6.3 Command Language ... 85

6.3.1 Names ... 86

6.3.2 Command lines ... 87

6.3.3 File names... 87

6.3.4 Command file structure .. 87

6.3.5 Environments .. 88

6.3.6 Expressions ... 88

CONTENTS

viii LS-OPT Version 3

7. Program Execution 89

7.1 Work directory.. 89

7.2 Execution commands.. 89

7.3 Directory structure .. 89

7.4 Job Monitoring.. 90

7.5 Result extraction ... 91

7.6 Restarting .. 91

7.7 Output files ... 92

7.8 Using a table of existing results to conduct an analysis ... 93

7.9 Log files and status files ... 93

7.10 Managing disk space during run time... 94

7.11 Error termination of a solver run .. 95

7.12 Parallel processing .. 95

7.13 Using an external queuing or job scheduling system ... 96

7.13.1 Introduction... 96

7.13.2 Installation .. 96

Installation for all remote machines running LS-DYNA.. 96

Installation on the local machine .. 97

7.13.3 Example .. 97

7.13.4 Mechanics of the queuing process .. 98

7.13.5 Environment variables .. 99

7.13.6 Troubleshooting.. 99

7.13.7 User-defined queuing systems .. 99

7.13.8 Database recovery... 100

LS-DYNA:.. 100

User-defined : ... 101

CONTENTS

LS-OPT Version 3 ix

8. Interfacing to a solver or preprocessor 103

8.1 Labeling design variables in a solver and preprocessor ... 103

8.1.1 The LS-OPT Parameter Format.. 104

8.2 Interfacing to a Solver... 106

8.2.1 Interfacing with LS-DYNA .. 107

The *PARAMETER format ... 108

Check of the *DATABASE cards .. 108

Altering the d3plot databases.. 109

8.2.2 Interfacing with LS-DYNA/MPP ... 110

8.2.3 Interfacing with a user-defined solver .. 110

8.3 Preprocessors .. 111

8.3.1 LS-INGRID .. 111

8.3.2 TrueGrid ... 112

8.3.3 AutoDV... 112

8.3.4 HyperMorph ... 114

8.3.5 DEP-Morpher ... 115

8.3.6 User-defined preprocessor .. 116

9. Design Variables, Constants, and Dependents 117

9.1 Selection of design variables .. 118

9.2 Definition of upper and lower bounds of the design space... 118

9.3 Size and location of region of interest (range).. 118

9.4 Local variables.. 119

9.5 Discrete Variables... 119

9.6 Assigning variable to solver ... 119

9.7 Constants... 120

9.8 Dependent Variables... 120

CONTENTS

x LS-OPT Version 3

9.9 Worst-case design ... 121

10. Probabilistic Modeling and Monte Carlo Simulation 123

10.1 Probabilistic problem modeling.. 123

10.2 Probabilistic distributions ... 123

10.2.1 Beta distribution.. 124

10.2.2 Binomial distribution .. 124

10.2.3 Lognormal distribution ... 126

10.2.4 Normal distribution... 127

10.2.5 Uniform distribution ... 128

10.2.6 User defined distribution .. 129

10.2.7 Weibull distribution .. 131

10.3 Probabilistic variables... 132

10.3.1 Setting the nominal value of a probabilistic variable ... 133

10.3.2 Bounds on probabilistic variable values ... 134

10.3.3 Noise variable subregion size ... 134

10.4 Probabilistic simulation .. 135

10.4.1 Monte Carlo analysis .. 135

10.4.2 Monte Carlo analysis using a metamodel ... 136

10.4.3 FORM (First Order Reliability Method) analysis .. 137

10.4.4 Accuracy of metamodel based Monte Carlo .. 137

10.4.5 Histograms of responses ... 138

10.4.6 Adding the noise component to metamodel Monte Carlo computations.............................. 138

10.5 Stochastic Contribution Analysis (DSA).. 138

10.6 Covariance .. 139

10.7 Robust Design... 140

CONTENTS

LS-OPT Version 3 xi

11. Metamodels and Point Selection 142

11.1 Metamodel definition.. 142

11.1.1 Response Surface Methodology ... 142

11.1.2 Neural Networks and Kriging *.. 143

11.1.3 Variability of Neural Networks .. 143

11.2 Point Selection Schemes... 144

11.2.1 Overview... 144

11.2.2 D-Optimal point selection... 146

11.2.3 Latin Hypercube Sampling ... 147

11.2.4 Space filling .. 148

11.2.5 User-defined point selection ... 148

11.3 Sampling at discrete points ... 149

11.4 Duplicating an experimental design ... 149

11.5 Augmentation of an existing design ... 150

11.6 Specifying an irregular design space* .. 150

11.7 Automatic updating of an experimental design .. 152

11.8 Using design sensitivities for optimization... 152

11.8.1 Analytical sensitivities.. 152

11.8.2 Numerical sensitivities.. 153

11.9 Alternative point selection .. 154

11.10 Changing the number of points on restart*... 155

11.11 Repeatability of point selection .. 157

11.12 Remarks: Point selection .. 157

12. History and Response Results 158

12.1 Defining a response history (vector)... 158

CONTENTS

xii LS-OPT Version 3

12.1.1 Crossplot history... 160

12.1.2 History files .. 161

12.2 Defining a response (scalar) ... 162

12.3 Specifying the metamodel type... 162

12.4 Extracting history and response quantities: LS-DYNA.. 165

12.5 LS-DYNA Binout results.. 166

12.5.1 Binout histories ... 166

Averaging, filtering, and slicing Binout histories... 167

12.5.2 Binout responses ... 167

Binout injury criteria... 168

12.6 Translating ASCII output commands to Binout commands... 169

12.7 LS-DYNA D3Plot results ... 169

12.7.1 D3Plot histories .. 169

Slicing D3Plot histories .. 170

D3Plot FLD results ... 171

12.7.2 D3Plot responses .. 171

12.8 Mass .. 172

12.9 Frequency of given modal shape number ... 173

12.10 Extracting metal forming response quantities: LS-DYNA... 174

12.10.1 Thickness and thickness reduction ... 175

12.10.2 FLD constraint .. 175

Bilinear FLD constraint .. 176

General FLD constraint .. 177

12.10.3 Principal stress .. 178

12.11 Userdefined interface for extracting results.. 179

12.12 Responses without metamodels .. 180

CONTENTS

LS-OPT Version 3 xiii

12.13 Matrix operations.. 180

12.13.1 Initializing a matrix... 182

12.13.2 Creating a rotation matrix using 3 specified points .. 182

13. Composite Functions 183

13.1 Introduction... 183

13.1.1 Composite vs. response expressions... 183

13.2 Expression composite ... 183

13.2.1 General expressions .. 183

13.2.2 Special expressions... 183

13.3 Standard composite... 184

13.3.1 Targeted composite (square root of MSE).. 184

13.3.2 Mean Squared Error composite .. 184

13.3.3 Weighted composite ... 184

13.4 Defining the composite function... 185

13.5 Assigning design variable or response components to the composite... 186

13.6 Mean Squared Error.. 187

14. Objectives and Constraints 193

14.1 Formulation... 193

14.2 Defining an objective function ... 194

14.3 Defining a constraint... 195

14.4 Bounds on the constraint functions... 196

14.5 Minimizing the maximum response or violation*.. 197

14.6 Internal scaling of constraints ... 199

15. Running the Design Task 201

15.1 Optimization ... 201

CONTENTS

xiv LS-OPT Version 3

15.1.1 Number of optimization iterations.. 201

15.1.2 Optimization termination criteria.. 201

15.2 Probabilistic Evaluation.. 202

15.3 Restarting .. 203

15.4 Job concurrency .. 203

15.5 Job distribution ... 203

15.6 Job and analysis monitoring ... 203

15.7 Repair or modification of an existing job ... 203

15.8 Saving/compressing the LS-OPT database after completing a run .. 205

16. Viewing Results 206

16.1 Metamodel .. 206

16.1.1 Setup ... 206

16.1.2 Ranges... 206

16.1.3 Points .. 206

Point plotting options.. 207

Point status.. 207

Predicting a value ... 209

16.1.4 Fringe plot options for neural nets.. 210

16.2 Metamodel accuracy ... 211

16.3 Optimization history ... 212

16.4 Trade-off and anthill plots .. 213

16.5 Variable screening .. 214

16.6 Histograms .. 215

16.7 Stochastic Contribution... 216

16.8 Covariance and Correlation .. 217

16.9 Plot generation .. 218

CONTENTS

LS-OPT Version 3 xv

17. Applications of Optimization 221

17.1 Multidisciplinary Design Optimization (MDO) ... 221

17.1.1 Command file ... 221

17.2 Worst-case design ... 222

17.3 Reliability-based design optimization (RBDO)*.. 222

18. Optimization Algorithm Selection and Settings 225

18.1 Selecting an optimization algorithm... 225

18.2 Subdomain reduction .. 225

18.2.1 Setting the subdomain parameters .. 225

18.2.2 Changing the behavior of the subdomain ... 227

Resetting the subdomain range... 227

Freezing the subdomain range .. 227

18.3 Setting parameters in the LFOPC optimization algorithm ... 228

19. LS-DYNA Results Statistics 231

19.1 Monte Carlo .. 232

19.2 Metamodels and residuals... 233

19.3 Stochastic contribution of a variable (Design sensitivity analysis) .. 235

19.4 Safety margin.. 236

19.5 Monte Carlo and metamodel analysis commands .. 236

19.6 Correlation .. 238

19.7 Visualization in LS-PREPOST... 239

19.8 Viewing LS-OPT histories.. 240

19.9 Bifurcation investigations ... 242

19.9.1 Automatic detection.. 242

19.9.2 Manual detection .. 243

19.10 Displacement magnitude issues* .. 244

CONTENTS

xvi LS-OPT Version 3

EXAMPLES .. 247

20. Example Problems 249

20.1 Two-bar truss (2 variables) ... 249

20.1.1 Description of problem ... 249

20.1.2 A first approximation using linear response surfaces... 252

20.1.3 Updating the approximation to second order.. 255

20.1.4 Reducing the region of interest for further refinement ... 258

20.1.5 Conducting a trade-off study .. 260

20.1.6 Automating the design process ... 261

20.2 Small car crash (2 variables)... 265

20.2.1 Introduction... 265

20.2.2 Design criteria and design variables ... 265

20.2.3 Design formulation ... 266

20.2.4 Modeling... 266

20.2.5 First linear iteration... 268

20.2.6 First quadratic iteration... 271

20.2.7 Automated run .. 273

20.2.8 Trade-off using neural network approximation* .. 275

20.2.9 Mixed-discrete optimization... 277

20.2.10 RBDO (Reliability-based design optimization) using FOSM (First Order Second Moment
Method)* 278

20.3 Impact of a cylinder (2 variables) ... 280

20.3.1 Problem statement .. 280

20.3.2 A first approximation.. 282

20.3.3 Refining the design model using a second iteration ... 286

CONTENTS

LS-OPT Version 3 xvii

20.3.4 Third iteration ... 288

20.3.5 Response filtering: using the peak force as a constraint... 289

20.4 Sheet-metal forming (3 variables) .. 293

20.4.1 Problem statement .. 293

20.4.2 First Iteration .. 295

20.4.3 Automated design ... 302

20.5 System identification (elastoplastic material) (2 variables).. 306

20.5.1 Problem statement .. 306

Mean Squared Error (MSE) formulation.. 307

Maximum residual formulation .. 309

20.5.2 Results... 311

Mean Squared Error (MSE) formulation.. 312

Maximum residual formulation .. 315

20.6 Small car crash and NVH (MDO) (5 variables) ... 316

20.6.1 Parameterization and Variable screening ... 316

20.6.2 MDO with D-optimal experimental design and SRSM.. 318

20.6.3 Sequential random search ... 323

20.7 Large car crash and NVH (MDO) (7 variables) ... 327

20.7.1 Modeling... 327

20.7.2 Formulation of optimization problem... 329

20.7.3 Implementation in LS-OPT .. 330

20.7.4 Simulation results ... 333

20.7.5 Optimization history results.. 333

20.7.6 Comparison of optimum designs .. 338

20.7.7 Convergence and computational cost ... 339

20.8 Knee impact with variable screening (11 variables)... 340

CONTENTS

xviii LS-OPT Version 3

20.8.1 Problem statement .. 340

20.8.2 Definition of optimization problem .. 342

20.8.3 Implementation ... 342

20.8.4 Variable screening .. 345

20.8.5 Optimization with reduced variables .. 347

20.9 Optimization with analytical design sensitivities ... 348

20.10 Probabilistic Analysis ... 351

20.10.1 Overview... 351

20.10.2 Problem description .. 351

20.10.3 Monte Carlo evaluation .. 352

20.10.4 Monte Carlo using metamodel.. 355

20.10.5 Bifurcation analysis .. 359

20.11 Bifurcation/Outlier Analysis... 360

20.11.1 Overview... 360

20.11.2 Problem description .. 360

20.11.3 Monte Carlo evaluation .. 360

20.11.4 Automatic identification of buckling modes .. 361

20.11.5 Manual identification of buckling modes ... 362

20.12 Robust Parameter Design.. 365

Bibliography .. 368

Appendix A.. 373

LS-DYNA D3Plot Result Components.. 373

Appendix B .. 377

LS-DYNA Binout Result Components.. 377

Appendix C.. 383

CONTENTS

LS-OPT Version 3 xix

Database files... 383

Appendix D.. 387

Mathematical Expressions ... 387

Appendix E .. 399

Simulated Annealing... 399

Appendix F .. 403

Glossary ... 403

Appendix G.. 411

LS-OPT Commands: Quick Reference Manual .. 411

LS-OPT Version 3 xxi

Preface to Version 1

LS-OPT originated in 1995 from research done within the Department of Mechanical Engineering,
University of Pretoria, South Africa. The original development was done in collaboration with colleagues in
the Department of Aerospace Engineering, Mechanics and Engineering Science at the University of Florida
in Gainesville.

Much of the later development at LSTC was influenced by industrial partners, particularly in the automotive
industry. Thanks are due to these partners for their cooperation and also for providing access to high-end
computing hardware.

At LSTC, the author wishes to give special thanks to colleague and co-developer Dr. Trent Eggleston.
Thanks are due to Mr. Mike Burger for setting up the examples.

Nielen Stander
Livermore, CA
August, 1999

Preface to Version 2

Version 2 of LS-OPT evolved from Version 1 and differs in many significant regards. These can be
summarized as follows:

1. The addition of a mathematical library of expressions for composite functions.
2. The addition of variable screening through the analysis of variance.
3. The expansion of the multidisciplinary design optimization capability of LS-OPT.
4. The expansion of the set of point selection schemes available to the user.
5. The interface to the LS-DYNA binary database.
6. Additional features to facilitate the distribution of simulation runs on a network.
7. The addition of Neural Nets and Kriging as metamodeling techniques.
8. Probabilistic modeling and Monte Carlo simulation. A sequential search method.

As in the past, these developments have been influenced by industrial partners, particularly in the
automotive industry. Several developments were also contributed by Nely Fedorova and Serge Terekhoff of
SFTI. Invaluable research contributions have been made by Professor Larsgunnar Nilsson and his group in
the Mechanical Engineering Department at Linköping University, Sweden and by Professor Ken Craig’s
group in the Department of Mechanical Engineering at the University of Pretoria, South Africa. The authors
also wish to give special thanks to Mike Burger at LSTC for setting up further examples for Version 2.

Nielen Stander, Ken Craig, Trent Eggleston and Willem Roux
Livermore, CA
January, 2003

PREFACE

xxii LS-OPT Version 3

Preface to Version 3

The development of LS-OPT has continued with an emphasis on the integration with LS-DYNA and LS-
PREPOST and differs from the previous version in the following significant regards:

1. LS-OPT is now available for Microsoft Windows.
2. Commands have been added to simplify parameter identification using continuous curves of

measured data.
3. Stochastic fields have been added to LS-DYNA (Version 971) to provide the capability of modeling

geometric and shell thickness variability.
4. Extended visualization of statistical quantities based on multiple runs were implemented by further

integrating LS-PREPOST.
5. An internal d3plot interface was developed to replace the obsolete LS-Taurus interface.
6. Reliability-based Design optimization is now possible using the probability of failure in the design

constraints.
7. Neural network committees were introduced as a means to quantify and generalize response

variability.
8. Mixed discrete-continuous optimization is now possible.
9. Parameter identification is enhanced by providing the necessary graphical pre- and postprocessing

features. Confidence intervals are introduced to quantify the uncertainty of the optimal parameters.
10. The importation of user-defined sampling schemes has been refined.
11. Matrix operations have been introduced.
12. Data extraction can be done by specifying a coordinate (as an alternative to a node, element or part)

to identify the spatial location. The coordinate can be referred to a selected state.
13. A simple feature is provided to gather and compress the database for portability.
14. Checking of LS-DYNA keyword files is introduced as a means to avoid common output request

problems.
15. A feature is introduced to retry aborted runs on queuing systems.
16. 3-Dimensional point plotting of results is introduced as an enhancement of metamodel plotting.

As in the past, these developments were strongly influenced by industrial partners, particularly in the
automotive industry. LS-OPT is also being applied, among others, in metal forming and the identification of
system and material parameters. In addition to long-time participants: Professor Larsgunnar Nilsson
(Mechanical Engineering Department, Linköping University, Sweden) and Professor Ken Craig
(Department of Mechanical Engineering, University of Pretoria, South Africa), significant contributions
have been made by Dr. Daniel Hilding and Mr. David Björkevik of Engineering Research AB (Linköping)
as well Dr.-Ing. Heiner Müllerschön and Dipl.-Ing. Marko Thiele of DYNAmore GmbH, Stuttgart,
Germany.

Nielen Stander, Willem Roux and Trent Eggleston
Livermore, CA
April, 2007

LS-OPT Version 3 xxiii

LS-OPT Version 3 xxv

 1

1. Introduction

This LS-OPT® manual consists of three parts. In the first part, the Theoretical Manual (Chapter 2), the
theoretical background is given for the various features in LS-OPT. The next part is the User’s Manual
(Chapters 5 through 18), which guides the user in the use of LS-OPTui, the graphical user interface. These
chapters also describe the command language syntax. The final part of the manual is the Examples section
(Chapter 20), where eight examples illustrate the application of LS-OPT to a variety of practical
applications. Appendices contain interface features (Appendix A and Appendix B), database file
descriptions (Appendix C), a mathematical expression library (Appendix D), advanced theory (Appendix
E), a Glossary (Appendix F) and a Quick Reference Manual (Appendix G).

Sections containing advanced topics are indicated with an asterisk (*).

How to read this manual:
Most users will start learning LS-OPT by consulting the User’s Manual section beginning with Chapter 5
(The design optimization process). The Theoretical Manual (Chapters 2, 3 and 4) serves mainly as an in-
depth reference section for the underlying methods. The Examples section is included to demonstrate the
features and capabilities and can be read together with Chapters 5 to 19 to help the user to set up a problem
formulation. The items in the Appendices are included for reference to detail, while the Quick Reference
Manual provides an overview of all the features and command file syntax.

INTRODUCTION

2 LS-OPT Version 3

 3

THEORETICAL MANUAL

4 LS-OPT Version 3

 5

2. Optimization Methodology

2.1 Introduction

In the conventional design approach, a design is improved by evaluating its response and making design
changes based on experience or intuition. This approach does not always lead to the desired result, that of a
‘best’ design, since design objectives are sometimes in conflict, and it is not always clear how to change the
design to achieve the best compromise of these objectives. A more systematic approach can be obtained by
using an inverse process of first specifying the criteria and then computing the ‘best’ design. The procedure
by which design criteria are incorporated as objectives and constraints into an optimization problem that is
then solved, is referred to as optimal design.

The state of computational methods and computer hardware has only recently advanced to the level where
complex nonlinear problems can be analyzed routinely. Many examples can be found in the simulation of
impact problems and manufacturing processes. The responses resulting from these time-dependent
processes are, as a result of behavioral instability, often highly sensitive to design changes. Program logic,
as for instance encountered in parallel programming or adaptivity, may cause spurious sensitivity. Roundoff
error may further aggravate these effects, which, if not properly addressed in an optimization method, could
obstruct the improvement of the design by way of corrupting the function gradients.

Among several methodologies available to address optimization in this design environment, response
surface methodology (RSM), a statistical method for constructing smooth approximations to functions in a
multi-dimensional space, has achieved prominence in recent years. Rather than relying on local information
such as a gradient only, RSM selects designs that are optimally distributed throughout the design space to
construct approximate surfaces or ‘design formulae’. Thus, the local effect caused by ‘noise’ is alleviated
and the method attempts to find a representation of the design response within a bounded design space or
smaller region of interest. This extraction of global information allows the designer to explore the design
space, using alternative design formulations. For instance, in vehicle design, the designer may decide to
investigate the effect of varying a mass constraint, while monitoring the crashworthiness responses of a
vehicle. The designer might also decide to constrain the crashworthiness response while minimizing or
maximizing any other criteria such as mass, ride comfort criteria, etc. These criteria can be weighted
differently according to importance and therefore the design space needs to be explored more widely.

Part of the challenge of developing a design program is that designers are not always able to clearly define
their design problem. In some cases, design criteria may be regulated by safety or other considerations and
therefore a response has to be constrained to a specific value. These can be easily defined as mathematical
constraint equations. In other cases, fixed criteria are not available but the designer knows whether the

CHAPTER 2: OPTIMIZATION METHODOLOGY

6 LS-OPT Version 3

responses must be minimized or maximized. In vehicle design, for instance, crashworthiness can be
constrained because of regulation, while other parameters such as mass, cost and ride comfort can be treated
as objectives to be weighted according to importance. In these cases, the designer may have target values in
mind for the various response and/or design parameters, so that the objective formulation has to be
formulated to approximate the target values as closely as possible. Because the relative importance of
various criteria can be subjective, the ability to visualize the trade-off properties of one response vs. another
becomes important.

Trade-off curves are visual tools used to depict compromise properties where several important response
parameters are involved in the same design. They play an extremely important role in modern design where
design adjustments must be made accurately and rapidly. Design trade-off curves are constructed using the
principle of Pareto optimality. This implies that only those designs of which the improvement of one
response will necessarily result in the deterioration of any other response are represented. In this sense no
further improvement of a Pareto optimal design can be made: it is the best compromise. The designer still
has a choice of designs but the factor remaining is the subjective choice of which feature or criterion is more
important than another. Although this choice must ultimately be made by the designer, these curves can be
helpful in making such a decision. An example in vehicle design is the trade-off between mass (or energy
efficiency) and safety.

Adding to the complexity, is the fact that mechanical design is really an interdisciplinary process involving
a variety of modeling and analysis tools. To facilitate this process, and allow the designer to focus on
creativity and refinement, it is important to provide suitable interfacing utilities to integrate these design
tools. Designs are bound to become more complex due to the legislation of safety and energy efficiency as
well as commercial competition. It is therefore likely that in future an increasing number of disciplines will
have be integrated into a particular design. This approach of multidisciplinary design requires the designer
to run more than one case, often using more than one type of solver. For example, the design of a vehicle
may require the consideration of crashworthiness, ride comfort, noise level as well as durability. Moreover,
the crashworthiness analysis may require more than one analysis case, e.g. frontal and side impact. It is
therefore likely that as computers become more powerful, the integration of design tools will become more
commonplace, requiring a multidisciplinary design interface.

Modern architectures often feature multiple processors and all indications are that the demand for
distributed computing will strengthen into the future. This is causing a revolution in computing as single
analyses that took a number of days in the recent past can now be done within a few hours. Optimization,
and RSM in particular, lend themselves very well to being applied in distributed computing environments
because of the low level of message passing. Response surface methodology is efficiently handled, since
each design can be analyzed independently during a particular iteration. Needless to say, sequential methods
have a smaller advantage in distributed computing environments than global search methods such as RSM.

The present version of LS-OPT also features Monte Carlo based point selection schemes and optimization
methods. The respective relevance of stochastic and response surface based methods may be of interest. In a
pure response surface based method, the effect of the variables is distinguished from chance events while
Monte Carlo simulation is used to investigate the effect of these chance events. The two methods should be
used in a complimentary fashion rather than substituting the one for the other. In the case of events in which
chance plays a significant role, responses of design interest are often of a global nature (being averaged or
integrated over time). These responses are mainly deterministic in character. The full vehicle crash example

 CHAPTER 2: OPTIMIZATION METHODOLOGY

LS-OPT Version 3 7

in this manual can attest to the deterministic qualities of intrusion and acceleration pulses. These types of
responses may be highly nonlinear and have random components due to uncontrollable noise variables, but
they are not random.

Stochastic methods have also been touted as design improvement methods. In a typical approach, the user
iteratively selects the best design results of successive stochastic simulations to improve the design. These
design methods, being dependent on chance, are generally not as efficient as response surface methods.
However, an iterative design improvement method based on stochastic simulation is available in LS-OPT.

Stochastic methods have an important purpose when conducted directly or on the surrogate (approximated)
design response in reliability based design optimization and robustness improvement. This methodology is
currently under development and will be available in future versions of LS-OPT.

2.2 Theory of Optimization

Optimization can be defined as a procedure for “achieving the best outcome of a given operation while
satisfying certain restrictions” [23]. This objective has always been central to the design process, but is now
assuming greater significance than ever because of the maturity of mathematical and computational tools
available for design.

Mathematical and engineering optimization literature usually presents the above phrase in a standard form
as
 min)(xf (2.1)
subject to

mjg j ,,2,1;0)(K=≤x
and

lkhk ,,2,1;0)(K==x

where f, g and h are functions of independent variables x1, x2, x3, …, xn. The function f, referred to as the
cost or objective function, identifies the quantity to be minimized or maximized. The functions g and h are
constraint functions which represent the design restrictions. The variables collectively described by the
vector x are often referred to as design variables or design parameters.
The two sets of functions gj and hk define the constraints of the problem. The equality constraints do not
appear in any further formulations presented here because algorithmically each equality constraint can be
represented by two inequality constraints in which the upper and lower bounds are set to the same number,
e.g.
 0)(=xkh ~ 0)(0 ≤≤ xkh (2.2)
Equations (2.1) then become

 min)(xf (2.3)
subject to

mjg j ,,2,1;0)(K=≤x

CHAPTER 2: OPTIMIZATION METHODOLOGY

8 LS-OPT Version 3

The necessary conditions for the solution *x to Eq. (2.3) are the Karush-Kuhn-Tucker optimality
conditions:

 () () 0=∇+∇ ** xgx Tf λ (2.4)

() 0=*xgTλ
() 0* ≤xg

0≥λ .

These conditions are derived by differentiating the Lagrangian function of the constrained minimization
problem
 () () ()xgxx TfL λ+= (2.5)
and applying the conditions
 0* ≥∂∇ xfT (optimality) (2.6)
and
 0≤∂∇ *xgT (feasibility) (2.7)
to a perturbation *x∂ .

jλ are the Lagrange multipliers which may be nonzero only if the corresponding constraint is active, i.e.

() 0* =xjg .

For *x to be a local constrained minimum, the Hessian of the Lagrangian function, () ()*2*2 xgx ∇+∇ Tf λ
on the subspace tangent to the active constraint g must be positive definite at *x .

These conditions are not used explicitly in LS-OPT and are not tested for at optima. They are more of
theoretical interest in this manual, although the user should be aware that some optimization algorithms are
based on these conditions.

2.3 Gradient Computation and the Solution of Optimization Problems

Solving the optimization problem requires an optimization algorithm. The list of optimization methods is
long and the various algorithms are not discussed in any detail here. For this purpose, the reader is referred
to the texts on optimization, e.g. [41] or [23]. It should however be mentioned that the Sequential Quadratic
Programming method is probably the most popular algorithm for constrained optimization and is considered
to be a state-of-the-art approach for structural optimization [4, 73]. In LS-OPT, the subproblem is optimized
by an accurate and robust gradient-based algorithm: the dynamic leap-frog method [67]. Both these
algorithms and most others have in common that they are based on first order formulations, i.e. they require
the first derivatives of the component functions

idxdf and ij dxdg

 CHAPTER 2: OPTIMIZATION METHODOLOGY

LS-OPT Version 3 9

in order to construct the local approximations. These gradients can be computed either analytically or
numerically. In order for gradient-based algorithms such as SQP to converge, the functions must be
continuous with continuous first derivatives.
Analytical differentiation requires the formulation and implementation of derivatives with respect to the
design variables in the simulation code. Because of the complexity of this task, analytical gradients (also
known as design sensitivities) are mostly not readily available.

Numerical differentiation is typically based on forward difference methods that require the evaluation of n
perturbed designs in addition to the current design. This is simple to implement but is expensive and
hazardous because of the presence of round-off error. As a result, it is difficult to choose the size of the
intervals of the design variables, without risking spurious derivatives (the interval is too small) or
inaccuracy (the interval is too large). Some discussion on the topic is presented in Reference [23].

As a result, gradient-based methods are typically only used where the simulations provide smooth
responses, such as linear structural analysis and certain types of nonlinear analysis.

In non-linear dynamic analysis such as the analysis of impact or metal-forming, the derivatives of the
response functions are mostly severely discontinuous. This is mainly due to the presence of friction and
contact. The response (and therefore the sensitivities) may also be highly nonlinear due to the chaotic nature
of impact phenomena and therefore the gradients may not reveal much of the overall behavior. Furthermore,
the accuracy of numerical sensitivity analysis may also be adversely affected by round-off error. Analytical
sensitivity analysis for friction and contact problems is a subject of current research.

It is mainly for the above reasons that researchers have resorted to global approximation methods for
smoothing the design response. The art and science of developing design approximations has been a popular
theme in design optimization research for decades (for a review of the various approaches, see e.g.
Reference [5] by Barthelemy). Barthelemy categorizes two main global approximation methods, namely
response surface methodology [11] and neural networks [27].

In the present implementation, the gradient vectors of general composites based on mathematical
expressions of the basic response surfaces are computed using numerical differentiation. A default interval
of 1/1000 of the size of the design space is used in the forward difference method.

2.4 Normalization of constraints and variables

It is a good idea to eliminate large variations in the magnitudes of design variables and constraints by
normalization.

In LS-OPT, the typical constraint is formulated as follows:

 mjUgL jjj ,,2,1;)(K=≤≤ x (2.8)

which, when normalized becomes:

CHAPTER 2: OPTIMIZATION METHODOLOGY

10 LS-OPT Version 3

 mj
g

U
g
g

g
L

j

j

j

j

j

j ,,2,1;
)()(

)(
)(

K=≤≤
000 xx

x
x

 (2.9)

where x0 is the starting vector. The normalization is done internally.

The design variables have been normalized internally by scaling the design space [xL ; xU] to [0;1], where xL
is the lower and xU the upper bound. The formula

iLiU

iLi
i xx

xx
−
−

=ξ (2.10)

is used to transform each variable xi to a normalized variable, iξ .
When using LS-OPT to minimize maximum violations, the constraints must be normalized by the user. This
method is chosen to give the user the freedom in selecting the importance of different responses when e.g.
performing parameter identification. Section 3.3.2 will present this application in more detail.

2.5 Response Surface Methodology

An authoritative text on Response Surface Methodology [48] defines the method as “a collection of
statistical and mathematical techniques for developing, improving, and optimizing processes.” Although an
established statistical method for several decades [10], it has only recently been actively applied to
mechanical design [74]. Due to the importance of weight as a criterion and the multidisciplinary nature of
aerospace design, the application of optimization and RSM to design had its early beginnings in the
aerospace industry. A large body of pioneering work on RSM was conducted in this and other mechanical
design areas during the eighties and nineties [31, 61, 74, 75]. RSM can be categorized as a Metamodeling
technique (see Section 2.10 for other Metamodeling techniques namely Neural Networks and Kriging
available in LS-OPT).

Although inherently simple, the application of response surface methods to mechanical design has been
inhibited by the high cost of simulation and the large number of analyses required for many design
variables. In the quest for accuracy, increased hardware capacity has been consumed by greater modeling
detail and therefore optimization methods have remained largely on the periphery of the area of mechanical
design. In lieu of formal methods, designers have traditionally resorted to experience and intuition to
improve designs. This is seldom effective and also manually intensive. Moreover, design objectives are
often in conflict, making conventional methods difficult to apply, and therefore more analysts are
formalizing their design approach by using optimization.

 CHAPTER 2: OPTIMIZATION METHODOLOGY

LS-OPT Version 3 11

2.5.1 Approximating the response

Response Surface Methodology (or RSM) requires the analysis of a predetermined set of designs. A design
surface is fitted to the response values using regression analysis. Least squares approximations are
commonly used for this purpose. The response surfaces are then used to construct an approximate design
“subproblem” which can be optimized.

The response surface method relies on the fact that the set of designs on which it is based is well chosen.
Randomly chosen designs may cause an inaccurate surface to be constructed or even prevent the ability to
construct a surface at all. Because simulations are often time-consuming and may take days to run, the
overall efficiency of the design process relies heavily on the appropriate selection of a design set on which
to base the approximations. For the purpose of determining the individual designs, the theory of
experimental design (Design of Experiments or DOE) is required. Several experimental design criteria are
available but one of the most popular for an arbitrarily shaped design space is the D-optimality criterion.
This criterion has the flexibility of allowing any number of designs to be placed appropriately in a design
space with an irregular boundary. The understanding of the D-optimality criterion requires the formulation
of the least squares problem.

Consider a single response variable y dependent upon a number of variables x. The exact functional
relationship between these quantities is

)(xη=y (2.11)

The exact functional relationship is now approximated (e.g. polynomial approximation) as

)()(xx f≈η (2.12)

The approximating function f is assumed to be a summation of basis functions:

)()(
1

xx ∑
=

=
L

i
iiaf φ (2.13)

where L is the number of basis functions iφ used to approximate the model.

The constants []T

Laaa ,,, 21 K=a have to be determined in order to minimize the sum of the square error:

 { } ∑ ∑∑
= == ⎭

⎬
⎫

⎩
⎨
⎧

−=−
P

p
p

L

i
iip

P

p
pp ayfy

1

2

11

2)]()([)]()([xxxx φ (2.14)

P is the number of experimental points and y is the exact functional response at the experimental points xi.

The solution to the unknown coefficients is:

 yXXXa TT 1)(−= (2.15)
where X is the matrix
)]([][uiuiX xX φ== (2.16)

CHAPTER 2: OPTIMIZATION METHODOLOGY

12 LS-OPT Version 3

The next critical step is to choose appropriate basis functions. A popular choice is the quadratic
approximation
 T

nnn xxxxxxxx],,,,,,,,,1[2
121

2
11 KKK=φ (2.17)

but any suitable function can be chosen. LS-OPT allows linear, elliptical (linear and diagonal terms),
interaction (linear and off-diagonal terms) and quadratic functions.

2.5.2 Factors governing the accuracy of the response surface

Several factors determine the accuracy of a response surface [48].

1. The size of the subregion.

For problems with smooth responses, the smaller the size of the subregion, the greater the accuracy. For
the general problem, there is a minimum size at which there is no further gain in accuracy. Beyond this
size, the variability in the response may become indistinguishable due to the presence of ‘noise’.

2. The choice of the approximating function.

Higher order functions are generally more accurate than lower order functions. Theoretically, over-
fitting (the use of functions of too high complexity) may occur and result in suboptimal accuracy, but
there is no evidence that this is significant for polynomials up to second order [48].

3. The number and distribution of the design points.

For smooth problems, the prediction accuracy of the response surface improves as the number of points
is increased. However, this is only true up to roughly 50% oversampling [48] (very roughly).

2.5.3 Advantages of the method

• Design exploration

As design is a process, often requiring feedback and design modifications, designers are mostly
interested in suitable design formulae, rather than a specific design. If this can be achieved, and the
proper design parameters have been used, the design remains flexible and changes can still be made at a
late stage before verification of the final design. This also allows multidisciplinary design to proceed
with a smaller risk of having to repeat simulations. As designers are moving towards computational
prototyping, and as parallel computers or network computing are becoming more commonplace, the
paradigm of design exploration is becoming more important. Response surface methods can thus be
used for global exploration in a parallel computational setting. For instance, interactive trade-off studies
can be conducted.

• Global optimization
Response surfaces have a tendency to capture globally optimal regions because of their smoothness and
global approximation properties. Local minima caused by noisy response are thus avoided.

2.5.4 Other types of response surfaces

Neural network and Kriging approximations can also be used as response surfaces and are discussed in
Sections 2.10.1 and 2.10.2.

 CHAPTER 2: OPTIMIZATION METHODOLOGY

LS-OPT Version 3 13

2.6 Experimental design

Experimental design is the selection procedure for finding the points in the design space that must be
analyzed. Many different types are available [48]. The factorial, Koshal, composite, D-optimal and Latin
Hypercube designs are detailed here.

2.6.1 Factorial design
This is an nl grid of designs and forms the basis of many other designs. l is the number of grid points in
one dimension. It can be used as a basis set of experiments from which to choose a D-optimal design. In
LSOPT, the 3n and 5n designs are used by default as the basis experimental designs for first and second
order D-optimal designs respectively.

Factorial designs may be expensive to use directly, especially for a large number of design variables.

2.6.2 Koshal design
This family of designs are saturated for modeling of any response surface of order d.

First order model

For n = 3, the coordinates are:

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

100
010
001
000

321 xxx

As a result, four coefficients can be estimated in the linear model

 T

nxx],,,1[1 K=φ (2.18)

Second order model

For n = 3, the coordinates are:

CHAPTER 2: OPTIMIZATION METHODOLOGY

14 LS-OPT Version 3

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−

−

110
101
011
100
010
001
100
010
001
000
321 xxx

As a result, ten coefficients can be estimated in the quadratic model

 T

nnn xxxxxxxx],,,,,,,,,1[2
121

2
11 KKK=φ (2.19)

2.6.3 Central Composite design

This design uses the 2n factorial design, the center point, and the ‘face center’ points and therefore consists
of P = 2n + 2n + 1 experimental design points. For n = 3, the coordinates are:

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−

−
−−

−−
−−
−−−

−
−

−

111
111
111
111
111
111
111
111

00
00
00

00
00
00
000
321

α
α

α
α

α
α

xxx

 CHAPTER 2: OPTIMIZATION METHODOLOGY

LS-OPT Version 3 15

The points are used to fit a second-order function. The value of 4 2n=α .

2.6.4 D-optimal design

This method uses a subset of all the possible design points as a basis to solve

XX Tmax .

The subset is usually selected from an nl -factorial design where l is chosen a priori as the number of grid
points in any particular dimension. Design regions of irregular shape, and any number of experimental
points, can be considered [53]. The experiments are usually selected within a sub-region in the design space
thought to contain the optimum. A genetic algorithm is used to solve the resulting discrete maximization
problem. See References [48, 75].

The numbers of required experimental designs for linear as well as quadratic approximations are
summarized in the table below. The value for the D-optimality criterion is chosen to be 1.5 times the Koshal
design value plus one. This seems to be a good compromise between prediction accuracy and computational
cost [53]. The factorial design referred to below is based on a regular grid of 2n points (linear) or 3n points
(quadratic).

Table 2-1: Number of experimental points required for experimental designs

Linear approximation Quadratic approximation Number of
Variables n Koshal D-optimal Factorial Koshal D-optimal Factorial

Central
Composite

1 2 4 2 3 5 3 3
2 3 5 4 6 10 9 9
3 4 7 8 10 16 27 15
4 5 8 16 15 23 81 25
5 6 10 32 21 32 243 43
6 7 11 64 28 43 729 77
7 8 13 128 36 55 2187 143
8 9 14 256 45 68 6561 273
9 10 16 512 55 83 19683 531
10 11 17 1024 66 100 59049 1045

2.6.5 Latin Hypercube Sampling (LHS)

The Latin Hypercube design is a constrained random experimental design in which, for n points, the range
of each design variable is subdivided into n non-overlapping intervals on the basis of equal probability. One
value from each interval is then selected at random with respect to the probability density in the interval.
The n values of the first value are then paired randomly with the n values of variable 2. These n pairs are
then combined randomly with the n values of variable 3 to form n triplets, and so on, until k-tuplets are
formed.

CHAPTER 2: OPTIMIZATION METHODOLOGY

16 LS-OPT Version 3

Latin Hypercube designs are independent of the mathematical model of the approximation and allow
estimation of the main effects of all factors in the design in an unbiased manner. On each level of every
design variable only one point is placed. There are the same number of levels as points, and the levels are
assigned randomly to points. This method ensures that every variable is represented, no matter if the
response is dominated by only a few ones. Another advantage is that the number of points to be analyzed
can be directly defined. Let P denote the number of points, and n the number of design variables, each of
which is uniformly distributed between 0 and 1. Latin hypercube sampling (LHS) provides a P-by-n matrix
S = Sij that randomly samples the entire design space broken down into P equal-probability regions:

 () PS ijijij ζη −= , (2.20)

where Pjj ηη ,,1 K are uniform random permutations of the integers 1 through P and ijζ independent random
numbers uniformly distributed between 0 and 1. A common simplified version of LHS has centered points
of P equal-probability sub-intervals:

 () PS ijij 5.0−= η (2.21)

LHS can be thought of as a stratified Monte Carlo sampling. Latin hypercube samples look like random
scatter in any bivariate plot, though they are quite regular in each univariate plot. Often, in order to generate
an especially good space filling design, the Latin hypercube point selection S described above is taken as a
starting experimental design and then the values in each column of matrix S is permuted so as to optimize
some criterion. Several such criteria are described in the literature.

Maximin

One approach is to maximize the minimal distance between any two points (i.e. between any two rows of
S). This optimization could be performed using, for example, Simulated Annealing (see Appendix E). The
maximin strategy would ensure that no two points are too close to each other. For small P, maximin distance
designs will generally lie on the exterior of the design space and fill in the interior as P becomes larger. See
Section 2.6.6 for more detail.

Centered L2-discrepancy

Another strategy is to minimize the centered L2-discrepancy measure. The discrepancy is a quantitative
measure of non-uniformity of the design points on an experimental domain. Intuitively, for a uniformly
distributed set in the n-dimensional cube nI = [0,1]n, we would expect the same number of points to be in
all subsets of nI having the same volume. Discrepancy is defined by considering the number of points in
the subsets of nI . Centered L2 (CL2) takes into account not only the uniformity of the design points over
the n-dimensional box region nI , but also the uniformity of all the projections of points over lower-
dimensional subspaces:

 CHAPTER 2: OPTIMIZATION METHODOLOGY

LS-OPT Version 3 17

()

.
22

5.0
2

5.0
11

2
5.0

2
5.0

12)1213(

1 1 12

1 1

2
2
2

∑ ∑ ∏ ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ −
−

−
+

−
++

∑ ∏ ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ −
−

−
+−=

= = =

= =

Pk Pi nj

ijkjijkj

Pi nj

ijijn

SSSS
P

SS
P

CL

K K K

K K

 (2.22)

2.6.6 Space-filling designs

In the modeling of an unknown nonlinear relationship, when there is no persuasive parametric regression
model available, and the constraints are uncertain, one might believe that a good experimental design is a set
of points that are uniformly scattered on the experimental domain (design space). Space-filling designs
impose no strong assumptions on the approximation model, and allow a large number of levels for each
variable with a moderate number of experimental points. These designs are especially useful in conjunction
with nonparametric models such as neural networks (feed-forward networks, radial basis functions) and
Kriging, [81, 84]. Space-filling points can be also submitted as the basis set for constructing an optimal (D-
Optimal, etc.) design for a particular model (e.g. polynomial). Some space-filling designs are: random Latin
Hypercube Sampling (LHS), Orthogonal Arrays, and Orthogonal Latin Hypercubes.

The key to space-filling experimental designs is in generating 'good' random points and achieving
reasonably uniform coverage of sampled volume for a given (user-specified) number of points. In practice,
however, we can only generate finite pseudorandom sequences, which, particularly in higher dimensions,
can lead to a clustering of points, which limits their uniformity. To find a good space-filling design is a
nonlinear programming hard problem, which – from a theoretical point of view – is difficult to solve
exactly. This problem, however, has a representation, which might be within the reach of currently available
tools. To reduce the search time and still generate good designs, the popular approach is to restrict the
search within a subset of the general space-filling designs. This subset typically has some good 'built-in'
properties with respect to the uniformity of a design.

The constrained randomization method termed Latin Hypercube Sampling (LHS) and proposed in [42], has
become a popular strategy to generate points on the 'box' (hypercube) design region. The method implies
that on each level of every design variable only one point is placed, and the number of levels is the same as
the number of runs. The levels are assigned to runs either randomly or so as to optimize some criterion, e.g.
so that the minimal distance between any two design points is maximized ('maximin distance' criterion).
Restricting the design in this way tends to produce better Latin Hypercubes. However, the computational
cost of obtaining these designs is high. In multidimensional problems, the search for an optimal Latin
hypercube design using traditional deterministic methods (e.g. the optimization algorithm described in [50])
may be computationally prohibitive. This situation motivates the search for alternatives.

Probabilistic search techniques, simulated annealing and genetic algorithms are attractive heuristics for
approximating the solution to a wide range of optimization problems. In particular, these techniques are
frequently used to solve combinatorial optimization problems, such as the traveling salesman problem.
Morris and Mitchell [47] adopted the simulated annealing algorithm to search for optimal Latin hypercube
designs.

CHAPTER 2: OPTIMIZATION METHODOLOGY

18 LS-OPT Version 3

In LS-OPT, space-filling designs can be useful for constructing experimental designs for the following
purposes:

1. The generation of basis points for the D-optimality criterion. This avoids the necessity to create a
very large number of basis points using e.g. the full factorial design for large n. E.g. for n=20 and 3
points per variable, the number of points = 320 ≈ 3.5*109.

2. The generation of design points for all approximation types, but especially for neural networks and
Kriging.

3. The augmentation of an existing experimental design. This means that points can be added for each
iteration while maintaining uniformity and equidistance with respect to pre-existing points.

LS-OPT contains 6 algorithms to generate space-filling designs (see Table 2-2). Only Algorithm 5 has been
made available in the graphical interface. LS-OPTui.

Figure 2-1: Six space-filling designs: 5 points in a 2-dimensional box region

 CHAPTER 2: OPTIMIZATION METHODOLOGY

LS-OPT Version 3 19

Table 2-2: Description of space-filling algorithms

Algorithm
Number

Description

0 Random
1 'Central point' Latin Hypercube Sampling (LHS) design with random

pairing
2 'Generalized' LHS design with random pairing
3 Given an LHS design, permutes the values in each column of the LHS

matrix so as to optimize the maximin distance criterion taking into account
a set of existing (fixed) design points. This is done using simulated
annealing. Fixed points influence the maximin distance criterion, but are
not allowed to be changed by Simulated Annealing moves.

4 Given an LHS design, moves the points within each LHS subinterval
preserving the starting LHS structure, optimizing the maximin distance
criterion and taking into consideration a set of fixed points.

5 given an arbitrary design (and a set of fixed points), randomly moves the
points so as to optimize the maximin distance criterion using simulated
annealing (see Appendix E).

Discussion of algorithms
The Maximin distance space-filling algorithms 3, 4 and 5 minimize the energy function defined as the
negative minimal distance between any two design points. Theoretically, any function that is a metric can be
used to measure distances between points, although in practice the Euclidean metric is usually employed.

The three algorithms, 3, 4 and 5, differ in their selection of random Simulated Annealing moves from one
state to a neighboring state. For algorithm 3, the next design is always a 'central point' LHS design (Eq.
2.21). The algorithm swaps two elements of I, Sij and Skj, where i and k are random integers from 1 to N, and
j is a random integer from 1 to n. Each step of algorithm 4 makes small random changes to a LHS design
point preserving the initial LHS structure. Algorithm 5 transforms the design completely randomly - one
point at a time. In more technical terms, algorithms 4 and 5 generate a candidate state, S ′ , by modifying a
randomly chosen element Sij of the current design, S, according to:

 ξ+=′ ijij SS (2.23)

where ξ is a random number sampled from a normal distribution with zero mean and standard deviation
σξ ∈ [σmin, σmax]. In algorithm 4 it is required that both ijS ′ and ijS in Eq. (2.23) belong to the same Latin
hypercube subinterval.

Notice that maximin distance energy function does not need to be completely recalculated for every iterative
step of simulated annealing. The perturbation in the design applies only to some of the rows and columns of
S. After each step we can recompute only those nearest neighbor distances that are affected by the stepping
procedures described above. This reduces the calculation and increased the speed of the algorithm.

To perform an annealing run for the algorithms 3, 4 and 5, the values for Tmax and Tmin can be adapted to the
scale of the objective function according to:

CHAPTER 2: OPTIMIZATION METHODOLOGY

20 LS-OPT Version 3

 ETT ∆×= maxmax : (2.24)
 ETT ∆×= minmin :

where ∆E > 0 is the average value of |E'-E| observed in a short preliminary run of simulated annealing and
Tmax and Tmin are positive parameters.

The basic parameters that control the simulated annealing in algorithms 3, 4 and 5 can be summarized as
follows:

1 Energy function: negative minimal distance between any two points in the design.

2 Stepping scheme: depends on whether the LHS property is preserved or not.

3 Scalar parameters:

1. Parameters for the cooling schedule:
- scaling factor for the initial (maximal) temperature, Tmax, in (2.24)
- scaling factor for the minimal temperature, Tmin, in (2.24),
- damping factor for temperature, µT, in (Eq. (F.5), Appendix E),
- number of iterations at each temperature, νT (Appendix E).

2. Parameters that control the standard deviation of ξ in (2.23):
- upper bound, σmax,
- lower bound, σmin.

3. Termination criteria:
- maximal number of energy function evaluations, Nit.

2.6.7 Random number generator
The Mersenne Twister [42] is used in Neural Network construction and Monte Carlo, Latin Hypercube,
Space Filling and D-Optimal point selection and probabilistic analysis. The Mersenne Twister (MT19937) is
a pseudorandom number generator developed by Matsumoto and Nishimura and has the merit that it has a
far longer period and far higher order of equidistribution than any other implemented generators. It has been
proved that the period is 219937-1, and a 623-dimensional equidistribution property is assured. Features have
been provided to seed the generator to enable sensitivity studies.

2.7 Reasonable experimental designs*
A ‘reasonable’ design space refers to a region of interest which, in addition to having specified bounds on
the variables, is also bounded by specified values of the responses. This results in an irregular shape of the
design space. Therefore, once the first approximation has been established, all the designs will be contained
in the new region of interest. This region of interest is thus defined by approximate bounds.
One way of establishing a reasonable set of designs is to move the points of the basis experimental design to
the boundaries of the reasonable design space in straight lines connecting to the central design xc so that

)(cc xxxx −+=′ α (2.25)

 CHAPTER 2: OPTIMIZATION METHODOLOGY

LS-OPT Version 3 21

where α is determined by conducting a line search along)(cxx − .

This step may cause near duplicity of design points that can be addressed by removing points from the set
that are closer than a fixed fraction (typically 5%) of the design space size.

The D-optimality criterion is then used to attempt to find a well-conditioned design from the basis set of
experiments in the reasonable design space. Using the above approach, a poor distribution of the basis
points may result in a poorly designed subset.

2.8 Model adequacy checking

As indicated in the previous sections, response surfaces are useful for interactive trade-off studies. For the
trade-off surface to be useful, its capability of predicting accurate response must be known. Error analysis is
therefore an important aspect of using response surfaces in design. Inaccuracy is not always caused by
random error (noise) only, but modeling error (sometimes called bias error), especially in a large subregion
or where there is strong non-linearity present, could play a very significant role. There are several error
measures available to determine the accuracy of a response surface.

2.8.1 Residual sum of squares

For the predicted response iŷ and the actual response yi, this error is expressed as

 ()∑
=

−=
P

i
ii yy

1

22 ˆε (2.26)

If applied only to the regression points, this error measure is not very meaningful unless the design space is
oversampled. E.g. ε = 0 if the number of points P equals the number of basis functions L in the
approximation.

2.8.2 RMS error

The residual sum-of-squares is sometimes used in its square root form, RMSε , and called the “RMS error”:

 ()∑
=

−=
P

i
ii yy

P 1

2
RMS ˆ1ε (2.27)

2.8.3 Maximum residual

This is the maximum residual considered over all the design points and is given by
 ii yy ˆmaxmax −=ε . (2.28)

CHAPTER 2: OPTIMIZATION METHODOLOGY

22 LS-OPT Version 3

2.8.4 Prediction error

The same as the RMS error, but using only responses at preselected prediction points independent of the
regression points. This error measure is an objective measure of the prediction accuracy of the response
surface since it is independent of the number of construction points. It is important to know that the choice
of a larger number of construction points will, for smooth problems, diminish the prediction error.

The prediction points can be determined by adding rows to X

 ⎥
⎦

⎤
⎢
⎣

⎡
=

)(
)(

p
pa xA

X
xX (2.29)

and solving
 AAXXXX TT += maxmax a

T
a (2.30)

for xp.

2.8.5 PRESS residuals

The prediction sum of squares residual (PRESS) uses each possible subset of P – 1 responses as a regression
data set, and the remaining response in turn is used to form a prediction set [48]. PRESS can be computed
from a single regression analysis of all P points.

 ∑
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

=
P

i ii

ii

h
yy

1

2

1
ˆ

PRESS (2.31)

where hii are the diagonal terms of
 TH XXXX T 1)(−= (2.32)

H is the “hat” matrix, the matrix that maps the observed responses to the fitted responses, i.e.

 Hyy =ˆ (2.33)

The PRESS residual can also be written in its square root form

 ∑
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

=
P

i ii

ii

h
yy

1

2

1
ˆ

SPRESS . (2.34)

For a saturated design, H equals the unit matrix I so that the PRESS indicator becomes undefined.

2.8.6 The coefficient of multiple determination R2

The coefficient of determination R2 is defined as:

 CHAPTER 2: OPTIMIZATION METHODOLOGY

LS-OPT Version 3 23

()

()∑

∑

=

=

−

−
= P

i
ii

P

i
ii

yy

yy
R

1

2

1

2

2
ˆ

 (2.35)

where P is the number of design points and y , iŷ and yi represent the mean of the responses, the predicted
response, and the actual response, respectively. This indicator, which varies between 0 and 1, represents the
ability of the response surface to identify the variability of the design response. A low value of R2 usually
means that the region of interest is either too large or too small and that the gradients are not trustworthy.
The value of 1.0 for R2 indicates a perfect fit. However the value will not warn against an overfitted model
with poor prediction capabilities.

2.8.7 R2 for Prediction

For the purpose of prediction accuracy the 2

predictionR indicator has been devised [47].

yy

prediction S
R PRESS12 −= (2.36)

where

P

y
S

P

i
i

T
yy

2

1
⎟
⎠

⎞
⎜
⎝

⎛

−=
∑

=yy (2.37)

2
predictionR represents the ability of the model to detect the variability in predicting new responses [48].

2.8.8 Iterative design and prediction accuracy

In an iterative scheme with a shrinking region the R2 value tends to be small at the beginning, then
approaches unity as the region of interest shrinks, thereby improving the modeling ability. It may then
reduce again as the noise starts to dominate in a small region causing the variability to become
indistinguishable. In the same progression, the prediction error will diminish as the modeling error fades,
but will stabilize at above zero as the modeling error is replaced by the random error (noise).

2.9 ANOVA

Since the number of regression coefficients determines the number of simulation runs, it is important to
remove those coefficients or variables which have small contributions to the design model. This can be done
by doing a preliminary study involving a design of experiments and regression analysis. The statistical
results are used in an analysis of variance (ANOVA) to rank the variables for screening purposes. The
procedure requires a single iteration using polynomial regression, but results are produced after every
iteration of a normal optimization procedure.

CHAPTER 2: OPTIMIZATION METHODOLOGY

24 LS-OPT Version 3

2.9.1 The confidence interval of the regression coefficients

The 100(1 – α)% confidence interval for the regression coefficients Ljb j ,,1,0, K= is determined by the
inequality

22

j
jj

j
j

b
b

b
b

∆
+≤≤

∆
− β (2.38)

where

 jjCtb LPj

2
,2/ ˆ2)(σα α −=∆ (2.39)

and 2σ̂ is an unbiased estimator of the variance 2σ given by

LP

yy
LP

P

i ii

−

−
=

−
= ∑ =1

22
2)ˆ(

ˆ εσ (2.40)

jjC is the diagonal element of 1)(−XX T corresponding to bj and tα/2,P-L is Student’s t-Distribution.

100(1 – α)% therefore represents the level of confidence that bj will be in the computed interval.

2.9.2 The significance of a regression coefficient bj

The contribution of a single regressor variable to the model can also be investigated. This is done by means
of the partial F-test where F is calculated to be

)(
][

2

22

LP
r

F
complete

completereduced

−

−
=

ε
εε

 (2.41)

where r = 1 and the reduced model is the one in which the regressor variable in question has been removed.
Each of the 2ε terms represents the sum of squared residuals for the reduced and complete models
respectively.

It turns out that the computation can be done without analyzing a reduced model by computing

 .
)(2

2

LP
Cb

F
complete

jjj

−
=

ε
 (2.42)

F can be compared with the F-statistic Fα,1,P-L so that if F > Fα,1,P-L, βj is non-zero with (100 – α)%
confidence. The confidence level α that βj is not zero can also be determined by computing the α for
F = Fα,1,P-L. The importance of βj is therefore estimated by both the magnitude of bj as well as the level of
confidence in a non-zero βj.
The significance of regressor variables may be represented by a bar chart of the magnitudes of the
coefficients bj with an error bar of length)(2 αjb∆ for each coefficient representing the confidence interval

 CHAPTER 2: OPTIMIZATION METHODOLOGY

LS-OPT Version 3 25

for a given level of confidence α. The relative bar lengths allow the analyst to estimate the importance of
the variables and terms to be included in the model while the error bars represent the contribution to noise or
poorness of fit by the variable.

All terms have been normalized to the size of the design space so that the choice of units becomes irrelevant
and a reasonable comparison can be made for variables of different kinds, e.g. sizing and shape variables or
different material constants.

2.10 Metamodeling techniques

Metamodeling techniques allow the construction of surrogate design models for the purpose of design
exploration such as variable screening, optimization and reliability. LS-OPT provides the capability of using
three types of metamodeling techniques, namely polynomial response surfaces (already discussed, see
Section 2.5), Neural Networks (NN’s) (Section 2.10.1) and Kriging (Section 2.10.2). All three these
approaches can be useful to provide a predictive capability for optimization or reliability. In addition, linear
polynomials, although perhaps less accurate, are highly suitable for variable screening (Section 2.9). At the
core, these techniques differ in the regression methods that they employ to construct the surrogate models.
The polynomial response surface method uses linear regression, while neural networks use nonlinear
regression methods requiring optimization algorithms. Kriging is considered to be a Gaussian Process [17]
which uses Bayesian regression, also requiring optimization. Not mentioned so far are other types of
metamodeling techniques such as Space Mapping [51]. This technique make use of coarse approximate
models which are iteratively refined using fine model simulations to improve the coarse model
approximation locally. In Space Mapping, any of the first three approximation types can be used as coarse
models.

When using polynomials, the user is faced with the choice of deciding which monomial terms to include. In
addition, polynomials, by way of their nature as Taylor series approximations, are not natural for the
creation of updateable surfaces. This means that if an existing set of point data is augmented by a number of
new points which have been selected in a local subregion (e.g. in the vicinity of a predicted optimum), better
information could be gained from a more flexible type of approximation that will keep global validity while
allowing refinement in a subregion of the parameter space. Such an approximation provides a more natural
approach for combining the results of successive iterations.

2.10.1 Neural network approximations*

Neural methods are natural extensions and generalizations of regression methods. Neural networks have
been known since the 1940’s, but it took the dramatic improvements in computers to make them practical,
[8]. Neural networks - just like regression techniques - model relationships between a set of input variables
and an outcome. They can be thought of as computing devices consisting of numerical units (neurons),
whose inputs and outputs are linked according to specific topologies. A neural model is defined by its free
parameters - the inter-neuron connection strengths (weights) and biases. These parameters are typically
learned from the training data by some appropriate optimization algorithm. The training set consists of pairs
of input (design) vectors and associated outputs (responses). The training algorithm tries to steer network
parameters towards minimizing some distance measure, typically the mean squared error (MSE) of the
model computed on the training data.

CHAPTER 2: OPTIMIZATION METHODOLOGY

26 LS-OPT Version 3

Several factors determine the predictive accuracy of a neural network approximation and, if not properly
addressed, may adversely affect the solution. For a neural network, as well as for any other data-derived
model, the most critical factor is the quality of training data. In practical cases, we are limited to a given
data set, and the central problem is that of not enough data. The minimal number of data points required for
network training is related to the (unknown) complexity of the underlying function and the dimensionality
of the design space. In reality, the more design variables, the more training samples are required. In the
statistical and neural network literature this problem is known as the ’curse of dimensionality’. Most forms
of neural networks (in particular, feed-forward networks) actually suffer less from the curse of
dimensionality than some other methods, as they can concentrate on a lower-dimensional section of the
high-dimensional space. For example, by setting the outgoing weights from a particular input to zero, a
network can entirely ignore that input (Figure 2-2). Nevertheless, the curse of dimensionality is still a
problem, and the performance of a network can certainly be improved by eliminating unnecessary input
variables.

Figure 2-2: Schematic of a neural network with 2 inputs and a hidden layer of 4 neurons with activation
function f

It is clear that if the number of network free parameters is sufficiently large and the training optimization
algorithm is run long enough, it is possible to drive the training MSE error as close as one likes to zero.
However, it is also clear that driving MSE all the way to zero is not a desirable thing to do. For noisy data,
this may indicate over-fitting rather than good modeling. For highly discrepant training data, zero MSE
makes no sense at all. Regularization means that some constraints are applied to the construction of the
neural model with the goal of reducing the generalization error, that is, the ability to predict (interpolate)
the unobserved response for new data points that are generated by a similar mechanism as the observed data.
A fundamental problem in modeling noisy and/or incomplete data, is to balance the ’tightness’ of the

 CHAPTER 2: OPTIMIZATION METHODOLOGY

LS-OPT Version 3 27

constraints with the ’goodness of fit’ to the observed data. This tradeoff is called the bias-variance tradeoff
in the statistical literature.

Figure 2-3: Sigmoid transfer function ()xey −+= 1/1 typically used with feed-forward networks

A multi-layer feed-forward network and a radial basis function network are two of the most common neural
architectures used for approximating functions. Networks of both types have a distinct layered topology in
the sense that their processing units (’neurons’) are divided into several groups (’layers’), the outputs of
each layer of neurons being the inputs to the next layer (Figure 2-2). In a feed-forward network, each neuron
performs a biased weighted sum of their inputs and passes this value through a transfer (activation) function
to produce the output. Activation function of intermediate (’hidden’) layers is generally a sigmoidal function
(Figure 2-3), while network input and output layers are usually linear (transparent). In theory, such networks
can model functions of almost arbitrary complexity, see [30, 80]. All of the parameters in a feed-forward
network are usually determined at the same time as part of a single (non-linear) optimization strategy based
on the standard gradient algorithms (the steepest descent, RPROP, Levenberg-Marquardt, etc.). The gradient
information is typically obtained using a technique called backpropagation, which is known to be
computationally effective [56]. For feed-forward networks, regularization may be done by controlling the
number of network weights (’model selection’), by imposing penalties on the weights (’ridge regression’),
or by various combinations of these strategies.

Model adequacy checking

Nature is rarely (if ever) perfectly predictable. Real data never exactly fit the model that is being used. One
must take into consideration that the prediction errors not only come from the variance error due to the
intrinsic noise and unreliability in the measurement of the dependent variables but also from the systematic
(bias) error due to model miss-specification. According to George E.P. Box’s famous maxim, ”all models
are wrong, some are useful”. To be genuinely useful, a fitting procedure should provide the means to assess
whether or not the model is appropriate and to test the goodness-of-fit against some statistical standard.

There are several error measures available to determine the accuracy of the model. Among them are:

 ()∑ −=
P

i
ii PyyMSE ,/ˆ 2 (2.43)

CHAPTER 2: OPTIMIZATION METHODOLOGY

28 LS-OPT Version 3

MSERMS =

2σ̂
MSEnMSE =

2σ̂
RMSnRMS =

()

()∑

∑

=

=

−

−
= P

i
ii

P

i
ii

yy

yy
R

1

2

1

2

2
ˆ

() ()∑∑

∑

==

=

−−

−−
= P

i
ii

P

i
ii

P

i
iiii

yyyy

yyyy
R

1

2

1

2

1

ˆˆ

ˆˆ

where

P denotes the number of data points, yi is the observed response value (’target value’), iŷ is the model’s

prediction of response, ŷ is the mean (average) value of ŷ , y is the mean (average) value of y, and 2σ̂ is
given by

()

LP
yy

LP

P

i ii

−

−
=

−
= ∑ =1

22
2

ˆ
ˆ εσ (2.44)

Mean squared error (MSE for short) and root mean squared error (RMS) summarize the overall model error.
Unique or rare large error values can affect these indicators. Sometimes, MSE and RMS measures are
normalized with sample variance of the target value (see formulae for nMSE and nRMS) to allow for
comparisons between different datasets and underlying functions. R2 and R are relative measures. The
coefficient of multiple determination R2 (’R-square’) is explained variance relative to total variance in the
target value. This indicator is widely used in linear regression analysis. R2 represents the amount of response
variability explained by the model. R is the correlation coefficient between the network response and the
target. It is a measure of how well the variation in the output is explained by the targets. If this number is
equal to 1, then there is a perfect correlation between targets and outputs. Outliers can greatly affect the
magnitudes of correlation coefficients. Of course, the larger the sample size, the smaller is the impact of one
or two outliers.

Training accuracy measures (MSE, RMS, R2, R, etc.) are computed along all the data points used for
training. As mentioned above, the performance of a good model on the training set does not necessarily
mean good prediction of new (unseen) data. The objective measures of the prediction accuracy of the model
are test errors computed along independent testing points (i.e. not training points). This is certainly true
provided that we have an infinite number of testing points. In practice, however, test indicators are usable,
only if treated with appropriate caution. Actual problems are often characterized by the limited availability
of data, and when the training datasets are quite small and the test sets are even smaller, only quite large
differences in performance can be reliably discerned by comparing training and test indicators.

 CHAPTER 2: OPTIMIZATION METHODOLOGY

LS-OPT Version 3 29

The generalized cross-validation (GCV) [78] and Akaike’s final prediction error (FPE) [1] provide
computationally feasible means of estimating the appropriateness of the model.

GCV and FPE estimates combine the training MSE with a measure of the model complexity:

 ,)1/(2

P
MSEMSEGCV

ν
−= (2.45)

GCVGCV MSERMS =

2σ̂
GCV

GCV
MSEnMSE =

2σ̂
GCV

GCV
RMSnRMS =

where ν is the (effective) number of model parameters.

In theory, GCV estimates should be related to ν. As a very rough approximation to ν, we can assume that all
of the network free parameters are well determined so that ν = M, where M is the total number of network
weights and biases. This is what we would expect to be the case for large P so that P >> M. Note that GCV
is undefined when ν is equal to the number of training points (P).

Feed-forward neural networks

Feed-forward (FF) neural networks have a distinct layered topology. Each unit performs a biased weighted
sum of their inputs and passes this value through a transfer (activation) function to produce the output. The
outputs of each layer of neurons are the inputs to the next layer. In a feed-forward network, the activation
function of intermediate (’hidden’) layers is generally a sigmoidal function (Figure 2-3), network input and
output layers being linear. Consider a FF network with K inputs, one hidden layer with H sigmoid units and
a linear output unit. For a given input vector),,(1 Kxx K=x and network weights

),,,,,,,(111010 HKH WWWWWW KK=W , the output of the network is:

 ∑ ∑
= =

++=
H

h

K

k
khkhh xWWfWWy

1 1
00),(),(ˆ Wx (2.46)

where

xe
xf −+

=
1

1)(

The computational graph of Eq. (2.46) is shown schematically in Figure 2-2. The extension to the case of
more than one hidden layers can be obtained accordingly. It is straightforward to show that the derivative of
the network Eq. (2.46) with respect to any of its inputs is given by:

 ∑ ∑
= =

=+′=
∂
∂ H

h

H

h
hhkh

k

KkWWfWW
x
y

1 1
0 .,,1),(

ˆ
K (2.47)

CHAPTER 2: OPTIMIZATION METHODOLOGY

30 LS-OPT Version 3

Neural networks have been mathematically shown to be universal approximators of continuous functions
and their derivatives (on compact sets) [30]. In other words, when a network (Eq. (2.46)) converges towards
the underlying function, all the derivatives of the network converge towards the derivatives of this function.

Standard non-linear optimization techniques including a variety of gradient algorithms (the steepest descent,
RPROP, Levenberg-Marquardt, etc.) are applied to adjust FF network’s weights and biases. For neural
networks, the gradients are easily obtained using a chain rule technique called ’backpropagation’ [56]. The
second-order Levenberg-Marquardt algorithm appears to be the fastest method for training moderate-sized
FF neural networks (up to several hundred adjustable weights) [8]. However, when training larger networks,
the first-order RPROP algorithm becomes preferable for computational reasons [52].

Regularization: For FF networks, regularization may be done by controlling the number of network weights
(’model selection’), by imposing penalties on the weights (’ridge regression’), or by various combinations of
these strategies. Model selection requires choosing the number of hidden units and, sometimes, the number
of network hidden layers. Most straightforward is to search for an ’optimal’ network architecture that
minimizes MSEGCV, MSEFPE or MSECV–k. Often, it is feasible to loop over 1,2,... hidden units and finally
select the network with the smallest GCV error. In any event, in order for the GCV measure to be
applicable, the number of training points P should not be too small compared to the required network size
M.

Over-fitting: To prevent over-fitting, it is always desirable to find neural solutions with the smallest number
of parameters. In practice, however, networks with a very parsimonious number of weights are often hard to
train. The addition of extra parameters (i.e. degrees of freedom) can aid convergence and decrease the
chance of becoming stuck in local minima or on plateaus [37]. Weight decay regularization involves
modifying the performance function F , which is normally chosen to be the mean sum of squares of the
network errors on the training set (Eq. (2.43)). When minimizing MSE (Eq. (2.43)) the weight estimates
tend to be exaggerated. We can impose a penalty for this tendency by adding a term that consists of the sum
of squares of the network weights (see also Eq. (2.43)):

 WD EEF αβ += (2.48)
where

,
2

)ˆ(2
1∑ =

−
=

P

i ii
D

yy
E

,
2
1

2∑ ==
M

m m
W

W
E

where M is the number of weights and P the number of points in the training set.

Notice that network biases are usually excluded from the penalty term EW. Using the modified performance
function (Eq. (2.48)) will cause the network to have smaller weights, and this will force the network
response to be smoother and less likely to overfit. This eliminates the guesswork required in determining the
optimum network size. Unfortunately, finding the optimal value for α and β is not a trivial task. If we make
α /β too small, we may get over-fitting. If α /β is too large, the network will not adequately fit the training
data. A rule of thumb is that a little regularization usually helps [58]. It is important that weight decay
regularization does not require that a validation subset be separated out of the training data. It uses all of the

 CHAPTER 2: OPTIMIZATION METHODOLOGY

LS-OPT Version 3 31

data. This advantage is especially noticeable in small sample size situations. Another nice property of
weight decay regularization is that it can lend numerical robustness to the Levenberg-Marquardt algorithm.
The L-M approximation to the Hessian of Eq. (2.48) is moved further away from singularity due to a
positive addend to its diagonal:
 IHA α+= (2.49)
where

∑ ⋅≈∇∇=
=

P

i

Tii
D xxE

1

)()()()(ggH β

T

MW
y

W
y)

ˆ
,,

ˆ
()(

1 ∂
∂

∂
∂

= Kxg

In [8, 21, 44 and 45] the Bayesian (’evidence framework’ or ’type II maximum likelihood’) approach to
regularization is discussed. The Bayesian re-estimation algorithm is formulated as follows. At first, we
choose the initial values for α and β. Then, a neural network is trained using a standard non-linear
optimization algorithm to minimize the error function (Eq. (2.48)). After training, i.e. in the minimum of Eq.
(2.48), the values for α and β are re-estimated, and training restarts with the new performance function.
Regularization hyperparameters are computed in a sequence of 3 steps:

αλ
λ

ν
+

= ∑ =

m

M

m m1 (2.50)

where λm, m = 1,…,M are (positive) eigenvalues of matrix H in Eq. (2.49), ν is the estimate of the effective
number of parameters of a neural network,

WE2

να = (2.51)

DE

P
2

νβ −
=

It should be noted that the algorithm (Eqs. (2.50) and (2.51)) relies on numerous simplifications and
assumptions, which hold only approximately in typical real-world problems [13]. In the Bayesian formalism
a trained network is described in terms of the posterior probability distribution of weight values. The
method typically assumes a simple Gaussian prior distribution of weights governed by an inverse variance
hyperparameter 2/1 weightsσα = . If we present a new input vector to such a network, then the distribution of
weights gives rise to a distribution of network outputs. There will be also an addend to the output
distribution arising from the assumed βσ /12 =noise Gaussian noise on the output variables:

).,0()(2

noiseNxyy σ+= (2.52)

With these assumptions, the negative log likelihood of network weights W given P training points
x(1), … , x(P) is proportional to MSE (Eq. (2.46)), i.e., the maximum likelihood estimate for W is that
which minimizes (Eq. (2.46)) or, equivalently, ED. In order for Bayes estimates of α and β to do a good job
of minimizing the generalization in practice, it is usually necessary that the priors on which they are based

CHAPTER 2: OPTIMIZATION METHODOLOGY

32 LS-OPT Version 3

are realistic. The Bayesian formalism also allows us to calculate error bars on the network outputs, instead
of just providing a single ’best guess’ output ŷ . Given an unbiased model, minimization of the performance
function (Eq. (2.46)) amounts to minimizing the variance of the model. The estimate for output variance

2
ˆ xyσ of the network at a particular point x is given by:

)()(12

ˆ xgAxg −≈ T
xyσ (2.53)

Equation (2.53) is based on a second-order Taylor series expansion of Eq. (2.48) around its minimum and
assumes that W∂∂ŷ is locally linear.

Variability of Feedforward Neural Networks

Neural networks have a natural variability because of the following reasons [21]:

1. Local behavior of the neural network training algorithms
2. Uncertainty (noise) in the training data

The neural network training error function usually has multiple local and global minima. With different
initial weights, the training algorithm typically ends up in different (but usually almost equally good/bad)
local minima. The larger the amount of noise in the data, the larger the difference between these NN
solutions. The user is allowed to specify a neural network committee to find the average net and quantify the
variability (Section 11.1.3). The starting weights for network training is randomly generated using a user-
specified seed to ensure repeatability (see Section 2.6.7).

2.10.2 Kriging*

Kriging is named after D.G. Krige [38], who applied empirical methods for determining true ore grade
distributions from distributions based on sampled ore grades. In recent years, the Kriging method has found
wider application as a spatial prediction method in engineering design. Detailed mathematical formulations
of Kriging are given by Simpson [63] and Bakker [5].

The basic postulate of this formulation [63] is :

y(x) = f(x) + Z(x)

where y is the unknown function of interest, f(x) is a known polynomial and Z(x) the stochastic component
with mean zero and covariance:

Cov[Z(xi),Z(xj)] = σ 2R([R(xi,xj)]).

With L the number of sampling points, R is the L x L correlation matrix with R(xi,xj) the correlation
function between data points xi and xj. R is symmetric positive definite with unit diagonal.

 CHAPTER 2: OPTIMIZATION METHODOLOGY

LS-OPT Version 3 33

Two commonly applied correlation functions used are:

Exponential: ∏=
=

Θ−n

k

dkkeR
1

|| and

Gaussian: ∏=
=

Θ−n

k

d kkeR
1

2

where n is the number of variables and dk = xk
i – xk

j, the distance between the kth components of points xi
and xj

 . There are n unknown θ -values to be determined. The default function in LS-OPT is Gaussian.

Once the correlation function has been selected, the predicted esitimate of the response ŷ(x) is given by:

 ŷ =
^
β + rT(x)R-1(y-f

^
β)

where rT(x) is the correlation vector (length L) between a prediction point x and the L sampling points, y
represents the responses at the L points and f is an L-vector of ones (in the case that f(x) is taken as a

constant). The vector r and scalar
^
β are given by:

rT(x) = [R(x,x1),R(x,x2),…,R(x,xL)]T

^
β = (f TR -1f)-1f TR -1y.

The estimate of variance from the underlying global model is:

L

T)()(
^

1
^

2^ ββσ fyRfy −−
=

−

.

The maximum likelihood estimates for kΘ , k = 1,…, n can be found by solving the following constrained
maximization problem:

Max
2

|]|ln)ln([)(

2^
RΘ +−

=Φ
σL , subject to 0>Θ .

where both
^

σ and |R| are functions of Θ . This is the same as minimizing

n
12^

||Rσ , s.t. 0>Θ

CHAPTER 2: OPTIMIZATION METHODOLOGY

34 LS-OPT Version 3

This optimization problem is solved using the LFOPC algorithm (Section 2.11). Because of the possible ill-
conditioning of R, a small constant number is adaptively added to its diagonal during optimization. The net
effect is that the approximating functions no longer interpolate the observed response values exactly.
However, these observations are still closely approximated.

2.10.3 Concluding remarks: which metamodel?

There is little doubt that the polynomial-based response surfaces are the most robust. A negative aspect is
the fact that the user has to choose the order of the polynomial and a greater possibility exists for bias error
of a nonlinear response. Therefore linear approximations may only be useful within a certain subregion and
quadratic polynomials may be required for greater global accuracy. However the linear SRSM method has
proved to be excellent for optimization and can be used with confidence [68,69,70].

Neural Networks function well as global approximations and no serious deficiencies have been observed
when used as prescribed in Section 5.5. NN’s have been used successfully for optimization [70] and can be
updated during the process.

Although the literature seems to indicate that Kriging is one of the more accurate methods [58], there is
evidence of Kriging having fitting problems with certain types of experimental designs [81]. Kriging is very
sensitive to noise, since it interpolates the data [31]. The authors of this manual have also experienced fitting
problems with non-smooth surfaces (Z(x) observed to peak at data points) in some cases, apparently due to
large values of Θ that may be due to local optima of the maximum likelihood function. The model
construction can be very time consuming [31] (also experienced with LS-OPT). Furthermore, the slight
global altering of the Kriging surface due to local updating has also been observed [70].

Reference [70] compares the use of the three metamodeling techniques for crashworthiness optimization.
This paper, which incorporates three case studies in crashworthiness optimization, concludes that while
RSM, NN and Kriging were similar in performance, RSM and NN are the most robust for this application.

2.11 Core optimization algorithm (LFOPC)

The optimization algorithm used to solve the approximate subproblem is the LFOPC algorithm of Snyman
[67]. It is a gradient method that generates a dynamic trajectory path, from any given starting point, towards
a local optimum. This method differs conceptually from other gradient methods, such as SQP, in that no
explicit line searches are performed.

The original leap-frog method [66] for unconstrained minimization problems seeks the minimum of a
function of n variables by considering the associated dynamic problem of a particle of unit mass in an
n-dimensional conservative force field, in which the potential energy of the particle at point x(t) at time t is
taken to be the function f(x) to be minimized.

The solution to the unconstrained problem may be approximated by applying the unconstrained
minimization algorithm to a penalty function formulation of the original algorithm.

 CHAPTER 2: OPTIMIZATION METHODOLOGY

LS-OPT Version 3 35

The LFOPC algorithm uses a penalty function formulation to incorporate constraints into the optimization
problem. This implies that when constraints are violated (active), the violation is magnified and added to an
augmented objective function, which is solved by the gradient-based dynamic leap-frog method (LFOP).
The algorithm uses three phases: Phase 0, Phase 1 and Phase 2. In Phase 0, the active constraints are
introduced as mild penalties through the pre-multiplication of a moderate penalty parameter value. This
allows for the solution of the penalty function formulation where the violation of the (active) constraints are
premultiplied by the penalty value and added to the objective function in the minimization process. After the
solution of Phase 0 through the leap-frog dynamic trajectory method, some violations of the constraints are
inevitable because of the moderate penalty. In the subsequent Phase 1, the penalty parameter is increased to
more strictly penalize violations of the remaining active constraints. Finally, and only if the number of
active constraints exceed the number of design variables, a compromised solution is found to the
optimization problem in Phase 2. Otherwise, the solution terminates having reached convergence in Phase 1.
The penalty parameters have default values as listed in the User’s manual (Section 18.3). In addition, the
step size of the algorithm and termination criteria of the subproblem solver are listed.

The values of the responses are scaled with the values at the initial design. The variables are scaled
internally by scaling the design space to the [0; 1] interval. The default parameters in LFOPC (as listed in
Section 18.3) should therefore be adequate. The termination criteria are also listed in Section 18.3.

In the case of an infeasible optimization problem, the solver will find the most feasible design within the
given region of interest bounded by the simple upper and lower bounds. A global solution is attempted by
multiple starts from the experimental design points.

2.12 Successive response surface method (SRSM)

The purpose of the SRSM method is to allow convergence of the solution to a prescribed tolerance.

The SRSM method [68] uses a region of interest, a subspace of the design space, to determine an
approximate optimum. A range is chosen for each variable to determine its initial size. A new region of
interest centers on each successive optimum. Progress is made by moving the center of the region of interest
as well as reducing its size. Figure 2-4 shows the possible adaptation of the subregion.

x2 x2 x2

pan zoom pan & zoom
x1

subregion(1)

subregion(2)

range r1
(0)

range r1
(1)

x (0)

x (1)

x (0) = x (1)

x1
rU,0

x1
rL,0

x (0)

x (1)

(a) (b) (c)

CHAPTER 2: OPTIMIZATION METHODOLOGY

36 LS-OPT Version 3

Figure 2-4: Adaptation of subregion in SRSM: (a) pure panning, (b) pure zooming and (c) a combination of
panning and zooming

The starting point)0(x will form the center point of the first region of interest. The lower and upper bounds
),(0,0, rR

i
rL
i xx of the initial subregion are calculated using the specified initial range value)0(

ir so that

)0()0(0, 5.0 ii
rL
i rxx −= and nirxx ii

rU
i K,15.0)0()0(0, =+= (2.54)

where n is the number of design variables. The modification of the ranges on the variables for the next
iteration depends on the oscillatory nature of the solution and the accuracy of the current optimum.

Oscillation: A contraction parameter γ is firstly determined based on whether the current and previous
designs)(kx and)1(−kx are on the opposite or the same side of the region of interest. Thus an oscillation
indicator c may be determined in iteration k as

)1()()(−= k

i
k

i
k

i ddc (2.55)

where

 []1;1;;/2)()1()()()()()(−∈−=∆∆= − k
i

k
i

k
i

k
i

k
i

k
i

k
i dxxxrxd (2.56)

The oscillation indicator (purposely omitting indices i and k) is normalized as ĉ where

)(ˆ csigncc = . (2.57)

The contraction parameter γ is then calculated as

2

)ˆ1()ˆ1(oscpan cc −++
=

γγ
γ . (2.58)

See Figure 2-5. The parameter oscγ is typically 0.5-0.7 representing shrinkage to dampen oscillation,
whereas panγ represents the pure panning case and therefore unity is typically chosen.

 CHAPTER 2: OPTIMIZATION METHODOLOGY

LS-OPT Version 3 37

|d|

λ,γ
λ

η

0

1

-1

1

γosc

γpan

ĉ

Figure 2-5: The sub-region contraction rate λ as a function of the oscillation indicator ĉ and the absolute

move distance ||d

Accuracy: The accuracy is estimated using the proximity of the predicted optimum of the current iteration to
the starting (previous) design. The smaller the distance between the starting and optimum designs, the more
rapidly the region of interest will diminish in size. If the solution is on the bound of the region of interest,
the optimal point is estimated to be beyond the region. Therefore a new subregion, which is centered on the
current point, does not change its size. This is called panning (Figure 2-4(a)). If the optimum point coincides
with the previous one, the subregion is stationary, but reduces its size (zooming) (Figure 2-4(b)). Both
panning and zooming may occur if there is partial movement (Figure 2-4(c)). The range)1(+k

ir for the new
subregion in the (k + 1)-th iteration is then determined by:

 niterknirr k
ii

k
i ,,0;,,1;)()1(KK ===+ λ (2.59)

where λi represents the contraction rate for each design variable. To determine λi,)(k
id is incorporated by

scaling according to a zoom parameter η that represents pure zooming and the contraction parameter γ to
yield the contraction rate

)()(ηγηλ −+= k
ii d (2.60)

for each variable (see Figure 2-5).

When used in conjunction with neural networks or Kriging, the same heuristics are applied as described
above. However the nets are constructed using all the available points, including those belonging to
previous iterations. Therefore the response surfaces are progressively updated in the region of the optimal
point.

CHAPTER 2: OPTIMIZATION METHODOLOGY

38 LS-OPT Version 3

Refer to Section 18.2.1 for the setting of parameters in the iterative Successive Response Surface Method.

The above methodology can also be applied to sequential random searches.

2.13 Sequential random search (SRS)

LS-OPT allows a sequential search method by which the best design is selected from each iteration without
computing response surfaces. A sorting procedure is used to select the design with the lowest (for
minimization) or highest (for maximization) objective from all the feasible designs. If no feasible design
exists, the least infeasible design is chosen. An experimental design such as Latin Hypercube Sampling
(LHS) allows a sequential random search procedure. LS-OPT automatically moves the region of interest by
centering it on the most recent best design. The scheme also involves automatic subdomain reduction in
which the subdomain is reduced by the zoom parameterη (see Section 2.12) if the best design is the same as
the baseline design [24,25]. Otherwise γ pan is used. All the variable ranges are reduced by the same amount.

The following example illustrates the convergence performance of the methodology. The example is an
unconstrained minimization problem with starting point [1,1,1,…,1], solution [0,0,0,…,0] and an initial
range of [0.5;1.5]n and the objective to minimize:

∑
=

n

i
ix

n 1

21

for n = 20, 50 and 100. In Figure 2-6 the successive linear response surface method is compared with the
random search method for 20, 50 and 100 variable optimization problems. In this example SRSM uses the
default number of simulations per iteration, namely 32, 77 and 152 respectively. D-optimal point selection is
used. The random search uses 20 LHS simulations per iteration. As expected, the cost increases with n for
both SRSM and SRS. Note the logarithmic trends of the convergence for both methods. Each interval on the
vertical axis represents an order or magnitude in accuracy.

The user should be aware that the search method picks the best observed design while the metamodeling
methods (especially NN and RSM) are designed to find the best average design.

More intelligent search methods will be available in future versions.

 CHAPTER 2: OPTIMIZATION METHODOLOGY

LS-OPT Version 3 39

Figure 2-6: Minimization of a quadratic polynomial. Efficiency comparison of linear response surface (■)
and random search (+) methods for 20, 50 and 100 variables. Each point is an iteration.

2.14 Discrete optimization

2.14.1 Discrete variables
Discrete variables can have only distinct values; for example, the variable can be a plate thickness having
allowable values 1.0, 2.0, 2.5, and 4.5.

2.14.2 Discrete optimization
A very basic method of discrete optimization would be simply evaluating all possible design and selecting
the best one. This is not feasible for the general case; consider for example that 30 design variables with
variables having 5 possible values of the design variable will result in 1021 different designs. Evaluating all
the possible designs is therefore not computationally feasible. Note that 30 design variables describes a
design space with 109 quadrants, so finding the quadrant containing the optimum design is a hard problem.
The quadrant containing the optimal design can be found using a gradient based search direction, but
discrete optimization problems are not convex, which means that gradient based search directions may lead
to local optima. The LS-OPT discrete optimization methodology therefore use gradient based search in
conjunction with random search methods. The optimal design found in this manner, cannot be shown to be
uniquely the global optimum, but is considered the (practical) optimum because it is known that it is highly
unlikely that a better design will be found.

0.000001

0.00001

0.0001

0.001

0.01

0.1

1

10

0 500 1000 1500
Number of simulations

O
bj

ec
tiv

e
fu

nc
tio

n
va

lu
e

20 50

100

20

50

100

CHAPTER 2: OPTIMIZATION METHODOLOGY

40 LS-OPT Version 3

The cost of the discrete optimization is kept affordable by doing the optimization using value from a
response surface approximation. The accuracy of the response surface or metamodel is improved using a
sequential strategy described in a later section.

2.14.3 Mixed-discrete optimization
The discrete variables can be used together with continuous variables. This is called mixed-discrete
optimization.

The steps followed to compute the mixed-discrete optimum are:
1) Consider all the discrete variables to be continuous and optimize using the gradient based design
optimization package. This continuous optimum found is used as the starting design in the next phase.
2) Discrete optimization is done considering only the discrete variables with the continuous variables frozen
at the values found in the previous phase.
3) Continuous optimization is done considering only the continuous variables and with the discrete variables
frozen at the values found in the previous phase.

2.14.4 Discrete optimization algorithm: genetic algorithm
A GA (genetic algorithm) is used to do the discrete optimization. A GA mimics the evolutionary process
selecting genetic strings. In a GA the design variable values are coded up into data structure similar to
genetic strings. New generations of designs are obtained by combining portions of the genetic strings of the
previous generation of designs. Designs that have relatively better values of the objective function have a
better chance to contribute a portion of its genetic string to the next generation.

2.14.5 Objective function for discrete optimization
The discrete optimization algorithm used can only consider an objective function (no constraints); the
constraints specified by the user are therefore incorporated into this objective function. The resulting
objective function has two different behaviors:

1) A feasible design exists. In this case all infeasible designs (those violating the constraints) are
simply rejected, and only feasible designs are considered inside the optimization algorithm. The
objective function used is simply that specified by the user.
2) A feasible design does not exist. If the search for the best feasible designs fails due to a lack of
feasible designs, then a search is done for the least infeasible constraint. The objective function is a

scaled sum of the constraint violations: ∑ −
|Bound|

|Boundconstraint|

i

ii with the summation done over all

the violated constraints.

2.14.6 Sequential strategy
The discrete and the mixed-discrete optimization is done using the response values from the response
surfaces or metamodels. The accuracy of the response surface or metamodels are therefore very important.
The accuracy of the metamodels are improved by a successive response surface method (SRSM) (see
Section 2.12), in which the size of the subregion over which the designs are evaluated are reduced until
convergence. Reducing the size of the subregion is the best known method of obtaining accuracy for
optimizing using metamodels.

 CHAPTER 2: OPTIMIZATION METHODOLOGY

LS-OPT Version 3 41

Discrete optimization introduces the concern that a discrete variable value may not be on edge of the
subregion selected by the SRSM algorithm. The SRSM algorithm was therefore modified to use closest
discrete values outside the subregion. This implies that the subregion cannot be smaller than the distance
between two successive discrete values.

2.15 Summary of the optimization process
The following tasks may be identified in the process of an optimization cycle using response surfaces.

Table 2-3: Summary of optimization process

Item Input Output
DOE Location and size of the subregion

in the design space. The
experimental design desired. An
approximation order. An
affordable number of points.

Location of the experimental
points.

Simulation Location of the experimental
points. Analysis programs to be
scheduled.

Responses at the experimental
points.

Build response surface Location of the experimental
points. Responses at the
experimental points. Function
types to be fitted.

The approximate functions
(response surfaces). The
goodness-of-fit of the
approximate functions at the
construction points.

Check adequacy The approximate functions
(response surfaces). The location
of the check points. The responses
at the check points.

The goodness-of-fit of the
approximate functions at the
check points.

Optimization The approximate functions
(response surfaces). Bounds on
the responses and variables.

The approximate optimal
design. The approximate
responses at the optimal design.
Pareto optimal curve data.

Two approaches may be taken:

2.15.1 Convergence to an optimal point

• First-order approximations.

Because of the absence of curvature, it is likely that perhaps 5 to 10 iterations may be required for
convergence. The first-order approximation method turns out to be robust thanks to the successive

CHAPTER 2: OPTIMIZATION METHODOLOGY

42 LS-OPT Version 3

approximation scheme that addresses possible oscillatory behavior. Linear approximations may be rather
inaccurate to study trade-off, i.e., in general they make poor global approximations, but this is not
necessarily true and must be assessed using the error parameters.

• Second-order approximations.
Due to the consideration of curvature, a successive quadratic response surface method is likely to be
more robust, but can be more expensive, depending on the number of design variables.

• Other approximations.
Neural networks (Section 2.10.1) and Kriging (Section 2.10.2) provide good approximations when many
design points are used. A suggested approach is to start the optimization procedure in the full design
space, with the number of points at least of the order of the minimum required for a quadratic
approximation. To converge to an optimum, use the iterative scheme with domain reduction as with any
other approximations, but choose to update the experimental design and response surfaces after each
iteration (this is the default method for neural nets and Kriging). The response surface will be built using
the total number of points. At the end of the iterative optimization procedure, the trade-off can be based
on neural networks or Kriging surfaces using results from all the points calculated. See also Sections
2.10, 5.5.1 and 11.1.2.

• Random search methods. These methods can be used in very much the same way as first order
approximations, but are bound to be more expensive (Section 2.13).

2.15.2 Design exploration

Conduct one iteration, usually by utilizing second-order approximations with a large range. Then assess the
adequacy of the surfaces using the error parameters. If the user is satisfied with the accuracy of the
metamodel, a trade-off study can be conducted to visualize how a design might change in response to
modified design criteria in the design formulation. Solutions to the trade-off optimization problem falling
outside the region of interest are connected by dotted lines in the GUI to indicate extrapolation of the
metamodel. To avoid extrapolation, points can be added to the design space and adaptable response surfaces
such as neural networks can be used to improve prediction.

 CHAPTER 2: OPTIMIZATION METHODOLOGY

LS-OPT Version 3 43

3. Applications of Optimization

3.1 Multicriteria Design Optimization

A typical design formulation is somewhat distinct from the standard formulation for mathematical
optimization (Eq. 2.3). Most design problems present multiple objectives, design targets and design
constraints whereas the standard mathematical programming problem is defined in terms of a single
objective and multiple constraints. The standard formulation of Eq. (2.3) has been modified to represent the
more general approach as applied in LS-OPT.

Minimize the function
)]([xfp (3.1)
subject to the inequality constraint functions

mjUgL jjj ,,2,1;)(K=≤≤ x
The preference function p can be formulated to incorporate target values of objectives.

Two methods for achieving this are given:

3.1.1 Euclidean Distance Function

Designs often contain objectives that are in conflict so that they cannot be achieved simultaneously. If the
one objective is improved, the other deteriorates and vice versa. The preference function)]([xfp combines
the various objectives fi. The Euclidean distance function allows the designer to find the design with the
smallest distance to a specified set of target responses or design variables:

 ∑
=

⎥
⎦

⎤
⎢
⎣

⎡
Γ

−
=

p

i i

ii
i

FfWp
1

2
)(x (3.2)

The symbols Fi represent the target values of the responses. A value Γi is used to normalize each response i.
Weights Wi are associated with each quantity and can be chosen by the designer to convey the relative
importance of each normalized response.

CHAPTER 2: OPTIMIZATION METHODOLOGY

44 LS-OPT Version 3

3.1.2 Maximum distance

Another approach to target responses is by using the maximum distance to a target value

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

Γ
−

=
i

ii

i

Ff
p

)(
max

x
 (3.3)

This form belongs to the same category of preference functions as the Euclidean distance function [17] and
is referred to as the Tchebysheff distance function. A general distance function for target values Fi is
defined as

r
p

i

r

i

ii Ff
p

1

1

)(
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

Γ
−

= ∑
=

x
 (3.4)

with r = 2 for the Euclidean metric and ∞→r for the min.-max. formulation (Tchebysheff metric).

The approach for dealing with the Tchebysheff formulation differs somewhat from the explicit formulation.
The alternative formulation becomes:

Minimize e (3.5)
subject to

pieFfeF
jU

i

i

i

i
jL

i

i ,,1;)1()()1(K=−+
Γ

≤
Γ

≤−−
Γ

αα
x , mj ,,1K=

0≥e

In the above equation, Γi is a normalization factor, e represents the constraint violation or target discrepancy
and α represents the strictness factor. If α = 0, the constraint is slack (or soft) and will allow violation. If α
= 1, the constraint is strict (or hard) and will not allow violation of the constraint.

The effect of distinguishing between strict and soft constraints on the above problem is that the maximum
violation of the soft constraints is minimized. Because the user is seldom aware of the feasibility status of
the design problem at the start of the investigation, the solver will automatically solve the above problem
first to find a feasible region. If the solution to e is zero (or within a small tolerance) the problem has a
feasible region and the solver will immediately continue to minimize the design objective using the feasible
point as a starting point.

A few points are notable:

• The variable bounds of both the region of interest and the design space are always hard. This is enforced

to prevent extrapolation of the response surface and the occurrence of impossible designs.
• Soft constraints will always be strictly satisfied if a feasible design is possible.
• If a feasible design is not possible, the most feasible design will be computed.

 CHAPTER 2: OPTIMIZATION METHODOLOGY

LS-OPT Version 3 45

• If feasibility must be compromised (there is no feasible design), the solver will automatically use the
slackness of the soft constraints to try and achieve feasibility of the hard constraints. However, even
when allowing soft constraints, there is always a possibility that some hard constraints must still be
violated. In this case, the variable bounds could be violated, which is highly undesirable as the solution
will lie beyond the region of interest and perhaps beyond the design space. If the design is reasonable,
the optimizer remains robust and finds such a compromise solution without terminating or resorting to
any specialized procedure.

Soft and strict constraints can also be specified for search methods. If there are feasible designs with respect
to hard constraints, but none with respect to all the constraints, including soft constraints, the most feasible
design will be selected. If there are no feasible designs with respect to hard constraints, the problem is ‘hard-
infeasible’ and the optimization terminates with an error message.

In the following cases the use of the Min-Max formulation can be considered:

1. Minimize the maximum of several responses, e.g. minimize the maximum knee force in a vehicle

occupant simulation problem. This is specified by setting both the knee force constraints to have zero
upper bounds. The violation then becomes the actual knee force.

2. Minimize the maximum design variable, e.g. minimize the maximum of several radii in a sheet metal

forming problem. The radii are all incorporated into composite functions, which in turn are incorporated
into constraints which have zero upper bounds.

3. Find the most feasible design. For cases in which a feasible design region does not exist, the user may be

content with allowing the violation of some of the constraints, but is still interested in minimizing this
violation.

3.2 Multidisciplinary Design Optimization

There is increasing interest in the coupling of other disciplines into the optimization process, especially for
complex engineering systems like aircraft and automobiles [40]. The aerospace industry was the first to
embrace multidisciplinary design optimization (MDO) [63], because of the complex integration of
aerodynamics, structures, control and propulsion during the development of air- and spacecraft. The
automobile industry has followed suit [65]. In [65], the roof crush performance of a vehicle is coupled to its
Noise, Vibration and Harshness (NVH) characteristics (modal frequency, static bending and torsion
displacements) in a mass minimization study.

Different methods have been proposed when dealing with MDO. The conventional or standard approach is
to evaluate all disciplines simultaneously in one integrated objective and constraint set by applying an
optimizer to the multidisciplinary analysis (MDA), similar to that followed in single-discipline optimization.
The standard method has been called multidisciplinary feasible (MDF), as it maintains feasibility with
respect to the MDA, but as it does not imply feasibility with respect to the disciplinary constraints, is has
also been called fully integrated optimization (FIO). A number of MDO formulations are aimed at
decomposing the MDF problem. The choice of MDO formulation depends on the degree of coupling
between the different disciplines and the ratio of shared to total design variables [85]. It was decided to

CHAPTER 2: OPTIMIZATION METHODOLOGY

46 LS-OPT Version 3

implement the MDF formulation in this version of LS-OPT as it ensures correct coupling between
disciplines albeit at the cost of seamless integration being required between different disciplines that may
contain diverse simulation software and different design teams.

In LS-OPT, the user has the capability of assigning different variables, experimental designs and job
specification information to the different solvers or disciplines. The file locations in Version 2 have been
altered to accommodate separate Experiments, AnalysisResults and DesignFunctions files in
each solver’s directory. An example of job-specific information is the ability to control the number of
processors assigned to each discipline separately. This feature allows allocation of memory and processor
resources for a more efficient solution process.

Refer to the user’s manual (Section 17.1) for the details of implementing an MDO problem. There are two
crashworthiness-modal analysis case studies in the examples chapter (Sections 20.6 and 20.7).

3.3 System Identification using nonlinear regression
System identification is a general term used to describe the mathematical tools and algorithms that build
dynamical models such as systems or processes from measured data. The methodology used in LS-OPT
consists of a nonlinear regression procedure to optimize the parameters of a system or material. This
procedure minimizes the errors with respect to given experimental results. Two formulations for system
identification can be used. The first uses the mean squared error (MSE) as the minimization objective, while
the second, the Min-Max formulation, uses the auxiliary problem formulation to minimize the maximum
residual. The MSE approach is commonly used for system identification and has been automated using a
single command. The two formulations are outlined below.

3.3.1 Nonlinear regression: minimizing Mean Squared Error (MSE)

Figure 3-1 shows a graph containing curve f(x,z) and points Gp(z). The points can be interconnected to form
a curve G(z). f is a computed response curve (e.g. stress or force history) computed at a point x in the
parameter space. The variables x represent unknown parameters in the model. System (e.g. automotive
airbag or dummy model) or material constants are typical of parameters used in constructing finite element
models. The independent state variable z can represent time, but also any other response type such as strain
or deformation. The target curve G is constant with respect to x and typically represents a test result (e.g.
stress vs. strain or force vs. deformation). f may not be readily available from the analysis code if z does not
represent time. In this case f must first be constructed using a “crossplot” feature (see Subsection x.x) and
the curve z(t) to obtain a plot that is comparable to G. Each function f(x,zp) is internally represented by a
response surface so that a typical curve f(x,z) is represented by P internal response surfaces.

In Figure 3-1, seven regression points are shown. The residuals at these points are combined into a Mean
Squared Error norm:

2

1

2

1

)(1)(1
∑ ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
=∑ ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
=

==

P

p p

p
p

P

p p

pp
p s

e
W

Ps
Gf

W
P

xx
ε (3.6)

 CHAPTER 2: OPTIMIZATION METHODOLOGY

LS-OPT Version 3 47

Figure 3-1: Entities in Mean Squared Error formulation

The MSE norm is based on a series of P regression points beginning at the start point z1 and terminating at
the end point zP (see Figure 3-1). The sp, p=1,…,P are residual scale factors and the Wp, p=1,…,P are
weights applied to the square of the scaled residual (fp - Gp) / sp at point p.

The application of optimization to system identification is demonstrated in Section 20.5.

3.3.2 Minimizing the maximum residual (Min-Max)

In this formulation, the deviations from the respective target values are incorporated as constraint violations,
so that the optimization problem for parameter identification becomes:

 Minimize e, (3.7)
 subject to

e
s

Gf

p

pp ≤
−)(x

 ; p = 1,…,P

e ≥ 0

1

2
3

4
5

6
7

z

f,G

Re
si

d u
al

 e
1

Computed curve: f(x,z)

Response Surface constructed
for each interpolated matching
point

Test results
Interpolated test curve G(z)

CHAPTER 2: OPTIMIZATION METHODOLOGY

48 LS-OPT Version 3

This formulation is automatically activated in LS-OPT when specifying both the lower and upper bounds of
pp sf / equal to pp sG / . There is therefore no need to define an objective function. This is due to the fact

that an auxiliary problem is automatically solved internally whenever an infeasible design is found, ignoring
the objective function until a feasible design is obtained. When used in parameter identification, the
constraint set is in general never completely satisfied due to the typically over-determined systems used.

Since sp defaults to 1.0, the user is responsible for the normalization in the maximum violation formulation.
This can be done by e.g. using the target value to scale the response f(x) so that:

e
G

f

p

p ≤−1
)(x

; p = 1 ,…, P

e ≥ 0

Omitting the scaling may cause conditioning problems in some cases, especially where constraint values
differ by several orders of magnitude.

This option will also be automated in future versions.

3.3.3 Nonlinear regression: confidence intervals

Assume the nonlinear regression model:

ε+=),()(xtFtG

where the measured result G is approximated by F and x is a vector of unknown parameters. The nonlinear
least squares problem is obtained from the discretization:

∑
=

−
P

p
pp FG

P 1

2))((1min x
x

is solved to obtain *x . The variance 2σ is estimated by

nP −

−
=

2*
2

)(
ˆ

xFG
σ

where F is the P-vector of function values predicted by the model and n is the number of parameters. The
100(1-α)% confidence interval for each ix* is:

⎟
⎠
⎞⎜

⎝
⎛

⎥⎦
⎤

⎢⎣
⎡ ≤− − }ˆ: 2/* α

nPiiiii tCxxx

 CHAPTER 2: OPTIMIZATION METHODOLOGY

LS-OPT Version 3 49

where

() ()() 1
**2ˆ:ˆ −

∇∇= xx T FFC σ
and 2/α

nPt − is the Student t-distribution for α .

F∇ is the P×n matrix obtained from the n derivatives of the P response functions representing P points at
the optimum x. The optimal solution is therefore calculated first, followed by the confidence interval.

A critical issue is to ensure that F∇ is not based on a gradient obtained from a spurious response surface
(e.g. occurring due to noise in the response). Monitoring convergence and selected statistical parameters
such as the RMS error and R2 can help to estimate a converged result. In many cases material identification
problems involve smooth functions (e.g. tensile tests) so that spurious gradients would normally not be a
problem.

3.4 Worst-case design

Worst-case design involves minimizing an objective with respect to certain variables while maximizing the
objective with respect to other variables. The solution lies in the so-called saddle point of the objective
function and represents a worst-case design. This definition of a worst-case design is different to what is
sometimes referred to as min-max design, where one multi-objective component is minimized while another
is maximized, both with respect to the same variables.

There is an abundance of examples of worst-case scenarios in mechanical design.

One class of problems involves minimization design variables and maximization case or condition variables.
One example in automotive design is the minimization of head injury with respect to the design variables of
the interior trim while maximizing over a range of head orientation angles. Therefore the worst-case design
represents the optimal trim design for the worst-case head orientation. Another example is the minimization
of crashworthiness-related criteria (injury, intrusion, etc.) during a frontal impact while maximizing the
same criteria for a range of off-set angles in an oblique impact situation.
Another class of problems involves the introduction of uncontrollable variables nizi ,,1, K= in addition to
the controlled variables mjy j ,,1, K= . The controlled variables can be set by the designer and therefore
optimized by the program. The uncontrollable variables are determined by the random variability of
manufacturing processes, loadings, materials, etc. Controlled and uncontrollable variables can be
independent, but can also be associated with one another, i.e. a controlled variable can have an
uncontrollable component.

The methodology requires three features:
1. The introduction of a constant range ρ of the region of interest for the uncontrollable variables. This

constant represents the possible variation of each uncontrollable parameter or variable. In LS-OPT this
is introduced by specifying a lower limit on the range as being equal to the initial range ρ. The lower
and upper bounds of the design space are set to ±ρ/2 for the uncontrollable variables.

CHAPTER 2: OPTIMIZATION METHODOLOGY

50 LS-OPT Version 3

2. The controlled and uncontrollable variables must be separated as minimization and maximization
variables. The objective will therefore be minimized with respect to the controlled variables and
maximized with respect to the uncontrollable variables. This requires a special flag in the optimization
algorithm and the formulation of Equation (2.1) becomes:

 qpf ℜ∈ℜ∈ zyzy
zy

,)},,(maxmin{ (3.8)

subject to
ljg j ,,2,1;0),(K=≤zy

The algorithm remains a minimization algorithm but with modified gradients:
yy ∇=∇ :mod

zz −∇=∇ :mod
For a maximization problem the min and max are switched.

3. The dependent set (the subset of y and z that are dependent on each other) x = y + z must be defined as

input for each simulation, e.g. if the manufacturing tolerance on a thickness is specified as the
uncontrollable component, it is defined as a variation added to a mean value, i.e. t = tmean + tdeviation,
where t is the dependent variable.

3.5 Reliability-based design optimization (RBDO)*

Reliability-based design optimization (RBDO) is the computation of an optimum design subject to
probabilistic bounds on the constraints. The probabilistic bound is usually interpreted the the six-sigma
context; for example, the failure of only one part in a million would be acceptable.

RBDO is currently done using First Order Second Moment (FOSM) method of computing the reliability. In
the FOSM method, the standard deviation of a response are computed using the metamodel gradients and
variable standard deviations; no additional computational costs are therefore incurred to compute the
reliability information. See Section 4.4.3 for more detail regarding the First Order Second Moment (FOSM)
method. The FOSM methodology is currently the default RBDO method, but more sophisticated methods
may be available in future versions of LS-OPT.

The standard deviations are assumed to be constant over the sub-region, but the method should converge to
a fixed value of the standard deviation if an iterative scheme is used.

Discrete variables are allowed in RBDO. The mixed-discrete optimization will be carried out considering
the probabilitistic bounds on the constraints.

The methods are described in more detail in section 17.3 with an example in Section 20.2.10 illustrating the
method.

Care must be taken in interpreting the resulting reliability of the responses. Accuracy can be especially poor
at the tail ends of the response distribution. What constitutes engineering accuracy at the low probabilities is
an open question. A definition such as six-sigma may be the best way of specifying the engineering

 CHAPTER 2: OPTIMIZATION METHODOLOGY

LS-OPT Version 3 51

requirement; a precise numerical value may be not be meaningful. Accuracy at low probabilities requires
firstly that the input data must be known accurate at these low probabilities, which may be prohibitively
expensive.

 53

4. Probabilistic Fundamentals

4.1 Introduction

No system will be manufactured and operated exactly as designed. Adverse combinations of design and
loading variation may lead to undesirable behavior or failure; therefore, if significant variation exists, a
probabilistic evaluation may be desirable.

Sources of variation are:

• Variation in structural properties; for example: variation in yield stress.
• Variation in the environment; for example: variation in a load.
• Variation occurring during the problem modeling and analysis; for example: buckling initiation,

mesh density, or results output frequency.

 From the probabilistic analysis we want to infer:

• Distribution of the response values.
• Probability of failure.
• Properties of the designs associated with failure.

o Variable screening - identify important noise factors.
o Dispersion factors - factors whose settings may increase variability of the responses.

• Efficient redesign strategies.

4.2 Probabilistic variables

The probabilistic component of a parameter is described using a probability distribution; for example, a
normal distribution. The parameter will therefore have a mean or nominal value as specified by the
distribution, though in actual use the parameter will have a value randomly chosen according to the
probability density function of the distribution.

The relationship between the control variables and the variance can be used to adjust the control process
variables in order to have an optimum process. The variance of the control and noise variables can be used
to predict the variance of the system, which may then be used for redesign. Knowledge of the interaction
between the control and noise variables can be valuable; for example, information such as that the

CHAPTER 4: PROBABILISTIC FUNDAMENTALS

54 LS-OPT Version 3

dispersion effect of the material variation (a noise variable), may be less at a high process temperature (a
control variable) can be used to selected control variables for a more robust manufacturing process.

4.2.1 Variable linking

A single design parameter can apply to several statistically independent components in a system; for
example: one joint design may be applicable to several joints in the structure.

The components will then all follow the same distribution but the actual value of each component will
differ. Each duplicate component is in effect an additional variable and will result in additional
computational cost (contribute to the curse of dimensionality) for techniques requiring an experimental
design to build an approximation or requiring the derivative information such as FORM. Direct Monte Carlo
simulation on the other hand does not suffer from the curse of dimensionality but is expensive when
evaluating events with a small probability.

Design variables can be linked to have the same expected (nominal) value, but allowed to vary
independently according to the statistical distribution during a probabilistic analysis. One can therefore have
one design variable associated with many probabilistic variables.

Three probabilistic associations between variables are possible:

• Their nominal values and distributions are the same.
• Their nominal values differ but they refer to the same distribution.
• Their nominal values are the same but their distributions differ.

4.3 Basic computations

4.3.1 Mean, variance, standard deviation, and coefficient of variation

The mean of a set of responses is

1

1 n

i
i

y y
n =

= ∑

The variance is
2 2

1

1 ()
n

i
i

s y y
n =

= −∑

The standard deviation is simply the square root of the variance
2s s=

The coefficient of variation, the standard deviation as a proportion of the mean, is computed as

y
svoc =..

 CHAPTER 4: PROBABILISTIC FUNDAMENTALS

LS-OPT Version 3 55

4.3.2 Correlation of responses

Whether a variation in displacements in one location cause a variation in a response value elsewhere is not
always clear.

The covariance of two responses indicates whether a change in the one is associated with a change in the
other.

)])([(),(221121 µµ −−= YYEYYCov

)()(][),(212121 YEYEYYEYYCov −=

The covariance can be difficult to use because it is unscaled. The standard deviation of the responses can be
used for scaling. The coefficient of correlation is accordingly

21

21),(
σσ

ρ YYCov
=

The coefficient of correlation is usually considered significant [28] if the absolute value is larger than 0.3.

4.3.3 Confidence intervals

The confidence interval on the mean assuming a normal distribution and using s2 as an estimate to the
variance is

n
sty

n
sty nn 1,2/1,2/ −− +<<− αα µ

with µ the mean, y the estimate to the mean, and 1,2/ −ntα the relevant critical value of the t distribution.

The confidence interval on the variance assuming a normal distribution and using s2 as an estimate to the
variance is

2
1,2/1

2
2

2
1,2/

2)1()1(

−−− Χ
−

<<
Χ

−

nn

snsn

αα

σ

with 2σ the variance and 2
1,2/1

2
1,2/ , −−− ΧΧ nn αα the relevant critical values of the 2Χ distribution.

The confidence interval on the probability of an event is

n
ppzpp

n
ppzp)ˆ1(ˆˆ)ˆ1(ˆˆ 2/2/

−
+<<

−
− αα

with p the probability, p̂ the estimate to the probability, and 1,2/ −nzα the relevant critical value of the
normal distribution.

The coefficient of correlation has a confidence interval of

CHAPTER 4: PROBABILISTIC FUNDAMENTALS

56 LS-OPT Version 3

⎥
⎦

⎤
⎢
⎣

⎡

−
+⎥

⎦

⎤
⎢
⎣

⎡
−
+

≤≤⎥
⎦

⎤
⎢
⎣

⎡

−
−⎥

⎦

⎤
⎢
⎣

⎡
−
+ −−

31
1ln

2
1tanh

31
1ln

2
1tanh ,2/1,2/1

N
t

N
t NN αα

ρ
ρρ

ρ
ρ .

4.4 Probabilistic methods

The reliability − the probability of not exceeding a constraint value − can be computed using probabilistic
methods.

The current version of LS-OPT provides only Monte Carlo evaluation of using approximations. Methods
considering the Most Probable Point (MPP) of failure will be included in future versions of LS-OPT.

The accuracy can be limited by the accuracy of the data used in the computations as well as the accuracy of
the simulation. The choice of methods depends on the desired accuracy and use of the reliability
information.

More details on probabilistic methods can be found in, for example, the recent text by Haldar and
Mahadevan [28].

4.4.1 Monte Carlo analysis

In a Monte Carlo analysis we approximate the nominal value of a response using the mean of a number of
computer experiments. The values of the random variables are selected considering their probability density
function. Under the law of large numbers the solution will eventually converge.

Applications of a Monte Carlo investigation are:

• Compute the distribution of the responses, in particular the mean and standard deviation.
• Compute reliability.
• Investigate design space – search for outliers.

The approximation to the nominal value is:

∑=)(1)]([iXf
N

XfE

If the Xi are independent, then the laws of large numbers allow us any degree of accuracy by increasing N.
The error of estimating the nominal value is a random variable with standard deviation

N
σσθ =ˆ

with σ the standard deviation of)(xf and N the number of sampling points. The error is therefore unrelated
to the number of design variables.

The error of estimating p, the probability of an event, is a random value with the following variance

 CHAPTER 4: PROBABILISTIC FUNDAMENTALS

LS-OPT Version 3 57

N
pp)1(2

ˆ
−

=θσ

Which can be manipulated to provide a minimum sampling. A suggestion for the minimum sampling size
provided by Tu and Choi [75] is:

[]0)(
10

≤
=

xGP
N

The above indicates that for a 10% estimated probability of failure; about 100 structural evaluations are
required with some confidence on the first digit of failure prediction. To verify an event having a 1%
probability; about a 1000 structural analyses are required, which usually would be too expensive.

A general procedure of obtaining the minimum number of sampling points for a given accuracy is illustrated
using an example at the end of this section. For more information, a statistics text (for example, reference
[45]) should be consulted. A collection of statistical tables and formulae such as the CRC reference [37] will
also be useful.

The variance of the probability estimation must be taken into consideration when comparing two different
designs. The error of estimating the difference of the mean values is a random variable with a variance of

2

2
2

1

2
12

ˆ NN
σσσ

θ
+=

with the subscripts 1 and 2 referring to the different design evaluations. The error of estimating the
difference of sample proportions is a random variable with a variance of

2

22

1

112
ˆ

)1()1(
N

pp
N

pp −
+

−
=

θ
σ

The Monte Carlo method can therefore become prohibitively expensive for computing events with small
probabilities; more so if you need to compare different designs.

The procedure can be sped up using Latin Hypercube sampling, which is available in LS-OPT. These
sampling techniques are described elsewhere in the LS-OPT manual. The experimental design will first be
computed in a normalized, uniformly distributed design space and then transformed to the distributions
specified for the design variables.

Example:
The reliability of a structure is being evaluated. The probability of failure is estimated to be 0.1 and must be
computed to an accuracy of 0.01 with a 95% confidence. The minimum number of function evaluations
must be computed.

CHAPTER 4: PROBABILISTIC FUNDAMENTALS

58 LS-OPT Version 3

For an accuracy of 0.01 we use a confidence interval having a probability of containing the correct value of
0.95. The accuracy of 0.01 is taken as 4.5 standard deviations large using the Tchebysheff’s theorem, which
gives a standard deviation of 0.0022. The minimum number of sampling points is therefore:

2 2

(0.9)(0.1) 18595
(0.0022)

pqN
σ

= = =

Tchebysheff’s theorem is quite conservative. If we consider the response to be normally distributed then for
an accuracy of 0.01 and a corresponding confidence interval having a probability of containing the correct
value of 0.95, the a confidence interval 1.96 standard deviations wide is required. The resulting standard
deviation is 0.051 and the minimum number of sampling points is accordingly:

3457
)051.0(

)1.0)(9.0(
22 ===

σ
pqN

4.4.2 Monte Carlo analysis using metamodels

Performing the Monte Carlo analysis using approximations to the functions instead of FE function
evaluations allows a significant reduction in the cost of the procedure.

A very large number of function evaluations (millions) are possible considering that function evaluations
using the metamodels are very cheap. Accordingly, given an exact approximation to the responses, the exact
probability of an event can be computed.

The choice of the point about which the approximation is constructed has an influence on accuracy.
Accuracy may suffer if the metamodel is not accurate close to the failure initiation hyperplane, 0)(=xG . A
metamodel accurate at the failure initiation hyperplane (more specifically the Most Probable Point of
failure) is desirable in the cases of nonlinear responses. The results should however be exact for linear
responses or quadratic responses approximated using a quadratic response surface.

Using approximations to search for improved designs can be very cost-efficient. Even in cases where
absolute accuracy is not good, the technique can still indicate whether a new design is comparatively better.

The number of FE evaluations required to build the approximations increases linearly with the number of
variables for linear approximations (the default being 1.5n points) and quadratically for quadratic
approximations (the default being 0.75(n+2)(n+1) points).

4.4.3 First-Order Second-Moment Method (FOSM)

For these computations we assume a linear expansion of the response. The reliability index of a response

()G X is computed as:

 CHAPTER 4: PROBABILISTIC FUNDAMENTALS

LS-OPT Version 3 59

[]
[])(

)(
XGD
XGE

=β

with E and D the expected value and standard deviation operators respectively. A normally distributed
response is assumed for the estimation of the probability of failure giving the probability of failure as:

)(β−Φ=fP or 1 ()β− Φ

with Φ(x) the cumulative distribution function of the normal distribution.

Caution is advised in the following cases:

• Nonlinear responses: Say we have a normally distributed stress responses - this implies that fatigue
failure is not normally distributed.

• The variables are not normally distributed; for example, one is uniformly distributed. In which case:
o A small number of variables may not sum up to a normally distributed response, even for a

linear response.
o The response may be strongly dependent on the behavior of a single variable. The

distribution associated with this variable may then dominate the variation of the response.

The underlying assumption is less valid at the tail regions of the response distribution. The tail regions may
be of specific interest.

Accuracy, especially at the tail regions, requires the following conditions:

• The responses must be linear functions of the design variables. Or sufficiently linear, where
sufficiently linear requires:

o The constraint associated with the response is active (it is being evaluated close to the most
probable point).

o The linearized response is sufficiently accurate over a range encompassed by the variables.
• Normally distributed design variables

4.4.4 The most probable point

Probabilistic methods based on the most probable point of failure focus on finding the design perturbation
most likely to cause failure.

To understand how these methods works, consider the limit state function G(x) dividing the responses into
two design regions: one consisting of acceptable responses and the other of unacceptable responses. The two
regions are separated by the hyperplane described by G(x)=0.

CHAPTER 4: PROBABILISTIC FUNDAMENTALS

60 LS-OPT Version 3

Figure 4-1 Finding the most probable point of failure. The most probable point is the point on the line

G(x)=0 closest to the design in the probabilistic sense.

We want to find the design perturbation most likely to cause the design to fail. This is difficult in the
problem as shown in Figure 4-1, because all variables will not have an equal influence of the probability of
failure due to differences in their distributions. In order to efficiently find this design perturbation, we
transform the variables to a space of independent and standardized normal variables, the u-space.

Figure 4-2 Most probable point in the transformed space. In the transformed space the most probable

point is the point on the line G(X)=0 the closest to the design.

The transformed space is shown in Figure 4-2. The point on the limit state function with the maximum joint
probability is the point the closest to the origin. It is found by solving the following optimization problem:

Minimize: ∑ =

n

i iu
1

2

 CHAPTER 4: PROBABILISTIC FUNDAMENTALS

LS-OPT Version 3 61

Subject to: () 0=uG

This point is referred to as the most probable point (MPP) and the distance from the origin in the u-space is
referred to as the first-order probability index βFORM.

The advantages of the most probable point are:

• The MPP gives an indication of the design most likely to fail.
• Highly accurate reliability methods utilizing an approximation around the MPP are possible.

4.4.5 FORM (First Order Reliability Method)

The Hasofer-Lind transformation is used to normalize the variables:

i

ii
i

xu
σ

µ−
=

The minimization problem is accordingly solved in the u-space to find the first-order probability index
βFORM. Approximations to the responses are used to solve the optimization problem.

The probability of failure is found assuming a normally distributed response as

)(FORMfP β−Φ=
with Φ the cumulative density function of the normal distribution.

The error component of the procedure is due to (i) curvature of the constraint, (ii) the error component of
the approximating function used in the computations, and (iii) the assumption of a normal distribution for
the computation of failure.

The method is considered conservative considering that disregarding the curvature of the curvature of the
constraint results in an overestimation of the probability of failure.

4.4.6 Design sensitivity of the most probable point

For a probabilistic variable we use the partial derivative as:

i

i

ii x
u

u
P

x
P

∂
∂

∂
∂

∂
∂

=
∂
∂ β

β

with β∂
∂P the derivative of the CDF function of the normal distribution.

For deterministic variables, which does not have a probabilistic component and therefore no associated u
variable:

ii x
f

f
P

x
P

∂
∂

∂
∂

∂
∂

=
∂
∂ β

β

CHAPTER 4: PROBABILISTIC FUNDAMENTALS

62 LS-OPT Version 3

with f∂
∂β taken as ()nominalconstraint ff −

β .

For the pathological case of being at the MPP, the vector associated with β vanishes and we use:

iii x
u

u
G

x
P

∂
∂

∂
∂

=
∂
∂ 4.0

with 0.4 the relevant value derivative of the CDF function of the normal distribution.

4.5 Required number of simulations

4.5.1 Overview

A single analysis of a noisy structural event yields only a single value drawn from an unexplored
population. The whole population can be explored and quantified using a probabilistic investigation if the
computational cost is reasonable. The cost of this probabilistic analysis is of quite some concern for FEA
results and is therefore expounded in the following subsections.

Rough rules of thumb:

• 20 FE evaluation, a maximum of 10 design variables, and a metamodel-based probabilistic analysis
for design purposes

• 50 FE evaluations, about 5 design variables, and a metamodel-based probabilistic analysis for a
detailed analysis of the scatter in the results and the role of the design variables

• 100 FE evaluations and a Monte Carlo analysis for very noisy behavior or a very large number of
potentially significant variables. These would be cases where it is very difficult to associate the
variation in results with the design variables and accordingly only quantifying the result is feasible.

4.5.2 Background

The required number of the simulation depends on:

• Cost of creating an accurate metamodel
• Cost of estimating the noise variation
• Cost of observing low-probability events

If the variation in the responses is mainly due to the variation of the design variables, then the cost of
creating an accurate metamodel dominates. The region of interest for a robustness analysis will not be as
large as to contain significant curvature; therefore a linear or preferably a quadratic response surface should
suffice. In past design optimization work, the number of experiments was successfully taken to be 1.5 times
the number of terms (unknowns) in the metamodel to be estimated. For a robustness analysis, being
conservative at this point in time, a value of twice the number of terms is recommended. The number of
terms for a linear model is k+1 with k the number of design parameters. The number of terms for a quadratic
response surface is (k+1)(k+2)/2.

 CHAPTER 4: PROBABILISTIC FUNDAMENTALS

LS-OPT Version 3 63

The variation in the responses may not be mainly due to the variation of the design variables. In this case,
enough experiments much be conducted to estimate this noise variation with sufficient accuracy. This cost is
additional to the cost of creating the metamodel. The number of experiments required will differ considering
the criteria for accuracy used. For example, we can require the error of estimating the noise variation to be
less than 10%; however, this requires about 150 experiments, which may be too expensive. Considering the
practical constraints for vehicle crash analysis, useful results can be obtained with 25 or more degrees of
freedom of estimating the noise variation. This gives a situation where the error bound on the standard
deviation is about 20% indicating that it is becoming possible to distinguish the six sigma events from five
sigma events.

For design purposes, the variation of the responses and the role of the design variables are of interest. High
accuracy may be impossible due to lack of information or unreasonable computational costs. A metamodel-
based investigation and 20 FE evaluations can achieve:

• Investigate up to 10 variable
• Quantify the contribution of each variable
• Estimate if the scatter in results is admissible

If the scatter in FE results is large, then the FE model must be improved, the product redesigned, or a more
comprehensive probabilistic investigation performed. The study should indicate which is required. A more
study employing more computational resources may not be meaningful considering the accuracy too which
the variation of the variables are known.

A study can be augmented to re-use the existing FE evaluations in a larger study.

If higher accuracy is required, then for approximately 50 simulations one can compute:

• Better quantification of the role of the design variables: Investigate the effect of about five variables
if a quadratic or neural network approximation is used or about 10 variables using linear
approximations.

• Higher accuracy and better understanding of the scatter in the results. Predict effect of frequently
occurring variation with a rare chance of being in error. Outliers may occur during the study and will
be identified as such for investigation by the analyst. Structural events with a small (5% to 10%)
probability of occurring might however not be observed.

The accuracy of these computations must be contrasted to the accuracy to which the variation of the design
parameters is known. These limits on the accuracy, though important for the analyst to understand, should
not prohibit useful conclusions regarding the probabilistic behavior of the structure.

4.5.3 Competing role of variance and bias

In an investigation the important design variables are varied while other sources are kept at a constant value
in order to minimize their influence. In practice the other sources will have an influence. Distinguishing
whether a difference in a response value is due to a deterministic effect or other variation is difficult,
because both always have a joint effect in the computer experiments being considered.

In general [11] the relationship between the responses y and the variables x is:

CHAPTER 4: PROBABILISTIC FUNDAMENTALS

64 LS-OPT Version 3

εxxy ++=)()(δf
with f(x) the metamodel;)()()(xxx f−= ηδ , the bias, the difference between the chosen metamodel and the
true functional response)(xη ; and ε the random deviation.

The bias (fitting error) and variance component both contribute to the residuals. If we compute the variance
of the random deviation using the residuals then the bias component is included in our estimate of the
variance. The estimate of the variance is usually too large in the case of a bias error.

The bias error is minimized by:

• Choosing the metamodel to be the same as the functional response. The functional response is
however unknown. A reliable approach in the presence of noise is difficult to establish. In particular,
metamodels that can fit exactly to any set of points will fit to the noise thus erroneously stating that
the random deviation is zero; inflexible metamodels will ascribe deterministic effects to noise.

• Reducing the region of interest to such a size that the difference between metamodel and true
functional response is not significant.

• Large number of experimental points. This strategy should be used together with the correct
metamodel or a sufficiently small region of interest.

The recommended approach is therefore to use a linear or quadratic response over a subregion small enough
that the bias error should be negligible.

4.5.4 Confidence interval on the mean

For multiple regression, the 100(1-α)% confidence limits on the mean value at 0X are obtained from

0
1

0,2/0 ' XX)(XX −
−−± pnpn stY α

with 2
pns − an estimate to 2σ . At the center of the region of interest for the coded variables the confidence

interval is

11,2/0 CstY pnpn −−± α

with 11C the first diagonal element of () 1' −XX . The confidence bound therefore depends on the variance of
the response and the quality of the experimental design.

More details can be found in, for example, the text by Myers and Montgomery [48].

4.5.5 Confidence interval on a new evaluation

For multiple regression, the 100(1-α)% confidence limits on a new evaluation at 0X are obtained from

0
1

0,2/0 '1 XX)(XX −
−− +± pnpn stY α

The confidence interval for new observations of the mean is

11,2/0 1 CstY pnpn +± −−α

 CHAPTER 4: PROBABILISTIC FUNDAMENTALS

LS-OPT Version 3 65

In the following table we monitor the bounds for a new evaluation of the mean for a linear approximation
using five design variables using a 95% confidence interval. The value of C11 is computed from D-optimal
experimental designs generated using LS-OPT. The error bounds are close to 2σ for more than 25 existing
runs (20 degrees of freedom).

n

p n-p C11 Bounds (σ=10% α=5%)

10 6 4 0.104 ±29%
15 6 9 0.070 ±23%
20 6 14 0.051 ±22%
25 6 19 0.041 ±21%
30 6 24 0.034 ±21%
50 6 44 0.020 ±20%
100 6 94 0.010 ±20%

4.5.6 Confidence interval on the random deviation (σ2)

The error of estimating the random deviation is minimized by:

• Large number of points
• Minimizing the bias error. Ideally one wants to observe many occurrences of the same design.

The residual mean square

)()(

)(
1

2

1

2

2

pn

e

pn

ee
s

n

i
i

n

i
i

−
=

−

−
=

∑∑
==

estimates 2σ with pn − degrees of freedom where n is the number of observations and p is the number of
parameters including the mean.

We want to find an interval []21,bb such that [] 95.02

2
1 =≤≤ bsbP . We rewrite as

95.022
2

212 =⎥⎦
⎤

⎢⎣
⎡ −

≤
−

≤
− bpnspnbpnP

σσσ
. We have 22 /)(σspn − is a chi-squared distribution with pn −

degrees of freedom. From the chi-squared table we can get []21,aa such that 95.02
2

21 =⎥⎦
⎤

⎢⎣
⎡ ≤

−
≤ aspnaP

σ
 by

reading of the values for 0.975 and 0.025. Having []21,aa we can compute for []21,bb as

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−− 2

2

1

2

, a
pn

sa
pn

s . The)%1(100 α− confidence interval on 2σ is therefore

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −−

−−−
2

,2/1

2

2
,2/

2)(,)(

pnpn Χ
spn

Χ
spn

αα

CHAPTER 4: PROBABILISTIC FUNDAMENTALS

66 LS-OPT Version 3

In the table below we monitor the error bounds on the variance for a problem with six parameters (including
the mean).

Noise Variance Confidence Interval
Lower Bound Upper Bound n n-p

α=5% α=10% α=20%

Value (s)

α=20% α=10% α=5%

10 4 5.99 6.49 7.17 10 19.39 23.72 28.74
15 9 6.88 7.29 7.83 10 14.69 16.45 18.25
20 14 7.32 7.69 8.15 10 13.41 14.60 15.77
25 19 7.605 7.94 8.36 10 12.77 13.70 14.6
30 24 7.81 8.12 8.50 10 12.38 13.16 13.91
50 46 8.31 8.56 8.86 10 11.59 12.10 12.56
106 100 8.78 8.97 9.19 10 11.02 11.33 11.61
206 200 9.11 9.24 9.41 10 10.69 10.92 11.09

In the above it was assumed that the metamodel is a sufficiently accurate approximation to the mechanistic
model (the bias error sufficiently small) and that the error are normally distributed. In general the estimate
of 2σ will be depend on the approximation model. For a model-independent estimate, replicate runs
(multiple observations for the same design) are required. If the bias error is significant then the estimate of

2σ will usually be too large [18].

4.5.7 Probability of observing a specific failure mode

A large number of runs may be required to be sure that an event with a specific probability is observed.

Probability that the event will be observed at least once (one or more times):
P[observing 0 events] = (1-P[event])n
P[observing 1 or more events] = 1.0 - (1-P[event])n

Probability of event Required number of runs for observing 1 or more
occurrences at 95% probability

0.45 5
0.26 10
0.14 20
0.095 30
0.06 50
0.03 100

4.6 Outlier analysis

 CHAPTER 4: PROBABILISTIC FUNDAMENTALS

LS-OPT Version 3 67

Outliers are values in poor agreement with the values expected or predicted for a specific combination of
design variable values. Unexpected values may occur due to different buckling modes or modeling
problems. Understanding the cause of the outliers can therefore lead to an improved structure or structural
model.

To be considered an outlier, the change in response value computed must not be completely explained by
the change in design variable value. An expected value of the response value associated with a certain
design is therefore required to judge whether a response is an outlier or not; the value predicted by the
metamodel is used as the expected value.

Figure 4-3 Outliers are identified after a metamodel has been fitted. Value in poor agreement of what is

predicted by the design variables are considered outliers.

Metamodels are therefore useful to separate the effect of design variable changes from the other types of
variation. The design variable cause-effect relationship is contained by the metamodel. The residuals of the
fitting procedure are the variation not explained by changes in the design variables. The outliers therefore
contain amongst others the bifurcation (buckling) effects.

The outliers are best investigated visually in LS-PrePost by considering the deformation of the structure. A
useful metric is computing the outliers for the displacement of every node in the structure and to fringe plot
the standard deviation of these outliers. Fringe plots of the index of the run associated with the maximum or
minimum displacement outlier can be used to identify different buckling modes.

CHAPTER 4: PROBABILISTIC FUNDAMENTALS

68 LS-OPT Version 3

4.7 Stochastic contribution analysis

The variation of the response can be broken down in contributions from each design variable.

4.7.1 Linear Estimation
The contribution can be estimated as:

ixig x
G

,, σσ ∂
∂=

with ix,σ the standard deviation of the variable i and ig ,σ the standard deviation of the variation of function g
due to the variation of variable i.

The variance for all the variables is found as the sum of the variance:

∑= 22
iT σσ

with 2

Tσ the variation of the response due the variation of all the variables and 2
iσ the variation of response

due to the variation of variable i. In the above it is assumed that the response is a linear response of the
design variables and independent variables.

4.7.2 Second and higher order estimation
For higher order effects one must consider the interaction between different design variables as well as
curvature. If a variation is due to the interaction of two variables, then the effect of one variable on the
variation depends on the current value of the other. This is in contrast with problems described by first order
effects, for which the effect of variables can be investigated independently; if interactions exist, this is no
longer true.

The effect of a variable can be described in terms of its main or total effect. The main effect of a variable is
computed as if it were the only variable in the system, while the total effect considers the interaction with
other variables as well. The advantage of using the total effect is that the interaction terms, which can be
significant, are included. For linear systems, the main and total effects are therefore the same. The second
order effects must be computed, which increases computational costs considerably.

The variance of the response, assuming independent variables, can be written using the Sobol’ indices
approach [13]. Firstly the function is decomposed as:

),,(),()(),,(1,,2,1
1 1 1

01 nn

n

i

n

i

n

ij
jiijiin xxfxxfxffxxf KKK K++++= ∑ ∑ ∑

= = +=

From which partial variances are computed as:

∫∫=
1

0 1
21

0,),,(jinjiji dxdxxxfV KKK KK

with the variance of the response summed from the partial variances as:
∑ ∑

<

+++=
ji

niji VVVV ,,2,1 LL

The sensitivity indices are given as:

 CHAPTER 4: PROBABILISTIC FUNDAMENTALS

LS-OPT Version 3 69

VVS

njiVVS
niVVS

niinii

ijij

ii

/

1,/
1,/

,,1,,,1, KK ++ =

≤<≤=
≤≤=

with the useful property that all of the sensitivity indices sum to 1:
∑ ∑

<

=+++
ji

niji SSS 1,,2,1 LL

Using Monte Carlo, the main effect can be computed as

∑
=

−=
N

m
imimimimi fxfxf

N
D

1

2
0

)1()2(
~

)1()1(
~

ˆ),(),(1ˆ xx

with ix~ is the subset of variables not containing ix .

The total effect of a variable can also be computed as:

iTi SS ~1−=
Using Monte Carlo, the total effect can be computed by considering the effects not containing ix

∑
=

−=
N

m
imimimimi fxfxf

N
D

1

2
0

)2()1(
~

)1()1(
~~

ˆ),(),(1ˆ xx

For second order response surfaces this can be computed analytically [14] as

∑ ∑ ∑∑∑
∈ ∈ ≥∈==

+⎥
⎦

⎤
⎢
⎣

⎡
++++++−=

n

Ui

n

Ui

n

ijUi
jiijiii

n

j
jijiiiii

n

j
jijiiiiiiiiU mm

,

222
3,

1

22

1

4
4,

22)()()(σσββµβµββσµβµββσβσ

with mi,j the jth moment about the mean of the distribution i and U the set of variables under consideration.

The stochastic contribution is computed analytically only for responses surfaces. For neural networks,
Kriging models, and composite functions, two options are currently available:

1. Approximate using second order response surface. The response surface is built using three times the
number of terms in the response surface using a central points Latin hypercube experimental design
over a range of plus/minus two standard deviations around the mean.

2. Using a Monte Carlo analysis. Many points are required.
Later version of LS-OPT may contain analytical computations for neural networks and Kringing models.

4.8 Robust parameter design
Robust parameter design selects designs insensitive to changes in given parameters.

The field of robust design relies heavily on the work of Taguchi. Taguchi’s insight was that it cost more to
control the sources of variation than to make the process insensitive to these variations [58]. An alternate
view of Taguchi [56] is that building quality into a product is preferable to inspecting for quality. Also, in
simulation, the actual results of a robust system are more likely to conform to the anticipated results [58].

The robust design problem definition requires considering two sets of variables: (i) the noise variables
causing the variation of the response and (ii) the control variables which are adjusted to minimize the effect

CHAPTER 4: PROBABILISTIC FUNDAMENTALS

70 LS-OPT Version 3

of the noise variables. The method adjusts the control variables to find a location in design space with
reduced gradients so that variation of the noise variable causes the minimum variation of the responses.

4.8.1 Fundamentals
The robustness of a structure depends on the gradient of the response function as shown in Figure 4-4. A flat
gradient will transmit little of the variability of the variable to the response, while a steep gradient will
amplify the variability of the variable. Robust design is therefore a search for reduced gradients resulting in
less variability of the response.

Figure 4-4 Robustness considering a single variable. Larger mean values of the area result in a smaller

dispersion of the stress values. Note that the dispersion of the stress depends on the gradient of the stress-
area relationship.

The variation of the response is caused by a number of variables, some which are not under the control of
the designer. The variables are split in two sets of variables:

• Control variables. The variables (design parameters) under the control of the designer are called
control variables,

• Noise variables. The parameter not under the control of the designer are called noise variables.
The relationship between the noise and control variables as shown in Figure 4-5 is considered in the
selecting of a robust design. The control variables are adjusted to find a design with a low derivative with
respect to the noise variable.

 CHAPTER 4: PROBABILISTIC FUNDAMENTALS

LS-OPT Version 3 71

Figure 4-5 Robustness of a problem with both control and noise variables. The effect of the noise variable z
on the response variation can be constrained using the control variable x. For robustness, the important
property is the gradient of the response with respect to the noise variable. This gradient prescribes the noise
in the response and can be controlled using the control variables. The gradient, as shown in the figure, is
large for large values of the control variable. Smaller values of the control variable will therefore result in a
more robust design, because of the lower gradient and accordingly less scatter in the response.

4.8.2 Methodology
The dual response surface method as proposed by Myers and Montgomery [48] using separate models for
process mean and variance is considered. Consider the control variables x and noise variables z with

zrzVar Iz 2)(σ= . The response surface for the mean is xxxzxyE z βββ '')],([++= considering that
the noise variables have a constant mean. Response surface for variance considering only the variance of the
noise variables is 22)()(')],([σσ += xlxlzxyVar zz with

zrzVar Iz 2)(σ= , 2σ the model error variance, and l

the vector of partial derivatives
z

zxyxl
∂

∂
=

),()(.

The search direction required to find a more robust design is requires the investigation of the interaction
terms ji zx . For finding an improved design, the interaction terms are therefore required. Finding the
optimum in a large design space or a design space with a lot of curvature requires either an iterative strategy
or higher order terms in the response surface.
For robust design, it is required to minimize the variance, but the process mean cannot be ignored. Doing
this using the dual response surface approach is much simpler than using the Taguchi approach because
multicriteria optimization can be used. Taguchi identified three targets: smaller is better, larger is better, and
target is best. Under the Taguchi approach the process variance and mean is combined into a single
objective using a signal-to-noise ratio (SNR). The dual response surface method as used in LS-OPT does
not require the use of a SNR objective. Fortunately so, because there is wealth of literature in which SNRs
are criticized [48]. With the dual response surface approach both the variance and mean can be used,
together or separately, as objective or constraints. Multicriteria optimization can be used to resolve a
conflict between process variance and mean as for any other optimization problem.

CHAPTER 4: PROBABILISTIC FUNDAMENTALS

72 LS-OPT Version 3

Visualization is an important of investigating and increasing robustness. As Myers and Montgomery state:
“The more emphasis that is placed on learning about the process, the less important absolute optimization
becomes.”

4.8.3 Experimental Design
One extra consideration is required to select an experimental design for robust analysis: provision must be
made to study the interaction between the noise and control variables. Finding a more robust design requires
that the experimental design considers the ji zx cross-terms, while the 2

ix and 2
iz terms can be included for a

more accurate computation of the variance.

The crossed arrays of the Taguchi approach are not required in this response surface approach where both
the mean value and variance are computed using a single model. Instead combined arrays are used which
use a single array considering x and z combined.

 73

USER’S MANUAL

74 LS-OPT Version 3

 75

5. Design Optimization Process

5.1 LS-OPT Features

The program LS-OPT has been designed to address the simulation-based design optimization environment.
The following list presents some of the main features of the program:

• LS-OPT is command-file based. A graphical user interface, LS-OPTui, allows the entry and
modification of command files. The command language is flexible and easy-to-use. Simple
problems do not require complex descriptions.

• Design variables can be specified in either the preprocessor input files or the solver input files.
Solver input files are typically only useful for sizing or the variation of material constants or load
curves or intensities. Interfacing with a parametric preprocessor allows the designer to use the
full capability thereof for optimization, so that other forms of design such as shape optimization
can be made possible. Standard interfaces are provided for a number of well-known geometrical
preprocessors.

• The LS-DYNA interface is comprehensive. Response variables of the ASCII and binary
databases (including the LS-DYNA Ver. 970 Binout database) can be extracted. The time-
dependent responses are available at any time. Average, maximum and minimum responses over
time can be extracted.

• Time-dependent LS-DYNA response can be post-processed by filtering or integration.
• Metal forming criteria are provided.
• Job execution and result extraction can be conducted on remote nodes in parallel. Finished jobs

are immediately replaced by waiting jobs until completion. File transfer to and from the remote
nodes is automatic and occurs at standard file transfer (ftp) speed.

• Since designs are typically target-oriented, the post-processing utilities were designed to include
a comprehensive array of multi-criteria optimization features. Design trade-off curves can be
constructed. Min.-Max. problems, in which the objective is to minimize the maximum value of
several variables, can be addressed.

• The design space can be bounded by the design variables as well as the response variables. Thus
only ‘reasonable’ designs need to be analyzed. E.g. massive designs need not be incorporated.

• Multidisciplinary optimization (MDO) can be conducted using more than one solver and more
than one analysis case for each solver. Variables can be defined to be exclusive to disciplines,
but can also be shared. Experimental design and job execution data can be exclusive to each
discipline. The software also features the restart of an aborted parallel multidisciplinary analysis
schedule. Error terminations are tagged for post-processing purposes.

• Mode tracking can be activated for frequency based criteria (LS-DYNA interface).

CHAPTER 5: DESIGN OPTIMIZATION PROCESS

76 LS-OPT Version 3

• A response surface and its optimal solution can be improved to a desired tolerance by successive
iteration. This process has been automated.

• An automated sequential random search method is available.
• Dependent variables, responses and composite functions can be defined using C-like

mathematical expressions.
• LS-OPT features a limited reliability-based design capability that allows simple statistical

analysis of result output. The computation of an optimum and reliable design has been
automated. Random, uncontrollable variables are allowed.

• Probabilistic Modeling and Monte Carlo Simulation.
• LS-OPT is capable of full Reliability-Based Design Optimization.

5.2 A modus operandi for design using response surfaces
5.2.1 Preparation for design

Since the design optimization process is expensive, the designer should avoid discovering major flaws in the
model or process at an advanced stage of the design. Therefore the procedure must be carefully planned and
the designer needs to be familiar with the model, procedure and design tools well in advance. The following
points are considered important:

1. The user should be familiar with and have confidence in the accuracy of the model (e.g. finite element

model) used for the design. Without a reliable model, the design would make little or no sense.

2. Select suitable criteria to formulate the design. The responses represented in the criteria must be

produced by the analyses and be accessible to LS-OPT.

3. Request the necessary output from the analysis program and set appropriate time intervals for time-

dependent output. Avoid unnecessary output as a high rate of output will rapidly deplete the available
storage space.

4. Run at least one simulation using LS-OPT. To save time, the termination time of the simulation can be

reduced substantially. This exercise will test the response extraction commands and various other
features.

5. Just as in the case of traditional simulation it is advisable to dump restart files for long simulations.

LS-OPT will automatically restart a design simulation if a restart file is available. For this purpose, the
runrsf file is required when using LS-DYNA as solver.

6. Determine suitable design parameters. In the beginning it is important to select many rather than few

design variables. If more than one discipline is involved in the design, some interdisciplinary discussion
is required with regard to the choice of design variables.

7. Determine suitable starting values for the design parameters. The starting values are an estimate of the

optimum design. These values can be acquired from a present design if it exists. The starting design will
form the center point of the first region of interest.

CHAPTER 5: DESIGN OPTIMIZATION PROCESS

 77

8. Choose a design space. This is represented by absolute bounds on the variables that you have chosen.
The responses may also be bounded if previous information of the functional responses is available.
Even a simple approximation of the design response can be useful to determine approximate function
bounds for conducting an analysis.

9. Choose a suitable starting design range for the design variables. The range should be neither too small,

nor too large. A small design region is conservative but may require many iterations to converge or may
not allow convergence of the design at all. It may be too small to capture the variability of the response
because of the dominance of noise. It may also be too large, such that a large modeling error is
introduced. This is usually less serious as the region of interest is gradually reduced during the
optimization process.

If the user has trouble deciding the size of the starting range, it should be omitted. In this case the full
design space is chosen.

10. Choose a suitable order for the design approximations when using polynomial response surfaces (the

default). A good starting approximation is linear because it requires the least number of analyses to
construct. However it is also the least accurate. The choice therefore also depends on the available
resources. However linear experimental designs can be easily augmented to incorporate higher order
terms.

Before using neural nets or Kriging surfaces as approximations, please consult Section 5.5.

After suitable preparation, the optimization process may now be commenced. At this point, the user has to
decide whether to use an automated iterative procedure or whether to firstly perform variable screening
(through ANOVA) based on one or a few iterations. Variable screening is important for reducing the
number of design variables, and therefore the overall computational time.

An automated iterative procedure can be conducted with any choice of approximating function. It
automatically adjusts the size of the subregion and automatically terminates whenever the stopping criterion
is satisfied. If a single optimal point is desired, this is probably the procedure to use. If there is a large
number of design variables, a linear approximation can be chosen.

However a step-by-step semi-automated procedure can be just as useful, since it allows the designer to
proceed more resourcefully. Computer time can be wasted with iterative methods, especially if handled
carelessly. It mostly pays to pause after the first iteration to allow verification of the data and design
formulation and inspection of the results, including ANOVA data. In many cases it takes only 2 to 3
iterations to achieve a reasonably optimal design. An improvement of the design can usually be achieved
within one iteration.

A suggested step-by-step semi-automated procedure is outlined as follows:

5.2.2 A step-by-step design optimization procedure

1. Evaluate as many points as required to construct a linear approximation. Assess the accuracy of the

linear approximation using any of the error parameters. Inspect the main effects by looking at the

CHAPTER 5: DESIGN OPTIMIZATION PROCESS

78 LS-OPT Version 3

ANOVA results. This will highlight insignificant variables that may be removed from the problem. An
ANOVA is simply a single iteration run, typically using a linear response surface to investigate main
and/or interaction effects. The ANOVA results can be viewed in the post-processor.

2. If the linear approximation is not accurate enough, add enough points to enable the construction of a

quadratic approximation. Assess the accuracy of the quadratic approximation. Intermediate steps can be
added to assess the accuracy of the interaction and /or elliptic approximations.

3. If the second-order approximation is not accurate enough, the problem may be twofold:

(a) There is significant noise in the design response.
(b) There is a modeling error, i.e. the function is too nonlinear and the subregion is too large to enable an

accurate quadratic approximation.

In case (3a), different approaches can be taken. Firstly, the user should try to identify the source of the
noise. E.g., when considering acceleration-related responses, was filtering performed? Are sufficient
significant digits available for the response in the extraction database? Is mesh adaptivity used correctly?
Secondly, if the noise cannot be attributed to a specific numerical source, the process being modeled
may be chaotic or random, leading to a noisy response. In this case, the user could implement reliability-
based design optimization techniques as described in Section 3.5. Thirdly, other less noisy, but still
relevant, design responses could be considered as alternative objective or constraint functions in the
formulation of the optimization problem.

In case (3b), the subregion can be made smaller.

In most cases the source of discrepancy cannot be identified, so in either case a further iteration would
be required to determine whether the design can be improved.

4. Optimize the approximate subproblem. The solution will be either in the interior or on the boundary of
the subregion.

If the approximate solution is in the interior, the solution may be good enough, especially if it is close to
the starting point. It is recommended to analyze the optimum design to verify its accuracy. If the
accuracy of any of the functions in the current subproblem is poor, another iteration is required with a
reduced subregion size.

If the solution is on the boundary of the subregion the desired solution is probably beyond the region.
Therefore, if the user wants to explore the design space more fully, a new approximation has to be built.
The accuracy of the current response surfaces can be used as an indication of whether to reduce the size
of the new region.

The whole procedure can then be repeated for the new subregion and is repeated automatically when
selecting a larger number of iterations initially.

CHAPTER 5: DESIGN OPTIMIZATION PROCESS

 79

5.3 Recommended test procedure

A full optimization run can be very costly. It is therefore recommended to proceed with care. Check that the
LS-OPT optimization run is set up correctly before commencing to the full run. By far the most of the time
should be spent in checking that the optimization runs will yield useful results. A common problem is to not
check the robustness of the design so that some of the solver runs are aborted due to unreasonable
parameters which may cause distortion of the mesh, interference of parts or undefinable geometry.

The following general procedure is therefore recommended:

1. Test the robustness of the analysis model by running a few (perhaps two or three) designs in the extreme

corners of the chosen design space. Run these designs to their full term (in the case of time-dependent
analysis). Two important designs are those with all the design variables set at their minimum and
maximum values. The starting design can be run by selecting ‘0’ as the number of iterations in the Run
panel.

2. Modify the input to define the experimental design for a full analysis.

3. For a time dependent analysis or non-linear analysis, reduce the termination time or load significantly to

test the logistics and features of the problem and solution procedure.

4. Execute LS-OPT with the full problem specified and monitor the process.

Also refer to Section 5.2.

5.4 Pitfalls in design optimization

A number of pitfalls or potential difficulties with optimization are highlighted here. The perils of using
numerical sensitivity analysis have already been discussed and will not be repeated in detail.

• Global optimality. The Karush-Kuhn-Tucker conditions [Eqs. (2.3)] govern the local optimality of a

point. However, there may be more than one optimum in the design space. This is typical of most
designs, and even the simplest design problem (such as the well known 10-bar truss with 10 design
variables), may have more than one optimum. The objective is, of course, to find the global optimum.
Many gradient-based as well as discrete optimal design methods have been devised to address global
optimality rigorously, but as there is no mathematical criterion available for global optimality, nothing
short of an exhaustive search method can determine whether a design is optimal or not. Most global
optimization methods require large numbers of function evaluations (simulations). In LS-OPT, global
optimality is treated on the level of the approximate subproblem through a multi-start method
originating at all the experimental design points.

• Noise. Although noise may evince the same problems as global optimality, the term refers more to a
high frequency, randomly jagged response than an undulating one. This may be largely due to numerical
round-off and/or chaotic behavior. Even though the application of analytical or semi-analytical design
sensitivities for ‘noisy’ problems is currently an active research subject, suitable gradient-based
optimization methods which can be applied to impact and metal-forming problems are not likely to be

CHAPTER 5: DESIGN OPTIMIZATION PROCESS

80 LS-OPT Version 3

forthcoming. This is largely because of the continuity requirements of optimization algorithms and the
increased expense of the sensitivity analysis. Although fewer function evaluations are required,
analytical sensitivity analysis is costly to implement and probably even more costly to parallelize.

• Non-robust designs. Because RSM is a global approximation method, the experimental design may

contain designs in the remote corners of the region of interest which are prone to failure during
simulation (aside from the fact that the designer may not be remotely interested in these designs). An
example is the identification of the parameters of a monotonic load curve which in some of the
parameter sets proposed by the experimental design may be non-monotonic. This may cause unexpected
behavior and possible failure of the simulation process. This is almost always an indication that the
design formulation is non-robust. In most cases poor design formulations can be eliminated by providing
suitable constraints to the problem and using these to limit future experimental designs to a ‘reasonable’
design space (see Section 2.7).

• Impossible designs. The set of impossible designs represents a ‘hole’ in the design space. A simple

example is a two-bar truss structure with each of the truss members being assigned a length parameter.
An impossible design occurs when the design variables are such that the sum of the lengths becomes
smaller than the base measurement, and the truss becomes unassemblable. It can also occur if the design
space is violated resulting in unreasonable variables such as non-positive sizes of members or angles
outside the range of operability. In complex structures it may be difficult to formulate explicit bounds of
impossible regions or ‘holes’.

The difference between a non-robust design and an impossible one is that the non-robust design may show
unexpected behavior, causing the run to be aborted, while the impossible design cannot be synthesized at
all.

Impossible designs are common in mechanism design.

5.5 Advanced methods for design optimization

5.5.1 Neural Nets and Kriging*

The use of neural networks (Section 2.10.1) or Kriging (Section 2.10.2) combined with the space-filling
point selection scheme (Section 2.6.6) are still considered to be advanced tools for optimal design.
However, some experimentation with this methodology has been done to suggest the following procedure:

1. Conduct a variable screening procedure to determine important variables. Linear polynomials can be

used for this purpose.
2. Augment the existing design points with a space-filling method using approximately the same number of

points as would be required for a linear approximation. The greater the number of points, the better the
approximation. To fully exploit the updating feature and the potential for tradeoff studies, it is
recommended that the entire design space be used to construct the initial space-filling design.

3. Execute the simulation runs and find the predicted optimum point. Verify the design accuracy by
simulating the predicted design.

CHAPTER 5: DESIGN OPTIMIZATION PROCESS

 81

4. Combine with a second iteration if the first appears to be inaccurate. More iterations can be done
depending on the convergence requirement. The NN/Kriging-based optimization is automated using the
same domain-reduction scheme (see Section 2.12) as the successive polynomial response surface
method. However, in the case of neural networks or Kriging approximations, it makes sense to update
the experimental design, so updated (the default) should be selected.

An example is given in Section 20.2.8 .

The advantage of using neural networks or Kriging surfaces is the avoidance of having to choose a
polynomial order, the adaptability of the response surface, and the global nature of the final surface that can
subsequently be used for trade-off studies or reliability investigations.

CHAPTER 5: DESIGN OPTIMIZATION PROCESS

82 LS-OPT Version 3

 83

6. Graphical User Interface and
Command Language

This chapter introduces the graphical user interface, the command language and describes syntax rules for
names of variables, strings and expressions.

6.1 LS-OPT user interface (LS-OPTui)

LS-OPT can be operated in one of two modes. The first is through a graphical user interface, LS-OPTui, and
the second through the command line using the Design Command Language (DCL).

The user interface is launched with the command

lsoptui [command_file]

The layout of the menu structure (Figure 6-1) mimics the optimization setup process, starting from the
problem description, through the selection of design variables and experimental design, the definition and
responses, and finally the formulation of the optimization problem (objectives and constraints). The run
information (number of processors, monitoring and termination criteria) is also controlled via LS-OPTui.

CHAPTER 9: DESIGN VARIABLES, CONSTANTS, AND DEPENDENTS

84 LS-OPT Version 3

Figure 6-1: Information panel in LS-OPTui

6.2 Problem description and author name

In LS-OPTui, the Info (main) panel has fields for the entering of the problem description and author
information.

Command file syntax:
problem_description
author author_name

A description of the problem can be given in double quotes. This description is echoed in the lsopt_
input and lsopt_output files and in the plot file titles.

Example:

"Frontal Impact"
author "Jim Brown"

CHAPTER 9: DESIGN VARIABLES, CONSTANTS, AND DEPENDENTS

 85

The number of variables and constraints are echoed from the graphical user input. These can be modified by
the user in the command file.

Command file syntax:
solvers number_of_solvers < 1 >
constants number_of_constants < 0 >
variables number_of_variables
dependents number_of_dependent_variables < 0 >
histories number_of_response_histories < 0 >
responses number_of_responses
composites number_of_composites < 0 >
objectives number_of_objectives < 0 >
constraints number_of_constraints < 0 >
distributions number_of_distributions < 0 >

Example:

variable 2
constraint 1
responses 2
objectives 2

The most important data commands are the definitions. These serve to define the various entities which
constitute the design problem namely solvers, variables, results, matrices, responses, objectives, constraints
and composites. The definition commands are:

solver package_name
constant name value
variable name value
dependent name value
result name string
history name string
matrix name string
response name string
composite name type type
composite name string
objective name entity weight
constraint name entity name

Each definition identifies the entity with a name. “Results” and “matrices” do not require a count. Other
entities will be phased out in future.

6.3 Command Language

CHAPTER 9: DESIGN VARIABLES, CONSTANTS, AND DEPENDENTS

86 LS-OPT Version 3

The command input file is a sequence of text commands describing the design optimization process. It is
also written automatically by LS-OPTui.

The Design Command Language (DCL) is used as a medium for defining the input to the design process.
This language is based on approximately 200 command phrases drawing on a vocabulary of about 200
words. Names can be used to describe the various design entities. The command input file combines a
sequence of text commands describing the design optimization process. The command syntax is not case
sensitive.

6.3.1 Names
Entities such as variables, responses, etc. are identified by their names. The following entities must be given
unique names:

solver
constant
variable
dependent
history
response
composite
objective
constraint

A name is specified in single quotes, e.g.

solver dyna ’DYNA_side_impact’
constant ’Young_modulus’ 50000.0
variable ’Delta’ 1.5
dependent ’new_modulus’ {Young_modulus + Delta}
result ’x_acc’ "BinoutResponse –res_type rcforc –cmp z_force –id 1
 –side SLAVE –select TIME –end_time 0.002"
Matrix ’strain’ {Matrix3x3Init(0.001,0.002,0.0035, a,b,c, d,e,f)}
History ’y_vel’ "DynaASCII nodout Y_VEL 187705 TIMESTEP 0 SAE 30"
Response ’x_acc’ "DynaASCII rbdout X_ACC 21 AVE"
composite ’deformation’ type targeted
composite ’sqdef’ {sqrt(deformation)}
objective ’deformation’ composite ’deformation’ 1.0
constraint ’Mass’ response ’Mass’

In addition to numbers 0-9, upper or lower case letters, a name can contain any of the following characters:

_-.

The leading character must be alphabetical. Spaces are not allowed.

Note:
Because mathematical expressions can be constructed using various entities in the same formula,
duplication of names is not allowed.

CHAPTER 9: DESIGN VARIABLES, CONSTANTS, AND DEPENDENTS

 87

6.3.2 Command lines

Preprocessor commands, solver commands or response extraction commands are enclosed in double quotes,
e.g.

$ SPECIFICATION OF PREPROCESSOR AND SOLVER
preprocessor command "/usr/ls-dyna/ingrid"
solver command "/alpha6_2/usr/ls-dyna/bin/ls-dyna_9402_dec_40"
$ IDENTIFICATION OF THE RESPONSE
response ’displacement’ "DynaRelativeDisp 0.2"
response ’Force’ "Myforce"

In addition to numbers 0-9, upper or lower case letters and spaces, a command line can contain any of the
following characters:

_=-.’/<>;‘

In the command input file, a line starting with the character $ is ignored.

A command must be specified on a single line.

6.3.3 File names

Input file names for the solver and preprocessor must be specified in double quotes.

prepro input file "p11i"
solver input file "side_impact"

6.3.4 Command file structure

The commands are arranged in two categories:

• problem data
• solution tasks

The only command for specifying a task is the iterate command. All the remaining commands are for
the specification of problem data. A solution task command serves to execute a solver or processor while the
other commands store the design data in memory.

In the following chapters, the command descriptions can be easily found by looking for the large typescript
bounded by horizontal lines. Otherwise the reader may refer to the quick reference manual that also serves
as an index. The default values are given in angular brackets, e.g. < 1 >.

CHAPTER 9: DESIGN VARIABLES, CONSTANTS, AND DEPENDENTS

88 LS-OPT Version 3

6.3.5 Environments

Environments have been defined to represent all dependent entities that follow. The only environments in
LS-OPT are for

• solver identifier_name

All responses, response histories, solver variables, solver experiments and solver-related job information
defined within this environment are associated with the particular solver.

• strict, slack/soft Pertains to the strictness of constraints. See Sections 14.5.
• move, stay Pertains to whether constraints should be used to define a reasonable design space or

not for the experimental design. See Section 11.6.

6.3.6 Expressions

Each entity can be defined as a standard formula, a mathematical expression or can be computed with a
user-supplied program that reads the values of known entities. The bullets below indicate which options
apply to the various entities. Variables are initialized as specified numbers.

Table 6-1: Expression options of optimization entities

Entity Standard Expression User-defined
Variable
Dependent
Result
Matrix
History
Response
Composite

●

●
●
●

●
●
●
●
●
●

●

●
●

A list of mathematical and special function expressions that may be used is given in Appendix D :
Mathematical Expressions.

CHAPTER 9: DESIGN VARIABLES, CONSTANTS, AND DEPENDENTS

 89

7. Program Execution

This chapter describes the directory structure, output and status files, and logistical handling of a simulation-
based optimization run.

7.1 Work directory

Create a work directory to keep the main command file, input files and other command files as well as the
LS-OPT program output.

7.2 Execution commands

lsoptui command_file_name Execute the graphical user interface
lsopt command_file_name LS-OPT batch execution
lsopt info Create a log file for licensing
lsopt env Check the LSOPT environment setting
viewer command_file_name Execute the graphical postprocessor

The LSOPT environment is automatically set to the location of the lsopt executable.

7.3 Directory structure

When conducting an analysis in which response evaluations are done for each of the design points, a sub-
directory will automatically be created for each analysis.

CHAPTER 9: DESIGN VARIABLES, CONSTANTS, AND DEPENDENTS

90 LS-OPT Version 3

Work directory

Solver 1 Solver 2

1.1 1.2 1.3 1.4 1.5 1.1 1.2 1.3 1.4 1.5

Run directories

Command file
Input files
Output files
Plot files

Simulation files
Intermediate files
Status files
Plot files, e.g. FLD

Database files

Work directory

Solver 1 Solver 2

1.1 1.2 1.3 1.4 1.5 1.1 1.2 1.3 1.4 1.5

Run directories

Command file
Input files
Output files
Plot files

Simulation files
Intermediate files
Status files
Plot files, e.g. FLD

Database files

Figure 7-1 : Directory structure in LS-OPT

These sub-directories are named solver_ name/mmm.nnnn, where mmm represents the iteration number and
nnnn is a number starting from 1. solver_ name represents the solver interface specified with the command,
e.g.

solver dyna ’side_impact’

In this case dyna is a reserved package name and side_impact is a solver name chosen by the user.
The work directory needs to contain at least the command file and the template input files. Various other
files may be required such as a command file for a preprocessor. An example of a sub-directory name,
defined by LS-OPT, is side_impact/3.11, where 3.11 represents the design point number of
iteration 3. The creation of subdirectories is automated and the user only needs to deal with the working
directory.

In the case of simulation runs being conducted on remote nodes, a replica of the run directory is
automatically created on the remote machine. The response.n and history.n files will automatically
be transferred back to the local run directory at the end of the simulation run. These are the only files
required by LS-OPT for further processing.

7.4 Job Monitoring

The job status is automatically reported at a regular interval. The user can also specify the interval. The
interface, LS-OPTui reports the progress of the jobs in the Run panel (see Section 15.6). The text screen
output while running both the batch and the graphical version also reports the status as follows:

JobID Status PID Remaining
----- ------ ----- ---------
1 N o r m a l termination!
2 Running 8427 00:01:38 (91% complete)
3 Running 8428 00:01:16 (93% complete)
4 Running 8429 00:00:21 (97% complete)
5 Running 8430 00:01:13 (93% complete)

CHAPTER 9: DESIGN VARIABLES, CONSTANTS, AND DEPENDENTS

 91

6 Running 8452 00:21:59 (0% complete)
7 Waiting ...
8 Waiting ...

In the batch version, the user may also type control-C to get the following response:

Jobs started
Got control C. Trying to pause scheduler ...
Enter the type of sense switch:
sw1: Terminate all running jobs
sw2: Get a current job status report for all jobs
t: Set the report interval
v: Toggle the reporting status level to verbose
stop: Suspend all jobs
cont: Continue all jobs
c: Continue the program without taking any action
Program will resume in 15 seconds if you do not enter a choice switch:
If v is selected, more detailed information of the jobs is provided, namely event time, time step, internal
energy, ratio of total to internal energy, kinetic energy and total velocity.

7.5 Result extraction

Each simulation run is immediately followed by a result extraction to create the history.n and
response.n files for that particular design point. For distributed simulation runs, this extraction process is
executed on the remote machine. The history.n and response.n files are subsequently transferred to
the local run directory.

7.6 Restarting

Restarting is conducted by giving the command:

lsopt command_file_name, or by selecting the Run button in the Run panel of LS-OPTui.

Completed simulation runs will be ignored, while half completed runs will be restarted automatically.
However, the user must ensure that an appropriate restart file is dumped by the solver by specifying its
name and dump frequency.

The following procedure must be followed when restarting a design run:

1. As a general rule, the run directory structure should not be erased. The reason is that on restart, LS-OPT

will determine the status of progress made during a previous run from status and output files in the
directories. Important data such as response values (response.n files), response histories
(history.n files) are kept only in the run directories and is not available elsewhere.

2. In most cases, after a failed run, the optimization run can be restarted as if starting from the beginning.

There are a few notable exceptions:

CHAPTER 9: DESIGN VARIABLES, CONSTANTS, AND DEPENDENTS

92 LS-OPT Version 3

a. A single iteration has been carried out but the design formulation is incorrect and must be changed.
b. Incorrect data was extracted, e.g., for the wrong node or in the wrong direction.
c. The user wants to change the response surface type, but keep the original experimental design.

In the above cases, all the history.n and response.n files must be deleted. After restarting, the
data will then be newly extracted and the subsequent phases will be executed. A restart will only be able
to retain the data of the first iteration if more than one iteration was completed. The directories of the
other higher iterations must be deleted in their entirety. Unless the database was deleted (by, e.g., using
the clean file, see Section 7.10), no simulations will be unnecessarily repeated, and the simulation run
should continue normally.

3. A restart can be made from any particular iteration by selecting the ‘Specify Starting Iteration’ button on

the Run panel, and entering the iteration number. The subdirectories representing this iteration and all
higher-numbered iterations will be deleted after selecting the Run button and confirming the selection.

4. The number of points can be changed for a restart (see Section 11.10).

7.7 Output files

The following files are intermediate database files containing ASCII data.

Table 7-1: Intermediate ASCII database files

Database file Description Directory

Experiments
Trial designs computed as a result of the
experimental design Solver

AnalysisResults
The same trial designs and the responses
extracted from the solver database Solver

DesignFunctions Parameters of the approximate functions Solver

OptimizationHistory
Variable, response and error history of
the successive approximation process Work

ExtendedResults
All variables, responses and extended
results at each trial design point Solver

Net.funcname
Parameters of the neural net / Kriging
surface of function with name funcname Solver

A more detailed description of the database is available in Appendix C.

CHAPTER 9: DESIGN VARIABLES, CONSTANTS, AND DEPENDENTS

 93

The output files are as follows:

Table 7-2: Output files

Database file Description Directory

lsopt_input Input in a formatted style Work

lsopt_output Results and some logging information Work

lsopt_report

A final report of the analysis results
(presently only available for system
identification using any of the non-
linear regression methods)

Work

history_design
Table of the objective and constraint
values for each iteration (e.g. for
plotting)

Work

history_variables
Table of the design variables, responses
and composites for each iteration (e.g.
for plotting)

Work

lsopt_db

This file communicates the current
status of the LSOPT databases to other
LSTC programs. The content of this
file is subject to change between
versions of LSOPT.

Work

7.8 Using a table of existing results to conduct an analysis

A table of existing results can be used to conduct an optimization or probabilistic analysis. The required
format for the file is as described for the AnalysisResults file in D.2. A single line is required for each
point to be analyzed. The file must be named AnalysisResults.PRE.case_name and placed in the
work directory. The repair feature for reading user results can be used to extract results from this file
(Section 15.7).

7.9 Log files and status files

The LS-OPT logfile is named: lsopt_logfile.

Status files prepro, replace, started, finished, history.n, response.n and
EXIT_STATUS are placed in the run directories to indicate the status of the solution progress. The
directories can be cleaned to free disk space but selected status files must remain intact to ensure that a
restart can be executed if necessary.

A brief explanation is given below.

CHAPTER 9: DESIGN VARIABLES, CONSTANTS, AND DEPENDENTS

94 LS-OPT Version 3

Table 7-3: Status files generated by LS-OPT
prepro The preprocessing has been done.
replace The variables have been replaced in the input files.
started The run has been started.
finished The run has been completed. The completion status is given in the file.
response.n Response number n has been extracted.
history.n History number n has been extracted.
EXIT_STATUS Error message after termination.

The user interface LS-OPTui uses the message in the EXIT_STATUS file as a pop-up message.

The lfop.log file contains a log of the core optimization solver solution.

The simulation run/extraction log is saved in a file called lognnnnnn in the local run directory, where
nnnnnn represents the process ID number of the run. An example of a logfile name is log234771.

Please refer to Section 7.6 for restarting an optimization run.

7.10 Managing disk space during run time

During a successive approximation procedure, superfluous data can be erased after each run while keeping
all the necessary data and status files (see above and example below). For this purpose the user can provide
a file named clean containing the required erase statements such as:

rm -rf d3*
rm -rf elout
rm -rf nodout
rm -rf rcforc

The clean file will be executed immediately after each simulation and will clean all the run directories
except the baseline (first or 1.1) and the optimum (last) runs. Care should be taken not to delete the lowest
level directories or the log files prepro, started, replace, finished, response.n or
history.n (which must remain in the lowest level directories). These directories and log files indicate
different levels of completion status which are essential for effective restarting. Each file
response.response_number contains the extracted value for the response: response_number. E.g., the
file response.2 contains the extracted value of response 2. The essential data is thus preserved even if
all solver data files are deleted. The response_number starts from 0.

Complete histories are similarly kept in history.history_number.

CHAPTER 9: DESIGN VARIABLES, CONSTANTS, AND DEPENDENTS

 95

The minimal list to ensure proper restarting is:

prepro
XPoint
replace
started
finished
response.0
response.1
.
.
history.0
history.1
.
.

Remarks:

1. The clean file must be created in the work directory.
2. If the clean file is absent, all data will be kept for all the iterations.
3. For remote simulations, the clean file will be executed on the remote machine.

7.11 Error termination of a solver run

The job scheduler will mark an error-terminated job to avoid termination of LS-OPT. Results of abnormally
terminated jobs are ignored. If there are not enough results to construct the approximate design surfaces,
LS-OPT will terminate with an appropriate error message.

7.12 Parallel processing

Runs can be executed simultaneously. The user has to specify how many processors are available.

Command file syntax:
concurrent jobs number_of_jobs

If a parallel solver is used, the number of concurrent jobs used for the solution will be number_of_jobs times
the number of cpu’s specified for the solver.
Example:

concurrent jobs 16

If the number of concurrent jobs is specified as 0, all the jobs will be run simultaneously. This can be used
to transfer all the jobs to a queuing system (see Section 7.13) at once.

CHAPTER 9: DESIGN VARIABLES, CONSTANTS, AND DEPENDENTS

96 LS-OPT Version 3

7.13 Using an external queuing or job scheduling system

7.13.1 Introduction
The LS-OPT Queuing Interface interfaces with load sharing facilities (e.g. LSF1

 or LoadLeveler2) to enable
running simulation jobs across a network. LS-OPT will automatically copy the simulation input files to each
remote node, extract the results on the remote directory and transfer the extracted results to the local
directory. The interface allows the progress of each simulation run to be monitored via LS-OPTui. The
README.queue file should be consulted for the most up to date information about the queuing interface.

Command file syntax:
Solver queue [queue_name]

Table 7-4: Queuing options

queuer_ name Description
lsf LSF
loadleveler LoadLeveler
pbs PBS3
nqe NQE4
aqs AQS
user User Defined

7.13.2 Installation
To run LS-OPT with a queuing (load-sharing) facility the following binary files are provided in the /bin
directory which un-tars (or unzips) from the distribution during installation of LS-OPT:

 bin/wrappers/wrapper_*
 bin/runqueuer

The * represents platform details, e.g. wrapper_hp or wrapper_suse91. The runqueuer executes
the command line for the purpose of queuing and must remain in the LS-OPT environment (the same
directory as the lsopt executable).

The following instructions should then be followed:

Installation for all remote machines running LS-DYNA

1. Create a directory on the remote machine for keeping all the executables including lsdyna. Copy the
appropriate executable wrapper_* program located in the bin/wrappers directory to the new

1 Registered Trademark of Platform Computing Inc.
2 Registered Trademark of International Business Machines Corporation
3 Portable Batch System. Registered Trademark of Veridian Systems
4 Network Queuing Environment. Registered Trademark of Cray Inc.

CHAPTER 9: DESIGN VARIABLES, CONSTANTS, AND DEPENDENTS

 97

directory. E.g. if you are running lsdyna on HPUX, place wrapper_hp on this machine. Rename it
to "wrapper".

 Installation on the local machine

2. Select the queuer option in LS-OPTui or add a statement in the LS-OPT command file to identify the
queuing system, e.g.

 queuer lsf
 or
 solver queuer loadleveler

 for each solver.

To pass all the jobs to the queuing system at once, select zero concurrent jobs in the GUI or
command file, e.g.

concurrent jobs 0

 Example:

 solver command "rundyna.hp DynaOpt.inp single 980"
 solver input file "car6_crash.k"
 solver queuer loadleveler

In this example, the arguments to the rundyna.hp script are optional and can be hard-coded in the
script.

3. Change the script you use to run the solver via the queuing facility by prepending "wrapper" to the

solver execution command. Use full path names for both the wrapper and executable or make sure
the path on the remote machine includes the directory where the executables are kept.

The argument for the input deck specified in the script must always be the LS-OPT reserved name
for the chosen solver, e.g. for LS-DYNA use DynaOpt.inp .

7.13.3 Example

An example using a script follows:

The LS-OPT command file part relating to the queue is:

solver dyna960 'Case1'
$ ---- PBS Script
 solver command "/nec00a/mike/project/submit_pbs"
$ ---- Input file with variable substitution
 solver input file "input.k"
$ ---- Queuing specification

CHAPTER 9: DESIGN VARIABLES, CONSTANTS, AND DEPENDENTS

98 LS-OPT Version 3

 solver queue pbs

The "submit_pbs" file is:

#!/bin/csh -f

Run jobs on a remote processor, remote disk
set newdir=`pwd | sed -n 's/.*\/\(.*\)\/\(.*\)/\1\/\2/p'`
Run jobs on a remote processor, local disk (no transmission)
set newdir=`pwd`
echo $newdir
cat > dynscr << EOF
#!/bin/csh -f

#PBS -l nodes=1:ncpus=1

setenv LSOPT /nec00a/mike/codes/LSOPT_EXE
setenv LSOPT_HOST $LSOPT_HOST
setenv LSOPT_PORT $LSOPT_PORT
Run jobs on a remote processor, remote disk
mkdir -p lsopt/$newdir
cd lsopt/$newdir
The input file name is required for LS-OPT
cd $newdir
/nec00a/mike/codes/wrapper /nec00a/mike/codes/ls980.single i=DynaOpt.inp
EOF
qsub dynscr

7.13.4 Mechanics of the queuing process
Understanding the mechanics of the queuing process should help to debug the installation.

1. LS-OPT automatically prepends runqueuer to the solver command and executes runqueuer
which runs the submit_pbs script.

a. The runqueuer sets the variables LSOPT_HOST and LSOPT_PORT locally.
b. The submit_pbs script spawns the dynscr script.

2. The queuing system then submits dynscr (see qsub command at the end of the submit_pbs
script above) on the remote node which now has fixed values substituted for LSOPT_HOST and
LSOPT_PORT. In most cases the queuing system will transmit the environment variables to the
remote side, so the setting of the variables may not be necessary.

3. The wrapper executes on the same machine as LS-DYNA, opens a socket and connects back to the
local host using the host/port information. The standard output is then relayed to the local machine.
This output is written to the logxxxx file (where xxxx is the process number) on the local host
(look in the local sub-subdirectory, e.g. CRASH/1.7). An example of an error message resulting
from a mistype of “wrapper” in the submit script is given in the log file as follows:

STARTING command /home/jim/bin/runqueuer
PORT=56984
JOB=LoadLeveler
llsubmit: The job "1/1.1" has been submitted.
/home/jim/LSOPT_EXE/Xrapper: Command not found.

CHAPTER 9: DESIGN VARIABLES, CONSTANTS, AND DEPENDENTS

 99

finished with directory
/home/jim/LSOPT/___3.1___/optQA/QUEUE/EX4a_remote/remote/1/1.1

4. The wrapper will also extract the data immediately upon completion on the remote node. Extracted

data (the history.n and response.n files) are automatically transferred back to the local sub-
subdirectory. If other parts of the database (e.g. d3plot files) are required (e.g. for post-processing
with LS-PREPOST), the user has to specify these in the command file using appropriate LS-OPT
commands (see Section 7.13.8). A log of the database extraction is provided in the logxxxx file.

7.13.5 Environment variables
Users typically do not need to set these. However these variables are set on the local side and their values
must be carried to the remote side by the queuing software. If you do not know if this is being done, try
setting them in the submit script as in the example above or please contact your system administrator.

LSOPT_HOST : the machine where LS-OPT (and therefore the runqueuer) is running. Set this if
wrapper_* has trouble connecting back to runqueuer.

LSOPT_PORT : TCP/IP port runqueuer listens on for remote connections

7.13.6 Troubleshooting

1. Diagnostics for a failed run usually appear in the logxxxx file in the run directory. If there is
almost no information in this file, the wrapper path may be wrong or the submission script may have
the wrong path or permission.

Please attach the log file when emailing support@lstc.com.

2. Make sure that the permissions are set for the executables and submission script.

3. Check all paths to executables e.g. "wrapper", etc. No diagnostic can detect this problem.

4. Make sure that the result database is produced in the same directory as where the wrapper is started,
otherwise the data cannot be extracted. (E.g. the front end program such as mpirun may have a
specification to change the working directory (-wd dir)).

A system under development for future versions of LS-OPT will significantly simplify and standardize the
scripting for running remote jobs.

7.13.7 User-defined queuing systems
To ensure that the LS-OPT job scheduler can terminate queued jobs, two requirements must be satisfied:

1. The queuer must echo a string

Job ”Stringa Stringb Stringc …” has been submitted

mailto:support@lstc.com

CHAPTER 9: DESIGN VARIABLES, CONSTANTS, AND DEPENDENTS

100 LS-OPT Version 3

 or

 Job Stringa has been submitted

 e.g.

Job ”Opteron Aqs4832” has been submitted
Job aqs4832 has been submitted

The string will be parsed as separate arguments in the former example or as a single argument in the
latter example. The string length is limited to 1024 characters. The syntax of the phrases “Job ” and “
has been submitted” must be exactly as specified. If more than one argument is specified without
the double quotes, the string will not be recognized and the termination feature will fail.

2. A termination script (or program) LsoptJobDel must be placed either in the main working directory

(first default location) or in the directory containing the LS-OPT binaries (second default). This script
will be run with the arguments stringA, stringB, etc. and must contain the command for terminating the
queue. An example of a Unix C shell termination script that uses two arguments is:

#!/bin/csh -f
aadmin –c $1 –j $2 stop

7.13.8 Database recovery
When distributing the simulation runs, the data can be recovered to the local machine. There are two
commands: a LS-DYNA specific command and a general command.

LS-DYNA:

Command file syntax:
Solver recover dyna [d3plot|d3hsp|binout|d3eigv|eigout]

The LS-DYNA database can be recovered by using the above command. The requested database file will
appear in the local directory. Each name is a prefix, so that e.g. d3plot01, d3plot02, … will be
recovered when specifying d3plot. The details of the recovery procedure is logged in a local directory
file.

Example:

Solver recover dyna d3plot
Solver recover dyna binout

The recovery of the LS-DYNA database is only required if the user wants to do local post-processing (e.g.
using LS-PREPOST). Otherwise the results are automatically extracted and transferred to the local node in
the form of files response.n and/or history.n.

CHAPTER 9: DESIGN VARIABLES, CONSTANTS, AND DEPENDENTS

 101

User-defined :

Command file syntax:
Solver recover file "[file_wildcard]"

Any database can be recovered by using the above command. The requested database file will appear in the
local directory. Each name is a wildcard.

Example:

Solver recover file "d3plot*"
Solver recover file "*"

The first command will recover the full d3plot database.

The last command will recover all the files from the run directory on the remote node to the run directory on
the local node, hence the local directory will mirror the remote directory.

A log of the database recovery is available in the logxxxx file in the run directory on the local machine.

 103

8. Interfacing to a solver or
preprocessor

This chapter describes how to interface LS-OPT with a simulation package and/or a parametric
preprocessor. Standard interfaces as well as interfaces for user-defined executables are discussed.

8.1 Labeling design variables in a solver and preprocessor

Parameters specified in input files are automatically identified for the following packages:

Package

Native parameters
recognized in

input file

LS-OPT Parameter
Format recognized
(see Section 8.1.1)

include files
recognized
in input file

LS-DYNA Yes Yes Yes
DEP Morpher5 Yes Yes No
HyperMorph6 Yes Yes No
TrueGrid7 No Yes Yes
LS-INGRID No Yes Yes
User-defined N/A Yes No

LS-OPTui will automatically recognize the native and LS-OPT parameters for the formats indicated in the
table and display them as ‘Constants’ against a blue background in the ‘Variables’ panel. The user can then
change these constants to variables or dependents. The parameter names cannot be changed in the GUI so, if
desired, must be changed in the original solver input file. A gray background indicates that the parameter
name was specified in the GUI by the user or read from the LS-OPT command file and is not available in
any of the input or include files.

The ‘include’ files are also scanned wherever this feature is available making it nonessential to append any
files. Include files which are specified with a path, e.g. “../../car5.k” or
“/home/jim/ex4a/car6.k” are not copied to the run directories and no parameter substitutions will be
made in these files. This is solely to prevent unnecessary file proliferation. The user must however ensure

5 Registered Trademark of Detroit Engineering Products
6 Registered Trademark of Altair Engineering, Inc.
7 Registered Trademark of XYZ Scientific Applications, Inc.

CHAPTER 9: DESIGN VARIABLES, CONSTANTS, AND DEPENDENTS

104 LS-OPT Version 3

that files, which are to be distributed to remote nodes through a queuing system (see Section 7.13), do not
contain any path specifications. These files are automatically transmitted to the relevant nodes where the
solver will be executed.

The LS-OPT parameter format described next is recognized in all types of input files.

8.1.1 The LS-OPT Parameter Format

LS-OPT provides a generic format that allows the user to substitute parameters in any type of input file. The
parameters or expressions containing parameters must be labeled using the double bracketed format
<<expression:[i]field-width>> in the input file.

The expression field is for a FORTRAN or C type mathematical expression that can incorporate constants,
design variables or dependents. The optional i character indicates the integer data type. The field width
specification ensures that the number of significant digits is maximized within the field width limit. The
default field width is 10 (commonly used in e.g. LS-DYNA input files). E.g. a number of 12.3456789123
will be represented as 12.3456789 and 12345678912345 will be represented as 1.23457e13 for a
field-width of 10.

A field width of zero implies that the number will be represented in the “%g” format for real numbers or
“%ld” format for integers (C language). For real numbers, trailing zeros and a trailing decimal point will
not be printed. This format is not suitable for LS-DYNA as the field width is always limited. Real numbers
will be truncated if specified as integers, so if rounding is desired the “nearest integer” expression should be
used, e.g. <<nint(expression)>>.

A record of the specified input files and parameters can also be checked in the lsopt_input file.

 --
 L I S T O F I N P U T F I L E S U S E D B Y L S - O P T
 --

 SOLVER: 1
 --------------------------------|-----------|---------|-----------------|
 File name Type Utility Parameter Occur.

 Native LS-OPT
 --------------------------------|-----------|---------|--------|--------|
 main.k LS-DYNA 960 Rootfile 2 0
 ../../car5.k LS-DYNA 960 Include 0 0
 --------------------------------|-----------|---------|-----------------|

 L I S T O F I N C L U D E F I L E S A N D P A R A M E T E R S

 ==
 File Name Include Parameters Status Time Stamp
 Files
 ==

CHAPTER 9: DESIGN VARIABLES, CONSTANTS, AND DEPENDENTS

 105

 main.k 1 2 OLD Thu Apr 1 14:39:11 2004
 ==

 List of Include Files for "main.k"

 Include File Name

 ../../car5.k

 List of Parameters found in "main.k"

 --
 Parameter Name Value Type
 --
 tbumper 1 *PARAMETER
 thood 3 *PARAMETER
 --

Inserting the relevant design variable or expression into the preprocessor command file requires that a
preprocessor command such as

create fillet radius=5.0 line 77 line 89

be replaced with

create fillet radius=<<Radius*25.4:0>> line 77 line 89

where the design variable named Radius is the radius of the fillet and no trailing or leading spaces are
desired. In this case, the radius multiplied by the constant 25.4 is replaced. Any expression can be specified.

An alternative option would be to specify:

create fillet radius=<<Radius_scaled:0>> line 77 line 89

while specifying the dependent Radius_scaled as a function of independent variable Radius, such that
Radius_scaled = Radius * 25.4 . This specification is done in the ‘Variables’ panel or command file.

Similarly if the design variables are to be specified using a Finite Element (LS-DYNA) input deck then data
lines such as

*SECTION_SHELL
1, 10, , 3.000
0.002, 0.002, 0.002, 0.002

can be replaced with

*SECTION_SHELL
1, 10, , 3.000
<<Thickness_3>>,<<Thickness_3>>,<<Thickness_3>>,<<Thickness_3>>

CHAPTER 9: DESIGN VARIABLES, CONSTANTS, AND DEPENDENTS

106 LS-OPT Version 3

to make the shell thickness a design variable.

An example of an input line in a LS-DYNA structured input file is:

* shfact z-integr printout quadrule
.0 5.0 1.0 .0
* thickn1 thickn2 thickn3 thickn4 ref.surf
<<Thick_1:10>><<Thick_1:10>><<Thick_1:10>><<Thick_1:10>> 0.0

The field-width specification used above is not required since the default is 10. Consult the relevant User’s
manual for rules regarding specific input field-width limits.

8.2 Interfacing to a Solver

In LS-OPTui, solvers are specified in the Solver panel (Figure 8-1):

Both the preprocessor and solver input and append files are specified in this panel. Multiple solvers (as used
in multi-case or multi-disciplinary applications) are defined by selecting ’Add solver’. The ’Replace’ button
must be used after the modification of current data.

The solver name is used as the name for the subdirectory.

Execution command. The command to execute the solver must be specified. The command depends on the
solver type and could be a script, but typically excludes the solver input file name argument as this is
specified using a separate command. The execution command may include any number of additional
arguments.

Input template files. LS-OPT converts the input template to an input deck for the preprocessor or solver by
replacing the original parameter values (or labels) with new values determined by the sampling procedure.
During run-time, LS-OPT appends a standard input deck name to the end of the execution command. In the
case of the standard solvers, the appropriate syntax is used (e.g. i=DynaOpt.inp for LS-DYNA). For a
user-defined solver, the name UserOpt.inp is appended. The specification of an input file is not
required for a user-defined solver.

Appended file. Additional solver data can be appended to the input deck using the
solver_append_file_name file. This file can contain variables to be substituted.

Include files. These do not have to be specified as they are automatically and recursively searched by LS-
OPT when given the name of the main input file (root file).
.

CHAPTER 9: DESIGN VARIABLES, CONSTANTS, AND DEPENDENTS

 107

Figure 8-1: Solver panel in LS-OPTui

Command file syntax:
solver software_package_identifier solver_name
solver input file "solver_input_file_name"
solver command "solver_program_name"
solver append file "solver_append_file_name"
interval Time_interval_between_progress_reports < 15 > (not available in
LS-OPTui)

The following software package identifiers are available:

own user-defined solver
dyna LS-DYNA Versions prior to 960
dyna960 LS-DYNA Version 960/970

8.2.1 Interfacing with LS-DYNA

The first command demarcates the beginning of the solver environment.

CHAPTER 9: DESIGN VARIABLES, CONSTANTS, AND DEPENDENTS

108 LS-OPT Version 3

Example:

$ Define the solver software to be used.
solver dyna960 ’SIDE_IMPACT’
$ the data deck to be read by the solver.
 solver input file "ingrido"
$ the command to execute the solver.
 solver command "/alpha6_2/usr/ls-dyna/bin/ls970.single"
$ Extra commands to the solver.
 solver append file "ShellSetList"

More than one analysis case may be run using the same solver. If a new solver is specified, the data items
not specified will assume previous data as default. All commands assume the current solver.

Remarks:

• The name of the solver will be used as the name of the sub-directory to the working directory.

• The command solver package_identifier name initializes a new solver environment. All

subsequent commands up to the next “solver name” command will apply to that particular solver.
This is particularly important when specifying response name commandline commands as each
response is assigned to a specific solver and is recovered from the directory bearing the name of the
solver. (See Section 12).

• Do not specify the command nohup before the solver command and do not specify the UNIX

background mode symbol &. These are automatically taken into account.

• The solver command name must not be an alias. The full path name (or the full path name of a

script which contains the full solver path name) must be specified.

The LS-DYNA restart command will use the same command line arguments as the starting command line,
replacing the i=input file with r=runrsf.

The *PARAMETER format
The parameters specified under the LS-DYNA *PARAMETER keyword are recognized by LS-OPT and
will be substituted with a new value for each of the multiple runs. These parameters should automatically
appear in the Variable list of the GUI upon specification of the solver input file name. LS-OPT recognizes
the “i” and “r” formats for integers and real numbers respectively and will replace the number in the
appropriate format.

For details of the *PARAMETER format please refer to LS-DYNA User’s Manual.

Check of the *DATABASE cards
LS-OPT can perform some basic checks of the *DATABASE cards in the LS-DYNA input deck. The
checks will be done using the input deck of the first run of the first iteration. The items checked are:

CHAPTER 9: DESIGN VARIABLES, CONSTANTS, AND DEPENDENTS

 109

• Whether the required binout data types are requested in the LS-DYNA input deck. For example, if
LS_OPT uses airbag data, then the LS-DYNA deck should contain a *DATABASE_ABSTAT card
requesting binout output.

• Whether the required nodes and/or elements are requested in the LS-DYNA output. For example, if
the LS-OPT output request refers to a specific beam, then a *DATABASE_HISTORY_BEAM or a
*DATABASE_HISTORY_BEAM_SET card must exist and refer to the beam in question. Note
that *SET_option_GENERAL or *SET_option_COLUMN card will not be interpreted and that an
output entity specified using *SET_option_GENERAL or *SET_option_COLUMN may be be
flagged incorrectly as missing; switch off the checking in this case.

The GUI allows this to be set as an advanced solver option.

Command file syntax:
solver check output on/off

Altering the d3plot databases
The following options are available:

• Compress the d3plot database. All results except displacements, velocities, and accelerations will be
deleted.

• Transforming the results to a local coordinate system specified by three nodes. The first node is the
origin and the other two nodes are used to define the coordinate systems. The coordinate system
moves with the nodes. A file specified the three nodes is required. An example of the possible
contents of the file: 1001 1002 1003. The file therefore consists of a single line.

• Write the results for a user selected set of parts. A file specifying the list of parts to be
included/excluded is required. The file consists of multiple lines with a single entry per line. The
syntax of the file is:

o –id excludes part with id
o id includes part with id
o id1-id2 includes parts from id1 to id2.

For example: 5
7-20
-9.

The GUI allows this to be set as an advanced solver option.

The *DATABASE_EXTENT_BINARY option in LS-DYNA also allows control over the size of the d3plot
databases.

Command file syntax:
solver compress d3plot on/off
solver compress d3plot nodes nodrel_filename
solver compress d3plot extract parts_filename

CHAPTER 9: DESIGN VARIABLES, CONSTANTS, AND DEPENDENTS

110 LS-OPT Version 3

Example:

$ set d3plot compress options
solver compress d3plot on
solver compress d3plot nodes “nodrel_nodes”
solver compress d3plot extract “parts”

8.2.2 Interfacing with LS-DYNA/MPP

The LS-DYNA MPP (Message Passing Parallel) version can be run using the LS-DYNA option in the
”Solver” window of LS-OPTui (same as the dyna option for the solver in the command file). However,
the run commands must be specified in a script, e.g. the UNIX script runmpp:

mpirun -np 2 lsdynampp i=DynaOpt.inp
cat dbout.* > dbout
dumpbdb dbout

The solver specification in the command file is as follows:

 solver dyna960 ’crash’
 solver command "../../runmpp"
 solver input file "car5.k"
 solver append file "rigid2"

Remarks:

1. DynaOpt.inp is the reserved name for the LS-DYNA MPP input file name. This file is normally

created in the run directory by LS-OPT after substitution of the variables or creation by a preprocessor.
The original template file can have a different name and is specified as the input file in the solver
input file command.

2. lsdynampp is the name of the MPP executable.

3. The file dumpbdb for creating the ASCII database must be executable.
4. The script must be specified in one of the following formats:

(a) path relative to the run directory: two levels above the run directory (see example above).
(b) absolute path, e.g. "/origin/users/john/crash/runmpp"
(c) in a directory which is in the path. In this case the command is:

solver command "runmpp".

8.2.3 Interfacing with a user-defined solver

CHAPTER 9: DESIGN VARIABLES, CONSTANTS, AND DEPENDENTS

 111

An own solver can be specified using the solver own solvername command, or selecting User-defined in
LS-OPTui. The solver command " " can either execute a command, or a script. The substituted input
file UserOpt.inp will automatically be appended to the command or script. Variable substitution will be
performed in the solver input file (which will be renamed UserOpt.inp) and the solver
append file. If the own solver does not generate a ‘Normal’ termination command to standard output,
the solver command must execute a script that has as its last statement the command:

echo ‘N o r m a l’.

Example:

solver own 'Analyzer'
 solver command "../../run_this_script"

solver input file "setup.jou"

8.3 Preprocessors

The preprocessor must be identified as well as the command used for the execution. The command file
executed by the preprocessor to generate the input deck must also be specified. The preprocessor
specification is valid for the current solver environment.

Command file syntax:
prepro software_package_identifier
prepro command "prepro_program_name"
prepro input file "pre_file_name"

The interfacing of a preprocessor involves the specification of the design variables, input files and the
preprocessor run command. Interfacing with LS-INGRID, TrueGrid8, AutoDV and HyperMorph9

 and DEP
Morpher10 is detailed in this section. The identification of the design variables in the input file is detailed in
Section 8.1.

8.3.1 LS-INGRID

The identifier in the prepro section for the use of LS-INGRID is ingrid. The file ingridopt.inp
is created from the LS-INGRID input template file.

Example:

$ the preprocessor software to be used.
prepro ingrid

8Registered Trademark of XYZ Scientific Applications, Inc.
9 Registered Trademark of Altair Engineering, Inc.
10 Registered Trademark of Detroit Engineering Products

CHAPTER 9: DESIGN VARIABLES, CONSTANTS, AND DEPENDENTS

112 LS-OPT Version 3

$ the command to execute the preprocessor
 prepro command "ingrid"
$ the input file to be used by the preprocessor
 prepro input file "p9i"

This will allow the execution of LS-INGRID using the command “ingrid i=ingridopt.inp –d
TTY”. The file ingridopt.inp is created by replacing the << name >> keywords in the p9i file with
the relevant values of the design variables.

8.3.2 TrueGrid

The identifier in the prepro section for the use of TrueGrid is truegrid. This will allow the execution
of TrueGrid using the command “prepro program_name i=TruOpt.inp". The file TruOpt.inp
is created by replacing the << name >> keywords in the TrueGrid input template file with the relevant
values of the design variables.

Example:

$ the preprocessor software to be used.
prepro truegrid
$ the command to execute the preprocessor
 prepro command "tgx"
$ the input file to be used by the preprocessor
 prepro input file "cyl"

These lines will execute TrueGrid using the command “tgx i=cyl” having replaced all the keyword
names << name >> in cyl with the relevant values of the design variables.

The TrueGrid input file requires the line:

write end

at the very end.

8.3.3 AutoDV

The geometric preprocessor AutoDV can be interfaced with LS-OPT which allows shape variables to be
specified. The identifier in the prepro section for the use of AutoDV is templex (the name of an
auxiliary product: Templex11). The use of AutoDV requires several input files to be available.

1. Input deck: At the top, the variables are defined as DVAR1, DVAR2, etc. along with their current values.

The default name is input.tpl. This file is specified as the prepro input file.

11 Registered Trademark of Altair Engineering, Inc.

CHAPTER 9: DESIGN VARIABLES, CONSTANTS, AND DEPENDENTS

 113

2. Control nodes file: This is a nodal template file used by Templex to produce the nodal output file using
the current values of the variables. This file is specified using the prepro controlnodes
command. The default name is nodes.tpl.

3. A coefficient file that contains original coordinates and motion vectors specified in two columns must be

available. The command used is prepro coefficient file and the default file name is
nodes.shp.

4. Templex produces a nodal output file that is specified under the solver append file command.

The default name is nodes.include.

Example:

$
$ DEFINITION OF SOLVER "1"
$
solver dyna ’1’
 solver command "lsdyna"
 solver append file "nodes.include"
 solver input file "dyna.k"
 prepro templex
 prepro command "/origin_2/user/mytemplex/templex"
 prepro input file "a.tpl"
 prepro coefficient file "a.dynakey.node.tpl"
 prepro controlnodes file "a.shp"

In the example, several files can be defaulted.

Table 8-1: Templex solver and prepro files and defaults

Command Description Default
prepro input file Templex input file input.tpl

prepro coefficient file Coefficient file nodes.shp

prepro controlnodes file Control Nodes file nodes.tpl

solver append file Append file (same as templex output file) nodes.include

The prepro command will enable LS-OPT to execute the following command in the default case:

/origin 2/john/mytemplex/templex input.tpl > nodes.include

or if the input file is specified as in the example:

/origin 2/user/mytemplex/templex a.tpl > nodes.include

CHAPTER 9: DESIGN VARIABLES, CONSTANTS, AND DEPENDENTS

114 LS-OPT Version 3

Remarks:

1. LS-OPT uses the name of the variable on the DVARi line of the input file:

{DVAR1=23.77}
{DVAR2=49.05}

to replace the variables and bounds at the end of each line by the current values. The name DVAR1 (or
DVAR2) is recognized by LS-OPT and displayed in the ‘Variables’ panel.

8.3.4 HyperMorph

To allow the specification of shape variables, the geometric preprocessor HyperMorph12 has been interfaced
with LS-OPT. The identifier in the prepro section for the use of HyperMorph is hypermorph.

1. Input deck: At the top, the variables are defined as:

{parameter(DVAR1,"Radius_1",1,0.5,3.0)}

This file is specified as the prepro input file.

2. Templex produces a nodal output file that is specified under the prepro output file command.

Example:

$
$ DEFINITION OF SOLVER "1"
$
solver dyna ’1’
 solver command "ls970.single"
 solver append file "nodes.include"
 solver input file "dyna.k"
 prepro hypermorph
 prepro command "/origin_2/user/mytemplex/templex"
 prepro input file "a.tpl"
 prepro output file "h.output"

Table 8-2: HyperMorph preprocessor input files and defaults

Command Description
prepro input file Templex input file

prepro output file Output file produced by Templex (can e.g.
be used as an include file in the analysis)

12 Registered Trademark of Altair Engineering, Inc.

CHAPTER 9: DESIGN VARIABLES, CONSTANTS, AND DEPENDENTS

 115

The prepro command will enable LS-OPT to execute the following command in the default case:

/origin 2/john/mytemplex/templex input.tpl > nodes.include

or if the input file is specified as in the example:

/origin 2/user/mytemplex/templex a.tpl > h.output

Remarks:

1. LS-OPT uses the name of the variable on the DVARi line of the input file:

{parameter(DVAR1,"Radius_1",1,0.5,3.0)}
{parameter(DVAR2,"Radius_2",1,0.5,3.0)}

to replace the variables and bounds at the end of each line by the current values. This name, e.g.
Radius_1 is recognized by LS-OPT and automatically displayed in the ‘Variables’ panel. The lower
and upper bounds (in this case: [0.5,3.0]) are also automatically displayed. The DVARi designation
is not changed in any way, so, in general there is no relationship between the number or rank of the
variable specified in LS-OPT and the number or rank of the variable as represented by i in DVARi.

8.3.5 DEP-Morpher

The DEP-Morpher preprocessor can be interfaced with LS-OPT allowing, amongst others, for shape
changes to be specified. The identifier in the prepro section for DEP-Morpher is depmorpher. Several
files must be specified:

1. Morpher batch executable. If the DEPMORPHER30_HOME environment variable is set, then LS-OPTUI

will default to $DEPMORPHER30_HOME/morpher3.0/Parametric_batch/
console_morpher_exe.

2. Design parameter file. LS-OPT will read the DEP-Morpher design parameter names and values from
this file. Parameters defined in the parameter file will become constants with the same name and value
in LS-OPT. The user can change them to be design variables instead of constants in the variable panel of
the GUI. If LS-OPT already has a design variable with the same name then this variable will be used to
drive the value of the DEP-Morpher parameter.

3. Morpher binary database.

Please note:

1. A program by the name of dpmbatchwindow_exe should be run in the background for DEP-Morpher
to execute in batch mode. Start this helper program before running LS-OPT or LS-OPTUI.

2. You may have to set SHLIB_PATH environment variable to $DEPMORPHER30_HOME/LIB.
3. The name of the solver input file, by default morpher_out.dyn in the GUI, will be

communicated to the DEP-Morpher program. There is therefore no need to change this default.
4. The output from the DEP-Morpher program will be redirected to the files dep.stdout and dep.stderr

inside the run directory. The resulting LS-DYNA input deck will be written to the solver input file.

CHAPTER 9: DESIGN VARIABLES, CONSTANTS, AND DEPENDENTS

116 LS-OPT Version 3

Example:
$
$ DEFINITION OF SOLVER "1"
$ Solver “1” use DEP-Morpher
$
solver dyna ’1’

$
prepro depmorpher
prepro command "/home/smith/morpher3.0/Parametric_batch/
console_morpher_exe"
prepro input file "morp_par_def"
propro database file “morpher_db.msw”
$
solver command "lsdyna"
solver input file "morpher_out.dyn"
$

8.3.6 User-defined preprocessor

In its simplest form, the prepro own preprocessor can be used in combination with the design point file:
XPoint to read the design variables from the run directory. Only the prepro command statement will
therefore be used, and no input file (prepro input file) will be specified.

The user-defined prepro command will be executed with the standard preprocessor input file
UserPreproOpt.inp appended to the command. The UserPreproOpt.inp file is generated after
performing the substitutions in the prepro input file specified by the user.

Example:

 prepro own
 prepro command "gambit -r1.3 -id ../../casefile -in "
 prepro input file "setup.jou"

The executed command is:

gambit -r1.3 -id ../../casefile –in setup.jou

Alternatively, a script can be executed with the prepro command to perform any number of command
line commands that result in the generation of a file called: UserOpt.inp for use by an own solver, or
DynaOpt.inp for use by LS-DYNA.

CHAPTER 9: DESIGN VARIABLES, CONSTANTS, AND DEPENDENTS

 117

9. Design Variables, Constants,
and Dependents

This chapter describes the definition of the input variables, constants and dependents, design space and the
initial subregion.

All the items in this chapter are specified in the Variables panel in LS-OPTui (Figure 9-1). Shown is a
multidisciplinary design optimization (MDO) case where not all the variables are shared. E.g., t_bumper
in Figure 9-1 is only associated with the solver CRASH.

Figure 9-1: Variables panel in LS-OPTui

CHAPTER 9: DESIGN VARIABLES, CONSTANTS, AND DEPENDENTS

118 LS-OPT Version 3

9.1 Selection of design variables

The variable command is the identification command for each variable.

Command file syntax:
variable variable_name value

Example:

$ DEFINE THE VARIABLE: ’Area’
Variable ’Area’ 0.8

The value assigned is the initial value of the variable.

9.2 Definition of upper and lower bounds of the design space

Command file syntax:
Lower bound variable variable_name value <–10+30>
Upper bound variable variable_name value <+10+30>

Example:

Lower bound variable ’Area’ 0.1
Upper bound variable ’Area’ 2.0

Both the lower and upper bounds must be specified, as they are used for scaling.

9.3 Size and location of region of interest (range)
Command file syntax:
range variable_name subregion_size

Example:

$ RANGE OF ’Area’
range ’Area’ 0.4

This will allow ’Area’ to vary from 0.6 to 1.0.

Remarks:

1. A value of 25-50% of the design space can be chosen if the user is unsure of a suitable value.

CHAPTER 9: DESIGN VARIABLES, CONSTANTS, AND DEPENDENTS

 119

2. The full design space is used if the range is omitted.

3. The region of interest is centered on a given design and is used as a sub-space of the design space to

define the experimental design. If the region of interest protrudes beyond the design space, it is moved
without contraction to a location flush with the design space boundary.

9.4 Local variables

For multidisciplinary design optimization (MDO) certain variables are assigned to some but not all solvers
(disciplines). In the command file the following syntax defines the variable as local:

Command file syntax:
local variable_name

See Section 20.6 for an example.

9.5 Discrete Variables
Discrete variables are defined using (i) a name, (ii) a starting value, and (iii) a list of allowable values.
Specifying an initial range for the construction of a response surface is optional; the allowable values will be
used to compute a default range. The following commands are therefore required to define a discrete
variable:

Command file syntax:
variable variable_name value
variable variable_name discrete {discrete_value_1 … discrete_value_n}

Example:

variable ’Area’ 3.1
variable ’Area’ discrete {2.0 3.1 4.0 5}

9.6 Assigning variable to solver

If a variable has been flagged as local, it needs to be assigned to a solver. The command file syntax is:

Command file syntax:
Solver variable variable_name

See Section 20.6 for an example.

CHAPTER 9: DESIGN VARIABLES, CONSTANTS, AND DEPENDENTS

120 LS-OPT Version 3

9.7 Constants

Each variable above can be modified to be a constant. See Figure 9-2 where this is the case for t_bumper.

Constants are used:

1. to define constant values in the input file such as π, e or any other constant that may relate to the

optimization problem, e.g. initial velocity, event time, integration limits, etc.

2. to convert a variable to a constant. This requires only changing the designation variable to constant in

the command file without having to modify the input template. The number of optimization variables is
thus reduced without interfering with the template files.

Command file syntax:
constant constant_name value
Example:

constant ’Youngs_modulus’ 2.07e8
constant ’Poisson_ratio’ 0.3
dependent ’Shear_modulus’ {Youngs_modulus/(2*(1 + Poisson_ratio))}

In this case, the dependent is of course not a variable, but a constant as well.

9.8 Dependent Variables

Dependent variables (see Figure 9-2 for example of definition in Variables panel) are functions of the basic
variables and are required to define quantities that have to be replaced in the input template files, but which
are dependent on the optimization variables. They do therefore not contribute to the size of the optimization
problem. Dependents can be functions of dependents.

Dependent variables are specified using mathematical expressions (see Appendix D).

Command file syntax:
dependent variable_name expression

The string must conform to the rules for expressions and be placed in curly brackets. The dependent
variables can be specified in an input template and will therefore be replaced by their actual values.

Example:

variable ’Youngs_modulus’ 2.0e08
variable ’Poisson_ratio’ 0.3
dependent ’Shear_modulus’ {Youngs_modulus/(2*(1 + Poisson_ratio))}

CHAPTER 9: DESIGN VARIABLES, CONSTANTS, AND DEPENDENTS

 121

Figure 9-2: Variables panel in LS-OPTui with Constants and Dependents. “Lock” symbols (before name)

indicate that variables were automatically imported from input files.

9.9 Worst-case design

Worst-case or saddle-point design is where the objective function is minimized (or maximized) with respect
to some variables, while it is maximized (or minimized) with respect to the remaining variables in the
variable set. The maximization variables are set using the Maximize option in the Saddle Direction field of
the Variables panel. The default selection is Minimize.

Command file syntax:
Variable variable_name max

Example:
variable ’head_orientation’ max

 123

10. Probabilistic Modeling and
Monte Carlo Simulation

Probabilistic evaluations investigate the effects of variations of the system parameters on the system
responses.

The variation of the system parameters is described using variables and probabilistic distributions describing
their variation. Accordingly, the variation of the system responses, including information such as the
nominal value of the response, reliability, and extreme values, can be computed. The source of the variation
can be the variation of the design variables (control variables) as well as the variation of noise variables,
whose the value is not under the control of the analyst such as the variation in a load.

More background on the probabilistic methods is given in Chapter 4 (the theoretical manual), while example
problems can be found in Chapter 20.

10.1 Probabilistic problem modeling
Introducing the probabilistic effects into analysis requires the specification of:

1. Statistical distributions.
2. Assigning the statistical distributions to design variables.
3. Specification of the experimental design. For a Monte Carlo analysis a suitable strategy for selecting

the experimental points must be specified; for example, a Latin Hypercube experimental design can
be used to minimize the number of runs required to approximate the mean and standard deviation.
However, if the Monte Carlo analysis is done using a metamodel, then the experimental design
pertains to the construction of the metamodel.

4. The probabilistic analysis to be executed; for example, a Monte Carlo reliability analysis.

10.2 Probabilistic distributions
The probabilistic component of a design variable is described using a probabilistic distribution. The
distributions are created without referring to a variable. Many design variables can refer to a single
distribution.

CHAPTER 10: Probabilistic Modeling and Monte Carlo Simulation

124 LS-OPT Version 3

10.2.1 Beta distribution
The beta distribution is quite versatile as well as bounded by two limits: a and b. The shape of the
distribution is described by two parameters: q and r. Swapping the values of q and r produces a mirror
image of the distribution.

Figure 10-1 Beta distribution

Command file syntax:
distribution ‘name’ BETA a b q r

Item Description
name Distribution name
a Lower Bound
b Upper Bound
q Shape parameter q
r Shape parameter r

Example:

distribution 'distBeta' BETA 2.0 5.0 1.0 1.0
10.2.2 Binomial distribution
The binomial distribution is a discrete distribution describing the expected number of events for an event
with probability p evaluated over n trails. For n=1, it is the Bernoulli distribution (experiments with two
possible outcomes ― success or failure) with probability of success p.

CHAPTER 10: Probabilistic Modeling and Monte Carlo Simulation

 125

Figure 10-2 Binomial distribution

Command file syntax:
distribution ‘name’ BINOMIAL p n

Item Description
name Distribution name
p Probability of event (Success)
n Number of trials

Example:

distribution 'distBin' BINOMIAL 0.1 3

CHAPTER 10: Probabilistic Modeling and Monte Carlo Simulation

126 LS-OPT Version 3

10.2.3 Lognormal distribution
If X is a lognormal random variable with parameters µ and σ, then the random variable Y = ln X has a
normal distribution with mean µ and variance σ2.

Figure 10-3 Lognormal distribution

Command file syntax:
distribution ‘name’ LOGNORMAL mu sigma

Item Description
name Distribution name
mu Mean value in logarithmic domain
sigma Standard deviation in logarithmic domain

Example:

distribution 'logDist' LOGNORMAL 12.3 1.1

CHAPTER 10: Probabilistic Modeling and Monte Carlo Simulation

 127

10.2.4 Normal distribution
The normal distribution is symmetric and centered about the mean µ with a standard deviation of σ.

Figure 10-4 Normal Distribution

Command file syntax:
distribution ‘name’ NORMAL mu sigma

Item Description
name Distribution name
mu Mean value
sigma Standard deviation

Example:

distribution 'normalDist' NORMAL 12.2 1.1

CHAPTER 10: Probabilistic Modeling and Monte Carlo Simulation

128 LS-OPT Version 3

10.2.5 Uniform distribution
The uniform distribution has a constant value over a given range.

Figure 10-5 Uniform Distribution

Command file syntax:
distribution ‘name’ UNIFORM lower upper

Item Description
name Distribution name
lower Lower bound
upper Upper bound

Example:

distribution 'rangeX' UNIFORM 1.2 3.4

CHAPTER 10: Probabilistic Modeling and Monte Carlo Simulation

 129

10.2.6 User defined distribution
A user-defined distribution is specified by referring to the file containing the distribution data.

The probability density is to be assumed piecewise uniform and the cumulative distribution to be piecewise
linear. Either the PDF or the CDF data can be given:

• PDF distribution: The value of the distribution and the probability at this value must be provided
for a given number of points along the distribution. The probability density is assumed to be
piecewise uniform at this value to halfway to the next value; both the first and last probability must
be zero.

• CDF distribution: The value of the distribution and the cumulative probability at this value must be
provided for a given number of points along the distribution. It is assumed to vary piecewise
linearly. The first and last value in the file must be 0.0 and 1.0 respectively.

Figure 10-6 User defined distribution

Lines in the data file starting with the character ‘$’ will be ignored.

Command file syntax:
distribution ‘name’ USER_DEFINED_PDF ”fileName”
distribution ‘name’ USER_DEFINED_CDF ”fileName”

Item Description
name Distribution name
filename Name of file containing the distribution data

CHAPTER 10: Probabilistic Modeling and Monte Carlo Simulation

130 LS-OPT Version 3

Example:

distribution 'bendDist' USER_DEFINED_PDF "bendingTest.pdf"
distribution 'testDat' USER_DEFINED_CDF "threePointTest.dat"

The file “bendingTest.pdf” contains:
$ Demonstration of user defined distribution with
$ piecewise uniform PDF values
$ x PDF
$ First PDF value must be 0
-5 0.00000
-2.5 0.11594
 0 0.14493
 2.5 0.11594
$ Last PDF value must be 0
 5 0.00000

The file “threePointTest.dat” contains:
$ Demonstration of user defined distribution with
$ piecewise linear CDF values
$ x CDF
$ First CDF value must be 0
-5 0.00000
-4.5 0.02174
-3.5 0.09420
-2.5 0.20290
-1.5 0.32609
-0.5 0.46377
0.5 0.60870
1.5 0.73913
2.5 0.85507
3.5 0.94928
$ Last CDF value must be 1
4.5 1.00000

CHAPTER 10: Probabilistic Modeling and Monte Carlo Simulation

 131

10.2.7 Weibull distribution
The Weibull distribution is quite versatile – it has the ability to take on various shapes. The probability
density function is skewed to the right, especially for low values of the shape parameter.

Figure 10-7 Weibull distribution

Command file syntax:
distribution ‘name’ WEIBULL scale shape

Item Description
name Distribution name
scale Scale parameter
shape Shape parameter

Example:

distribution 'wDist' WEIBULL 2.3 3.1

CHAPTER 10: Probabilistic Modeling and Monte Carlo Simulation

132 LS-OPT Version 3

10.3 Probabilistic variables
A probabilistic variable is completely described using a statistical distribution. From this statistical
distribution defines the mean or nominal value as well as the variation around this nominal value. Note that
some special rules apply to control variables, the mean of which can be adjusted by the optimization
algorithm.

Figure 10-8 Probabilistic variables. The nominal value of a control variable can be adjusted by the

optimization algorithm between the lower and upper bound; the probabilistic variation of a design variable
is around this nominal value. A noise variable is described completely by the statistical distribution. A
discrete variable, like design variable has a nominal value selected by the optimization algoritm; the

probabilistic variation of the discrete variable is around this nominal value.

A distinction is made between control and noise variables:

• Control variables: Variables that can be controlled in the design, analysis, and production level; for
example: a shell thickness. It can therefore be assigned a nominal value and will have a variation
around this nominal value. The nominal value can be adjusted during the design phase in order to
have a more suitable design. A discrete variable is a special case of a control variable.

• Noise variables: Variables that are difficult or impossible to control at the design and production
level, but can be controlled at the analysis level; for example: loads and material variation. A noise
variable will have the nominal value as specified by the distribution, that is follow the distribution
exactly.

CHAPTER 10: Probabilistic Modeling and Monte Carlo Simulation

 133

A variable is declared probabilistic by:

• Creating it as a noise variable or
• Assigning a distribution to a control variable or
• Creating it as linked to an existing probabilistic variable.

 Three associations between probabilistic variables are possible:

• Their nominal values are the same but their distributions differ
• Their nominal values and distributions are the same
• Their nominal values differ, but they refer to the same distribution.

Command file syntax:

noise variable ‘variableName’ distribution ‘distributionName’
variable ‘variableName’ distribution ‘distributionName’
variable ‘variableName’ link variable ‘variableName’

Item Description
variableName Variable identifier
distributionName Distribution identifier

Example:

$ Create a noise variable
Noise Variable ‘windLoadScatter’ distribution ‘windLoadData’
$ Assigning a distribution to an existing control variable
Variable 'Var-D-1' Distribution 'dist-1'
$ Creating a variable by linking it to another.
Variable 'Var-D-2' Link variable 'Var-D-1'

10.3.1 Setting the nominal value of a probabilistic variable
If no nominal value is specified for a control variable, then the nominal value of the distribution is used.

If the nominal value of a control variable is specified, then this value is used; the associated distribution will
be used to describe the variation around this nominal value. For example: a variable with a nominal value of
7 is assigned a normal distribution with µ=0 and σ=2; the results values of the variable will be normally
distributed around a nominal value of 7 with a standard deviation of 2.

This behavior is only applicable to control variables; noise variables will always follow the specified
distribution exactly.

CHAPTER 10: Probabilistic Modeling and Monte Carlo Simulation

134 LS-OPT Version 3

10.3.2 Bounds on probabilistic variable values
Assigning a distribution to a control value may result in designs exceeding the bounds on the control
variables. The default is not to enforce the bounds. The user can control this behavior.

A noise variable is bounded by the distribution specified and does not have upper and lower bounds similar
to control variables. However bounds are required for the construction of the approximating functions and
are chosen as described in the next subsection.

Command file syntax:

set variable distribution bound state

Item Description
state Whether the bounds must be enforced for the probabilistic

component of the variable.

Example:

$ ignore bounds on control variables
set variable distribution bound 0
$ Respect bounds on control variables
set variable distribution bound 1

10.3.3 Noise variable subregion size
Bounds are required for noise variables to construct the metamodels. The bounds are taken to a number of
standard deviations away from the mean; the default being two standard deviations of the distribution. The
number of standard deviations can however be set by the user. In general, a noise variable is bounded by the
distribution specified and does not have upper and lower bounds similar to control variables.

Command file syntax:

set noise variable range standardDeviations

Item Description
standardDeviations The subregion size in standard deviations for the noise

variable.
Example:

$ Set noise var bounds to 1.5 standard deviations
$ for defining subregion for creating approximation
set noise variable range 1.5

CHAPTER 10: Probabilistic Modeling and Monte Carlo Simulation

 135

10.4 Probabilistic simulation
The following simulation methods are provided:

• Monte Carlo.
• Monte Carlo using metamodels.

The upper and lower bounds on constraints will be used as failure values for the reliability computations.

10.4.1 Monte Carlo analysis
The Monte Carlo evaluation will:

• Select the random sample points according to a user specified strategy and the statistical
distributions assigned to the variables.

• Evaluate the structural behavior at each point.
• Collect the statistics of the responses.

The user must specify the experimental design strategy (sampling strategy) to be used in the Monte Carlo
evaluation. The Monte Carlo, Latin Hypercube and space-filling experimental designs are available. The
experimental design will first be computed in a normalized, uniformly distributed design space and then
transformed to the distributions specified for the design variables.

Only variables with a statistical distribution will be perturbed; all other variables will be considered at their
nominal value.

The following will be computed for all responses:

• Statistics such as the mean and standard deviation for all responses and constraints.
• Reliability information regarding all constraints:

o The number of times a specific constraint was violated during the simulation.
o The probability of violating the bounds and the confidence region of the probability.
o A reliability analysis for each constraint assuming a normal distribution of the response.

The exact value at each point will be used. Sampling schemes must be duplicated across disciplines if
composite functions must be computed for each point, because if the experimental designs differ across
disciplines, then composite functions referring to responses in more than one discipline can not be
computed.

Command file syntax:

analyze Monte Carlo

Example:

analyze Monte Carlo

CHAPTER 10: Probabilistic Modeling and Monte Carlo Simulation

136 LS-OPT Version 3

10.4.2 Monte Carlo analysis using a metamodel
The Monte Carlo analysis will be done using the metamodels − response surfaces, neural networks, or
Kriging − as prescribed by the user.

Figure 10-9 Metamodel-based Monte Carlo analysis. The method proceed in two steps: firstly a metamodel
is created, and then the Monte Carlo simulation is done using the metamodel and the statistical distribution
of the variable. Note that the metamodel for a design/control variable is constructed considering the upper
and lower bound on the variable and not considering the statistical distribution.For a noise variable the
upper and lower bounds for the creation of the metamodel are selected considering the statistical
distribution.

The number of function evaluations can be set by the user. The default value is 106. The function
evaluations are done using designs chosen randomly respecting the distributions of the design variables and
are evaluated using the metamodels.

The following data will be collected:

• Statistics such as the mean and standard deviation for all responses, constraints, and variables.
• The reliability information for each constraint:

o The number of times a specific constraint was violated during the simulation.
o The probability of violating the bounds and the confidence region of the probability.

Command file syntax:

analyze metamodel monte carlo

Example:

analyze metamodel monte carlo

CHAPTER 10: Probabilistic Modeling and Monte Carlo Simulation

 137

10.4.3 FORM (First Order Reliability Method) analysis
A FORM evaluation will:

• Construct the metamodels − response surfaces, neural networks, or Kriging − as prescribed by the
user. If the metamodels already exists, then they won’t be recreated.

• Conduct a FORM analysis for every constraint using the metamodels.

The following are computed in a FORM analysis:
• The most probable point (see Section 4.4.4)
• The probabilities of exceeding the bounds on the constraint
• The derivatives of the probability of exceeding the bound on the constraint with respect to the design

variables

The method requires very little information additionally to what is required for deterministic optimization.
Specify the following:

1. Statistical distributions associated with the design variables
2. Probabilistic bounds on the constraints

Theoretical concerns are discussed in Section 4.4.5. See also Section 17.3 for more information about
Reliability Based Design Optimization (RBDO).

Command file syntax:

analyze metamodel FORM

Example:

analyze metamodel FORM

10.4.4 Accuracy of metamodel based Monte Carlo
The number of function evaluations to be analyzed can be set by the user. The default value is 106.

Command file syntax:

set reliability resolution m

Item Description
m Number of sample values

Example:

set reliability resolution 1000

CHAPTER 10: Probabilistic Modeling and Monte Carlo Simulation

138 LS-OPT Version 3

10.4.5 Histograms of responses
This option outputs histograms of the variables, dependend variables, responses, and composite functions.
This feature is only available for the Monte Carlo analysis procedures. It can be memory intensive for
metamodel-based computations because all the responses values must be kept in memory.

The default is not to output any histograms. The histograms can always be viewed in Viewer as a post-
processing operation.

Command file syntax:

set histogram intervals

Item Description
intervals Number of intervals in histogram

Example:

set histogram 12

10.4.6 Adding the noise component to metamodel Monte Carlo computations
If noise was found when the metamodel was created, then this noise may be reproduced whenever the
metamodel is used for reliability computations. This is possible only for the response surfaces and neural
nets. The noise is normally distributed with a zero mean and a standard deviation computed from the
residuals of the least square fit. The default is not to add the noise to the computations.

Command file syntax:

set metamodel noise true_false

Item Description
true_false 0 for not adding noise; 1 otherwise

Example:

set metamodel noise 0 $ default: noise not added in computation
set metamodel noise 1 $ noise included in computation

10.5 Stochastic Contribution Analysis (DSA)

CHAPTER 10: Probabilistic Modeling and Monte Carlo Simulation

 139

It can be useful to know how the variation of each design variable contributes to the variation of a response.

The stochastic contribution will be printed for all the responses in a metamodel-based procedure. If no
metamodel is available the covariance of the responses with the variables can be investigated. The stochastic
contributions of the variables can also be examined in the Viewer component of the GUI.

The amount of variation due to noise or the residuals from the fitting procedure will be indicated. This term
is taken as zero for composite functions.

The stochastic contribution is computed analytically for response surfaces. For neural networks, Kriging
models, and composite functions, two options are available:

1. Approximate using second order response surface (default). The response surface is built using three
times the number of terms in the response surface using a central points Latin hypercube
experimental design over a range of plus/minus two standard deviations around the mean.

2. Use Monte Carlo. The number of points used will be the same as used for a metamodel based Monte
Carlo analysis. A large number of points (10 000 or more) is required. This option, using 100 000
points, is the default method.

Theoretical concerns are discussed in Section 4.7.

Command file syntax:

set dsa method monte carlo
set dsa method meta model
set dsa resolution m

Item Description
m Number of sample values

Example:

set dsa method meta model
$ Use Monte Carlo simulation
set dsa method monte carlo
$ use 1000 points in the Monte Carlo simulation
set dsa resolution 1000

10.6 Covariance

The covariance and coefficient of correlation of the responses will be printed for a Monte Carlo analysis.

The covariance and coefficient of the responses can also be examined in the Viewer part of the GUI.

Theoretical concerns are discussed in Section 4.3.2.

CHAPTER 10: Probabilistic Modeling and Monte Carlo Simulation

140 LS-OPT Version 3

10.7 Robust Design
The implementation of robust design in LS-OPT only required that the variation of a response be available
as a composite. The standard deviation of a response is therefore available for use in a constraint or
objective, or in another composite.

The LS-OPT command defining the standard deviation of another response or composite to be a composite
is:
composite 'var x11' noise 'x11'

The variation of response approximated using response surfaces is computed analytically as documented for
the LS-OPT stochastic contribution analysis. For neural nets and composites a quadratic response surface
approximation is created locally around the design, and this response surface is used to compute the
robustness. Note that the recursion of composites (the standard deviation of a composite of a composite)
may result in long computational times especially when combined with the use of neural networks. If the
computational times are excessive, then the problem formulation must be changed to consider the standard
deviations of response surfaces.

One extra consideration is required to select an experimental design for robust analysis: provision must be
made to study the interaction between the noise and control variables. Finding a more robust design requires
that the experimental design considers the ji zx cross-terms, while the 2

ix and 2
iz terms can be included for a

more accurate computation of the variance.

CHAPTER 10: Probabilistic Modeling and Monte Carlo Simulation

 141

 142

11. Metamodels and Point
Selection

This chapter describes the specification of the metamodel types and point selection schemes (design of
experiments or DOE). The terms point selection and experimental design are used interchangeably.

11.1 Metamodel definition

The user can select from three metamodel types in LS-OPT. The standard and default selection is the
polynomial response surface method (RSM) where response surfaces are fitted to results at data points using
polynomials. For global approximations, neural network or Kriging approximations are available.
Sensitivity data (analytical or numerical) can also be used for optimization. This method is more suitable for
linear analysis solvers.

Command file syntax:
Solver order [linear|interaction|elliptic|quadratic|FF|kriging]

The linear, interaction (linear with interaction effects), elliptic and quadratic options are for polynomials. FF
represents the Feedforward Neural network.

11.1.1 Response Surface Methodology

When polynomial response surfaces are constructed, the user can select from different approximation
orders. The available options are linear, linear with interaction, elliptic and quadratic. Increasing the order of
the polynomial results in more terms in the polynomial, and therefore more coefficients. In LSOPTui, the
approximation order is set in the Order field. See Figure 11-1.

The polynomial terms can be used during the variable screening process (see Section 2.9) to determine the
significance of certain variables (main effects) and the cross-influence (interaction effects) between
variables when determining responses. These results can be viewed graphically (Section 16.5).

The recommended point selection scheme for polynomial response surfaces is the D-optimal scheme
(Section 11.2.2).

CHAPTER 11: METAMODELS AND POINT SELECTION

 143

11.1.2 Neural Networks and Kriging *

To apply neural network or Kriging approximations, select the appropriate option in the Metamodel field in
LS-OPTui. See Figure 11-2. The recommended Point Selection Scheme for neural networks and Kriging is
the space filling method. The user can select either a sub-region (local) approach, or update the set of points
for each iteration to form a global approximation. An updated network is fitted to all the points. See Section
11.7 for more detail on updating.

11.1.3 Variability of Neural Networks

Because of the natural variability of neural networks (see Section 2.10.1), the user is allowed to select the
number of members in a neural net committee and the centering (averaging) procedure to be used. To ensure
distinct members, the regression procedure uses new randomly selected starting weights for generating each
committee member. The syntax is shown below.

Command file syntax:
solver FF_committee size [number_of_members]
solver FF_committee discard [number_of_members]

solver FF_committee use [MEAN|MEDIAN]

solver FF_committee seed [integer_value]

The selected attributes apply to the current solver. A seed can be provided to the random number generator
(see Section 2.6.7) to ensure a repeatable (but different) committee.

The discard option allows the user to discard number_of_members committee members with the lowest
mean squared fitting error and the number_of_members committee members with the highest MSE. This
option is intended to exclude neural nets which are either under- or over-fitted. The total number of nets
excluded in the MEAN or MEDIAN calculation is therefore 2* number_of_members.

The discard feature is activated during the regression procedure whereas the averaging function
(mean/median) is only used during the evaluation procedure.The use of the MEDIAN option simply finds the
median value of all the member values obtained at a point, so different points in the parameter space may
not be represented by the same member and the neural net surface plot may be discontinuous. If a single
median neural net is desired, the user must generate an uneven committee size n and then discard the
truncated integer value of n/2 members, e.g. size=5 and discarded=2, 9 and 4, 17 and 8, etc.

The seed feature allows the generation of a unique set of neural networks. This feature can be used for
sensitivity studies. In this case the user must provide a different seed for each new set of networks for the
specific solver.

The default attributes of committees are given in Table 11-1. This selection creates a committee of 5 nets
and finds the mean value during evaluation. The data for all 5 nets appears in the database file for each

CHAPTER 11: METAMODELS AND POINT SELECTION

144 LS-OPT Version 3

specific net, e.g. Net.<variable_name>.<iteration_number> in the solver
subdirectory.

The variance of the predicted result is reported.

Table 11-1: Default values for Neural Net committees

Option Default

Size 9
Discard 2
Averaging type MEAN
Seed 0

Please refer to Section 5.5 for recommendations on how to use neural network and Kriging approximations.

11.2 Point Selection Schemes

11.2.1 Overview

Table 11-2 shows the available point selection schemes (experimental design methods).

Table 11-2: Point selection schemes

Experiment Description Identifier Remark

Linear Koshal lin_koshal For polynomials

Quadratic Koshal quad_koshal

Central Composite composite

D-optimal designs

D-optimal dopt Polynomials

Factorial Designs

2n 2toK

3n 3toK

M M M

11n 11toK

CHAPTER 11: METAMODELS AND POINT SELECTION

 145

Random designs

Latin Hypercube latin_hypercube For probabilistic analysis or

Monte Carlo monte_carlo random search

Space filling designs

Space filling 5 (recommended) space_filling Algorithm 5 (Section 2.6.6)

Space filling 0 monte_carlo -

Space filling 1 lhd_centralpoint -

Space filling 2 lhd_generalized -

Space filling 3 maximin_permute -
Space filling 4 maximin_subinterval -

User defined designs

User-defined user

Plan plan

Command file syntax:
Solver order [linear|interaction|elliptic|quadratic|FF|kriging]
Solver experimental design point_selection_scheme
Solver basis experiment basis_experiment
Solver number experiment number_experimental_points
Solver number basis experiments number_basis_experimental_points

Example 1:

Solver order quadratic
Solver experimental design dopt
Solver basis experiment 5toK

Example 2:

Solver order linear
Solver experimental design dopt
Solver number experiments 40
Solver basis experiment latin_hypercube
Solver number basis experiments 1000

CHAPTER 11: METAMODELS AND POINT SELECTION

146 LS-OPT Version 3

In Example 1, the default number of experiments will be selected depending on the number of design
variables. In Example 2, 40 points are selected from a total number of 1000.

In LS-OPTui, the point selection scheme is selected using the Point Selection panel (Figure 11-1).

The default options are preset and are based on the number of variables, e.g., the D-optimal point selection
scheme (basis type: Full Factorial, 11 points per variable (for 2=n)) is the default for linear polynomials
(Figure 11-1), and the space-filling scheme is the default for the Neural Net and Kriging methods (Figure
11-2).

Figure 11-1: Metamodel and Point Selection panel in LS-OPTui (Advanced options (basis experimental
design) displayed)

11.2.2 D-Optimal point selection

The D-optimal design criterion can be used to select the best (optimal) set of points for a response surface
from a given set of points. The basis set can be determined using any of the other point selection schemes
and is referred to here as the basis experiment. The order of the functions used has an influence on the
distribution of the optimal experimental design.

The following must be defined to select D-optimal points.

CHAPTER 11: METAMODELS AND POINT SELECTION

 147

Order The order of the functions that will be used. Linear, linear
with interaction, elliptic or quadratic.

Number experiments The number of experimental points that must be selected.
Basis experiment The set of points from which the D-optimal design points

must be chosen, e.g. 3tok
Number basis experiments The number of basis experimental points (only random,

latin hypercube and space filling).

The default number of points selected for the D-optimal design is int(1.5(n + 1)) + 1 for linear,
int(1.5(2n + 1)) + 1 for elliptic, int(0.75(n2 + n + 2)) + 1 for interaction, and
int(0.75(n + 1)(n + 2)) + 1 for quadratic. As a result, about 50% more points than the minimum required
are generated. If the user wants to override this number of experiments, the command “solver number
experiments” is required.

The default basis experiment for the D-optimal design is based on the number of variables. For small values
of n, the full factorial design is used, whereas larger n employs a space filling method for the basis
experiment. The basis experiment attributes can be overridden using the commands: solver basis
experiment and solver number basis experiments.

11.2.3 Latin Hypercube Sampling

The Latin Hypercube point selection scheme is typically used for probabilistic analysis.

The Latin Hypercube design is also useful to construct a basis experimental design for the D-optimal design
for a large number of variables where the cost of using a full factorial design is excessive. E.g. for 15 design
variables, the number of basis points for a 3n design is more than 14 million.

The Monte Carlo, Latin Hypercube and Space-Filling point selection schemes require a user-specified
number of experiments.

Even if the Latin Hypercube design has enough points to fit a response surface, there is a likelihood of
obtaining poor predictive qualities or near singularity during the regression procedure. It is therefore better
to use the D–optimal experimental design for RSM.

Example:

Solver order linear
Solver experimental design latin_hypercube
Solver number experiment 20

The Latin Hypercube point selection scheme is also well suited to sequential random search methods (see
Section 2.13).

CHAPTER 11: METAMODELS AND POINT SELECTION

148 LS-OPT Version 3

11.2.4 Space filling

Only algorithm 5 (see Section 2.6.6) is available in LS-OPTui. This algorithm maximizes the minimum
distance between experimental design points. The only item of information that the user must provide for
this point selection scheme, is the number of experimental design points. Space filling is useful when
applied in conjunction with the Neural Net (neural network) and Kriging methods (see Section 11.1.2).

Figure 11-2: Selecting the Neural network approximation method in the Point Selection panel (Efficiency
options displayed).

11.2.5 User-defined point selection

A user-defined experimental design can be specified in a text file using a free format. The user option
(“User-defined” in the GUI) allows the user to import a table from a text file with the following keyword-
based format:

lso_numvar 2
lso_numpoints 3
lso_varname t_bumper t_hood
lso_vartype dv nv

CHAPTER 11: METAMODELS AND POINT SELECTION

 149

This is a comment lso_point 1.0 2.0
lso_point 2.0 1.0
lso_point 1.0 1.0

The keywords (e.g. lso_numvar) except lso_vartype are required but can be preceded or followed by
any other text or comments. The variable types are design variables (dv) or noise variables (nv)
respectively. The variable names assure that each column is tied to a specific name and will be displayed as
variables in the “Variables” panel. The variable types defined in the user file will take precedence over other
type definitions of the same variable (e.g. from the input files) if the user switches to the “Variables” panel
only after firstly selecting the file to be imported in the “Sampling” panel.

This format is convenient for use with Microsoft Excel which allows the export of a .txt text file. The
browser for specifying an input file has a filter for .txt files.

11.3 Sampling at discrete points

A flag is provided to select the sampling points at specified discrete values of the variables. Discrete
sampling will also handle discrete-continuous problems correctly. In the GUI, a check box is located as a D-
Optimal advanced option for each case (See Figure 11-1). Discrete sampling is based on selecting a discrete
basis set for D-Optimality and is therefore not available for other point selection schemes. Discrete sampling
is only available if discrete variables are specified.

See Section 9.5 for how to specify a discrete variable.

Command file syntax:
Solver basis experiment discrete

11.4 Duplicating an experimental design

When executing a search method (see e.g. Section 2.13) for a multi-case or multidisciplinary optimization
problem, the design points of the various disciplines must be duplicated so that all the responses and
composites can be evaluated for any particular design point. The command must appear in the environment
of the solver requiring the duplicate points. An experimental design can therefore be duplicated as follows:

Command file syntax:
solver experiment duplicate string

where string is the name of the master solver in single quotes, e.g.

Solver experiment duplicate ’CRASH’

‘CRASH’ is the master experimental design that must be copied exactly.

CHAPTER 11: METAMODELS AND POINT SELECTION

150 LS-OPT Version 3

Multi-case composites not accompanied by case duplication cannot be visualized in 2-D or 3-D point plots.

See also the example in Section 20.6.3.

11.5 Augmentation of an existing design

To retain existing (expensive) simulation data in the optimization process, it is advantageous to be able to
augment an existing design with additional experimental points. This can be performed by constructing a
user-defined experiment as follows.

User-defined experiments can be placed in a file named Experiments.PRE.casename in the work
directory. These will be used in the first iteration only for the case with name casename. The user can
augment this set D-optimally by requesting a number of experiments greater than the number of lines in
Experiments.PRE.casename. Each experiment must appear on a separate line with spaces, commas
or tabs between values.

11.6 Specifying an irregular design space*

An irregular (reasonable) design space refers to a region of interest that, in addition to having specified
bounds on the variables, is also bounded by arbitrary constraints. This may result in an irregular shape of the
design space. Therefore, once the first approximation has been established, all the designs will be contained
in the new region of interest. This region of interest is thus defined by approximate constraint bounds and by
variable bounds. The purpose of an irregular design space is to avoid designs which may be impossible to
analyze.

The move/stay commands can be used to define an environment in which the constraint bound
commands (Section 14.4) can be used to double as bounds for the reasonable design space.

If a reasonable experimental design is required from the start, a
DesignFunctions.PRE.solver_name file can be provided by the user. This is however not
necessary if explicit constraints, i.e. constraints that do not require simulations, are specified for the
reasonable design space. An explicit constraint may be a simple relationship between the design variables.

The move start option moves the designs to the starting point instead of the center point (see Section
2.7). This option removes the requirement for having the center point inside the reasonable design space.

Command file syntax:
move
stay
move start

CHAPTER 11: METAMODELS AND POINT SELECTION

 151

Example 1:

$ SET THE BOUNDS ON THE REASONABLE DESIGN SPACE
Lower bound constraint ’Energy’ 4963.0
move
Upper bound constraint ’Energy’ 5790.0
stay
Lower bound constraint ’Force’ -1.2
Upper bound constraint ’Force’ 1.2

The example above shows the lines required to determine a set of points that will be bounded by an upper
bound on the Energy.

Example 2:

Variable ’Radius_1’ 20.0
Variable ’Radius_2’ 20.0
.
.
Composite ’TotalR’ {Radius_1 + Radius_2}
move
Constraint ’TotalR’
Upper bound constraint ’TotalR’ 50

This specification of the move command ensures that the points are selected such that the sum of the two
variables does not exceed 50.

Remarks:

1. For constraints that are dependent on simulation results, a reasonable design space can only be created if

response functions have already been created by a previous iteration. The mechanism is as follows:

 Automated design: After each iteration, the program converts the database file
DesignFunctions to file DesignFunctions.PRE in the solver directory.
DesignFunctions.PRE then defines a reasonable design space and is read at the beginning of
the next design iteration.

 Manual (semi-automated) Procedure: If a reasonable design space is to be used, the user must
ensure that a file DesignFunctions.PRE.solver_name is resident in the working directory
before starting an iteration. This file can be copied from the DesignFunctions file resulting
from a previous iteration.

2. A reasonable design space can only be created using the D-optimal experimental design.
3. The reasonable design space will only be created if the center point (or the starting point in the case of

move start) of the region of interest is feasible.
Feasibility is determined within a tolerance of 0.001*| fmax – fmin| where fmax and fmin are the maximum
and minimum values of the interpolated response over all the points.

4. The move feature should be used with extreme caution, since a very tightly constrained experimental
design may generate a poorly conditioned response surface.

CHAPTER 11: METAMODELS AND POINT SELECTION

152 LS-OPT Version 3

11.7 Automatic updating of an experimental design

Updating the experimental design involves augmenting an existing design with new points. Updating only
makes sense if the response surface can be successfully adapted to the augmented points such as for neural
nets or Kriging surfaces in combination with a space filling scheme.

Command file syntax:
solver update doe

The new points have the following properties:

• They are located within the current region of interest.
• The minimum distance between the new points and between the new and existing points, is maximized

(space filling only).

11.8 Using design sensitivities for optimization

Both analytical and numerical sensitivities can be used for optimization. The syntax for the solver
experimental design command is as follows:

Experiment Description Identifier
Numerical Sensitivity numerical_DSA
Analytical Sensitivity analytical_DSA

11.8.1 Analytical sensitivities

If analytical sensitivities are available, they must be provided for each response in its own file named
Gradient. The values (one value for each variable) in Gradient should be placed on a single line,
separated by spaces.

In LS-OPTui, the Metamodel (Point Selection panel) must be set to Sensitivity Type Analytical. See
Figure 11-3.

Example:

Solver experimental design analytical_DSA

A complete example is given in Section 20.9.

CHAPTER 11: METAMODELS AND POINT SELECTION

 153

11.8.2 Numerical sensitivities

To use numerical sensitivities, select Numerical Sensitivities in the Metamodel field in LS-OPTui and
assign the perturbation as a fraction of the design space.

Numerical sensitivities are computed by perturbing n points relative to the current design point x0, where the
j-th perturbed point is:

()LU
0

iiiji
j

i xxεδxx −+=

0=ijδ if ji ≠ and 1.0 if ji = . The perturbation constant ε is relative to the design space size. The same
value applies to all the variables and is specified as:

Command file syntax:
Solver perturb perturbation_value

Example:

Solver experimental design numerical_DSA
Solver perturb 0.01

CHAPTER 11: METAMODELS AND POINT SELECTION

154 LS-OPT Version 3

Figure 11-3: Selecting Sensitivities in the Point Selection panel

11.9 Alternative point selection
Alternative point selection schemes can be specified to replace the main scheme in the first iteration. The
main purpose is to provide an option to use linear D-optimality in the first iteration because:

1. D-optimality minimizes the size of the confidence intervals to ensure the most accurate variable
screening, usually done in the first iteration.

2. It addresses the variability encountered with neural networks due to possible sparsity (or poor
placement) of points early in the iterative process, especially in iteration 1, which has the lowest
point density.

Command file syntax:
solver alternate experiment 1
 solver alternate order linear
 solver alternate experimental design point_selection_scheme
 solver alternate number experiment number_experimental_points
 solver alternate basis experiment basis_experiment
 solver alternate number basis experiments
 number_basis_experimental_points

The defaults are as follows:

Attribute Default
Order Linear (only option available)
Experimental design D-Optimal
Number of experiments Number of experiments of main experimental design
Basis experimental design type depends on number of variables (only D-optimal)
Number of basis experiments depends on basis experiment type and number of

experiments (only D-optimal)

Example:

Solver order FF
Solver experimental design space filling
Solver number experiments 5
Solver update doe
Solver alternate experiment 1

In the above example a linear surface based on D-optimal point selection will be used in the first iteration
instead of a neural network based on Space Filling. The number of points is 5, the same as for the main
experimental design. In the second iteration all the points created in the first and second iterations will be

CHAPTER 11: METAMODELS AND POINT SELECTION

 155

used to fit a neural network (because of update doe). The single additional line is typically all that is
needed when using neural networks.

Example:

Solver order FF
Solver experimental design space filling
Solver number experiments 5
Solver alternate experiment 1
 Solver alternate experimental design dopt
 Solver alternate order linear
 Solver alternate basis experiments space_filling
 Solver alternate number basis experiments 100

11.10 Changing the number of points on restart*

The number of points to be analyzed can be changed starting with any iteration. This feature is useful when
the user wants to restart the process with a different (often larger) number of points. This option avoids
adding points in iterations prior to the specified iteration. The feature is case-specific, so must be added to
all the case definitions.

Command file syntax:
Solver experiment augment iteration iteration_number

CHAPTER 11: METAMODELS AND POINT SELECTION

156 LS-OPT Version 3

Example 1:

In the first analysis, the following sampling scheme was specified:

Solver experiment design dopt
Solver number experiment 5
Solver basis experiment 3toK
.
.
.
Iterate 1

By default, a single verification run is done in iteration 2.

After the first analysis, the user wants to restart, using a larger number of points

Solver experiment design dopt
Solver number experiment 10
Solver basis experiment 5toK
Solver experiment augment iteration 2
.
.
.
Iterate 3

Iterations 2 and 3 will then be conducted with 10 points each while iteration one will be left intact.

Example 2:

Starting with:

Solver experiment design dopt
Solver number experiment 5
.
.
.
Iterate 1

and restarting with:

Solver experiment design dopt
Solver number experiment 10
Solver experiment augment iteration 1
.
.

CHAPTER 11: METAMODELS AND POINT SELECTION

 157

.
Iterate 3

iteration 1 of the restart will be augmented with 5 points (to make a total of 10), before continuing with 10
points in further iterations.

Note: The user will have to delete the single verification point generated in the first analysis before
restarting the run. For this example, this can be done by entering “2” in the box for “Specifying Starting
Iteration” in the Run panel. The restart will then generate a new starting point for iteration 2 and conduct 10
simulations altogether.

11.11 Repeatability of point selection
All point selection schemes are repeatable, but a seed can be provided to create different sets of random
points. The feature is particularly useful for Monte Carlo or Latin Hypercube point selection which both
directly use random numbers. Because D-Optimal and Space Filling designs also use random numbers,
albeit less directly, they may only show small differences due to the occurrence of local minima in the
respective optimization procedures. The seed is of the type “unsigned long”, so the value typically has
to be between 0 and 4,294,967,295 (depending on the machine architecture). The syntax is as follows:

Command file syntax:
Solver experiment seed integer_value

The default value is 0 (zero).

Solver experimental design lhd_generalized
Solver number experiments 30
Solver experiment seed 349177

11.12 Remarks: Point selection

1. The number of points specified in the “solver number experiment num” command is reduced

by the number already available in the Experiments.PRE.solver_name or
AnalysisResults.PRE.solver_name files.

2. The files Experiments and AnalysisResults are synchronous, i.e. they will always have the
same experiments after extraction of results. Both these files also mirror the result directories for a
specific iteration.

3. Design points that replicate the starting point are omitted.

LS-OPT Version 3 158

12. History and Response Results

This chapter describes the specification of the history or response results to be extracted from the solver
database. The chapter focuses on the standard response interfaces for LS-DYNA.

12.1 Defining a response history (vector)

A response history can be defined by using the history command with an extraction, a mathematical
expression or file import. The extraction of the result can be done using a standard LS-DYNA interface (see
Section 12.4) or with a user-defined program.

Command file syntax:
history history_name string
history history_name expression math_expression
history history_name file string

The string is an interface definition (in double quotes), while the math_expression is a mathematical
expression (in curly brackets).

Example 1:

history ’displacement_1’ "BinoutHistory –res_type nodout -cmp x_displacement –
id 12789 –filter SAE -filter_freq 60"
history ’displacement_2’ "BinoutHistory –res_type nodout -cmp x_displacement –
id 26993 –filter SAE –filter_freq 60"
history ’deformation’ expression {displacement_2 - displacement_1}
response ’final_deform’ expression {deformation(200)}

Example 2:

constant ’v0’ 15.65
history ’bumper_velocity’ "BinoutHistory –res_type nodout -cmp x_velocity –
id 73579 –filter SAE –filter_freq 30"
history ’Apillar_velocity_1’ "BinoutHistory –res_type nodout -cmp x_velocity –
id 41195 –filter SAE –filter_freq 30"
history ’Apillar_velocity_2’ "BinoutHistory –res_type nodout -cmp x_velocity -
id 17251 –filter SAE –filter_freq 30"
history ’global_velocity’ "BinoutHistory –res_type glstat -cmp X_VEL "
history ’Apillar_velocity_average’ expression {

CHAPTER 12: HISTORY AND RESPONSE RESULTS

LS-OPT Version 3 159

 (Apillar_velocity_1 + Apillar_velocity_2)/2}
$
response ’time_to_bumper_zero’ expression {Lookup("bumper_velocity(t)",0)}
response ’vel_A_bumper_zero’ expression {Apillar_velocity_average
(time_to_bumper_zero)}
response ’PULSE_1’ expression {Integral
 ("Apillar_velocity_average(t)",
 0,
 time_to_bumper_zero)
 /time_to_bumper_zero}
response ’time_to_zero_velocity’expression {Lookup("global_velocity(t)",0)}
response ’velocity_final’ expression
{Apillar_velocity_average(time_to_zero_velocity)}
response ’PULSE_2’ expression {Integral
 ("Apillar_velocity_average(t)"
 time_to_bumper_zero,
 time_to_zero_velocity)
 /(time_to_zero_velocity - time_to_bumper_zero)}

Example 3:

constant ’Event_time’ 200
$ Results from a physical experiment
history ’experiment_vel’ file "expdata"
$ LS-DYNA results
history ’velocity’ "DynaASCII nodout X_VEL 12667 TIMESTEP"
response ’RMS_error’ expression {Integral("(experiment_vel-
velocity)**2",0,Event_time}

Example 4:

In this example a user-defined program (the post-processor LS-PREPOST) is used to produce a history file
from the LS-DYNA database. The LS-PREPOST command file get_force:

open d3plot d3plot
ascii rcforc open rcforc 0
ascii rcforc plot 4 Ma-1
xyplot 1 savefile xypair LsoptHistory 1
deletewin 1
quit

produces the LsoptHistory file.

history ’Force’ "lsprepost c=../../get_force"
response ’Force1’ expression {Force(.002)}
response ’Force2’ expression {Force(.004)}
response ’Force3’ expression {Force(.006)}
response ’Force4’ expression {Force(.008)}

Note :

1. The rcforc history in Example 4 can be obtained more easily by direct extraction (see Section 12.5.1 and
Appendix B)

CHAPTER 13: COMPOSITE FUNCTIONS

160 LS-OPT Version 3

Remarks:

1. Histories are used by response definitions (see Section 12.1.1) to define a response surface. They are

therefore intermediate entities and cannot be used directly to define a response surface. Only
response can define a response surface.

2. For LS-DYNA history definition and syntax, please refer to Section 12.4.

In LS-OPTui, histories are defined in the Histories panel (Figure 12-1):

Figure 12-1: Histories panel in LS-OPTui

12.1.1 Crossplot history

A special history function Crossplot is provided to construct a curve g(f) given f(t) and g(t).

Expression syntax:

CHAPTER 12: HISTORY AND RESPONSE RESULTS

LS-OPT Version 3 161

History ’curvename’ {Crossplot (abscissa_history, ordinate_history,
[numpoints, begin, end])}

Argument name Description Symbol LS-OPT Type Default
abscissa history History of

abscissa
f(t) Expression -

ordinate history History of
ordinate

g(t) Expression -

numpoints Number of
points created
in crossplot

P Int 10,000

begin Begin t-value t1 Float Smallest t-value
end End t- value tP Float Largest t-value

Table 12-1: Description of Crossplot arguments

Examples:

$ ------ CROSSPLOT CURVES --
history 'Force_Disp_Dflt' expression {Crossplot("-Disp2", "Force2") }
history 'Force_Disp_to_Num' expression {Crossplot("-Disp2", "Force2", 2) }
history 'Force_Disp_to_Beg' expression {Crossplot("-Disp2", "Force2", 4, 0.002) }
history 'Force_Disp_to_End' expression {Crossplot("-Disp2", "Force2", 4, 0.002, End) }

12.1.2 History files
A history can be provided in a text file with arbitrary format. Coordinate pairs are found by assuming that
any pair of numbers in a row is a legitimate coordinate pair. History files are typically used to import test
data for parameter identification problems.

Command file syntax:
history name file filename

Example:

History ′Test1’ file ″Test1.txt″

where Test1.txt contains:

Time Displacement
1.2, 143.97
1.4 156.1
1.7 , 923.77

CHAPTER 13: COMPOSITE FUNCTIONS

162 LS-OPT Version 3

12.2 Defining a response (scalar)

The extraction of responses consists of a definition for each response and a single extraction command or
mathematical expression. A response is often the result of a mathematical operation of a response history,
but can be extracted directly using the standard LS-DYNA interface (see Section 12.4) or a user-defined
interface.

Each extracted response is identified by a name and the command line for the program that extracts the
results. The command line must be enclosed in double quotes. If scaling and/or offsetting of the response is
required, the final response is computed as (the extracted response × scale factor) + offset. This operation
can also be achieved with a simple mathematical expression.
A mathematical expression for a response is defined in curly brackets after the response name.

Command file syntax:
response response_name {scale_factor offset} string
response response_name expression math_expression

Example:

response ’Displacement_x’ 25.4 0.0 "DynaASCII nodout ’r disp’ 63 TIMESTEP 0.1"
response ’Force’ "$HOME/ownbin/calculate force"
response ’Displacement_y’ "calc constraint2"
response ’Disp’ expression {Displacement_x + Displacement_y}

Remarks:

1. The first command will use a standard interface for the specified solver package. The standard interfaces

for LS-DYNA are described in Section 12.4.

2. The middle two commands are used for a user-supplied interface program (see Section 12.11). The

interface name must either be in the path or the full path name must be specified. Aliases are not
allowed.

3. For the last command, the second argument expression is a reserved name.

12.3 Specifying the metamodel type

The metamodel type can be specified for an individual reponse.

Command file syntax:
response response_name
[linear|interaction|elliptic|quadratic|FF|kriging]

CHAPTER 12: HISTORY AND RESPONSE RESULTS

LS-OPT Version 3 163

The default is the metamodel specified in Section 11.1. FF refers to the feed-forward neural network
approximation method (see Sections 2.10.1 and 5.5).

Example:

response ’Displacement’ kriging

In LS-OPTui, responses are defined in the Responses panel (Figure 12-2):

Figure 12-2: Reponses panel in LS-OPTui

LS-OPT Version 3 165

12.4 Extracting history and response quantities: LS-DYNA

In LS-OPT the general functionality for reading histories and responses from the simulation output is
achieved through the history and response definitions (see Section 12.1 and Section 12.1.1
respectively). The syntax for the extraction commands for LS-DYNA responses and histories is identical,
except for the selection attribute. The history function is included so that operations (such as subtracting two
histories) can first be performed, after which a scalar (such as maximum over time) can be extracted from
the resulting history.

There are two types of interfaces:

1. Standard LS-DYNA result interfaces. This interface provides access to the LS-DYNA binary databases

(d3plot or Binout). The interface is an integral part of LS-OPT.

2. User specified interface programs. These can reside anywhere. The user specifies the full path.

Aside of the standard interfaces that are used to extract any particular data item from the database,
specialized responses for metal-forming are also available. The computation and extraction of these
secondary responses are discussed in Section 12.10.

The user must ensure that the LS-DYNA program will provide the output files required by LS-OPT.

As multiple result output sets are generated during a parallel run, the user must be careful not to generate
unnecessary output. The following rules should be considered:

• To save space, only those output files that are absolutely necessary should be requested.
• A significant amount of disk space can be saved by judiciously specifying the time interval between

outputs (DT). E.g. in many cases, only the output at the final event time may be required. In this case the
value of DT can be set slightly smaller than the termination time.

• The result extraction is done immediately after completion of each simulation run. Database files can be
deleted immediately after extraction if requested by the user (clean file (see also Section 7.10)).

• If the simulation runs are executed on remote nodes, the responses of each simulation are extracted on
the remote node and transferred to the local run directory.

For more specialized responses the Perl programs provided can be used as templates for the development of
own routines.

All the utilities can be specified through the command:

response response_name {scale_factor offset } command_line.

or

CHAPTER 13: COMPOSITE FUNCTIONS

166 LS-OPT Version 3

history history_name command_line.

12.5 LS-DYNA Binout results

From Version 970 of LS-DYNA the ASCII output can be written to a binary file: the Binout file.

The LS-PREPOST Binout capability can be used for the graphical exploration and troubleshooting of the
data.

The response options are an extension of the history options – a history will be extracted as part of the
response extraction.

12.5.1 Binout histories

Results can be extracted for the whole model or a finite element entity such as a node or element. For shell
and beam elements the through-thickness position can be specified as well.

Command file syntax:

BinoutHistory –res_type res_type {-sub sub} –cmp component {-invariant
invariant –id id –pos position –side side}

Item Description Default Remarks
res_type Result type name - 1
sub Result subdirectory - 1
cmp Component of result - 2
invariant Invariant of results. Only MAGNITUDE is currently available. - 3
id ID number of entity -
pos Through thickness shell position at which results are computed. 1 4
side Interface side for RCFORC data. MASTER or SLAVE. SLAVE

Example:
history 'ELOUT1' "BinoutHistory -res_type Elout -sub shell -cmp sig_xx
-id 1 -pos 1"
history 'invarHis' "BinoutHistory -res_type nodout -cmp displacement
-invariant MAGNITUDE –id 432"

CHAPTER 12: HISTORY AND RESPONSE RESULTS

LS-OPT Version 3 167

Remarks:
1. The result types and subdirectories are as documented for the *DATABASE_OPTION LS-DYNA

keyword.
2. The component names are as listed in Appendix A: LS-DYNA Binout Result Components.
3. The individual components required to compute the invariant will be extracted automatically; for

example, “-cmp displacement –invariant MAGNITUDE” will result in the automatic
extraction of the x, y and z components of the displacement.

4. For the shell and thickshell strain results the upper and lower surface results are written to the database
using the component names such as lower_eps_xx and upper_eps_xx.

Averaging, filtering, and slicing Binout histories

These operations will be applied in the following order: averaging, filtering, and slicing.

Command file syntax:

BinoutHistory {history_options} {–filter filter_type
–filter_freq filter_freq –units units –ave_points ave_points
–start_time start_time –end_time end_time }

Item Description Default
history_options All available history options -
filter_type Type of filter to use: SAE or BUTT -
filter_freq Filter frequency 60 cycles / time unit
units S=seconds MS=milliseconds S
ave_points Number of points to average -
start_time Start time of history interval to extract using slicing 0
end_time End time of history interval to extract using slicing tmax

Example:
history 'ELOUT12' "BinoutHistory -res_type Elout -sub shell -cmp sig_xx
-id 1 -pos 2 -filter SAE –start_time 0.02 –end_time 0.04"
history 'nodHist432acc_AVE' "BinoutHistory -res_type nodout
-cmp x_acceleration -id 432 -ave_points 5"

12.5.2 Binout responses

A response is extracted from a history – all the history options are therefore applicable and options required
for histories are required for responses as well.

Command file syntax:

CHAPTER 13: COMPOSITE FUNCTIONS

168 LS-OPT Version 3

BinoutResponse {history_options} –select selection

Item Description Default Remarks

history_options All available history options including
averaging, filtering, and slicing. -

selection MAX|MIN|AVE|TIME TIME 1

Example:
response 'eTime' "BinoutResponse -res_type glstat -cmp kinetic_energy
-select TIME -end_time 0.015"
$
response ‘nodeMax’ "BinoutResponse -res_type nodout -cmp x_acceleration
-id 432 -select MAX -filter SAE -filter_freq 10"

Remarks:
1. The maximum, minimum, average, or value at a specific time must be selected. If selection is TIME

then the end_time history value will be used. If end_time is not specified, the last value (end of
analysis) will be used.

Binout injury criteria

Injury criteria such as HIC can be specified as the result component. The acceleration components will be
extracted, the magnitude computed, and the injury criteria computed from the acceleration magnitude
history.

Command file syntax:

BinoutResponse {history_options} –cmp cmp {–gravity gravity
–units units}

Item Description Default
history_options All available history options including filtering and slicing. -
cmp HIC15, HIC36, or CSI -
gravity Gravitational acceleration 9.81
units S=seconds MS=milliseconds S

Example:
response 'HIC_ms' 1 0 "BinoutResponse -res_type Nodout -cmp HIC15

CHAPTER 12: HISTORY AND RESPONSE RESULTS

LS-OPT Version 3 169

-gravity 9810. -units MS -id 432"

12.6 Translating ASCII output commands to Binout commands

Translation of old-style DynaASCII commands to Binout commands is done automatically. The translated
commands will be available in the GUI.

Not all components are available for both the DynaASCII and the Binout extraction routines. In particular
invariants such as the maximum principle stress may not be available in Binout. Some of these invariants
can be constructed using expressions (see Appendix D: Mathematical Expressions). Error and warning
messages will be generated.

12.7 LS-DYNA D3Plot results

The D3Plot interface is related to the Binout interface. The D3Plot commands differ from the Binout
commands in that a response or history can be collected over a whole part. For example, the maximum
stress in a part or over the whole model.

The available results types and components are listed in Appendix A.

The LS-PREPOST fringe plot capability can be used for the graphical exploration and troubleshooting of
the data.

The response options are an extension of the history options – a history will be extracted as part of the
response extraction.

12.7.1 D3Plot histories

Results can be extracted for the whole model or a finite element entity such as a node or element. For shell
and beam elements the through-thickness position can be specified as well.

Command file syntax:

D3PlotHistory –res_type res_type {-sub sub} –cmp component {–id id
–pos position –pids part_ids –loc ELEMENT|NODE –select selection
–coord x y z –setid setid –tref ref_state}

Item Description Default Remarks

CHAPTER 13: COMPOSITE FUNCTIONS

170 LS-OPT Version 3

res_type Result type name - 1
cmp Component of result - 1
id ID number of entity - 2
pos Through thickness shell position at which results are computed. 1
pids One or more part ids. - 3
loc Locations in model. ELEMENT or NODE. - 4
selection MAX|MIN|AVE MAX 5
coord Coordinate of a point for finding nearest element - 6
tref Time of reference state for finding nearest element 0.0 6
setid ID of *SET_SOLID_GENERAL in LS-DYNA keyword file - 6

Example:
history 'ELOUT1' "D3PlotHistory -res_type Elout -sub shell -cmp sig_xx
-id 1 -pos 1"
history 'invarHis' "D3PlotHistory -res_type nodout -cmp displacement
-invariant MAGNITUDE –id 432"
history 'd3ploth4' "D3PlotHistory -res_type ndv –cmp x_displacement –
pids 2 3 –select MAX"

Remarks:
1. The result types and components are similar to what is used in LS-PREPOST. The result types and

component names are listed in Appendix A:LS-DYNA D3Plot Result Components.
2. For histories, the -id option is mutually exclusive with the –select option.
3. If part ids are specified, the extraction will be done over these parts only. If no part ids and no element

or node id are specified, then the extraction will be done considering the whole model.
4. Element results such as stresses will be averaged in order to create the NODE results. Nodal results

such as displacements cannot be requested as ELEMENT results.
5. The maximum, minimum, or average over a part can be selected. For D3Plot histories, the -select

option is mutually exclusive with the –id option.
6. An x,y,z coordinate can be selected. The quantity will be extracted from the element nearest to x,y,z at

time tref. Only elements included in the *SET_SOLID_GENERAL element set are considered (only
the PART and ELEMENT options).

Slicing D3Plot histories

Slicing of D3Plot histories is possible. Averaging and filtering are not available for D3Plot results.

Command file syntax:

D3PlotHistory {history_options} {–start_time start_time –end_time
end_time }

CHAPTER 12: HISTORY AND RESPONSE RESULTS

LS-OPT Version 3 171

Item Description Default
history_options All available history options -
start_time Start time of history interval to extract using slicing 0
end_time End time of history interval to extract using slicing tmax

Example:
history 'ELOUT12' "D3PlotHistory -res_type stress -cmp xx_stress
-id 1 -pos 2 –start_time 0.02 –end_time 0.04"

D3Plot FLD results

If FLD results are requested then the FLD curve can be specified using (i) the t and n coefficients or (ii) a
curve in the LS-DYNA input deck. The interpretation of the t and n coefficients is the same as in LS-
PREPOST.

Command file syntax:

D3PlotHistory {history_options} {–fld_t fld_t –fld_n fld_n –fld_curve
fld_curve}

Item Description Default
history_options All available history options -
fld_t Fld curve t coefficient -
fld_n Fld curve t coefficient -
fld_curve ID of curve in the LS-DYNA input deck -

Example:
history 'ELOUT12' "D3PlotHistory -res_type stress -cmp xx_stress
-id 1 -pos 2 –start_time 0.02 –end_time 0.04"

12.7.2 D3Plot responses

A response is extracted from a history – all the history options are therefore applicable and options required
for histories are required for responses as well.

Command file syntax:

CHAPTER 13: COMPOSITE FUNCTIONS

172 LS-OPT Version 3

D3PlotResponse {history_options} –select selection

Item Description Default Remarks
history_options All available history options -
selection MAX|MIN|AVE|TIME TIME 1

Example:
Response ′nodeMax′ "D3PlotResponse -res_type ndv -cmp x_displacement -id
432 -select MAX"

Remarks:
1. The maximum, minimum, average, or value at a specific time must be selected. If selection is TIME

then the end_time history value will be used. If end_time is not specified, the last value (end of
analysis) will be used. If the selection must be done over part ids as well, then the maximum,
minimum, or average value will be selected for the part, followed by the selection of the maximum,
minimum, or average over time.

12.8 Mass

Command file syntax:
DynaMass p1 p2 p3 ... pn mass_attribute

Table 1-1: Mass item description

Item Description
p1 ... pn Part numbers of the model. Omission implies the entire model.
Mass_attribute Type of mass quantity (see table below).

Table 1-2: Mass attribute description

Attribute Description
MASS Mass
I11 Principal inertias
I22

CHAPTER 12: HISTORY AND RESPONSE RESULTS

LS-OPT Version 3 173

I33
IXX Components of inertia tensor
IXY
IXZ
IYX
IYY
IYZ
IZX
IZY
IZZ
X_COORD x-coordinate of mass center
Y_COORD y-coordinate of mass center
Z_COORD z-coordinate of mass center

Example:

$ Specify the mass of material number 13, 14 and 16 as
$ the response ’Component_mass’.
response ’Component_mass’ "DynaMass 3 13 14 16 Mass"
$ Specify the total principal inertial moment about the x-axis.
response ’Inertia’ "DynaMass Ixx"

Remarks:

1. The output file d3hsp must be produced by LS-DYNA.
2. Values are summed if more than one part is specified (so only the mass value will be correct). However

for the full model (part specification omitted) the correct values are given for all the quantities.

12.9 Frequency of given modal shape number

Command file syntax:
DynaFreq mode_original modal_attribute

Table 1-3: Frequency item description

Item Description
mode_original The number (sequence) of the baseline modal shape to be tracked.
modal_attribute Type of modal quantity. (See table below).

Table 1-4: Frequency attribute description

Attribute Description

FREQ Frequency of current mode corresponding in modal shape to
baseline mode specified.

NUMBER
Number of current mode corresponding in modal shape to
baseline mode specified.

CHAPTER 13: COMPOSITE FUNCTIONS

174 LS-OPT Version 3

GENMASS () ()
⎭
⎬
⎫

⎩
⎨
⎧

jj

T

j
MM φφ 2

1
2
1

00max

Theory: Mode tracking is required during optimization using modal analyses as mode switching (a change
in the sequence of modes) can occur as the optimizer modifies the design variables. In order to extract the
frequency of a specified mode, LS-OPT performs a scalar product between the baseline modal shape (mass-
orthogonalized eigenvector) and each mode shape of the current design. The maximum scalar product
indicates the mode most similar in shape to the original mode selected. To adjust for the mass
orthogonalization, the maximum scalar product is found in the following manner:

 () ()
⎭
⎬
⎫

⎩
⎨
⎧

jj

T

j
MM φφ 2

1
2
1

00max (1.1)

where M is the mass matrix (excluding all rigid bodies), φ is the mass-orthogonalized eigenvector and the
subscript 0 denotes the baseline mode. This product can be extracted with the GENMASS attribute (see
Table 1-4). Rigid body inertia and coupling will be incorporated in a later version.

Example:

$ Obtain the frequency of the current mode corresponding to the
$ baseline mode shape number 15 as the response ’Frequency’.
response ’Frequency’ "DynaFreq 15 FREQ"
$ Obtain the number (sequence) of the current mode corresponding to
$ the baseline mode shape number 15 as the response ’Number of mode’.
response ’Modal number’ "DynaFreq 15 NUMBER"

Remarks:

1. The user must identify which baseline mode is of interest by viewing the baseline d3eigv file in LS-

PrePost. The baseline mode number should be noted.

2. The optimization run can now be started with the correct DynaFreq command (or select the Baseline

Mode Number in the GUI).

3. Additional files are generated by LS-DYNA and placed in the run directories to perform the scalar

product and extract the modal frequency and number.

4. mode_original cannot exceed 999.

12.10 Extracting metal forming response quantities: LS-DYNA

CHAPTER 12: HISTORY AND RESPONSE RESULTS

LS-OPT Version 3 175

Responses directly related to sheet-metal forming can be extracted, namely the final sheet thickness (or
thickness reduction), Forming Limit criterion and principal stress. All the quantities can be specified on a
part basis as defined in the input deck for LS-DYNA. Mesh adaptivity can be incorporated into the
simulation run.

The user must ensure that the d3plot files are produced by the LS-DYNA simulation. Note that the
D3plotResponse commands are an alternative.

12.10.1 Thickness and thickness reduction
Either thickness or thickness reduction can be specified as follows.

Command file syntax:
DynaThick [THICKNESS|REDUCTION] p1 p2 ... pm [MIN|MAX|AVE]

Table 1-5: DynaThick item description

Item Description
THICKNESS Final thickness of part
REDUCTION A percentage thickness reduction of the part
p1…pn The parts as defined in LS-DYNA. If they are omitted, all the parts

are used.
MIN|MAX|AVE Minimum, maximum or average computed over all the elements of

the selected parts
Example:

Response ’Thickness 1’ "DynaThick THICK 1 2 MAXIMUM"
Response ’Thickness 1’ "DynaThick REDU 1 2 MINIMUM"

12.10.2 FLD constraint

The FLD constraint is shown in Figure 1-1.

Two cases are distinguished for the FLD constraint.

• The values of some strain points are located above the FLD curve. In this case the constraint is

computed as:

g = dmax

with dmax the maximum smallest distance of any strain point above the FLD curve to the FLD curve.

• All the values of the strain points are located below the FLD curve. In this case the constraint is

computed as:

g = –dmin

CHAPTER 13: COMPOSITE FUNCTIONS

176 LS-OPT Version 3

with dmin the minimum smallest distance of any strain value to the FLD curve (Figure 1-1).

Constraint Active

 g = dmax

 ε1

 ε2

 d1

 d2

 d3

a) FLD Constraint active

Constraint Inactive

 g = –dmin

 ε1

 ε2

 d1

 d2

 d3

b) FLD Constraint inactive

Figure 1-1: FLD curve – constraint definition

It follows that for a feasible design the constraint should be set so that g(x) < 0.

Bilinear FLD constraint

CHAPTER 12: HISTORY AND RESPONSE RESULTS

LS-OPT Version 3 177

The values of both the principle upper and lower surface in-plane strains are used for the FLD constraint.

Command file syntax:
DynaFLD p1 p2 ... pn intercept negative_slope positive_slope

The following must be defined for the model and FLD curve:

Table 1-6: DynaFLD item description

Item Description
p1…pn Part numbers of the model. Omission implies the entire model.
intercept The FLD curve value at ε2 = 0
negative_slope The absolute value of the slope of the FLD curve value at ε2 < 0
positive_slope The absolute value of the slope of the FLD curve value at ε2 > 0

Example:

$ Specify the FLD Constraint to be used
Response ’FLD’ "DynaFLD 1 2 3 0.25 1.833 0.5"

General FLD constraint

A more general FLD criterion is available if the forming limit is represented by a general curve. Any of the
upper, lower or middle shell surfaces can be considered.

Remarks:

1. A piece-wise linear curve is defined by specifying a list of interconnected points. The abscissae (ε2) of

consecutive points must increase (or an error termination will occur). Duplicated points are therefore not
allowed.

2. The curve is extrapolated infinitely in both the negative and positive directions of ε2. The first and last

segments are used for this purpose.

3. The computation of the constraint value is the same as shown in (Figure 1-1).

Command file syntax:
DynaFLDg [LOWER|CENTER|UPPER] p1 p2 ... pn load_curve_id

The following must be defined for the model and FLD curve:

Table 1-7: DynaFLDg item description

Item Description

CHAPTER 13: COMPOSITE FUNCTIONS

178 LS-OPT Version 3

LOWER Lower surface of the sheet
UPPER Upper surface of the sheet
CENTER Middle surface of the sheet
p1…pn Part numbers of the model. Omission implies the entire model.
load_curve_id Identification number of a load curve in the LS-DYNA input file.

The *DEFINE_CURVE keyword must be used. Refer to the
LS-DYNA User’s Manual for an explanation of this keyword.

Example:

$ Specify the general FLD Constraint to be used
Response ’FLDL’ "DynaFLDg LOWER 1 2 3 23"
Response ’FLDU’ "DynaFLDg UPPER 1 2 3 23"
Response ’FLDC’ "DynaFLDg CENTER 23"

For all three specifications load curve 23 is used. In the first two specifications, only parts 1, 2 and 3 are
considered.

Remarks:

1. The interface program produces an output file FLD_curve which contains the ε1 and ε2 values in the

first and second columns respectively. Since the program first looks for this file, it can be specified in
lieu of the keyword specification. The user should take care to remove an old version of the
FLD_curve if the curve specification is changed in the keyword input file. If a structured input file is
used for LS-DYNA input data, FLD_curve must be created by the user.

2. The scale factor and offset values feature of the *DEFINE_CURVE keyword are not utilized.

12.10.3 Principal stress
Any of the principal stresses or the mean can be computed. The values are nodal stresses.

Command file syntax:
DynaPStress [S1|S2|S3|MEAN] p1 p2 ... pn [MIN|MAX|AVE]

Table 1-8: DynaPStress item description

Item Description
S1, S2, S3 σ1, σ 2, σ 3
MEAN (σ1 + σ 2 + σ 3)/3
p1 ... pn Part numbers of the model. Omission implies the entire model.

MIN|MAX|AVE
Minimum, maximum or average computed over all the elements of
the selected parts

CHAPTER 12: HISTORY AND RESPONSE RESULTS

LS-OPT Version 3 179

Example:

Response ’Stress 1’ "DynaPStress MEAN 14 17 MAX"

12.11 Userdefined interface for extracting results

The user may provide an own extraction routine to output a single floating-point number to standard output.

Examples of the output statement in such a program are:

• The C language:

printf ("%lf\n", output_value);

or

fprintf (stdout, "%lf\n", output_value);

• The FORTRAN language:

write (6,*) output_value

• The Perl script language:

print "$output_value\n";
The string “N o r m a l” must be written to the standard error file identifier (stderr in C) to signify
a normal termination. (See Section 20.1 for an example).

The command to use a user-defined program to extract a response is:

Command file syntax:

response response_name { scale_factor offset } command_line

Examples:

1. The user has an own executable program ”ExtractForce” which is kept in the directory

$HOME/own/bin. The executable extracts a value from a result output file.

The relevant response definition command must therefore be as follows:
response ’Force’ "$HOME/own/bin/ExtractForce"

2. If Perl is to be used to execute the user script DynaFLD2, the command may be:

CHAPTER 13: COMPOSITE FUNCTIONS

180 LS-OPT Version 3

response ’Acc’ "$LSOPT/perl $LSOPT/DynaFLD2 0.5 0.25 1.833"

Remark:

1. An alias must not be used for an interface program.

12.12 Responses without metamodels
In some cases it may be beneficial to create intermediate responses without associated metamodels, but still
part of a metamodel-based analysis. For example omitting intermediate neural networks will improve
efficiency. The selection is simply made in a check box in the “Responses” panel (labeled “Not metamodel-
linked”). Except for the metamodel linking, “Results” are identical to “Responses” and can be defined using
a standard LS-DYNA interface, a mathematical expression or a command for a user-defined program.

Command file syntax:
result name string
result name math_expression
result name command_line

Remark:

12.13 Matrix operations
1. “Results” cannot be included directly in composites, since a composite relies on interpolation from a

metamodel.

Matrix operations can be performed by initializing a matrix, performing multiple matrix operations, and
extracting components of the matrix as response functions or results.

There are two functions available to initialize a matrix, namely Matrix3x3Init and Rotate. Both
functions create 3×3 matrices.

The component of a matrix is extracted using the format A.aij (or the 0-based A[i-1][j-1]) e.g.
Strain.a23 (or Strain[1][2]) where i and j are limited to 1,2 or 3.

The matrix operation A – I (where I is the unit matrix) is coded as A-1.

Command file syntax:
matrix name math_expression

Examples:

In the following example the user constructs a matrix from scalar results, performs matrix operations and
uses the final matrix components in an optimization run:

CHAPTER 12: HISTORY AND RESPONSE RESULTS

LS-OPT Version 3 181

Constant 'X2' 0.0
Constant 'Y2' 0.0
Constant 'Z2' -1.0
Constant 'X3' 0.0
Constant 'Y3' 0.0
Constant 'Z3' 8.0
$
$ Extract results
$
 result 'Fd11_2' "D3PlotResponse -setid 10 -tref 0.04 -coord 0 -1.858 1.858
-res_type misc -cmp history_var#11 -select TIME -end_time 0.04"
 result 'Fd12_2' "D3PlotResponse -setid 10 -tref 0.04 -coord 0 -1.858 1.858
-res_type misc -cmp history_var#14 -select TIME -end_time 0.04"
 result 'Fd13_2' "D3PlotResponse -setid 10 -tref 0.04 -coord 0 -1.858 1.858
-res_type misc -cmp history_var#17 -select TIME -end_time 0.04"
 result 'Fd21_2' "D3PlotResponse -setid 10 -tref 0.04 -coord 0 -1.858 1.858
-res_type misc -cmp history_var#12 -select TIME -end_time 0.04"
 result 'Fd22_2' "D3PlotResponse -setid 10 -tref 0.04 -coord 0 -1.858 1.858
-res_type misc -cmp history_var#15 -select TIME -end_time 0.04"
 result 'Fd23_2' "D3PlotResponse -setid 10 -tref 0.04 -coord 0 -1.858 1.858
-res_type misc -cmp history_var#18 -select TIME -end_time 0.04"
 result 'Fd31_2' "D3PlotResponse -setid 10 -tref 0.04 -coord 0 -1.858 1.858
-res_type misc -cmp history_var#13 -select TIME -end_time 0.04"
 result 'Fd32_2' "D3PlotResponse -setid 10 -tref 0.04 -coord 0 -1.858 1.858
-res_type misc -cmp history_var#16 -select TIME -end_time 0.04"
 result 'Fd33_2' "D3PlotResponse -setid 10 -tref 0.04 -coord 0 -1.858 1.858
-res_type misc -cmp history_var#19 -select TIME -end_time 0.04"
$
$ Matrix expressions
$
$ 1. Initialization
$
 matrix 'Fd_2'
 {Matrix3x3Init(Fd11_2,Fd12_2,Fd13_2,Fd21_2,Fd22_2,Fd23_2,Fd31_2,Fd32_2,Fd33_2)}
 matrix 'Fs_2'
 {Matrix3x3Init(Fs11_2,Fs12_2,Fs13_2,Fs21_2,Fs22_2,Fs23_2,Fs31_2,Fs32_2,Fs33_2)}
 matrix 'R_2' {Rotate(0, -1.858, 1.858, X2,Y2,Z2, X3,Y3,Z3)}
$
$ 2. Matrix operations
$
$ Updated deformation gradient Fs
 matrix 'FSD_2' {Fs_2 * inv (Fd_2)}
$ Updated Lagrange strain using Fs and Fd
 matrix 'epsGlobal_2' {.5 * (tr (FSD_2) * FSD_2 - 1)}
$ Tensor transformation to local coordinates
 matrix 'epsCyl_2' {tr(R_2) * epsGlobal_2 * R_2}
$
$ 3. Extract matrix components as response surfaces
$
 response 'Ell_2' expression {epsCyl_2.a11}
 response 'Ecc_2' expression {epsCyl_2.a33}
 response 'Elc_2' expression {epsCyl_2.a13}
 response 'Elr_2' expression {epsCyl_2.a12}
 response 'Ecr_2' expression {epsCyl_2.a32}

CHAPTER 13: COMPOSITE FUNCTIONS

182 LS-OPT Version 3

12.13.1 Initializing a matrix

The command to initialize the matrix:

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

333231

232221

131211

aaa
aaa
aaa

is:

Matrix3x3Init(a11,a12,a13, a21,a22,a23, a31,a32,a33)

where aij is any previously defined variable (typically a response or result).

12.13.2 Creating a rotation matrix using 3 specified points

The command is:

Rotate(x1,y1,z1, x2,y2,z2, x3,y3,z3)

where the three triplets represent points 1, 2 and 3 in 3-dimensional space respectively.

• The vector v23 connecting points 2 and 3 forms the local X direction.
• Z = v23 × v21
• Y = Z × X

The vectors X, Y and Z are normalized to x , y and z which are used to form an orthogonal matrix:

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

321

321

321

zzz
yyy
xxx

T

where ITT =T .

LS-OPT Version 3 183

13. Composite Functions

Composite functions can be used to combine response surfaces and variables as well as other composites.
The objectives and constraints can then be constructed using the composite functions.

13.1 Introduction

13.1.1 Composite vs. response expressions
There is an important distinction between response expressions and composites. This distinction can have a
major impact on the accuracy of the result. Response expressions are converted to response surfaces after
applying the expression to the results of each sampling point in the design space. Composites, on the other
hand, are computed by combining response surface results. Therefore the response expression will always
be of the same order as the chosen response surface order while the composite can assume any complexity
depending on the formula specified for the composite (which may be arbitrary).

Example: If a response function is defined as f(x,y) = xy and linear response surfaces are used, the response
expression will be a simple linear approximation ax + by whereas a composite expression specified as xy
will be exact.

There are three types of composites:

13.2 Expression composite

13.2.1 General expressions
A general expression can be specified for a composite. The composite can therefore consist of constants,
variables, dependent variables, responses and other composites (see Appendix D).

13.2.2 Special expressions
There is one special function for composites namely MeanSqErr (see Section 13.6).

CHAPTER 13: COMPOSITE FUNCTIONS

184 LS-OPT Version 3

13.3 Standard composite

13.3.1 Targeted composite (square root of MSE)
This is a special composite in which a target is specified for each response or variable. The composite is
formulated as the ‘distance’ to the target using a Euclidean norm formulation. The components can be
weighted and normalized.

 ∑∑
==

⎥
⎦

⎤
⎢
⎣

⎡ −
+

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ −
=

n

i i

ii
i

m

j j

jj
j

XxFf
W

1

2

1

2
)(

χ
ω

σ
xF (13.1)

where σ and χ are scale factors and W and ω are weight factors. These are typically used to formulate a
multi-objective optimization problem in which F is the distance to the target values of design and response
variables.

A suitable application is parameter identification. In this application, the target values Fj are the
experimental results that have to be reproduced by a numerical model as accurately as possible. The scale
factors σj and χi are used to normalize the responses. The second component, which uses the variables can
be used to regularize the parameter identification problem. Only independent variables can be included. See
Figure 13-1 for an example of a targeted composite response definition.

In the GUI this type is now selected as the “Root MSE” type.

13.3.2 Mean Squared Error composite
This special composite is the same as the targeted composite, except that the square root operation is
omitted. This allows for composites to be added to make a larger composite (similar to the vector-based
MeanSqErr composite in Section 13.6).

13.3.3 Weighted composite
Weighted response functions and independent variables are summed in this standard composite. Each
function component or variable is scaled and weighted.

 ∑∑
==

+=
n

i i

i
i

m

j j

j
j

xf
W

11

)(
χ

ω
σ

xF (13.2)

These are typically used to construct objectives or constraints in which the responses and variables appear in
linear combination.

The expression composite is a simple alternative to the weighted composite.

Remarks:

1. An expression composite can be a function of any other composite.

CHAPTER 13: COMPOSITE FUNCTIONS

LS-OPT Version 3 185

2. An objective definition involving more than one response or variable requires the use of a composite

function.

3. In addition to specifying more than one function per objective, multiple objectives can be defined (see

Section 14.2).

Figure 13-1: Definition of targeted (Root MSE) composite response in LS-OPTui

13.4 Defining the composite function

This command identifies the composite function. The type of composite is specified as weighted,
targeted or expression. The expression composite type does not have to be declared and can simply
be stated as an expression.

Command file syntax:
composite composite_name type [standardMSE|targeted|weighted]

Example:

composite ’Damage’ type targeted

CHAPTER 13: COMPOSITE FUNCTIONS

186 LS-OPT Version 3

composite ’Acceleration’ type weighted

The expression composite is defined as follows:
Command file syntax:
composite composite_name math_expression

The math_expression is a mathematical expression given in curly brackets (see Appendix D).

The number of composite functions to be employed must be specified in the problem description.

13.5 Assigning design variable or response components to the
composite

Command file syntax:
composite name response response_name value <1> { scale
scale_factor <1> }
composite name variable variable_name value { scale scale_factor
<1> }

The value is the target value for type: targeted and the weight value for the type: weighted. The
scale_factor is a divisor.

Example:

composite ’damage’ type targeted
composite ’damage’ response ’intrusion_3’ 20. scale 30.
composite ’damage’ response ’intrusion_4’ -35. scale 25.

for the composite function .
25

35
30

20 2
4

2
3 ⎟

⎠
⎞

⎜
⎝
⎛ −

+⎟
⎠
⎞

⎜
⎝
⎛ −

=
ff

damageF

The equivalent code using the expression composite is:

composite ’damage’ {sqrt(((intrusion_3 - 20)/30)**2 +
 ((intrusion_4 + 35)/25)**2)}

Example:

$----- x10 > x9 ---------------------------
composite ’C9’ type weighted
composite ’C9’ variable ’x_9’ -1.
composite ’C9’ variable ’x_10’ 1.
constraint ’C9’
Lower bound constraint ’C9’ 0.

for the composite function which defines the inequality x10 > x9.

CHAPTER 13: COMPOSITE FUNCTIONS

LS-OPT Version 3 187

The equivalent code using the expression composite is:

$----- x10 > x9 ---------------------------
composite ’C9’ {x_10 - x_9}
constraint ’C9’
Lower bound constraint ’C9’ 0.

Needless to say, this is the preferable way to describe this composite.

If weights are required for the targeted function, an additional command may be given.

Command file syntax:
weight weight value <1>

Example:

composite ’damage’ type targeted
composite ’damage’ response ’intrusion_3’ 20.
weight 1.5
composite ’damage’ response ’intrusion_4’ -35.

is used to specify () () .35205.1 2
4

2
3 −+−= ffdamageF

The weight applies to the last specified composite and response.

13.6 Mean Squared Error

A special function MeanSqErr is provided to compute the Mean Squared Error:

2

1

2

1

)(1)(1
∑ ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
=∑ ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
=

==

P

p p

p
p

P

p p

pp
p s

e
W

Ps
Gf

W
P

xx
ε (13.3)

It is constructed so that Gp , p=1,…,P are the values on the target curve G and fp(x) the corresponding
components of the computed curve f. fp(x) are represented internally by response surface values. x is the
design vector. By using the default values, the user should obtain a dimensionless error ε of the order of
unity. See Section 3.3.1 for more detail.

Expression syntax:

MeanSqErr (target_curve, computed_curve,

[num_regression_points, start_point, end_point,
weight_type, scale_type,

CHAPTER 13: COMPOSITE FUNCTIONS

188 LS-OPT Version 3

weight_value, scale_value,
weight_curve, scale_curve])

Table 13-1: MeanSqErr arguments. Arguments in bold are obligatory.

Argument name Description Symbol LS-OPT Type Default
target_curve Target

Curve name
G(z) History -

computed_curve Computed
curve name

f(x,z) History -

num_regression_
points

Number of
regression
points

P Int If P < 2 or not specified: use
number of points in target
curve between lower limit
and upper limit

lower_limit Lower limit
on z

zL Float z-Location of first target point

upper_limit Upper limit
on z

zU Float z-Location of last target point

weight_ type Weighting
type

- Reserved option
name:
WEIGHTVALUE
PROPWEIGHT,
FILEWEIGHT

WEIGHTVALUE
(Value=1.0)

scale_type Scaling type - Reserved option
name:
SCALEVALUE,
PROPSCALE
MAXISCALE,
FILESCALE

MAXISCALE

weight_value Weight
value

W Float 1

scale_value Scale value s Float 1
weight_curve Weights as

a function
of z

W(z) History Weight.compositename

scale_curve Scale
factors as a
function of z

s(z) History Scale.compositename

Table 13-2: Options for MeanSqErr arguments

CHAPTER 13: COMPOSITE FUNCTIONS

LS-OPT Version 3 189

Syntax Explanation
WEIGHTVALUE Wi = value. Default = 1.0
PROPWEIGHT Use a different weight for each curve point p, proportional to the value of |Gp|. This

method emphasizes the large absolute values of the response. The weights are normalized
with respect to max |Gp|

FILEWEIGHT Interpolate the weight from an x-y file: weight vs. z
SCALEVALUE si = value. Default = 1.0
MAXISCALE max |Gp|.
PROPSCALE Use a different scale factor for each curve point, namely |Gp|.
FILESCALE Interpolate the scale factor from an x-y file: scale vs. z

Figure 13-2: Responses panel showing a MeanSqErr selection

Note:

1. The MeanSqErr function can only be used as a composite.
2. Only points within range of both curves are included in Equation (13-3), so P will be automatically

reduced during the evaluation if there are missing points. A warning is issued in
WARNING_MESSAGE.

CHAPTER 13: COMPOSITE FUNCTIONS

190 LS-OPT Version 3

3. If num_regression_points is unspecified, P equals the number of target points bounded by
lower_limit and upper_limit.

4. The weight curve and scale curve must be predefined histories (see Section 12.1) if they are
selected. If a weight or scale curve is selected, the name of the curve defaults to
‘Weight.compositename’ or ‘Scale.compositename’ respectively where
compositename is the name of the parent composite being defined.

5. The MeanSqErr composite makes use of response surfaces to avoid the nonlinearity (quadratic
nature) of the squared error functional. Thus if the response curve f(x) is linear in terms of the
design variables x, the composite function will be exactly represented.

6. Empty or underscore (_) arguments will generate default values.
7. The option names in Table 13-2 are reserved names and cannot be used as variable names.
8. MeanSqErr composites can be added together to make a larger MSE composite (e.g. for multiple

test cases).

The simplest case, and probably the one used most frequently, is where the user simply defines only the
target curve and corresponding computed curve (therefore only the first two arguments). In this case all the
points in the target curve are taken as regression points (provided they have corresponding computed
points). The simplest target curve that can be defined has only one point.

Examples:
$ ------ CONSTANTS --
 Constant 'Begin' 0.002
 Constant 'End' 0.008
 Constant 'numpoints' 4
$ ------ HISTORIES FROM BINOUT --
 history 'Force1' "BinoutHistory -res_type rcforc -cmp z_force -id 1 -side SLAVE"
 history 'Force2' "BinoutHistory -res_type rcforc -cmp z_force -id 1 -side SLAVE"
 history 'Disp2' "BinoutHistory -res_type nodout -cmp z_displacement -id 288"
$ ------ HISTORIES FROM CROSSPLOTS --
 history 'Force_Disp_Dflt' expression { Crossplot ("-Disp2", "Force2") }
 history 'Force_Disp_to_Num' expression { Crossplot ("-Disp2", "Force2", 2) }
 history 'Force_Disp_to_Beg' expression { Crossplot ("-Disp2", "Force2", 4, 0.002) }
 history 'Force_Disp_to_End' expression { Crossplot ("-Disp2", "Force2", 4, 0.002,
End) }
$ ------ HISTORIES FROM FILES --
 history 'Test1' file "Test1"
 history 'Test2' file "Test2"
 history 'Test3' file "Test3"
 history 'Weight.Weight_Scale_Curves' file "Weight.Weight_Scale_Curves"
 history 'Scale.Weight_Scale_Curves' file "Scale.Weight_Scale_Curves"
 history 'Scale.Wt_Scale_Curves2' file "Scale.Weight_Scale_Curves2"
 history 'Weight_1' file "Weight_1"
 history 'Scale_1' file "Scale_1"
 history 'UnitWeight' file "UnitWeight"
$ ------ COMPOSITES --
 composite 'Constant_weight' { MeanSqErr (Test1, Force1,4, Begin, 8./1000,
WEIGHTVALUE, SCALEVALUE, 2.0, 1.0) }
 composite 'Unit_weight_curve' { MeanSqErr (Test1, Force1,4, Begin, .008,
WEIGHTCURVE, SCALEVALUE, 2.0, 1.0, UnitWeight) }
 composite 'Weight_Scale_Curves' { MeanSqErr (Test1, Force1, 4, Begin, .008,
WEIGHTCURVE, SCALECURVE) }

CHAPTER 13: COMPOSITE FUNCTIONS

LS-OPT Version 3 191

 composite 'Wt_Scale_Curves2' { MeanSqErr (Test1, Force1, 4, Begin, .008,
WEIGHTCURVE, SCALECURVE, _, _,Weight_1) }
 composite 'Wt_Scale_Curves3' { MeanSqErr (Test1, Force1, 4, Begin, End,
WEIGHTCURVE, SCALECURVE, _, _,Weight_1, Scale_1) }
 composite 'Weight_Propscale' { MeanSqErr (Test1, Force1, 4, Begin, End,
WEIGHTCURVE, PROPSCALE , _, _,Weight_1) }
 composite 'Dfltwt_Scalecurve' { MeanSqErr (Test1, Force1, 4, Begin, End, ,
SCALECURVE, _, _,Weight_1, Scale_1) }
 composite 'Dfltwt_Propscale' { MeanSqErr (Test2, Force2, 4, 0.002, , , PROPSCALE) }
 composite 'Dfltwt_Propscale2' { MeanSqErr (Test2, Force2, 4, , .008, , PROPSCALE) }
 composite 'Unitwt_Unitscale1' { MeanSqErr (Test1, Force1, numpoints, Begin, .008,
WEIGHTVALUE , SCALEVALUE) }
 composite 'Unitwt_Unitscale2' { MeanSqErr (Test2, Force2, numpoints, Begin, .008,
WEIGHTVALUE , SCALEVALUE) }
 composite 'Unitscale' { MeanSqErr (Test2, Force2, 4, Begin, .008, _ , SCALEVALUE) }
 composite 'Defaults_to_end' { MeanSqErr (Test2, Force2, 4, Begin, .008) }
 composite 'Defaults_to_begin' { MeanSqErr (Test2, Force2, 4, Begin) }
 composite 'Defaults_to_num' { MeanSqErr (Test2, Force2, 4) }
 composite 'Defaults1' { MeanSqErr (Test1, Force1) }
 composite 'Defaults2' { MeanSqErr (Test2, Force2) }
 composite 'Defaults3' { MeanSqErr (Test3, Force_Disp_Dflt) }

LS-OPT Version 3 193

14. Objectives and Constraints

This chapter describes the specification of objectives and constraints for the design formulation.

14.1 Formulation

Multi-criteria optimal design problems can be formulated. These typically consist of the following:

• Multiple objectives (multi-objective formulation)
• Multiple constraints

Mathematically, the problem is defined as follows:

 Minimize),,,(21 NΦΦΦ KF
 subject to
 111 UgL ≤≤
 222 UgL ≤≤
 M
 mmm UgL ≤≤

where F represents the multi-objective function,),,,(21 nii xxx KΦ=Φ represent the various objective
functions and),,,(21 njj xxxgg K= represent the constraint functions. The symbols xi represent the n
design variables.

In order to generate a trade-off design curve involving objective functions, more than one objective iΦ
must be specified so that the multi-objective

 ∑
=

Φ=
N

k
kk

1
.ωF (14.1)

A component function must be assigned to each objective function where the component function can be
defined as a composite function F (see Section 1) or a response function f . The number of objectives, N,
must be specified in the problem description (see Section 6.2).

CHAPTER 14: OBJECTIVES AND CONSTRAINTS

194 LS-OPT Version 3

14.2 Defining an objective function

This command identifies each objective function. The name of the objective is the same as the component,
which can be a response or composite.

Command file syntax:

objective name { weight <1> }

Examples:

objective ’Intrusion_1’
objective ’Intrusion_2’ 2.
objective ’Acceleration’ 3.

for
 Multi-objective = 321 32 Φ+Φ+Φ=F

 221 32 f++= FF

Remarks:

1. The distinction between objectives is made solely for the purpose of constructing a Pareto-optimal curve

involving multiple objectives. However it is still better to construct a Pareto optimal curve using a
varying constraint bound instead of varying weights. See Sections 14.4 and 16.4.

2. Objectives can be specified in terms of composite functions and/or response functions.

3. The weight applies to each objective as represented by ωk in Equation (11.1).

The default is to minimize the objective function. The program can however be set to maximize the
objective function. In LS-OPTui, maximization is activated in the Objective panel.

Command file syntax:

Maximize

Example:

Response ’Mass’ ”DynaMass 3 13 14 16 MASS”
Maximize
Objective ’Mass’
Constraint ’Acceleration’

CHAPTER 14: OBJECTIVES AND CONSTRAINTS

LS-OPT Version 3 195

In LS-OPTui, objectives are defined in the Objective panel (Figure 14-1):

Figure 14-1: Objective panel in LS-OPTui

14.3 Defining a constraint

This command identifies each constraint function. The constraint has the same name as its component. A
component can be a response or composite.

Command file syntax:

constraint constraint_name

Examples:

history ’displacement_1’ "DynaASCII nodout ’r_disp’ 12789 TIMESTEP 0.0 SAE 60"
history ’displacement_2’ "DynaASCII nodout ’r_disp’ 26993 TIMESTEP 0.0 SAE 60"
history ’Intrusion’ {displacement_2 - displacement_1}
response Intrusion_80 {Intrusion(80)}
constraint ’Intrusion_80’

CHAPTER 14: OBJECTIVES AND CONSTRAINTS

196 LS-OPT Version 3

Remark:

1. Constraints can be specified in terms of response functions or composite functions.

In LS-OPTui, constraints are defined in the Constraints panel (Figure 14-2):

Figure 14-2: Constraints panel in LS-OPTui

14.4 Bounds on the constraint functions

Upper and lower bounds may be placed on the constraint functions.

Additionally, for Reliability Based Design Optimization, the probability of exceeding a bound on a
constraint can be set.

Command file syntax:
lower bound constraint constraint_name value <-10+30>
upper bound constraint constraint_name value <+10+30>
probability lower bound constraint constraint_name prob_value
probability upper bound constraint constraint_name prob_value

CHAPTER 14: OBJECTIVES AND CONSTRAINTS

LS-OPT Version 3 197

Example:

Lower bound constraint ’Stress’ 1.e-6
Upper bound constraint ’Stress’ 20.2

Remark:

1. A flag can be set to identify specific constraint bounds to define a reasonable design space. For this

purpose, the move environment must be specified (See Section 11.6).

14.5 Minimizing the maximum response or violation*

Refer to Section 3.1 for the theory regarding strict and slack constraints. To specify hard (strict) or soft
(slack) constraints, the following syntax is used:

Command file syntax:
strict strictness_factor <1>
slack

Each command functions as an environment. Therefore all lower bound constraint or upper
bound constraint commands which appear after a strict/slack command will be classified as
strict or slack.

In the following example, the first two constraints are slack while the last three are strict. The purpose of the
formulation is to compromise only on the knee forces if a feasible design cannot be found.

Example:

$ This formulation minimizes the average knee force but
$ constrains the forces to 6500.
$ If a feasible design is not available, the maximum violation
$ will be minimized.
$
$ Objective:
$-----------
composite ’Knee_Forces’ type weighted
composite ’Knee_Forces’ response ’Left_Knee_Force’ 0.5
composite ’Knee_Forces’ response ’Right_Knee_Force’ 0.5
objective ’Knee_Forces’
$
$ Constraints:
$-------------
SLACK
Constraint ’Left_Knee_Force’
Upper bound constraint ’Left_Knee_Force’ 6500.
$
Constraint ’Right_Knee_Force’
Upper bound constraint ’Right_Knee_Force’ 6500.
$

CHAPTER 14: OBJECTIVES AND CONSTRAINTS

198 LS-OPT Version 3

STRICT
Constraint ’Left_Knee_Displacement’
Lower bound constraint ’Left_Knee_Displacement’ -81.33
$
Constraint ’Right_Knee_Displacement’
Lower bound constraint ’Right_Knee_Displacement’ -81.33
$
Constraint ’Kinetic_Energy’
Upper bound constraint ’Kinetic_Energy’ 154000.

The composite function is explained in Section 1. Note that the same response functions appear both in
the objective and the constraint definitions. This is to ensure that the violations to the knee forces are
minimized, but if they are both feasible, their average will be minimized (as defined by the composite).

The constraint bounds of all the soft constraints can also be set to a number that is impossible to comply
with, e.g. zero. This will force the optimization procedure to always ignore the objective and it will
minimize the maximum response.

In the following example, the objective is to minimize the maximum of ’Left Knee Force’ or ’Right
Knee Force’. The displacement and energy constraints are strict.

Example:

$ This formulation minimizes the maximum knee force
$ Because the knee forces are always positive,
$ the objective will be ignored and the knee force
$ minimized
$
$ Objective:
$-----------
composite ’Knee_Forces’ type weighted
composite ’Knee_Forces’ response ’Left_Knee_Force’ 0.5
composite ’Knee_Forces’ response ’Right_Knee_Force’ 0.5
objective ’Knee_Forces’
$
$ Constraints:
$-------------
SLACK
Constraint ’Left_Knee_Force’
Upper bound constraint ’Left_Knee_Force’ 0.
$
Constraint ’Right_Knee_Force’
Upper bound constraint ’Right_Knee_Force’ 0.
$
STRICT
Constraint ’Left_Knee_Displacement’
Lower bound constraint ’Left_Knee_Displacement’ -81.33
$
Constraint ’Right_Knee_Displacement’
Lower bound constraint ’Right_Knee_Displacement’ -81.33
$
Constraint ’Kinetic_Energy’

CHAPTER 14: OBJECTIVES AND CONSTRAINTS

LS-OPT Version 3 199

Upper bound constraint ’Kinetic_Energy’ 154000.

Remarks:

1. The objective function is ignored if the problem is infeasible.

2. The variable bounds of both the region of interest and the design space are always hard.

3. Soft constraints will be strictly satisfied if a feasible design is possible.

4. If a feasible design is not possible, the most feasible design will be computed.

5. If feasibility must be compromised (there is no feasible design), the solver will automatically use the

slackness of the soft constraints to try and achieve feasibility of the hard constraints. However, there is
always a possibility that hard constraints must still be violated (even when allowing soft constraints). In
this case, the variable bounds may be violated, which is highly undesirable as the solution will lie
beyond the region of interest and perhaps beyond the design space. This could cause extrapolation of the
response surface or worse, a future attempt to analyze a design which is not analyzable, e.g. a sizing
variable might have become zero or negative.

6. Soft and strict constraints can also be specified for search methods. If there are feasible designs with

respect to hard constraints, but none with respect to all the constraints, including soft constraints, the
most feasible design will be selected. If there are no feasible designs with respect to hard constraints, the
problem is ‘hard-infeasible’ and the optimization terminates with an error message.

14.6 Internal scaling of constraints

Command file syntax:
Constraint constraint_name scale lower bound value <1.0>
Constraint constraint_name scale upper bound value <1.0>

Constraints can be scaled internally to ensure normalized constraint violations. This may be important when
having several constraints and an infeasible solution so that when the maximum violation over the defined
constraints is minimized, the comparison is independent of the choice of measuring units of the constraints.
The scale factor sj is applied internally to constraint j as follows:

0
)(

≤
+−

L
j

jj

s
Lxg

; 0
)(

≤
−

U
j

jj

s
Uxg

.

A logical choice for the selection of s is j

L
j Ls = and j

U
j Us = , so that the above inequalities become

CHAPTER 14: OBJECTIVES AND CONSTRAINTS

200 LS-OPT Version 3

01
)(

≤+
−

j

j

L
xg

; 01
)(

≤−
j

j

U
xg

internally and in the infeasible phase:

e
L

xg

j

j ≤+
−

1
)(

; e
U

xg

j

j ≤−1
)(

; 0≥e

Example:

Constraint ’Left_Knee_Displacement’
Lower bound constraint ’Left_Knee_Displacement’ -81.33
Constraint ’Left_Knee_Displacement’ scale lower bound 81.33

LS-OPT Version 3 201

15. Running the Design Task

This chapter explains simulation job-related information and how to execute a design task from the
graphical user interface.

The available tasks are optimization, probabilistic evaluation, and repair of an existing job.

15.1 Optimization

The optimization process is triggered by the iterate command in the input file or by the Run command
in the Run panel in LS-OPTui (Figure 15-1). The optimization history is written to the
OptimizationHistory file and can be viewed using the View panel.

15.1.1 Number of optimization iterations

The number of optimization iterations are specified in the appropriate field in the Run panel. If previous
results exist, LS-OPT will recognize this (through the presence of results files in the Run directories) and
not rerun these simulations. If the termination criteria described below are reached first, LS-OPT will
terminate and not perform the maximum number of iterations.

Command file syntax:
iterate maximum_ number_of_iterations

15.1.2 Optimization termination criteria

The user can specify tolerances on both the design change (∆xi) and the objective function change (∆f) and
whether termination is reached if either, or both these criteria are met. The default selection is and, but the
user can modify this by selecting or.

Refer to Section 18.1 for the modification of the stopping type in the Command File.

CHAPTER 14: OBJECTIVES AND CONSTRAINTS

202 LS-OPT Version 3

Figure 15-1: Run panel in LS-OPTui (Advanced options displayed)

15.2 Probabilistic Evaluation

Both a Monte Carlo and a metamodel-based Monte Carlo evaluation can be scheduled from the user
interface. The task must be set to the relevant procedure.

Section 10.4 regarding probabilistic evaluation contains more details on the available options.

The results can be viewed using the View panel. The histogram, tradeoff, and covariance plots are pertinent
to a pure Monte Carlo analysis. For a metamodel-based Monte Carlo evaluation, the accuracy, ANOVA,
and stochastic contribution plots are relevant in addition to the histogram, tradeoff, and covariance plots.

The LS-DYNA results can be investigated for possible bifurcations using the tools described in chapter 19.

CHAPTER 14: OBJECTIVES AND CONSTRAINTS

LS-OPT Version 3 203

15.3 Restarting

When a solution is interrupted (through the Stop button) or if a previous optimization run is to be repeated
from a certain starting iteration, this can be specified in the appropriate field in the Run panel (Figure 15-1).

15.4 Job concurrency

When LS-OPT is run on a multi-processor machine, the user can select how many simulations (jobs) can
run concurrently on different processors (see Figure 15-1). Only the solver process and response extraction
are parallellized. The preprocessor processes run serially. The number of Concurrent Jobs is ignored for jobs
that are run by a queuing system.

15.5 Job distribution

When a queuing system is available, its operation can be specified in the Run panel (Figure 15-1).

15.6 Job and analysis monitoring

The Run panel allows a graphical indication of the job progress with the green horizontal bars linked to
estimated completion time. This progress is only available for LS-DYNA jobs. The job monitoring is also
visible when running remotely through a supported job distribution (queuing) system.

When using LS-DYNA, the user can also view the progress (time history) of the analysis by selecting one of
the available quantities (Time Step, Kinetic Energy, Internal Energy, etc.).

15.7 Repair or modification of an existing job
Several kinds of repairs and modifications are possible for an existing optimization iteration or a
probabilistic analysis. The repair depends on the LSOPT database files as described in Section 7.7. The
available repair tasks are:

• Read points. The CASE/Experiments.iteration file is reconstructed from the runs executed. The
experimental points can be extracted from the database in the job directories and the experimental
design thereby reconstructed.

• Augment points of a Metamodel-based analysis. Points are added to the existing experimental
design. This option is only available for the following experimental designs types: D-Optimal,
space-filling, random, and Latin Hypercube. The D-Optimal and space-filling experimental designs
will be computed taking in consideration the previously computed points. Both the random and the
Latin Hypercube experimental design points will be computed using the number of previously
computed points as a seed to the random number generator. If an experimental design does not exist,
new points will be created.

CHAPTER 14: OBJECTIVES AND CONSTRAINTS

204 LS-OPT Version 3

• Augment Points of a Monte Carlo analysis. Points are added to the existing experimental design.
This option is only available for the following experimental designs types: random and Latin
Hypercube. Both the random and the Latin Hypercube experimental design points will be computed
using the number of previously computed points as a seed to random number generator.

• Run Jobs. The LS-DYNA jobs will be scheduled. Designs previously analyzed will not be analyzed
again.

• Rerun failed jobs. The jobs that failed to run will be resubmitted. The LS-DYNA input file used will
be regenerated from the files specified in the main directory. The preprocessor, if one is specified,
will be rerun.

• Extract Results. The results will be extracted from the runs. This option also allows the user to
change the responses for an existing iteration or Monte Carlo analysis.

• Read user results. Extract results from AnalysisResults.PRE.<casename>.
• Build Metamodels. The metamodels will be built. This option also allows revision of the

metamodels for an existing iteration or Monte Carlo analysis.
• Optimize. The metamodels are used for metamodel optimization. A new optimum results database is

created.
• Clean. The directory structure created by LS-OPT and all files in this directory structure are deleted.
• Update database. LS-OPT Version 2.2 function databases can be updated to Version 3 format.
• Gather LS-OPT database. See Section 15.8.

All the subsequent operations must be explicitly performed for the iteration. For example, augmenting an
experimental design will not cause the jobs to be run, the results to be extracted, or the metamodels to be
recomputed. Each of these tasks must be executed separately.

The use of *.PRE.* databases for Experiments and DesignFunctions are not supported by the repair facility.
See Sections 11.5, and 11.6 for the use of these databases.

After repair of iteration n, and if the user is conducting an optimization task, verification runs of the
optimized result must be done by switching back to the Metamodel-based optimization task and specifying
the starting iteration as n+1 for a new run.
Command file syntax:
read experiments iteration_number
design more metamodel iteration_number
design more monte carlo iteration_number
run iteration_number
run failed iteration_number
extract results iteration_number
read user results iteration_number
approximate iteration_number
optimize iteration_number
clean iteration_number
pack database
update database

CHAPTER 14: OBJECTIVES AND CONSTRAINTS

LS-OPT Version 3 205

Figure 15-2: Repair panel

15.8 Saving/compressing the LS-OPT database after completing a run
Using the Repair function, the database can be gathered up and compressed in a file called
lsopack.tar.gz (lsopack.zip in Windows). The packed database is suitable for post-processing
on any computer platform. The repair selection is: Gather LS-OPT database. The gathered database cannot
be used to visualize results stored in sub-sub-directories (e.g. some MeanSqErr post-pocessing).

LS-OPT Version 3 206

16. Viewing Results

This chapter describes the viewing of metamodeling surfaces, metamodeling accuracy, optimization history,
trade-off plots, ANOVA results, as well as statistical plots such as histograms, stochastic contribution of the
variables, covariance, and coefficient of correlation plots.

The View panel in LS-OPTui is used to view the results of the optimization process. The results include the
metamodelling accuracy data, optimization history of the variables, dependents, responses, constraints and
objective(s). Trade-off data can be generated using the existing response surfaces, and ANOVA results can
be viewed.

There are three options for viewing accuracy and tradeoff (anthill plots), namely viewing data for the
current iteration, for all previous iterations simultaneously, all iterations (see e.g. Figure 16-5). The last
option will also show the last verification point (optimal design) in green.

16.1 Metamodel

Three-dimensional cross-sections of the metamodel surfaces and simulation points can be plotted and
viewed from arbitrary angles. The image rotation is performed by holding down the Ctrl key while moving
the mouse (same as LS-PREPOST). The following options are available:

16.1.1 Setup
The selection of the 2 variables and the response function is done here. The sliders allow changing of the
variable values for unselected variables (variables not plotted). The slider for the active variables can be
activated by selecting the “Show Predicted Value” option under the Points tab.

16.1.2 Ranges
A selection can be made to plot the surface across either the full design space or the subregion. The region
size can also be adjusted manually. The check box prevents shrinking of the view box when changing to a
different (usually higher) iteration. See Neural Net plot in Figure 16-3.

16.1.3 Points

CHAPTER 14: OBJECTIVES AND CONSTRAINTS

LS-OPT Version 3 207

Point plotting options

Selection Description
Analysis Results Points are plotted for current iteration
All iterations Points for previous iterations are added
Project points to surface The points are projected on the surface to improve visibility.

Future versions will have a transparency option.
Residuals Shows a black vertical line connecting the computed and

predicted values.
Feasible runs Show feasible runs only
Infeasible runs Show infeasible runs only
Failed runs on surface Failed runs such as error terminations are projected to the surface

in grey

Point status

Selection Description
Feasibility Feasible points are shown in green, infeasible points in red (Figure

16-1).
Previous b/w The points for the current iteration are shown in green (feasible) or

red (infeasible). Previous points as light grey (feasible) or dark grey
(infeasible)

Iterations The iteration sequence is shown using a color progression from blue
through red. See Figure 16-2.

Optimum runs Optimal points are shown in green/red and all other points in white.

CHAPTER 14: OBJECTIVES AND CONSTRAINTS

208 LS-OPT Version 3

Figure 16-1: Metamodel plot showing feasible (green) and infeasible (red) points. The predicted point is
shown in violet (t_hood = 4, t_bumper = 4) with the values displayed at the top left.

CHAPTER 14: OBJECTIVES AND CONSTRAINTS

LS-OPT Version 3 209

Figure 16-2: Metamodel plot showing point color coding for iteration numbers.

Predicting a value

Predicted values can be obtained by selecting the “Predicted Value” option and moving the sliders in the
“Setup” menu. The predicted value is displayed in the top left corner (Figure 16-1).

CHAPTER 14: OBJECTIVES AND CONSTRAINTS

210 LS-OPT Version 3

Figure 16-3: Surface plot representing only the region of interest of the fourth iteration.

16.1.4 Fringe plot options for neural nets
The options are function value or standard deviation of the Neural Net committee values. See Figure 16-4.

CHAPTER 14: OBJECTIVES AND CONSTRAINTS

LS-OPT Version 3 211

Figure 16-4: Metamodel plot showing standard deviation of the Neural Net committee values.

16.2 Metamodel accuracy

The accuracy of the metamodel fit is illustrated in a Computed vs. Predicted plot (Figure 16-5). By clicking
on any of the red squares, the data of the selected design point is listed. For LS-DYNA results, LS-
PREPOST can then be launched to investigate the simulation results. The results of each iteration are
displayed separately using the slider bar. The iterations can be viewed simultaneously by selecting All
Previous or All. The All selection shows the final verification point in green (see Figure 16-5).

CHAPTER 14: OBJECTIVES AND CONSTRAINTS

212 LS-OPT Version 3

Figure 16-5: Computed vs. Predicted plot in View panel in LS-OPTui

16.3 Optimization history

The optimization history of a variable, dependent, response, constraint, objective, multi-objective or the
approximation error parameters of pure responses (not composites or expressions) can be plotted by clicking
on the Optimization History button (Figure 16-6). For the variables, the upper and lower bounds (subregion)
are also displayed. For all the dependents, responses, objectives, constraints and maximum violation, a black
solid line indicates the predicted values, while the red squares represent the computed values at the starting
point of each iteration. For the error parameters, only one solid red line of the optimization history is
plotted. RMS, Maximum and R2 error indicators are available.

By clicking on any of the red squares, the data of the selected design point is listed. For LS-DYNA results,
LS-PREPOST can then be launched to investigate the simulation results.

MeanSqErr composites in the history list are depicted with special icons to emphasize their additional
functionality. By clicking near any of the iterations, the point values are given as well as a selection button
for viewing the history comparison using LS-PREPOST.

CHAPTER 14: OBJECTIVES AND CONSTRAINTS

LS-OPT Version 3 213

Figure 16-6: Optimization History plot in View panel in LS-OPTui

16.4 Trade-off and anthill plots
The results of all the simulated points appear as dots on the trade-off plots. This feature allows the two-
dimensional plotting of any variable/response against any other variable/response.

Trade-off studies can also be conducted based on the results of an optimization run. This is because the
response surfaces for each response are at that stage available at each iteration for rapid evaluation.

Trade-off is performed in LS-OPTui using the View panel and selecting Trade-off (Figure 16-7).

Trade-off curves can be developed using either constraints or objectives. The curve can be plotted with any
of the variables, responses, composites, constraints or objectives on either of the two axes. Care should be
taken when selecting e.g. a certain constraint for plotting, as it may also be either a response or composite,
and that this value maybe different from the constraint value, depending on whether the constraint is active
during the trade-off process. The example in the picture below has Constraint: Intrusion selected for the
X-Axis Entity, and not Composite: Intrusion.
Solutions to the trade-off optimization problem falling outside the region of interest are connected by dotted
lines to indicate extrapolation of the metamodel.

CHAPTER 14: OBJECTIVES AND CONSTRAINTS

214 LS-OPT Version 3

To be able to view the results of composite functions spanning two or more disciplines or cases, the
duplicate sampling method (Section 0) must be selected before starting an analysis. This also implies that
the number of variables must be the same for all the disciplines involved and yields coincident experimental
designs.

An example of trade-off is given in Section 20.1 and 20.2.

Figure 16-7: Trade-off plot in View panel in LS-OPTui

16.5 Variable screening

The Analysis of Variance (ANOVA) (refer to Section 2.9) of the approximation to the experimental design
is automatically performed if a polynomial response surface method is selected. The ANOVA information
can be used to screen variables (remove insignificant variables) at the start of or during the optimization
process. The ANOVA method, a more sophisticated version of what is sometimes termed ‘Sensitivities’ or
‘DOE’, determines the significance of main and interaction effects through a partial F-test (equivalent to
Student’s t-test) [48]. This screening is especially useful to reduce the number of design variables for
different disciplines (see Sections 3.2 (theory) and 20.7 (example)).

The ANOVA results are viewed in bar chart format by clicking on the ANOVA button. The ANOVA panel
is shown in Figure 16-8.

CHAPTER 14: OBJECTIVES AND CONSTRAINTS

LS-OPT Version 3 215

Figure 16-8: ANOVA plot in View panel in LS-OPTui

16.6 Histograms
Histograms of the variables, dependents, responses, and composites are available.

Either the simulation results directly or the metamodels together with the statistical distribution of the
variables can be used to construct the histogram. The simulation results will be read from the
ExtendedResults file of the relevant solver. If the use of the metamodels is selected then a Monte Carlo
simulation using a Latin Hypercube experimental design and the statistical distributions of the variables will
be conducted on the metamodel to obtain the desired histogram. The user can control the number of points
in this Monte Carlo simulation; the default value should however suffice for most cases. If desired, the
residuals of the metamodel fit can be added to results of the Monte Carlo simulation as a normally
distribution.

For optimization results, an iteration can be selected. For probabilistic evaluations the default iteration,
iteration 1, will automatically be selected.

The histogram panel is shown in Figure 16-9.

CHAPTER 14: OBJECTIVES AND CONSTRAINTS

216 LS-OPT Version 3

Figure 16-9 Histogram plot

16.7 Stochastic Contribution
The stochastic contribution of the variables to the variance of the responses and composites (see Section
4.7) can be displayed as a bar chart.

Optionally the user can elect to display the influence of the residuals from the metamodel fit and the effect
of all the variables summed together. Contrasting these two values indicates how well the cause-effect
relationship for the specific response is resolved.

The computations are done using the metamodels.

The stochastic contribution panel is shown in Figure 16-10.

CHAPTER 14: OBJECTIVES AND CONSTRAINTS

LS-OPT Version 3 217

Figure 16-10 Stochastic Contribution plot

16.8 Covariance and Correlation
Both the covariance and the coefficient of correlation of the responses and composites with respect to the
design variables can be displayed.

Either the simulated points or the metamodels together with the statistical distribution of the variables can
be used. If a metamodel is used then a Monte Carlo simulation using a Latin Hypercube experimental design
and the statistical distributions of the variables will be conducted on the metamodel to obtain the desired
results. The user can control the number of points in this Monte Carlo simulation; the default value should
however suffice for most cases.

The plots can be used to estimate the stochastic contribution for an analysis without a metamodel.

The covariance panel is shown in Figure 16-11.

CHAPTER 14: OBJECTIVES AND CONSTRAINTS

218 LS-OPT Version 3

Figure 16-11 Coefficient of Correlation plot

16.9 Plot generation

Plots can be generated in LS-OPTui by selecting File>Export. The current supported format is postscript,
both color and monochrome, either to a device or file.

CHAPTER 14: OBJECTIVES AND CONSTRAINTS

LS-OPT Version 3 219

LS-OPT Version 3 221

17. Applications of Optimization

This chapter provides a brief description of some of the applications of optimization that can be performed
using LS-OPT. It should be read in conjunction with Chapter 20, the Examples chapter, where the
applications are illustrated with practical examples.

17.1 Multidisciplinary Design Optimization (MDO)

The MDO capability in LS-OPT implies that the user has the option of assigning different variables,
experimental designs and job specification information to different solvers or disciplines. The directory
structure change that has been incorporated in this version, separates the number of experiments that needs
to be run for each solver by creating separate Experiments, AnalysisResults,
DesignFunctions and ExtendedResults files in each solver directory.

Command file syntax:
mdo mdotype

The only mdotype available is mdf, or multidisciplinary feasible.

17.1.1 Command file

All variable definitions are defined first, as when solving non-MDO problems, regardless of whether they
belong to all disciplines or solvers. This means that the variable starting value, bounds (minimum and
maximum) and range (sub-region size) are defined together. If a variable is not shared by all disciplines,
however, i.e., it belongs to some but not all of the disciplines (solvers), then it is flagged using the syntax
local variable_name. At this stage, no mention is made in the command file to which solver(s) the
particular variable belongs. This reference is made under the solver context, where the syntax Solver
variable variable_name is used, see next paragraph and example below.

To limit the scope of a variable, an experimental design or job information to a particular solver, the prefix
solver should be applied to the commands below. The solver definition must precede any commands
having the solver prefix. Omission of the prefix implies that the specification is multidisciplinary, i.e., it
is shared between all the specified solvers.

CHAPTER 17: APPLICATIONS OF OPTIMIZATION

222 LS-OPT Version 3

Variable
Concurrent jobs
Order
Experiment design
Basis experiment
Number Basis experiment
Number experiment
Queuer
Update doe
Experiment duplicate

See the examples in Sections 20.6 and 20.7 for the command file format.

17.2 Worst-case design

The default setting in LS-OPT is that all design variables are treated as minimization variables. This means
that the objective function is minimized (or maximized) with respect to all the variables. Maximization
variables are selected in the Variables panel (see Figure 9-1) by toggling the required variables from
‘Minimize’ to ‘Maximize’.

17.3 Reliability-based design optimization (RBDO)*
LS-OPT has a reliability-based design capability based on the computation of the standard deviation of any
response. The theoretical concerns are discussed in Section 3.5.

The method computes the standard deviation of the responses using the same metamodel as used for the
deterministic optimization portion of the problem using the First Order Second Method (FOSM) or First
Order Reliability Method (FORM) method. No additional FE runs are therefore required for the
probabilistic computations.

The method requires very little information additionally to what is required for deterministic optimization.
Specify the following:

1. Statistical distributions associated with the design variables
2. Probabilistic bounds on the constraints

The statistical distributions associated with the design variables are specified in the same manner as for a
Monte Carlo analysis using a metamodel.

The current GUI support is limited to what is available for deterministic design optimization and Monte
Carlo analysis.

Command file syntax:
probability upper bound constraint ’con_name’ upper_bound
probability lower bound constraint ’con_name’ lower_bound
iterate number_of_iterations

CHAPTER 14: OBJECTIVES AND CONSTRAINTS

LS-OPT Version 3 223

An example is given in Section 20.2.10.

LS-OPT Version 3 225

18. Optimization Algorithm
Selection and Settings

This chapter describes the parameter settings for the domain reduction and LFOPC methods that are used in
LS-OPT. The default parameters for both the domain reduction scheme and the core optimization algorithm
(LFOPC) should be sufficient for most optimization applications. The following sections describe how to
modify the default settings. These can only be modified using the command language.

18.1 Selecting an optimization algorithm

There are two optimization algorithms available namely the Successive Response Surface Method (SRSM)
and the Sequential Random Search (SRS) method. The syntax is as follows:

Command file syntax:
Optimization method [srsm|randomsearch]

SRSM is the default.

18.2 Subdomain reduction

18.2.1 Setting the subdomain parameters
To automate the successive subdomain scheme for both SRSM and Sequential Random Search, the size of
the region of interest (as defined by the range of each variable) is adapted based on the accuracy of the
previous optimum and, for SRSM, also on the occurrence of oscillation (see theory in Section 2.12).

The following parameters can be adjusted (refer also to Section 2.12). A suitable default has been provided
for each parameter but the user should not find it necessary to change any of these parameters.

CHAPTER 18: Optimization Algorithm Selection and Settings

226 LS-OPT Version 3

Table 18-1: Subdomain parameters and default values

Default Item Parameter
SRSM SRS SRSM

(NN)
objective Tolerance on objective function

accuracy εf
0.01 0.01 0.01

design Tolerance on design accuracy εx 0.01 0.01 0.01
stoppingtype and: objective and design;

or: objective or design
and and and

psi γpan 1.0 1.0 1.0
gamma γosc 0.6 1.0 1.0
eta Zoom parameter η 0.6 0.5* 0.75
rangelimit Minimum range 0.0 0.0 0.0
repeatlimit Limit on number of times solution is

repeated (SRS only)
5 5 5

* Applied when the design has not changed.

Command file syntax:
iterate param parameter_identifier value
iterate param rangelimit ‘variable_name’ value

The iterative process is terminated if the following convergence criteria become active:

fk

kk

f
ff ε<

−
−

−

)1(

)1()(

and/or

x

kk

ε<
− −

d

xx)1()(

where x refers to the vector of design variables, d is the size of the design space, f denotes the value of the
objective function and, (k) and (k – 1) refer to two successive iteration numbers. The stoppingtype
parameter is used to determine whether (and) or (or) will be used, e.g.

iterate param design 0.001
iterate param objective 0.001
iterate param stoppingtype or
implies that the optimization will terminate when either criterion is met.

The range limit can be used to specify the minimum size of the region of interest. This is not a stopping
criterion so that the solver will still continue to iterate until any of the other stopping criteria are met.

CHAPTER 18: OPTIMIZATION ALGORITHM SELECTION AND SETTINGS

LS-OPT Version 3 227

An application of the range limit is to maintain a constant tolerance on the random variables.

Command file syntax:
iterate param rangelimit variable_name value

Example:

iterate param rangelimit ’thickness 1’ 0.5
iterate param rangelimit ’Radius’ 10

18.2.2 Changing the behavior of the subdomain
Resetting the subdomain range
It is possible to reset the subregion range to the initial range, e.g. for adding points in the full design space
(or any specified range around the optimum) after an optimization has been conducted. This feature is
typically only used in a restart mode.

Command file syntax:
iterate param reset range iteration iteration_number

Example:

iterate param reset range iteration 3

The point selection of iteration 3 will be conducted in the initial range around the most recent optimum
point. Full adaptivity will be applied again starting with iteration 4.

Freezing the subdomain range
This feature allows for points to be added without changing the size of the subregion. Adaptivity can be
frozen at a specified iteration number.

Command file syntax:
iterate param adapt off iteration iteration_number

Example:

iterate param adapt off iteration 3

Adaptivity will be applied up to the second iteration. Therefore iterations 3 and higher will have the same
range (although the region of interest may be panning). The flag is useful for adding points to the full design
space without any changes in the boundaries.

CHAPTER 18: Optimization Algorithm Selection and Settings

228 LS-OPT Version 3

18.3 Setting parameters in the LFOPC optimization algorithm

The values of the responses are scaled with the values at the initial design. The default parameters in
LFOPC should therefore be adequate. Should the user have more stringent requirements, the following
parameters may be set for LFOPC. These are only available in the command input file.

Table 18-2: LFOPC parameters and default values

Item Parameter Default value Remark
mu Initial penalty value µ 1.0E+2
mumax Maximum penalty value µ max 1.0E+4 1
xtol Convergence tolerance εx on the step movement 1.0E-8 2
eg Convergence tolerance εf on the norm of the gradient 1.0E-5 2
delt Maximum step size δ See remark 3
steps Maximum number of steps per phase 1000 1
print Printing interval 10 4

Remarks:

1. For higher accuracy, at the expense of economy, the value of µ max can be increased. Since the

optimization is done on approximate functions, economy is usually not important. The value of steps
must then be increased as well.

2. The optimization is terminated when either of the convergence criteria becomes active that is when

xε<∆)(x

or
ff ε<∇)(x

3. It is recommended that the maximum step size, δ, be of the same order of magnitude as the “diameter of

the region of interest”. To enable a small step size for the successive approximation scheme, the value of

delt has been defaulted to ∑ =
=

n

i
range

1
2)(05.0δ .

4. If print = steps + 1, then the printing is done on step 0 and exit only. The values of the design

variables are suppressed on intermediate steps if print < 0.
Command file syntax:
lfop param parameter_identifier value

Example:

lfop param eg 1.0e-6

CHAPTER 18: OPTIMIZATION ALGORITHM SELECTION AND SETTINGS

LS-OPT Version 3 229

In the case of an infeasible optimization problem, the solver will find the most feasible design within the
given region of interest bounded by the simple upper and lower bounds. A global solution is attempted by
multiple starts from a set of random points.

LS-OPT Version 3 231

19. LS-DYNA Results Statistics

Various statistics of the LS-DYNA d3plot results and LS-OPT history data can be computed using LS-OPT
for viewing in LS-PREPOST on the FE model. These statistics shows:

• The variation of the LS-DYNA results due to the variation of the design parameters.
• The variation of the LS-DYNA results due to bifurcations and other stochastic process events.

The d3plot results are computed and displayed for every node or element for every state in the d3plot
database, while the history results are likewise computed and displayed for every timestep in the history.

A more complete list of the statistics that can be computed and visualized is:

• Statistics of the Monte Carlo data from the LS-DYNA jobs. These are the data from the
experimental designs used. If the experimental design was for a Monte Carlo analysis then the
experimental design reflects the variation of the design variables, but if the experimental design was
for creating a metamodel then the experimental design does not reflect the statistical variation of the
design variables.

• Statistics of the results considering the variation of the design variables using the approximations
(metamodels) created from the LS-DYNA jobs. The distributions of the design variables and the
metamodels are used to compute the variation of the responses. If distributions were not assigned to
the design variables, then the resulting variation will be zero. The metamodels allow the
computations of the following:

o The deterministic or parametric variation of the responses caused by the variation of the
design variables.

o Statistics of the residuals from the metamodels created from the LS-DYNA jobs. These
residuals are used to find bifurcations in the structural behavior – the outliers comprise the
displacement changes not associated with a design variable change. See section 4.6 regarding
the computation of outliers. This is the process variation is associated with structural effects
such as bifurcations and not with changes in the design variable values.

o The stochastic contribution of a variable can be investigated.
o A probabilistic safety margin with respect to a bound on the LS-DYNA response can be

plotted.
• The LS-OPT histories of all the LS-DYNA runs can be plotted.
• The correlation of d3plot results or histories with an LS-OPT response can be displayed. This can be

used, for example, to identify the changes in displacements associated with noise in an LS-OPT
response.

CHAPTER 19: LS-DYNA Results Statistics

232 LS-OPT Version 3

Figure 19-1 Computation of DYNA results statistics. The left hand side of the GUI is dedicated to the

selection of the LS-DYNA result; the center is dedicated to the required statistics; and the right hand side is
used for infrequently used options such as the solver, the task type, and the constraint margin bound.

19.1 Monte Carlo
The statistic of the responses from a Monte Carlo procedure can be computed.

This Monte Carlo task will calculate:

• Statistics of the response
o Mean value of the response
o Standard deviation of the response
o Range of the response (maximum minus the minimum value)
o Maximum value of the response
o Minimum value of the response
o ID of the LS-DYNA job where the maximum value occurred. This can be used to

indentify the jobs likely to contain a different bifurcation.
o ID of the LS-DYNA job where the minimum value occurred. This can be used to

indentify the jobs likely to contain a different bifurcation.
• The margin of safety (constraint margin) considering (i) a given bound on the response and

(ii) the variation of the response as computed using the Monte Carlo analysis (see also
Section 19.4).

CHAPTER 19: LS-DYNA Results Statistics

LS-OPT Version 3 233

19.2 Metamodels and residuals
Metamodels (approximations) can be used to predict the statistics of the responses. These metamodels
(approximations) will be computed for all results for all nodes for all time steps.

The metamodels are also useful for separating deterministic variation, caused by the variation of the design
variables, from the process variation. The two types of variation are as shown in Figure 19-2.

Figure 19-2 Different types of variation that can occur in a structure. The deterministic variation, predicted
using the metamodel, is due to changes in the design variable values. The process variation, not associated

with change in the design variable values, shows up in the residuals of the metamodel fit.

Metamodels are able to distinguish the process variation because, as shown in Figure 19-3, a metamodel can
only predict the effect of the design variables. Process variation, not predictable by the design variables,
becomes residuals.

CHAPTER 19: LS-DYNA Results Statistics

234 LS-OPT Version 3

Figure 19-3 Metamodels can be used to distinguish between changes in the results due to the design variable

changes and changes due to bifurcations.

The metamodel task will calculate:
• Statistics of the response due to all the variables using the metamodel

o Mean value of the response
o Standard deviation of the response
o Range (four standard deviations)
o Maximum value (mean plus two standard deviations)
o Minimum value (mean minus two standard deviations)

• Statistics of the residuals
o Mean value of the residuals (always zero)
o Standard deviation of the residuals
o Range of the residuals (maximum minus the minimum value)
o Maximum value of the residuals
o Minimum value of the residuals
o ID of the LS-DYNA job where the maximum residual occurred. This can be used to

indentify the jobs likely to contain a different bifurcation.
o ID of the LS-DYNA job where the minimum residual occurred. This can be used to

indentify the jobs likely to contain a different bifurcation.
• Stochastic contribution of each individual variable
• The margin of safety (constraint margin) considering (i) a given bound on the response and

(ii) the variation of the response as computed using the metamodel (see also Section 19.4).
• All the computations as specified for the Monte Carlo procedure. The data required for this

computation is read in for the metamodel computations, so very little time is expended
computed these results as well.

The standard deviation of the variation caused by the design variables are computed using the metamodel as
described in Section 4.7. The maximum, minimum, and range are computed using the mean value

CHAPTER 19: LS-DYNA Results Statistics

LS-OPT Version 3 235

plus/minus two standard deviations. The Max Job ID and Min Job ID are not meaningfull for the metamodel
results.

The residuals are computed as the difference between the values computed using FEA and the values
predicted using the metamodel (see Section 4.6 for more details).

A linear or a quadratic response surface can be used.

The metamodel processing speed is approximately 105 – 106 finite element nodes a second, where the total
number of nodes to be processed are the number of nodes in the model times the number of states times the
number of jobs. FLD computations, which requires the computation of the principle strains, can be a factor
of five slower than computations using the nodal displacements. The overall speed is dominated by the time
required to read the d3plot files from disk, which means accessing files over a network will be slow.

19.3 Stochastic contribution of a variable (Design sensitivity analysis)

The contribution of each design variable to the variation of the nodal response can also be plotted on the
model. These results are computed as described in Section Section 4.7.

The most important variable, or rather the variable responsible for the most variation of the response, can be
plotted on the model. Actually, only the index of the variable is displayed on the model. This index is the
same as in the list of variables as shown in the LS-DYNA results statistics GUI.

Figure 19-4 Viewing the stochastic contribution of a single variable.

CHAPTER 19: LS-DYNA Results Statistics

236 LS-OPT Version 3

19.4 Safety margin
The safety margin is simply the difference, measured in standard deviations, between the mean response and
the constraint bound on the response as shown in Figure 19-5. The bound must therefore be specified when
the statistics are computed. Obtaining the safety margin for a different bound requires the recomputation of
the statistic.

Figure 19-5 The safety margin is the difference, measured in standard deviations, between the mean

response and the constraint bound on the response.

19.5 Monte Carlo and metamodel analysis commands

This section gives the commands required for the computation of the statistics from a Monte Carlo or a
metamodel based set of LS-DYNA results.

Either the LS-DYNA d3plot results or LS-OPT history results can be analyzed. The resulting output can be
viewed in LS-PREPOST. The results will be in the solver directory with extensions of .statdb and .history.

The statistic are computed for a single solver and a single iteration.

Command file syntax:

Example:

dynastat order linear

Command file syntax:

CHAPTER 19: LS-DYNA Results Statistics

LS-OPT Version 3 237

dynastat solver ‘solver_name‘
dynastat iteration interation_number
dynastat order approx_order
analyze dynastat
analyze dynastat d3plot ‘result_type’ ‘component’
analyze dynastat d3plot ‘FLD’ ‘fld_component’ fld_t fld_n
analyze dynastat d3plot ‘FLD’ ‘fld_component’ fld_curve_id
analyze dynastat history ‘history_name’

Item Description Default
solver_name Name of solver The first or only solver

specified
iteration_number Iteration number 1
approx_order linear | quadratic Do not use a metamodel
result_type The available result types are

listed Appendix A

component The available components are
listed Appendix A

fld_t FLD curve t coefficient
fld_n FLD curve n coefficient
fld_curve_id ID in the LS-DYNA file of the

FLD curve to be used

history_name Name of LS-OPT history

Example:

$ analyze displacement using a metamodel
dynastat solver ‘CRASH’
dynastat iteration 1
analyze dynastat
dynastat order linear
$
$ analyze history using a metamodel
dynastat solver ‘CRASH’
dynastat iteration 1
dynastat order linear
analyze dynastat history ‘nHist’

Example:

dynastat solver ‘CRASH’
dynastat iteration 1

CHAPTER 19: LS-DYNA Results Statistics

238 LS-OPT Version 3

19.6 Correlation
The correlation of the LS-DYNA results or LS-OPT histories with a response can be computed. This
quantity indicates whether the changes in the responses are associated with the changes in the displacement
or history. Figure 19-6 shows examples of a positive, a negative, and a lack of correlation.

Figure 19-6 Correlation between X, shown in the upper left corner, and different responses Y. Different

responses Y with a positive, a negative, and no correlation are shown.

Correlation coefficients larger than 0.3 are usually considered significant.

If not enough FE evaluations were conducted, the resulting fringe plot can be visually noisy. 30 or more FE
evaluations may be required.

Note that the correlation of history is with respect to a response at a single time instance.

CHAPTER 19: LS-DYNA Results Statistics

LS-OPT Version 3 239

Figure 19-7 Viewing the correlation between an LS-DYNA response and an LS-OPT response.
Additionally, the correlation between an LS-OPT history and an LS-OPT response can also be viewed.

Command file syntax:

dynastat correlation response ’name’

Item Description
name Name of response or composite

Example:

dynastat correlation response ‘node_max’

19.7 Visualization in LS-PREPOST

The user can select the LS-PREPOST plot details in LS-OPT (Figure 19-8). The GUI options will reflect
whether displacements or history data is being investigated and whether coefficient of correlation results are
requested.

CHAPTER 19: LS-DYNA Results Statistics

240 LS-OPT Version 3

Figure 19-8 The statistics viewing options. The statistics contributed by all the variables, the residuals, and
a single variable can be viewed. The statistics will be shown in LS-PREPOST using the FE model from the
LS-DYNA job specified using the Job ID field. If the residuals are viewed, then the FE models of the jobs

containing the maximum and minimum residuals can be overlayed in order to identify bifurcations as
described in section 19.9.

The Job Index field specifies the FE model used for the display of the results. Additionally, the FE models
containing the maximum and the minimum results can be overlayed in order to spot bifurcations as
described in a later section.

The LS-PREPOST executable must be named lsprepost. The LS-PREPOST executable must be newer than
December 2003.

19.8 Viewing LS-OPT histories
The LS-OPT histories for all the LS-DYNA run can be viewed simultaneously. See Figure 19-11 for an
example.

CHAPTER 19: LS-DYNA Results Statistics

LS-OPT Version 3 241

Figure 19-9 Viewing LS-OPT histories.

Figure 19-10 Statistics of an LS-OPT history.

CHAPTER 19: LS-DYNA Results Statistics

242 LS-OPT Version 3

Figure 19-11 The LS-OPT histories of all the LS-DYNA run can be viewed simultaneously.

19.9 Bifurcation investigations

The residuals plots are useful for finding bifurcations. The standard deviation (or range) of the residuals
indicate regions where the changes in displacements are not explained by changes in the design variable
values ― it is therefore a plot of the unexpected displacements or ‘surprise factor’. The plots from a Monte
Carlo analysis can also be used to find bifurcations similarly to the residuals from a metamodel-based
Monte Carlo analysis.

19.9.1 Automatic detection
Automatic detection of the LS-DYNA jobs containing the minimum and maximum outlier can be done as
shown in Figure 19-8. The GUI the user must select (i) overlay of the FE models containing the maximum
and minimum results and (ii) whether the global minimum or the minimum at specific node must be used.
Viewing the maximum and minimum job simultaneously allows the bifurcation to be identified. See Figure
19-8 for an example of the resulting LS-PREPOST plot.

CHAPTER 19: LS-DYNA Results Statistics

LS-OPT Version 3 243

Figure 19-12 Viewing a bifurcation. The structure is a plate that can buckle either left or right. Three FE
models are shown, and the two distinctly different solution modes are clearly visible. The creation and
display of the plot containing all three models are automated in LS-OPT.

19.9.2 Manual detection
The steps for manual detection are:

1. Plot displacement magnitude outlier Range to identify location in FE model where the bifurcation
occurred.

2. Identify job in which maximum value occurred using a Max Job ID plot
3. Identify job in which minimum value occurred using a Min Job ID plot
4. View the location in model for the jobs having the minimum and maximum value

Recommendations:

• Engineering knowledge of the structure is important.
• Look at the x, y, and z components in addition to the displacement magnitude to understand in which

direction the bifurcation occurred; most bifurcations are actually best identified considering a
displacement component.

CHAPTER 19: LS-DYNA Results Statistics

244 LS-OPT Version 3

• The history results may be useful to find the time at which a bifurcation occurred.
• The correlation between a response and displacements (or histories) indicates if variation of the

displacement is linked to variation of the response.
• Look at all of the states in the d3plot database; the bifurcation may be clearer at an earlier analysis

time.

19.10 Displacement magnitude issues*

Approximation of the displacement magnitudes (resultants) introduces some special cases. The magnitude is
defined as the square root of a sum of squares, which is difficult to approximate around the origin,
especially using linear approximations. Figure 19-13 illustrates. The x, y, and z displacement components
do not suffer from this problem.

Figure 19-13 Displacement approximation scenarios. The displacement magnitude, being always larger than
zero, cannot be approximated accurately around the origin if some of the displacement components can have

a negative value.

Unexpected results may occur even if the displacement magnitude is approximated correctly. The
displacement magnitude is always a positive quantity, which, in addition to the fitting problems, can also
cause problems when computing the coefficient of correlation with a response quantity. Figure 19-14
illustrates two buckling modes of a flange evaluated at two locations in space. The displacement magnitude

CHAPTER 19: LS-DYNA Results Statistics

LS-OPT Version 3 245

variance differs for the two locations though the buckling modes are similar. The variance of the
displacement magnitude will therefore be smaller than what would be found considering the components.
Considering a displacement component will cure this problem, but a displacement component aligned with
the required direction may not always exist.

Figure 19-14 The displacement magnitude can depend on the aligment of flange with axis. The buckling
will be difficult to spot if it is aligned with the position of the axis. For configuration A, the two vectors

have nearly the same length, while for configuration B, they clearly have different lengths.

Recommendations:

• Use the x, y, and z displacement components.

 247

EXAMPLES

248 LS-OPT Version 3

 249

20. Example Problems

20.1 Two-bar truss (2 variables)

This example has the following features:

• A user-defined solver is used.
• Extraction is performed using user-defined scripts.
• First- and second-order response surface approximations are compared.
• The effect of subregion size is investigated.
• A trade-off study is performed.
• The design optimization process is automated.

20.1.1 Description of problem

This example problem as shown in Figure 20-1 has one geometric and one element sizing variable.

x2

x1

x2

F

Figure 20-1: The two-bar truss example

CHAPTER 20: EXAMPLE PROBLEMS

250 LS-OPT Version 3

The problem is statically determinate. The forces on the members depend only on the geometric variable.

Only one load case is considered: F = (Fx,Fy) = (24.8kN, 198.4kN).

There are two design variables: x1 the cross-sectional area of the bars, and x2 half of the distance (m)
between the supported nodes. The lower bounds on the variables are 0.2cm2 and 0.1m, respectively. The
upper bounds on the variables are 4.0cm2 and 1.6m, respectively.

The objective function is the weight of the structure.

 2

211 1)(xxCxf += (20.1)

The stresses in the members are constrained to be less than 100 MPa.

 1181)(
211

2
221 ≤⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
++=

xxx
xCxσ (20.2)

 1181)(
211

2
222 ≤⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−+=

xxx
xCxσ (20.3)

where C1 = 1.0 and C2 = 0.124.

Only the first stress constraint is considered since it will always have the larger value.

The C language is used for the simulation program. The following two programs simulate the weight
response and stress response respectively.

gw.c
#include <stdlib.h>
#include <stdio.h>
#include <math.h>

#define NUMVAR 2

main (int argc, char *argv[])
{
int i, flag;
double x[NUMVAR], val;

 for (i=0; i<NUMVAR; i++) {
 flag = sscanf (argv[i+1], "%lf", &x[i]);
 if (flag != 1) {
 printf ("Error in calculation of Objective Function\n");
 exit (1);
 }
 }

 val = x[0] * sqrt(1 + x[1]*x[1]);

 printf ("%lf\n", val);
 fprintf (stderr, "N o r m a l\n");

 CHAPTER 20: EXAMPLE PROBLEMS

LS-OPT Version 3 251

 exit (0);
}

gs.c
#include <stdlib.h>
#include <stdio.h>
#include <math.h>

#define NUMVAR 2

main (int argc, char *argv[])
{
int i, flag;
double x[NUMVAR], val;
double x2;

 for (i=0; i<NUMVAR; i++) {
 flag = sscanf (argv[i+1], "%lf", &x[i]);
 if (flag != 1) {
 printf ("Error in calculation of constraint1\n");
 exit (1);
 }
 }
 x2 = 1 + x[1]*x[1];
 val = 0.124 * sqrt (x2) * (8/x[0] + 1/x[0]/x[1]);

 printf ("%lf\n", val);
 fprintf (stderr, "N o r m a l\n");

 exit (0);
}
The UNIX script program 2bar_com runs the C-programs gw and gss using the design variable file
XPoint which is resident in each run directory, as input. For practical purposes, 2bar_com, gw and gs
have been placed in a directory above the working directory (or three directories above the run directory).
Hence the references ../../../2bar_com, ../../../gw, etc. in the LS-OPT input file.

Note the output of the string "N o r m a l" so that the completion status may be recognized.

2bar_com:
../../../gw `cat XPoint` >wt; ../../../gss `cat XPoint` >str

The UNIX extraction scripts get_wt and get_str are defined as user interfaces:

get_wt:
cat wt

get_str:
cat str

In Sections 20.1.2 to 20.1.4, a typical semi-automated optimization procedure is illustrated. Section 20.1.5
shows how a trade-off study can be conducted, while the last subsection 20.1.6 shows how an automated
procedure can be specified for this example problem.

CHAPTER 20: EXAMPLE PROBLEMS

252 LS-OPT Version 3

20.1.2 A first approximation using linear response surfaces

The first iteration is chosen to be linear. The input file for LS-OPT given below. The initial design is located
at x = (2.0, 0.8).

"2BAR1: Two-Bar Truss: A first approximation (linear)"
$ Created on Wed Jul 10 17:41:03 2002
$
$ DESIGN VARIABLES
$
variables 2
 Variable 'Area' 2
 Lower bound variable 'Area' 0.2
 Upper bound variable 'Area' 4
 Range 'Area' 4
 Variable 'Base' 0.8
 Lower bound variable 'Base' 0.1
 Upper bound variable 'Base' 1.6
 Range 'Base' 1.6
solvers 1
responses 2
$
$ NO HISTORIES ARE DEFINED
$
$
$ DEFINITION OF SOLVER "RUNS"
$
 solver own 'RUNS'
 solver command "../../../2bar_com"
$
$ RESPONSES FOR SOLVER "RUNS"
$
 response 'Weight' 1 0 "cat wt"
 response 'Weight' linear
 response 'Stress' 1 0 "cat str"
 response 'Stress' linear
$
$ NO HISTORIES DEFINED FOR SOLVER "RUNS"
$
$
$ OBJECTIVE FUNCTIONS
$
 objectives 1
 objective 'Weight' 1
$
$ CONSTRAINT DEFINITIONS
$
 constraints 1
 constraint 'Stress'
 upper bound constraint 'Stress' 1
$
$ EXPERIMENTAL DESIGN
$
 Order linear
 Experimental design dopt

 CHAPTER 20: EXAMPLE PROBLEMS

LS-OPT Version 3 253

 Basis experiment 3toK
 Number experiment 5
$
$ JOB INFO
$
 concurrent jobs 4
 iterate param design 0.01
 iterate param objective 0.01
 iterate 1
STOP

The input is echoed in the file lsopt_input.
The output is given in lsopt_output and in the View panel of LS-OPTui.

A summary of the response surface statistics from the output file is given:

Approximating Response 'Weight' using 5 points (ITERATION 1)
--
 Global error parameters of response surface

Linear Function Approximation:

Mean response value = 2.9413

RMS error = 0.7569 (25.73%)
Maximum Residual = 0.8978 (30.52%)
Average Error = 0.7131 (24.24%)
Square Root PRESS Residual = 2.5054 (85.18%)
Variance = 0.9549
R^2 = 0.9217
R^2 (adjusted) = 0.9217
R^2 (prediction) = 0.1426
Determinant of [X]'[X] = 3.5615

Approximating Response 'Stress' using 5 points (ITERATION 1)
--
 Global error parameters of response surface

Linear Function Approximation:

Mean response value = 4.6210

RMS error = 2.0701 (44.80%)
Maximum Residual = 4.1095 (88.93%)
Average Error = 1.6438 (35.57%)
Square Root PRESS Residual = 3.9077 (84.56%)
Variance = 7.1420
R^2 = 0.8243
R^2 (adjusted) = 0.8243
R^2 (prediction) = 0.3738
Determinant of [X]'[X] = 3.5615

The accuracy of the response surfaces can also be illustrated by plotting the predicted results vs. the
computed results (Figure 20-2).

CHAPTER 20: EXAMPLE PROBLEMS

254 LS-OPT Version 3

Prediction accuracy of Weight

(Iteration 1 - Linear)
Prediction accuracy of Stress

(Iteration 1 - Linear)

Figure 20-2: Prediction accuracy of Weight and Stress (Iteration 1 – Linear)

The R2 values are large. However the prediction accuracy, especially for weight, seems to be poor, so that a
higher order of approximation will be required.

Nevertheless an improved design is predicted with the constraint value (stress) changing from an
approximate 4.884 (severely violated) to 1.0 (the constraint is active). Due to inaccuracy, the actual
constraint value of the optimum is 0.634. The weight changes from 2.776 to 4.137 (3.557 computed) to
accommodate the violated stress:

DESIGN POINT

Variable Name Lower Bound Value Upper Bound
--------------------------------|-----------|----------|-----------
Area 0.2 3.539 4
Base 0.1 0.1 1.6
--------------------------------|-----------|----------|-----------

RESPONSE FUNCTIONS:

 | Scaled | Unscaled |
 |---------------------|---------------------|
RESPONSE | Computed Predicted| Computed Predicted|
--------------------------------|----------|----------|----------|----------|
Weight | 3.557 4.137| 3.557 4.137|
Stress | 0.6338 1| 0.6338 1|
--------------------------------|----------|----------|----------|----------|

 CHAPTER 20: EXAMPLE PROBLEMS

LS-OPT Version 3 255

 OBJECTIVE:

Computed Value = 3.557
Predicted Value = 4.137

OBJECTIVE FUNCTIONS:

OBJECTIVE NAME | Computed Predicted WT.
--------------------------------|----------|----------|----
Weight | 3.557 4.137| 1
--------------------------------|----------|----------|----

CONSTRAINT FUNCTIONS:

CONSTRAINT NAME	Computed	Predicted	Lower	Upper	Viol?
Stress | 0.6338 1| -1e+30 1|no
--------------------------------|----------|----------|----------|----------|-----

CONSTRAINT VIOLATIONS:

 | Computed Violation | Predicted Violation |
CONSTRAINT NAME |----------|----------|----------|----------|
 | Lower | Upper | Lower | Upper |
--------------------------------|----------|----------|----------|----------|
Stress | - - | - - |
--------------------------------|----------|----------|----------|----------|

MAXIMUM VIOLATION:

 | Computed | Predicted |
 Quantity |---------------------------|---------------------------|
 | Constraint Value | Constraint Value |
-------------------|----------------|----------|----------------|----------|
Maximum Violation |Stress 0|Stress 6.995e-08|
Smallest Margin |Stress 0.3662|Stress 6.995e-08|
-------------------|----------------|----------|----------------|----------|

20.1.3 Updating the approximation to second order

To improve the accuracy, a second run is conducted using a quadratic approximation. The following
statements differ from the input file above:
"2BAR2: Two-Bar Truss: Updating the approximation to 2nd order"
response 'Weight' quadratic
response 'Stress' quadratic
$
$ EXPERIMENTAL DESIGN
$
 Order quadratic
 Experimental design dopt
 Basis experiment 5toK
 Number experiment 10

CHAPTER 20: EXAMPLE PROBLEMS

256 LS-OPT Version 3

The approximation results have improved considerably, but the stress approximation is still poor.

Approximating Response 'Weight' using 10 points (ITERATION 1)
--
 Global error parameters of response surface

Quadratic Function Approximation:

Mean response value = 2.8402

RMS error = 0.0942 (3.32%)
Maximum Residual = 0.1755 (6.18%)
Average Error = 0.0737 (2.59%)
Square Root PRESS Residual = 0.2815 (9.91%)
Variance = 0.0177
R^2 = 0.9983
R^2 (adjusted) = 0.9983
R^2 (prediction) = 0.9851
Determinant of [X]'[X] = 14.6629

Approximating Response 'Stress' using 10 points (ITERATION 1)
--
 Global error parameters of response surface

Quadratic Function Approximation:

Mean response value = 3.4592

RMS error = 1.0291 (29.75%)
Maximum Residual = 2.0762 (60.02%)
Average Error = 0.8385 (24.24%)
Square Root PRESS Residual = 2.4797 (71.68%)
Variance = 2.1182
R^2 = 0.9378
R^2 (adjusted) = 0.9378
R^2 (prediction) = 0.6387
Determinant of [X]'[X] = 14.6629

The fit is illustrated below in Figure 20-3:

 CHAPTER 20: EXAMPLE PROBLEMS

LS-OPT Version 3 257

Prediction accuracy of Weight

(Iteration 1 - Quadratic)
Prediction accuracy of Stress

(Iteration 1 - Quadratic)

Figure 20-3: Prediction accuracy of Weight and Stress (Iteration 1 – Quadratic)

An improved design is predicted with the constraint value (stress) changing from a computed 0.734 to 1.0
(the approximate constraint becomes active). Due to inaccuracy, the actual constraint value of the optimum
is a feasible 0.793. The weight changes from 2.561 to 1.925 (1.907 computed).

DESIGN POINT

Variable Name Lower Bound Value Upper Bound
--------------------------------|-----------|----------|-----------
Area 0.2 1.766 4
Base 0.1 0.4068 1.6
--------------------------------|-----------|----------|-----------

RESPONSE FUNCTIONS:

 | Scaled | Unscaled |
 |---------------------|---------------------|
RESPONSE | Computed Predicted| Computed Predicted|
--------------------------------|----------|----------|----------|----------|
Weight | 1.907 1.925| 1.907 1.925|
Stress | 0.7927 1| 0.7927 1|
--------------------------------|----------|----------|----------|----------|

 OBJECTIVE:

Computed Value = 1.907
Predicted Value = 1.925

CHAPTER 20: EXAMPLE PROBLEMS

258 LS-OPT Version 3

OBJECTIVE FUNCTIONS:

OBJECTIVE NAME | Computed Predicted WT.
--------------------------------|----------|----------|----
Weight | 1.907 1.925| 1
--------------------------------|----------|----------|----

CONSTRAINT FUNCTIONS:

CONSTRAINT NAME	Computed	Predicted	Lower	Upper	Viol?
Stress | 0.7927 1| -1e+30 1|YES
--------------------------------|----------|----------|----------|----------|-----

CONSTRAINT VIOLATIONS:

 | Computed Violation | Predicted Violation |
CONSTRAINT NAME |----------|----------|----------|----------|
 | Lower | Upper | Lower | Upper |
--------------------------------|----------|----------|----------|----------|
Stress | - - | - 1.033e-06|
--------------------------------|----------|----------|----------|----------|

MAXIMUM VIOLATION:

 | Computed | Predicted |
 Quantity |---------------------------|---------------------------|
 | Constraint Value | Constraint Value |
-------------------|----------------|----------|----------------|----------|
Maximum Violation |Stress 0|Stress 1.033e-06|
Smallest Margin |Stress 0.2073|Stress 1.033e-06|
-------------------|----------------|----------|----------------|----------|

20.1.4 Reducing the region of interest for further refinement

It seems that further accuracy can only be obtained by reducing the size of the subregion. In the following
analysis, the current optimum (1.766; 0.4086) was used as a starting point while the region of interest was
cut in half. The order of the approximation is quadratic. The modified statements are:

"2BAR3: Two-Bar Truss: Reducing the region of interest"
$ Created on Thu Jul 11 07:46:24 2002
$
$ DESIGN VARIABLES
 Range 'Area' 2
 Range 'Base' 0.8

The approximations have been significantly improved:
Approximating Response 'Weight' using 10 points (ITERATION 1)
--
 Global error parameters of response surface

Quadratic Function Approximation:

 CHAPTER 20: EXAMPLE PROBLEMS

LS-OPT Version 3 259

Mean response value = 2.0282

RMS error = 0.0209 (1.03%)
Maximum Residual = 0.0385 (1.90%)
Average Error = 0.0157 (0.77%)
Square Root PRESS Residual = 0.0697 (3.44%)
Variance = 0.0009
R^2 = 0.9995
R^2 (adjusted) = 0.9995
R^2 (prediction) = 0.9944
Determinant of [X]'[X] = 0.0071

Approximating Response 'Stress' using 10 points (ITERATION 1)
--
 Global error parameters of response surface

Quadratic Function Approximation:

Mean response value = 1.2293

RMS error = 0.0966 (7.85%)
Maximum Residual = 0.1831 (14.89%)
Average Error = 0.0826 (6.72%)
Square Root PRESS Residual = 0.3159 (25.69%)
Variance = 0.0186
R^2 = 0.9830
R^2 (adjusted) = 0.9830
R^2 (prediction) = 0.8182
Determinant of [X]'[X] = 0.0071

The results after one iteration are as follows:

DESIGN POINT

Variable Name Lower Bound Value Upper Bound
--------------------------------|-----------|----------|-----------
Area 0.2 1.444 4
Base 0.1 0.5408 1.6
--------------------------------|-----------|----------|-----------

RESPONSE FUNCTIONS:

 | Scaled | Unscaled |
 |---------------------|---------------------|
RESPONSE | Computed Predicted| Computed Predicted|
--------------------------------|----------|----------|----------|----------|
Weight | 1.642 1.627| 1.642 1.627|
Stress | 0.9614 1| 0.9614 1|
--------------------------------|----------|----------|----------|----------|

 OBJECTIVE:

Computed Value = 1.642
Predicted Value = 1.627

CHAPTER 20: EXAMPLE PROBLEMS

260 LS-OPT Version 3

OBJECTIVE FUNCTIONS:

OBJECTIVE NAME | Computed Predicted WT.
--------------------------------|----------|----------|----
Weight | 1.642 1.627| 1
--------------------------------|----------|----------|----

CONSTRAINT FUNCTIONS:

CONSTRAINT NAME	Computed	Predicted	Lower	Upper	Viol?
Stress | 0.9614 1| -1e+30 1|no
--------------------------------|----------|----------|----------|----------|-----

CONSTRAINT VIOLATIONS:

 | Computed Violation | Predicted Violation |
CONSTRAINT NAME |----------|----------|----------|----------|
 | Lower | Upper | Lower | Upper |
--------------------------------|----------|----------|----------|----------|
Stress | - - | - - |
--------------------------------|----------|----------|----------|----------|

An improved design is predicted with the constraint value (stress) changing from an approximate 0.8033
(0.7928 computed) to 1.0 (the approximate constraint becomes active). Due to inaccuracy, the actual
constraint value of the optimum is a feasible 0.961. This value is now much closer to the value of the
simulation result. The weight changes from 1.909(1.907 computed) to 1.627 (1.642 computed).

20.1.5 Conducting a trade-off study

The present region of interest (2; 0.8) is chosen in order to conduct a study in which the weight is traded off
against the stress constraint. The trade-off is performed by selecting the Trade-off option in the View panel
of LS-OPTui.

The upper bound of the stress constraint is varied from 0.2 to 2.0 with 20 increments. Select Constraint as
the Trade-off option and enter the bounds and number of increments. Generate the trade-off. This initiates
the solution of a series of optimization problems using the response surface generated in Section 20.1.4,
with the constraint in each (constant coefficient of the constraint response surface polynomial) being varied
between the limits selected. The resulting curve is also referred to as a Pareto optimality curve. When
plotting, select the ‘Constraint’ Stress, and not the ‘Response’ Stress, as the latter represents only the left-
hand side of the constraint equation (17.2).

The resulting trade-off diagram (Figure 20-4) shows the compromise in weight when the stress constraint is
tightened.

 CHAPTER 20: EXAMPLE PROBLEMS

LS-OPT Version 3 261

Figure 20-4: Trade-off of stress and weight

20.1.6 Automating the design process

This section illustrates the automation of the design process for both a linear and a quadratic response
surface approximation order. 10 iterations are performed for the linear approximation, with only 5 iterations
performed for the more expensive quadratic approximation.

The modified statements in the input file are as follows:

Variable 'Area' 2
 Range 'Area' 4
 Variable 'Base' 0.8
 Range 'Base' 1.6
$
$ EXPERIMENTAL DESIGN
$
Order linear
Number experiment 5
$
$ JOB INFO
$
iterate 10

for the linear approximation, and
$
$ EXPERIMENTAL DESIGN
$
 Order quadratic

CHAPTER 20: EXAMPLE PROBLEMS

262 LS-OPT Version 3

 Number experiment 10
$
$ JOB INFO
$
iterate 5

The final results of the two types of approximations are as follows:

Table 20-1: Summary of final results (2-bar truss)

 Linear Quadratic
Number of iterations 10 5

Number of simulations 51 51
Area 1.414 1.408
Base 0.3737 0.3845

Weight 1.51 1.509
Stress 0.9993 1.000

The optimization histories have been plotted to illustrate convergence in Figure 20-5.

a) Optimization history of Area (Linear) b) Optimization history of Area (Quadratic)

 CHAPTER 20: EXAMPLE PROBLEMS

LS-OPT Version 3 263

c) Optimization history of Base (Linear) d) Optimization history of Base (Quadratic)

e) Optimization history of Weight (Linear) f) Optimization history of Weight (Quadratic)

CHAPTER 20: EXAMPLE PROBLEMS

264 LS-OPT Version 3

g) Optimization history of Stress (Linear) h) Optimization history of Stress (Quadratic)

Figure 20-5: Optimization history of design variables and responses (Linear and Quadratic)

Remarks:

1. Note that the more accurate but more expensive quadratic approximation converges in about 3
design iterations (30 simulations), while it takes about 7 iterations (35 simulations) for the objective
of the linear case to converge.

2. In general, the lower the order of the approximation, the more iterations are required to refine the

optimum.

 CHAPTER 20: EXAMPLE PROBLEMS

LS-OPT Version 3 265

20.2 Small car crash (2 variables)

This example has the following features:

• An LS-DYNA explicit crash simulation is performed.
• Extraction is performed using standard LS-DYNA interfaces.
• First- and second-order response surface approximations are compared.
• The design optimization process is automated.
• A trade-off study is performed using both a quadratic and neural network approximation.
• A limited reliability-based design optimization study is performed.

20.2.1 Introduction

This example considers the crashworthiness of a simplified small car model. A simplified vehicle moving at
a constant velocity of 15.64m.s-1 (35mph) impacts a rigid pole. See Figure 20-6. The thickness of the front
nose above the bumper is specified as part of the hood. LS-DYNA is used to perform a simulation of the
crash for a simulation duration of 50ms.

a) deformed (50ms) b) undeformed

Figure 20-6: Small car impacting a pole

20.2.2 Design criteria and design variables

The objective is to minimize the Head Injury Criterion (HIC) over a 15ms interval of a selected point
subject to an intrusion constraint of 550mm of the pole into the vehicle at 50ms. The HIC is based on linear
head acceleration and is widely used in occupant safety regulations in the automotive industry as a brain
injury criterion. In summary, the criteria of interest are the following:

• Head injury criterion (HIC) of a selected point (15ms)
• Peak acceleration of a chosen point filtered at 60Hz (SAE).

Bumper

Hood

CHAPTER 20: EXAMPLE PROBLEMS

266 LS-OPT Version 3

• Component Mass of the structural components (bumper, front, hood and underside)
• Intrusion computed using the relative motion of two points

Units are in mm and sec

The design variables are the shell thickness of the car front (t_hood) and the shell thickness of the bumper
(t_bumper) (see Figure 20-6).

20.2.3 Design formulation

The design formulation is as follows:

Minimize
 HIC (15ms) (20.4)
subject to

Intrusion (50ms) < 550mm

The intrusion is measured as the difference between the displacement of nodes 167 and 432.

Remark:

• The mass is computed but not constrained. This is useful for monitoring the mass changes.

20.2.4 Modeling

The simulation is performed using LS-DYNA. An extract from the parameterized input deck is shown
below. Note how the design variables are labeled for substitution through the characters << >>. The cylinder
for impact is modeled as a rigid wall.

$
$ DEFINITION OF MATERIAL 1
$
*MAT_PLASTIC_KINEMATIC
1,1.000E-07,2.000E+05,0.300,400.,0.,0.
0.,0.,0.
*HOURGLASS
1,0,0.,0,0.,0.
*SECTION_SHELL
1,2,0.,0.,0.,0.,0
2.00,2.00,2.00,2.00,0.
*PART
material type # 3 (Kinematic/Isotropic Elastic-Plastic)
1,1,1,0,1,0
$
$ DEFINITION OF MATERIAL 2
$
*MAT_PLASTIC_KINEMATIC
2,7.800E-08,2.000E+05,0.300,400.,0.,0.

 CHAPTER 20: EXAMPLE PROBLEMS

LS-OPT Version 3 267

0.,0.,0.
*HOURGLASS
2,0,0.,0,0.,0.
*SECTION_SHELL
2,2,0.,0.,0.,0.,0
<<t_bumper>>,<<t_bumper>>,<<t_bumper>>,<<t_bumper>>,0.
*PART
material type # 3 (Kinematic/Isotropic Elastic-Plastic)
2,2,2,0,2,0
$
$ DEFINITION OF MATERIAL 3
$
*MAT_PLASTIC_KINEMATIC
3,7.800E-08,2.000E+05,0.300,400.,0.,0.
0.,0.,0.
*HOURGLASS
3,0,0.,0,0.,0.
*SECTION_SHELL
3,2,0.,0.,0.,0.,0
<<t_hood>>,<<t_hood>>,<<t_hood>>,<<t_hood>>,0.
*PART
material type # 3 (Kinematic/Isotropic Elastic-Plastic)
3,3,3,0,3,0
$
$ DEFINITION OF MATERIAL 4
$
*MAT_PLASTIC_KINEMATIC
4,7.800E-08,2.000E+05,0.300,400.,0.,0.
0.,0.,0.
*HOURGLASS
4,0,0.,0,0.,0.
*SECTION_SHELL
4,2,0.,0.,0.,0.,0
<<t_hood>>,<<t_hood>>,<<t_hood>>,<<t_hood>>,0.
*PART
material type # 3 (Kinematic/Isotropic Elastic-Plastic)
4,4,4,0,4,0
$
$ DEFINITION OF MATERIAL 5
$
*MAT_PLASTIC_KINEMATIC
5,7.800E-08,2.000E+05,0.300,400.,0.,0.
0.,0.,0.
*HOURGLASS
5,0,0.,0,0.,0.
*SECTION_SHELL
5,2,0.,0.,0.,0.,0
<<t_hood>>,<<t_hood>>,<<t_hood>>,<<t_hood>>,0.
*PART
material type # 3 (Kinematic/Isotropic Elastic-Plastic)
5,5,5,0,5,0
$

CHAPTER 20: EXAMPLE PROBLEMS

268 LS-OPT Version 3

20.2.5 First linear iteration

A design space of [1; 5] is used for both design variables with no range specified. This means that the range
defaults to the whole design space. The LS-OPT input file is as follows:

"Small Car Problem: EX4a"
$ Created on Mon Aug 26 19:11:06 2002
solvers 1
responses 5
$
$ NO HISTORIES ARE DEFINED
$
$
$ DESIGN VARIABLES
$
variables 2
 Variable 't_hood' 1
 Lower bound variable 't_hood' 1
 Upper bound variable 't_hood' 5
 Variable 't_bumper' 3
 Lower bound variable 't_bumper' 1
 Upper bound variable 't_bumper' 5
$
$ DEFINITION OF SOLVER "1"
$
 solver dyna '1'
 solver command "lsdyna"
 solver input file "car5.k"
 solver append file "rigid2"
 solver order linear
 solver experiment design dopt
 solver number experiments 5
 solver basis experiment 3toK
 solver concurrent jobs 1
$
$ RESPONSES FOR SOLVER "1"
$
 response 'Acc_max' 1 0 "DynaASCII Nodout X_ACC 432 Max SAE 60"
 response 'Acc_max' linear
 response 'Mass' 1 0 "DynaMass 2 3 4 5 MASS"
 response 'Mass' linear
 response 'Intru_2' 1 0 "DynaASCII Nodout X_DISP 432 Timestep"
 response 'Intru_2' linear
 response 'Intru_1' 1 0 "DynaASCII Nodout X_DISP 167 Timestep"
 response 'Intru_1' linear
 response 'HIC' 1 0 "DynaASCII Nodout HIC15 9810. 1 432"
 response 'HIC' linear
$
$ NO HISTORIES DEFINED FOR SOLVER "1"
$
$
$ HISTORIES AND RESPONSES DEFINED BY EXPRESSIONS
$
 composites 1
 composite 'Intrusion' type weighted

 CHAPTER 20: EXAMPLE PROBLEMS

LS-OPT Version 3 269

 composite 'Intrusion' response 'Intru_2' -1 scale 1
 composite 'Intrusion' response 'Intru_1' 1 scale 1
$
$ OBJECTIVE FUNCTIONS
$
 objectives 1
 objective 'HIC' 1
$
$ CONSTRAINT DEFINITIONS
$
 constraints 1
 constraint 'Intrusion'
 upper bound constraint 'Intrusion' 550
$
$ JOB INFO
$
 iterate param design 0.01
 iterate param objective 0.01
 iterate 1
STOP

The computed vs. predicted HIC and Intru_2 responses are given in Figure 20-7. The corresponding R2
value for HIC is 0.9248, while the RMS error is 27.19%. For Intru_2, the R2 value is 0.9896, while the
RMS error is 0.80%.

a) HIC response b) Intru_2 response

Figure 20-7: Computed vs. predicted responses – Linear approximation

The summary data for the first iteration is:

CHAPTER 20: EXAMPLE PROBLEMS

270 LS-OPT Version 3

Baseline:

ITERATION NUMBER (Baseline)

DESIGN POINT

Variable Name Lower Bound Value Upper Bound
--------------------------------|-----------|----------|-----------
t_hood 1 1 5
t_bumper 1 3 5
--------------------------------|-----------|----------|-----------

RESPONSE FUNCTIONS:

 | Scaled | Unscaled |
 |---------------------|---------------------|
RESPONSE | Computed Predicted| Computed Predicted|
--------------------------------|----------|----------|----------|----------|
Acc_max | 8.345e+04 1.162e+05| 8.345e+04 1.162e+05|
Mass | 0.4103 0.4103| 0.4103 0.4103|
Intru_2 | -736.7 -738| -736.7 -738|
Intru_1 | -161 -160.7| -161 -160.7|
HIC | 68.26 74.68| 68.26 74.68|
--------------------------------|----------|----------|----------|----------|

and 1st optimum:

DESIGN POINT

Variable Name Lower Bound Value Upper Bound
--------------------------------|-----------|----------|-----------
t_hood 1 1.549 5
t_bumper 1 5 5
--------------------------------|-----------|----------|-----------

RESPONSE FUNCTIONS:

 | Scaled | Unscaled |
 |---------------------|---------------------|
RESPONSE | Computed Predicted| Computed Predicted|
--------------------------------|----------|----------|----------|----------|
Acc_max | 1.248e+05 1.781e+05| 1.248e+05 1.781e+05|
Mass | 0.6571 0.657| 0.6571 0.657|
Intru_2 | -713.7 -711.4| -713.7 -711.4|
Intru_1 | -164.6 -161.4| -164.6 -161.4|
HIC | 126.7 39.47| 126.7 39.47|
--------------------------------|----------|----------|----------|----------|

 CHAPTER 20: EXAMPLE PROBLEMS

LS-OPT Version 3 271

20.2.6 First quadratic iteration

The LS-OPT input file is modified as follows (the response approximations are all quadratic (not
shown)):

Order quadratic
 Experimental design dopt
 Basis experiment 5toK
 Number experiment 10

For very expensive simulations, if previous extracted simulation is available, as, e.g., from the previous
linear iteration in Section 20.2.5, then these points can be used to reduce the computational cost of this
quadratic approximation. To do this, the previous AnalysisResults.1 file is copied to the current
work directory and renamed AnalysisResults.PRE.1.

As is shown in the results below, the computed vs. predicted HIC and Intru_2 responses are is now
improved from the linear approximation. The accuracy of the HIC and Intru_2 responses are given in
Figure 20-8. The corresponding R2 value for HIC is 0.9767, while the RMS error is 10.28%. For Intru_2,
the R2 value is 0.9913, while the RMS error is 0.61%. When conducting trade-off studies, a higher-order
approximation like the current one will be preferable. See trade-off of HIC versus intrusion in a range
450mm to 600mm, in Figure 20-8c).

a) HIC response b) Intru_2 response

CHAPTER 20: EXAMPLE PROBLEMS

272 LS-OPT Version 3

c) Trade-off of HIC versus Intrusion

Figure 20-8: Computed vs. predicted responses and trade-off – Quadratic approximation

The summary data for the first iteration is:

Baseline:

ITERATION NUMBER (Baseline)

DESIGN POINT

Variable Name Lower Bound Value Upper Bound
--------------------------------|-----------|----------|-----------
t_hood 1 1 5
t_bumper 1 3 5
--------------------------------|-----------|----------|-----------

RESPONSE FUNCTIONS:

 | Scaled | Unscaled |
 |---------------------|---------------------|
RESPONSE | Computed Predicted| Computed Predicted|
--------------------------------|----------|----------|----------|----------|
Acc_max | 8.345e+04 1.385e+05| 8.345e+04 1.385e+05|
Mass | 0.4103 0.4103| 0.4103 0.4103|
Intru_2 | -736.7 -736| -736.7 -736|
Intru_1 | -161 -160.3| -161 -160.3|
HIC | 68.26 10.72| 68.26 10.72|
--------------------------------|----------|----------|----------|----------|

 CHAPTER 20: EXAMPLE PROBLEMS

LS-OPT Version 3 273

and 1st optimum:

DESIGN POINT

Variable Name Lower Bound Value Upper Bound
--------------------------------|-----------|----------|-----------
t_hood 1 1.653 5
t_bumper 1 3.704 5
--------------------------------|-----------|----------|-----------

RESPONSE FUNCTIONS:

 | Scaled | Unscaled |
 |---------------------|---------------------|
RESPONSE | Computed Predicted| Computed Predicted|
--------------------------------|----------|----------|----------|----------|
Acc_max | 1.576e+05 1.985e+05| 1.576e+05 1.985e+05|
Mass | 0.6017 0.6018| 0.6017 0.6018|
Intru_2 | -712.7 -711.9| -712.7 -711.9|
Intru_1 | -163.3 -161.9| -163.3 -161.9|
HIC | 171.4 108.2| 171.4 108.2|
--------------------------------|----------|----------|----------|----------|

20.2.7 Automated run

An automated optimization is performed with a linear approximation. The LS-OPT input file is modified as
follows:

Order linear
 Experimental design dopt
 Basis experiment 3toK
 Number experiment 5

iterate 8

It can be seen in Figure 20-9 that the objective function (HIC) and intrusion constraint are approximately
optimized at the 5th iteration. It takes about 8 iterations for the approximated (solid line) and computed
(square symbols) HIC to correspond. The approximation improves through the contraction of the subregion.
As the variable t_hood never moves to the edge of the subregion during the optimization process, the
heuristic in LS-OPT enforces pure zooming (see Figure 20-10). For t_bumper, panning occurs as well due
to the fact that the linear approximation predicts a variable on the edge of the subregion.

CHAPTER 20: EXAMPLE PROBLEMS

274 LS-OPT Version 3

a) Optimization history of HIC b) Optimization history of Intrusion

Figure 20-9: Optimization history of HIC and Intrusion

a) Optimization history of t_hood b) Optimization history of t_bumper

Figure 20-10: Optimization history of design variables

 CHAPTER 20: EXAMPLE PROBLEMS

LS-OPT Version 3 275

20.2.8 Trade-off using neural network approximation*

In order to build a more accurate response surface for trade-off studies, the Neural Net method is chosen
under the ExpDesign panel. This results in a feed-forward (FF) neural network (Section 0) being solved for
the points selected. The recommended point selection scheme (Space Filling) is used. One iteration is
performed to analyze only one experimental design with 25 points. The modifications to the command input
file are as follows:

$
$ DEFINITION OF SOLVER "1"
$
 solver dyna '1'
 solver command "lsdyna"
 solver input file "car5.k"
 solver append file "rigid2"
 solver order FF
 solver update doe
 solver experiment design space_filling
 solver number experiments 25
iterate 1

The response surface accuracy is illustrated in Figure 20-11 for the HIC and Intru_2 responses. The HIC
has more scatter than Intru_2 for the 25 design points used.

a) HIC response b) Intru_2 constraint

Figure 20-11: Response surface accuracy using neural network approximation

A trade-off study considers a variation in the Intrusion constraint (originally fixed at 550mm) between 450
and 600mm, the same as in Figure 20-8c). The experimental design used for the responses in Figure 20-11

CHAPTER 20: EXAMPLE PROBLEMS

276 LS-OPT Version 3

is shown in Figure 20-12. The effect of the Space-Filling algorithm in maximizing the minimum distance
between the experimental design points can clearly be seen from the evenly distributed design. The resulting
Pareto optimality curves for HIC and the two design variables (t_hood and t_bumper) can be seen in
Figure 20-13. It can be seen that a tightening of the Intrusion constraint increases the HIC value through an
increase of the hood thickness in the optimal design.

Figure 20-12: Experimental design points used for trade-off

 CHAPTER 20: EXAMPLE PROBLEMS

LS-OPT Version 3 277

a) Objective (HIC) versus Intrusion constraint b) t_bumper versus Intrusion constraint

c) t_hood versus Intrusion constraint

Figure 20-13: Trade-off results – Small car (2 variables)

20.2.9 Mixed-discrete optimization
Mixed discrete optimization is achieved simply by setting the t_hood variable to be discrete with possible
values of 1.0, 2.0, 3.0, 4.0, and 5.0. The input file commands describing the variables are:
$
$ DESIGN VARIABLES
$
variables 2
 Variable 't_bumpr' 1
 Lower bound variable 't_bumpr' 1
 Upper bound variable 't_bumpr' 5
 Range 't_bumpr' 4
 Variable 't_hood' 1
 Variable 't_hood' discrete {1 2 3 4 5 }
$

The results design variables histories are shown in Figure Figure 20-14.

CHAPTER 20: EXAMPLE PROBLEMS

278 LS-OPT Version 3

Figure 20-14 Mixed-discrete variable histories.

20.2.10 RBDO (Reliability-based design optimization) using FOSM (First Order
Second Moment Method)*

The First Order Second Moment reliability-based design optimization in LS-OPT is illustrated in this
example. The optimization problem is modified as follows:

Minimize
 HIC (20.5)

subject to Probability[Intrusion > 550mm] < 610−

The formulation in Eq. HIC (20.5 implies that the car is made safer by 6 standard deviations of the
intrusion.

The following commands must be added to the LS-OPT input file used for the automated run (Section
20.2.7):

$
$ Define distributions
$
Distributions 2
 distribution ‘hood_dist’ UNIFORM –0.05 0.05
 distribution ‘bumper_dist’ UNIFORM –0.05 0.05
$
$ Assign distributions to variables
$

 CHAPTER 20: EXAMPLE PROBLEMS

LS-OPT Version 3 279

variable 't_hood' distribution ‘hood_dist’
variable 't_bumper' distribution ‘bumper_dist’
$
$ Assign probabilistic bounds to constraints
$
 probability upper bound constraint ‘Intrusion’ 1e-6

The results are: x = <1.78, 3.44>, a HIC value of 182, and an intrusion of 545 with a standard deviation of
1.06.

CHAPTER 20: EXAMPLE PROBLEMS

280 LS-OPT Version 3

20.3 Impact of a cylinder (2 variables)

This example has the following features:

• An LS-DYNA explicit impact simulation is performed.
• An independent parametric preprocessor is used to incorporate shape optimization.
• Extraction is performed using standard ASCII LS-DYNA interfaces.
• Second-order response surface approximations are compared using different subregions.
• The design optimization process is automated.
• Noisy response variables are improved using filtering.

The example in this chapter is modeled on one by Yamazaki [83].

20.3.1 Problem statement

The problem consists of a tube impacting a rigid wall as shown in Figure 20-15. The energy absorbed is
maximized subject to a constraint on the rigid wall impact force. The cylinder has a constant mass of 0.54
kg with the design variables being the mean radius and thickness. The length of the cylinder is thus
dependent on the design variables because of the mass constraint. A concentrated mass of 500 times the
cylinder weight is attached to the end of the cylinder not impacting the rigid wall. The deformed shape at
20ms is shown in Figure 20-16 for a typical design.

x1 x2

 l

10m/s

Figure 20-15: Impacting cylinder

 CHAPTER 20: EXAMPLE PROBLEMS

LS-OPT Version 3 281

Figure 20-16: Deformed finite element model (time = 20ms)

The optimization problem is stated as:

Maximize 02.021internal),(=txxE

subject to

00070),(21 ≤average

wall
normal xxF

212
52.0)(

xx
xl

πρ
=

where the design variables x1 and x2 are the radius and the thickness of the cylinder respectively.

02.0internal)(=txE is the objective function and constraint functions average
wall

normal xF)(and l(x) are the average
normal force on the rigid wall and the length of the cylinder, respectively.

The problem is simulated using LS-DYNA. The following TrueGrid input file including the <<name>>
statements is used to create the FE input deck with the FE model as shown in Figure 20-16. Note that the
design variables have been scaled.

c cyl2 - crush cylinder - constant volume
lsdyna3d keyword
lsdyopts secforc .00002 rwforc .00002 ;
lsdyopts endtim .02 d3plot dtcycl .0001 ; ;
lsdyopts thkchg 2 ;
lsdyopts elout 0.001
lsdyopts glstat 0.001
lsdymats 1 3 rho 2880 shell elfor bt tsti 4
 e 71.38e9 pr .33 sigy 102.0e6 etan 0.2855e9 ;
lsdymats 2 20 rho 14.3e6 e 7.138e10 pr .33 cmo con 4 7 shell elfor bt tsti 4;
para
 r [<<Radius>>/1000.0]
 l [3.0e+1/<<Radius>>/<<Wall_Thickness>>]
 h [<<Wall_Thickness>>/1000.0]

CHAPTER 20: EXAMPLE PROBLEMS

282 LS-OPT Version 3

 l2 [75.0/<<Radius>>*0.02]
 h2 .002
 v0 10.
 n .33
 pi 3.14159
;
plane 1 0 0 -.002 0 0 1 .001 ston pen 2. stick ;
sid 1 lsdsi 13 slvmat 1;scoef .4 dcoef .4 sfsps 1.5 ; ; ;
c ************** part 1 mat 1 ************* shell
cylinder
-1; 1 60; 1 50 51;
%r
0 360
0 %l [%l2+%l]
dom 1 1 1 1 2 3
 x=x+.01*%h*sin(%pi*z*57.3/(%pi*(%r*%r*%h*%h/(12*(1-%n*%n)))**.25))
thick %h
thi ;;2 3; %h2
c bi ; ;-3 0 -3; dx 1 dy 1 rx 1 ry 1 rz 1 ;
c interrupt
swi ;; ;1
velocity 0 0 [-%v0]
mate 1
mti ;; 2 3; 2
c element spring block
epb 1 1 1 1 2 3
endpart
merge
stp .000001
write
end

20.3.2 A first approximation

In the first iteration, a quadratic approximation is chosen from the beginning. The ASCII database is suitable
for this analysis as the energy and impact force can be extracted from the glstat and rwforc databases
respectively. Five processors are available. The region of interest is arbitrarily chosen to be about half the
size of the design space.

The following LS-OPT command input deck was used to find the approximate optimum solution:

"Cylinder Impact Problem"
$ Created on Thu Jul 11 11:37:33 2002
$
$ DESIGN VARIABLES
$
variables 2
 Variable 'Radius' 75
 Lower bound variable 'Radius' 20
 Upper bound variable 'Radius' 100
 Range 'Radius' 50
 Variable 'Wall_Thickness' 3
 Lower bound variable 'Wall_Thickness' 2
 Upper bound variable 'Wall_Thickness' 6

 CHAPTER 20: EXAMPLE PROBLEMS

LS-OPT Version 3 283

 Range 'Wall_Thickness' 2
solvers 1
responses 2
$
$ NO HISTORIES ARE DEFINED
$
$
$ DEFINITION OF SOLVER "RUN1"
$
 solver dyna960 'RUN1'
 solver command "lsdyna"
 solver input file "trugrdo"
 prepro truegrid
 prepro command "/net/src/ultra4_4/common/hp/tg2.1/tg"
 prepro input file "cyl2"
$
$ RESPONSES FOR SOLVER "RUN1"
$
 response 'Internal_Energy' 1 0 "DynaASCII Glstat I_Ener 0 Timestep"
 response 'Internal_Energy' quadratic
 response 'Rigid_Wall_Force' 1 0 "DynaASCII rwforc normal 1 ave"
 response 'Rigid_Wall_Force' quadratic
$
$ NO HISTORIES DEFINED FOR SOLVER "RUN1"
$
$
$ OBJECTIVE FUNCTIONS
$
 objectives 1
 maximize
 objective 'Internal_Energy' 1
$
$ CONSTRAINT DEFINITIONS
$
 constraints 1
 constraint 'Rigid_Wall_Force'
 upper bound constraint 'Rigid_Wall_Force' 70000
$
$ EXPERIMENTAL DESIGN
$
 Order quadratic
 Experimental design dopt
 Basis experiment 5toK
 Number experiment 10
$
$ JOB INFO
$
 concurrent jobs 5
 iterate param design 0.01
 iterate param objective 0.01
 iterate 1
STOP

The curve-fitting results below show that the internal energy is approximated reasonably well whereas the
average force is poorly approximated. The accuracy plots confirm this result (Figure 20-17).

CHAPTER 20: EXAMPLE PROBLEMS

284 LS-OPT Version 3

Approximating Response 'Internal_Energy' using 10 points (ITERATION 1)
--
 Global error parameters of response surface

Quadratic Function Approximation:

Mean response value = 10686.0081

RMS error = 790.3291 (7.40%)
Maximum Residual = 1538.9208 (14.40%)
Average Error = 654.4415 (6.12%)
Square Root PRESS Residual = 2213.7994 (20.72%)
Variance = 1249240.2552
R^2 = 0.9166
R^2 (adjusted) = 0.9166
R^2 (prediction) = 0.3453
Determinant of [X]'[X] = 1.3973

Approximating Response 'Rigid_Wall_Force' using 10 points (ITERATION 1)
--
 Global error parameters of response surface

Quadratic Function Approximation:

Mean response value = 121662.9474

RMS error = 24730.1732 (20.33%)
Maximum Residual = 48569.4162 (39.92%)
Average Error = 21111.3307 (17.35%)
Square Root PRESS Residual = 75619.5531 (62.15%)
Variance = 1223162932.2092
R^2 = 0.8138
R^2 (adjusted) = 0.8138
R^2 (prediction) = -0.7406
Determinant of [X]'[X] = 1.3973

The initial design below shows that the constraint is severely exceeded.

DESIGN POINT

Variable Name Lower Bound Value Upper Bound
--------------------------------|-----------|----------|-----------
Radius 20 75 100
Wall_Thickness 2 3 6
--------------------------------|-----------|----------|-----------

RESPONSE FUNCTIONS:

 | Scaled | Unscaled |
 |---------------------|---------------------|
RESPONSE | Computed Predicted| Computed Predicted|
--------------------------------|----------|----------|----------|----------|
Internal_Energy | 1.296e+04 1.142e+04| 1.296e+04 1.142e+04|
Rigid_Wall_Force | 1.749e+05 1.407e+05| 1.749e+05 1.407e+05|
--------------------------------|----------|----------|----------|----------|

 CHAPTER 20: EXAMPLE PROBLEMS

LS-OPT Version 3 285

Figure 20-17: Prediction accuracy of Internal Energy and Rigid Wall Force (One Quadratic iteration)

Despite the relatively poor approximation a prediction of the optimum is made based on the approximation
response surface. The results are shown below. The fact that the optimal Radius is on the lower bound of
the subregion specified (Range = 50), suggests an optimal value below 50.

DESIGN POINT

Variable Name Lower Bound Value Upper Bound
--------------------------------|-----------|----------|-----------
Radius 20 50 100
Wall_Thickness 2 2.978 6
--------------------------------|-----------|----------|-----------

RESPONSE FUNCTIONS:

 | Scaled | Unscaled |
 |---------------------|---------------------|
RESPONSE | Computed Predicted| Computed Predicted|
--------------------------------|----------|----------|----------|----------|
Internal_Energy | 7914 8778| 7914 8778|
Rigid_Wall_Force | 4.789e+04 7e+04| 4.789e+04 7e+04|
--------------------------------|----------|----------|----------|----------|

CHAPTER 20: EXAMPLE PROBLEMS

286 LS-OPT Version 3

20.3.3 Refining the design model using a second iteration

During the previous optimization step, the Radius variable was reduced from 75 to 50 (on the boundary
of the region of interest). It was also apparent that the approximations were fairly inaccurate. Therefore, in
the new iteration, the region of interest is reduced from [50;2] to [35;1.5] while retaining a quadratic
approximation order. The starting point is taken as the current optimum: (50,2.978). The modified
commands in the input file are as follows:

$
$ DESIGN VARIABLES
$
variables 2
 Variable 'Radius' 50
 Lower bound variable 'Radius' 20
 Upper bound variable 'Radius' 100
 Range 'Radius' 35
 Variable 'Wall_Thickness' 2.9783
 Lower bound variable 'Wall_Thickness' 2
 Upper bound variable 'Wall_Thickness' 6
 Range 'Wall_Thickness' 1.5

As shown below, the accuracy of fit improves but the average rigid wall force is still inaccurate.

Approximating Response 'Internal_Energy' using 10 points (ITERATION 1)
--
 Global error parameters of response surface

Quadratic Function Approximation:

Mean response value = 8640.2050

RMS error = 526.9459 (6.10%)
Maximum Residual = 890.0759 (10.30%)
Average Error = 388.4472 (4.50%)
Square Root PRESS Residual = 1339.4046 (15.50%)
Variance = 555344.0180
R^2 = 0.9632
R^2 (adjusted) = 0.9632
R^2 (prediction) = 0.7622
Determinant of [X]'[X] = 0.0556

Approximating Response 'Rigid_Wall_Force' using 10 points (ITERATION 1)
--
 Global error parameters of response surface

Quadratic Function Approximation:

Mean response value = 82483.2224

RMS error = 19905.3990 (24.13%)
Maximum Residual = 35713.1794 (43.30%)
Average Error = 17060.6074 (20.68%)
Square Root PRESS Residual = 54209.4513 (65.72%)
Variance = 792449819.5138

 CHAPTER 20: EXAMPLE PROBLEMS

LS-OPT Version 3 287

R^2 = 0.8949
R^2 (adjusted) = 0.8949
R^2 (prediction) = 0.2204
Determinant of [X]'[X] = 0.0556

The goodness of fit diagrams are shown in Figure 20-18.

Figure 20-18: Prediction accuracy of Internal Energy and Rigid Wall Force (One Quadratic iteration)

Nevertheless an optimization is conducted of the approximate subproblem, yielding a much improved
feasible result. The objective function increases to 9575 (9777 computed) whereas the constraint is active at
70 000. The computed constraint is lower at 64 170. However the Wall_Thickness is now on the upper
bound, suggesting an optimal value larger than 3.728.

DESIGN POINT

Variable Name Lower Bound Value Upper Bound
--------------------------------|-----------|----------|-----------
Radius 20 42.43 100
Wall_Thickness 2 3.728 6
--------------------------------|-----------|----------|-----------

RESPONSE FUNCTIONS:

 | Scaled | Unscaled |
 |---------------------|---------------------|
RESPONSE | Computed Predicted| Computed Predicted|
--------------------------------|----------|----------|----------|----------|
Internal_Energy | 9777 9575| 9777 9575|
Rigid_Wall_Force | 6.417e+04 7e+04| 6.417e+04 7e+04|
--------------------------------|----------|----------|----------|----------|

CHAPTER 20: EXAMPLE PROBLEMS

288 LS-OPT Version 3

20.3.4 Third iteration

Because of the large change in the Wall_Thickness on to the upper bound of the region of interest, a
third iteration is conducted, keeping the region of interest the same. The starting point is the previous
optimum:

Variable 'Radius' 42.43
Variable 'Wall_Thickness' 3.728

The approximation improves as shown below:

Approximating Response 'Internal_Energy' using 10 points (ITERATION 1)
--
 Global error parameters of response surface

Quadratic Function Approximation:

Mean response value = 9801.0070

RMS error = 439.8326 (4.49%)
Maximum Residual = 834.5960 (8.52%)
Average Error = 372.3133 (3.80%)
Square Root PRESS Residual = 1451.3233 (14.81%)
Variance = 386905.5050
R^2 = 0.9618
R^2 (adjusted) = 0.9618
R^2 (prediction) = 0.5842
Determinant of [X]'[X] = 0.0131

Approximating Response 'Rigid_Wall_Force' using 10 points (ITERATION 1)
--
 Global error parameters of response surface

Quadratic Function Approximation:

Mean response value = 81576.0534

RMS error = 12169.4703 (14.92%)
Maximum Residual = 26348.0687 (32.30%)
Average Error = 10539.2275 (12.92%)
Square Root PRESS Residual = 37676.3033 (46.19%)
Variance = 296192016.4365
R^2 = 0.9301
R^2 (adjusted) = 0.9301
R^2 (prediction) = 0.3303
Determinant of [X]'[X] = 0.0131

Because the size of the region of interest remained the same, the curve-fitting results show only a slight
change (because of the new location), in this case an improvement. However, as the optimization results
below show, the design is much improved, i.e. the objective value has increased whereas the approximate
constraint is active. Unfortunately, due to the poor fit of the Rigid_Wall_Force, the simulation result
exceeds the force constraint by about 10kN (14%). Further reduction of the region of interest is required to
reduce the error, or filtering of the force can be considered to reduce the noise on this response.

 CHAPTER 20: EXAMPLE PROBLEMS

LS-OPT Version 3 289

DESIGN POINT

Variable Name Lower Bound Value Upper Bound
--------------------------------|-----------|----------|-----------
Radius 20 36.51 100
Wall_Thickness 2 4.478 6
--------------------------------|-----------|----------|-----------

RESPONSE FUNCTIONS:

 | Scaled | Unscaled |
 |---------------------|---------------------|
RESPONSE | Computed Predicted| Computed Predicted|
--------------------------------|----------|----------|----------|----------|
Internal_Energy | 1.129e+04 1.075e+04| 1.129e+04 1.075e+04|
Rigid_Wall_Force | 8.007e+04 7e+04| 8.007e+04 7e+04|
--------------------------------|----------|----------|----------|----------|

The table below gives a summary of the three iterations of the step-by-step procedure.

Table 20-2: Comparison of results (Cylinder impact)

Variable Initial Iteration 1 Iteration 2 Iteration 3
Radius 75 50 42.43 36.51
Wall_thickness 3 2.978 3.728 4.478
Energy (Computed) 12960 7914 9777 11290
Force (Computed) 174900 47890 64170 80070

It is apparent that the result of the second iteration is a dramatic improvement on the starting design and a
good approximation to the converged optimum design.

20.3.5 Response filtering: using the peak force as a constraint

Because of the poor accuracy of the response surface fit for the rigid wall force above, it was decided to
modify the force constraint so that the peak filtered force is used instead. Therefore, the previous response
definition for Rigid_Wall_Force is replaced with a command that extracts the maximum rigid wall
force from a response from which frequencies exceeding 300Hz are excluded.

The upper bound of the force constraint is changed to 80000.

response ’Rigid_Wall_Force’ "DynaASCII RWForc Normal 1 Max SAE 300"

20 iterations are specified with a 1% tolerance for convergence.

As expected, the response histories (Figure 20-19) show that the baseline design is severely infeasible (the
first peak force is about 1.75 x 106 vs. the constraint value of 0.08 x 106. A steady reduction in the error of
the response surfaces is observed up to about iteration 5. The optimization terminates after 16 iterations,
having reached the 1% threshold for both objective and design variable changes.

CHAPTER 20: EXAMPLE PROBLEMS

290 LS-OPT Version 3

a) Radius

b) Wall_Thickness

c) Internal_Energy

d) Rigid_Wall_Force

 CHAPTER 20: EXAMPLE PROBLEMS

LS-OPT Version 3 291

e) RMS error of Internal_Energy f) RMS error of Rigid_Wall_Force

Figure 20-19: Optimization history of automated design (filtered force)

The optimization process steadily reduces the infeasibility, but the force constraint is still slightly violated
when convergence is reached. The internal energy is significantly lower than previously:

DESIGN POINT

Variable Name Lower Bound Value Upper Bound
--------------------------------|-----------|----------|-----------
Radius 20 20.51 100
Wall_Thickness 2 4.342 6
--------------------------------|-----------|----------|-----------

RESPONSE FUNCTIONS:

 | Scaled | Unscaled |
 |---------------------|---------------------|
RESPONSE | Computed Predicted| Computed Predicted|
--------------------------------|----------|----------|----------|----------|
Internal_Energy | 8344 8645| 8344 8645|
Rigid_Wall_Force | 8.112e+04 8e+04| 8.112e+04 8e+04|
--------------------------------|----------|----------|----------|----------|

Figure 20-20 below confirms that the final design is only slightly infeasible when the maximum filtered
force exceeds the specified limit for a short duration at around 9ms.

CHAPTER 20: EXAMPLE PROBLEMS

292 LS-OPT Version 3

Figure 20-20: Cylinder: Constrained rigid wall force: F(t) < 80000 (SAE 300Hz filtered)

 CHAPTER 20: EXAMPLE PROBLEMS

LS-OPT Version 3 293

20.4 Sheet-metal forming (3 variables)
A sheet-metal forming example in which the design involves thinning and FLD criteria is demonstrated in
this chapter. The example has the following features:

• The maximum of all the design variables is minimized.
• Adaptive meshing is used in the finite element analysis.
• The binary LS-DYNA database is used.
• The example employs the sheet metal forming interface utilities.
• Composite functions are used.
• An appended file containing extra input is used.
• The example utilizes the independent parametric preprocessor, Truegrid13.

20.4.1 Problem statement

The design parameterization for the sheet metal forming example is shown in Figure 20-21.

 t

F1

F2

 r1

 r3

 r2
 die

 punch

Figure 20-21: Parameterization of cross-section

13 Registered Trademark of XYZ Scientific Applications Inc.

CHAPTER 20: EXAMPLE PROBLEMS

294 LS-OPT Version 3

The FE model is shown in Figure 20-22.

Figure 20-22: Quarter segment of FE model: tools and blank

The design problem is formulated to minimize the maximum tool radius while also specifying an FLD
constraint and a maximum thickness reduction of 20% (thinning constraint). Since the user wants to enforce
the FLD and thinning constraints strictly, these constraints are defined as strict. To minimize the
maximum radius, a small upper bound for the radii has been specified (arbitrarily chosen as a number close
to the lower bound of the design space, namely 1.1). The optimization solver will then minimize the
maximum difference between the radii and their respective bounds. The radius constraints must not be
enforced strictly. This translates to the following mathematical formulation:

Minimize e
with

5.45.1
5.45.1
5.45.1

3

2

1

≤≤
≤≤
≤≤

r
r
r

subject to

%20)(
0.0)(

<∆
<

x
x

t
g FLD

er
er
er

<−
<−
<−

1.1
1.1
1.1

3

2

1

.0>e

The design variables r1, r2 and r3 are the radii of the work piece as indicated in Figure 20-21. ∆t is the
thickness reduction which is positive when the thickness is reduced. The FLD constraint is feasible when
smaller than zero.

 CHAPTER 20: EXAMPLE PROBLEMS

LS-OPT Version 3 295

20.4.2 First Iteration

The initial run is a quadratic analysis designed as an initial investigation of the following issues:

• The dependency of the through thickness strain constraint on the radii.

• The dependency of the FLD constraint on the radii.

• The location of the optimal design point.

The subregion considered for this study is 2.0 large in r1, r2 and r3 and is centered about (1.5, 1.5, 1.5)T.
The FLD constraint formulation tested in this phase is based on the maximum perpendicular distance of a
point violating the FLD constraint to the FLD curve (see Section 12.10.2).

The LS-OPT command file used to run the problem is:

"Sheet: Minimization of Maximum Tool Radius"
Author "Aaron Spelling"
$ Created on Wed May 29 19:23:20 2002
$
$ DESIGN VARIABLES
$
variables 3
 Variable 'Radius_1' 1.5
 Lower bound variable 'Radius_1' 1
 Upper bound variable 'Radius_1' 4.5
 Range 'Radius_1' 4
 Variable 'Radius_2' 1.5
 Lower bound variable 'Radius_2' 1
 Upper bound variable 'Radius_2' 4.5
 Range 'Radius_2' 4
 Variable 'Radius_3' 1.5
 Lower bound variable 'Radius_3' 1
 Upper bound variable 'Radius_3' 4.5
 Range 'Radius_3' 4
solvers 1
responses 2
$
$ NO HISTORIES ARE DEFINED
$
$
$ DEFINITION OF SOLVER "DYNA1"
$
 solver dyna 'DYNA1'
 solver command "lsdyna"
 solver input file "trugrdo"
 solver append file "ShellSetList"
 prepro truegrid
 prepro command "/net/src/ultra4_4/common/hp/tg2.1/tg"
 prepro input file "m3.tg.opt"
$
$ RESPONSES FOR SOLVER "DYNA1"

CHAPTER 20: EXAMPLE PROBLEMS

296 LS-OPT Version 3

$
 response 'Thinning' 1 0 "DynaThick REDUCTION MAX"
 response 'Thinning' linear
 response 'FLD' 1 0 "DynaFLDg CENTER 1 2 3 90"
 response 'FLD' linear
$
$ NO HISTORIES DEFINED FOR SOLVER "DYNA1"
$
$
$ HISTORIES AND RESPONSES DEFINED BY EXPRESSIONS
$
 composites 4
 composite 'Rad1' type weighted
 composite 'Rad1' variable 'Radius_1' 1 scale 1
 composite 'Rad2' type weighted
 composite 'Rad2' variable 'Radius_2' 1 scale 1
 composite 'Rad3' type weighted
 composite 'Rad3' variable 'Radius_3' 1 scale 1
 composite 'Thinning_scaled' {Thinning/100}
$
$ NO OBJECTIVES DEFINED
$
 objectives 0
$
$ CONSTRAINT DEFINITIONS
$
 constraints 5
 constraint 'FLD'
 strict
 upper bound constraint 'FLD' 0.0
 constraint 'Rad1'
 slack
 upper bound constraint 'Rad1' 1.1
 constraint 'Rad2'
 upper bound constraint 'Rad2' 1.1
 constraint 'Rad3'
 upper bound constraint 'Rad3' 1.1
 constraint 'Thinning_scaled'
 strict
 upper bound constraint 'Thinning_scaled' 0.2
$
$ EXPERIMENTAL DESIGN
$
 Order quadratic
 Experimental design dopt
 Basis experiment 3toK
 Number experiment 16
$
$ JOB INFO
$
 concurrent jobs 8
 iterate param design 0.01
 iterate param objective 0.01
 iterate 1
STOP

 CHAPTER 20: EXAMPLE PROBLEMS

LS-OPT Version 3 297

The file ShellSetList contains commands for LS-DYNA in addition to the preprocessor output. It is
slotted into the input file. Adaptive meshing is chosen as an analysis feature for the simulation. The FLD
curve data is also specified in this file. The extra commands are:

*DATABASE_BINARY_RUNRSF
70
*DATABASE_EXTENT_BINARY
0, 0, 0, 1, 0, 0, 0, 1
0, 0, 0, 0, 0, 0
$
$ SLIDING INTERFACE DEFINITIONS
$
$ TrueGrid Sliding Interface # 1
$
*CONTACT_FORMING_ONE_WAY_SURFACE_TO_SURFACE
$ workpiece vs punch
0.1000000 0.000 0.000
 1 2 3 3 1

 0.0
$
*CONTACT_FORMING_ONE_WAY_SURFACE_TO_SURFACE
$ workpiece vs die
 1 3 3 3 1 1
 0.1000000 0.000 0.000

 0.0
$
*CONTACT_FORMING_ONE_WAY_SURFACE_TO_SURFACE
$ workpiece vs blankholder
 1 4 3 3 1 1
 0.1000000 0.000 0.000

 0.0
$
*CONTROL_ADAPTIVE
$ ADPFREQ ADPTOL ADPOPT MAXLVL TBIRTH TDEATH LCADP IOFLAG
0.100E-03 5.000 2 3 0.000E+00 1.0000000 0 1
$ ADPSIZE ADPASS IREFLG ADPENE
0.0000000 1 0 3.0000
*LOAD_RIGID_BODY

$ rbID dir lcID scale

 2 3 2 1.0000000
*LOAD_RIGID_BODY
$ rbID dir lcID scale

 4 3 3 1.0000000
*DEFINE_CURVE
$ FLD curve
90
$
-1,2.083
0,.25
1,.75
*END

The input file (file m3.tg.opt) used to generate the FE mesh in Truegrid is:

c generate LS-DYNA input deck for sheet metal example
lsdyna keyword
lsdyopts endtim .0009 nodout 1.e-6 d3plot dtcycl .0001 ; ;
lsdyopts istupd 1 ;
c lsdymats 1 37 shell elfor bt rho 7.8e-9 e 2.e5 pr .28

CHAPTER 20: EXAMPLE PROBLEMS

298 LS-OPT Version 3

c sigy 200. etan 572 er 1.4 ;
lsdymats 2 20 shell elfor bt rho 7.8e-9 e 2.e5 pr .28 shth .1
 cmo con 4 7;
lsdymats 3 20 shell elfor bt rho 7.8e-9 e 2.e5 pr .28 shth .1
 cmo con 7 7 ;
lsdymats 4 20 shell elfor bt rho 7.8e-9 e 2.e5 pr .28 shth .1
 cmo con 4 7;
plane 2 0 0 0 1 0 0 .01 symm ;
plane 3 0 0 0 0 1 0 0.01 symm ;
c sid 1 lsdsi a10 slvmat 1;mstmat 2;scoef .1 ; ; ;
c sid 2 lsdsi a10 slvmat 1;mstmat 3;scoef .1 ; ; ;
c sid 3 lsdsi a10 slvmat 1;mstmat 4;scoef .1 ; ; ;
c
lcd 1
 0.000000000E+00 0.275600006E+03
 0.665699990E-04 0.276100006E+03
 0.136500006E-03 0.276700012E+03

 .
 .
 .

 0.312799990E+00 0.481799988E+03
 0.469900012E+00 0.517200012E+03
 0.705600023E+00 0.555299988E+03
;
c
c die cross-section
para
c
 r1 <<Radius_1>> c upper radius minimum = 2.
 r2 <<Radius_2>> c middle radius minimum = 2.
 r3 <<Radius_3>> c lower radius minimum = 2.
 load2 -100000
 load3 -20000
 th1 1.0 c thickness of blank
 th3 .00 c thickness of die and punch
 th2 [1.001*%th1]
 l1 20 c length of draw (5-40)
c
 z5 [%l1-22]
c Position of workpiece
 z4 [%z5+1.001*%th1/2.+%th3/2]
c Position of blankholder
 z3 [%z4+1.001*%th1/2.+%th3/2]
 n1 [25+4.0*%l1]
 n2 [25+8.0*%l1]
c part 2
 z6 [%z5+4+%th2]
 z7 [%z5+%l1+4+%th2]
;
c
c die cross-section

 .
 .
 .

 CHAPTER 20: EXAMPLE PROBLEMS

LS-OPT Version 3 299

 c punch cross-section (closed configuration)
ld 2
 lod 1 [%th2+%th3]

c punch cross-section (withdrawn configuration)
ld 3 lstl 2 0 [%z5+26]

 .
 .
 .

endpart
c ***************** part 2 mat 2 ********* punch
cylinder
1 8 35 40 67 76 [76+%n1] [70+%n1+10]; 1 41 ; -1 ;
.001 17. 23. 36. 44. 50. 75. 100.
0. 90.
%z7

 .
 .
 .

thick %th3
mate 2
endpart

c *********** part 3 mat 4 ********* blankholder
cylinder
1 10 ; 1 41 ; -1 ;
80. 100.
0. 90.
[%z3]
b 0 0 0 0 0 0 dx 1 dy 1 rx 1 ry 1 rz 1;
thick %th3
mate 4
endpart

c *********** part 4 mat 1 workpiece
block
1 21 ; 1 21 ; -1 ;
0. 100.
0. 100.
[%z4]
thick [%th1]
mate 1
endpart
merge
write
end

The error parameters for the fitted functions are given in the following output (from lsopt_output
file):

Approximating Response 'Thinning' using 16 points (ITERATION 1)

CHAPTER 20: EXAMPLE PROBLEMS

300 LS-OPT Version 3

--
 Global error parameters of response surface

Quadratic Function Approximation:

Mean response value = 27.8994

RMS error = 0.6657 (2.39%)
Maximum Residual = 1.2932 (4.64%)
Average Error = 0.5860 (2.10%)
Square Root PRESS Residual = 2.0126 (7.21%)
Variance = 1.0130
R^2 = 0.9913
R^2 (adjusted) = 0.9826
R^2 (prediction) = 0.9207
Determinant of [X]'[X] = 2231.5965

Approximating Response 'FLD' using 16 points (ITERATION 1)
--
 Global error parameters of response surface

Quadratic Function Approximation:

Mean response value = 0.0698

RMS error = 0.0121 (17.33%)
Maximum Residual = 0.0247 (35.35%)
Average Error = 0.0103 (14.74%)
Square Root PRESS Residual = 0.0332 (47.59%)
Variance = 0.0003
R^2 = 0.9771
R^2 (adjusted) = 0.9542
R^2 (prediction) = 0.8272
Determinant of [X]'[X] = 2231.5965

The thinning has a reasonably accurate response surface but the FLD approximation requires further
refinement.
The initial design has the following response surface results which fail the criteria for maximum thinning,
but not for FLD:

DESIGN POINT

Variable Name Lower Bound Value Upper Bound
--------------------------------|-----------|----------|-----------
Radius_1 1 1.5 4.5
Radius_2 1 1.5 4.5
Radius_3 1 1.5 4.5
--------------------------------|-----------|----------|-----------

CONSTRAINT FUNCTIONS:

CONSTRAINT NAME	Computed	Predicted	Lower	Upper	Viol?
FLD | 0.09123 0.1006| -1e+30 0|YES
Rad1 | 1.5 1.5| -1e+30 1.1|YES

 CHAPTER 20: EXAMPLE PROBLEMS

LS-OPT Version 3 301

Rad2 | 1.5 1.5| -1e+30 1.1|YES
Rad3 | 1.5 1.5| -1e+30 1.1|YES
Thinning_scaled | 0.2957 0.3078| -1e+30 0.2|YES
--------------------------------|----------|----------|----------|----------|-----
CONSTRAINT VIOLATIONS:

 | Computed Violation | Predicted Violation |
CONSTRAINT NAME |----------|----------|----------|----------|
 | Lower | Upper | Lower | Upper |
--------------------------------|----------|----------|----------|----------|
FLD | - 0.09123| - 0.1006|
Rad1 | - 0.4| - 0.4|
Rad2 | - 0.4| - 0.4|
Rad3 | - 0.4| - 0.4|
Thinning_scaled | - 0.09567| - 0.1078|
--------------------------------|----------|----------|----------|----------|

As shown below, after 1 iteration, a feasible design is generated. The simulation response of the optimum is
closely approximated by the response surface.

DESIGN POINT

Variable Name Lower Bound Value Upper Bound
--------------------------------|-----------|----------|-----------
Radius_1 1 3.006 4.5
Radius_2 1 3.006 4.5
Radius_3 1 3.006 4.5
--------------------------------|-----------|----------|-----------

CONSTRAINT FUNCTIONS:

CONSTRAINT NAME	Computed	Predicted	Lower	Upper	Viol?
FLD | -0.04308 -0.03841| -1e+30 0|no
Rad1 | 3.006 3.006| -1e+30 1.1|YES
Rad2 | 3.006 3.006| -1e+30 1.1|YES
Rad3 | 3.006 3.006| -1e+30 1.1|YES
Thinning_scaled | 0.2172 0.2| -1e+30 0.2|no
--------------------------------|----------|----------|----------|----------|-----

CONSTRAINT VIOLATIONS:

 | Computed Violation | Predicted Violation |
CONSTRAINT NAME |----------|----------|----------|----------|
 | Lower | Upper | Lower | Upper |
--------------------------------|----------|----------|----------|----------|
FLD | - - | - - |
Rad1 | - 1.906| - 1.906|
Rad2 | - 1.906| - 1.906|
Rad3 | - 1.906| - 1.906|
Thinning_scaled | - 0.01718| - - |
--------------------------------|----------|----------|----------|----------|

CHAPTER 20: EXAMPLE PROBLEMS

302 LS-OPT Version 3

20.4.3 Automated design

The optimization process can also be automated so that no user intervention is required. The starting design,
lower and upper bounds, and region of interest is modified from the 1 iteration study above.

The input file is modified as follows:

The variable definitions are as follows:

Variable 'Radius_1' 1.5
 Lower bound variable 'Radius_1' 1
 Upper bound variable 'Radius_1' 4.5
 Range 'Radius_1' 1
 Variable 'Radius_2' 1.5
 Lower bound variable 'Radius_2' 1
 Upper bound variable 'Radius_2' 4.5
 Range 'Radius_2' 1
 Variable 'Radius_3' 1.5
 Lower bound variable 'Radius_3' 1
 Upper bound variable 'Radius_3' 4.5
 Range 'Radius_3' 1

The number of D-optimal experiments is reduced because of the linear approximation used:

Order linear
 Experimental design dopt
 Basis experiment 3toK
 Number experiment 7

The optimization is run for 10 iterations:
iterate 10

The optimization history is shown in Figure 20-23 for the design variables and responses:

 CHAPTER 20: EXAMPLE PROBLEMS

LS-OPT Version 3 303

a) Optimization history of variable ‘Radius_1’ b) Optimization history of variable ‘Radius_2’

c) Optimization history of variable ‘Radius_3’ d) Optimization history of response ‘Thinning’

CHAPTER 20: EXAMPLE PROBLEMS

304 LS-OPT Version 3

e) Optimization history of response FLD

Figure 20-23: Optimization history of design variables and responses (automated design)

The details of the 10th iteration have been extracted:

DESIGN POINT

Variable Name Lower Bound Value Upper Bound
--------------------------------|-----------|----------|-----------
Radius_1 1 2.653 4.5
Radius_2 1 2.286 4.5
Radius_3 1 2.004 4.5
--------------------------------|-----------|----------|-----------

RESPONSE FUNCTIONS:

 | Scaled | Unscaled |
 |---------------------|---------------------|
RESPONSE | Computed Predicted| Computed Predicted|
--------------------------------|----------|----------|----------|----------|
Thinning | 19.92 19.6| 19.92 19.6|
FLD | -0.000843 -0.002907| -0.000843 -0.002907|
--------------------------------|----------|----------|----------|----------|

A comparison between the starting and the final values is tabulated below:

 CHAPTER 20: EXAMPLE PROBLEMS

LS-OPT Version 3 305

Table 20-3: Comparison of results (Sheet-metal forming)

Variable Start (Computed) Optimal (Predicted) Optimal (Computed)
Thinning 29.57 19.92 19.6
FLD 0.09123 -0.000843 -0.002907
Radius_1 1.5 2.653
Radius_2 1.5 2.286
Radius_3 1.5 2.004

The FLD diagrams (Figure 20-24) for the baseline design and the optimum illustrate the improvement of the
FLD feasibility:

Baseline FLD diagram FLD diagram of 10th iteration

Figure 20-24: FLD diagrams of baseline and 10th iteration

A typical deformed state is depicted in Figure 20-25 below.

Figure 20-25: Deformed state

CHAPTER 20: EXAMPLE PROBLEMS

306 LS-OPT Version 3

20.5 System identification (elastoplastic material) (2 variables)

A methodology for deriving system or material parameters from experimental results, known as system
identification, is applied here using optimization. The example has the following features:

• The MeanSqErr composite function is used
• The Crossplot history is used
• The Min-Max formulation is demonstrated
• Multiple test cases are employed
• The confidence intervals of the optimal parameters is reported.

20.5.1 Problem statement

Figure 20-26: Sample of elastoplastic material subjected to a controlled vertical displacement

The material parameters of a foam material must be determined from experimental results, namely the
resultant reaction force vs. displacement history of a cubic sample on a rigid base (see Figure 20-26). The
problem is solved by minimizing the mean squared residual force (rcforc binary database) with the
material parameters Young's modulus E and Yield stress Y as the unknown optimization variables.

The “experimental” resultant forces vs. displacements are shown below. The results were generated from an
LS-DYNA run with the parameters (610=E , 310=Y). Samples are taken at times 2, 4, 6 and 8 ms:

Test1.txt

 0.36168 10162
 0.72562 12964
 1.0903 14840
 1.4538 17672

 CHAPTER 20: EXAMPLE PROBLEMS

LS-OPT Version 3 307

Test2.txt

 0.36168 17393
 0.72562 19559
 1.0903 22098
 1.4538 26833

The finite element models for the two cases are represented in the keyword files foam1.k and foam2.k
respectively.

Mean Squared Error (MSE) formulation

The LS-OPT command file is given below. The displacement and force histories are used to construct a
force vs. displacement crossplot for the two cases. The mean squared residual error (MSE) between each
crossplot and the corresponding test data is then computed. The two MSE values are simply added to find
the objective value. Although only four test points are given for each case, 10 points at constant intervals are
interpolated for use in the MeanSqErr (Section 13.6) composite:

2

1

2

1

)(1)(1
∑ ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
=∑ ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
=

==

P

p p

p
p

P

p p

pp
p s

e
W

Ps
Gf

W
P

xx
ε

where P=10, 1=ps and 1=pW . The representative MSE command is:

composite 'MSE1' { MeanSqErr (Test1, Force_vs_Disp1, 10) }

"Example 6"
$ Created on Mon Nov 28 10:42:41 2005
solvers 2
$
$ WARNING -- NO RESPONSES ARE DEFINED
$
histories 8
$
$ DESIGN VARIABLES
$
variables 2
 Variable 'Youngs_Modulus' 700000
 Lower bound variable 'Youngs_Modulus' 500000
 Upper bound variable 'Youngs_Modulus' 2e+06
 Local 'Youngs_Modulus'
 Variable 'Yield_Stress' 1500
 Lower bound variable 'Yield_Stress' 500
 Upper bound variable 'Yield_Stress' 2000
$
$ CONSTANTS
$
constants 3
 Constant 'Begin' 0.002
 Constant 'End' 0.008
 Constant 'numpoints' 4

$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
$ OPTIMIZATION METHOD
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
$
Optimization Method SRSM

CHAPTER 20: EXAMPLE PROBLEMS

308 LS-OPT Version 3

$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
$ SOLVER "Case1"
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
$
$ DEFINITION OF SOLVER "Case1"
$
 solver dyna960 'Case1'
 solver command "ls970.single"
 solver input file "foam1.k"
$ ------ Pre-processor --------
$ NO PREPROCESSOR SPECIFIED
$ ------ Sampling -------------
 solver order linear
 solver experiment design dopt
 solver basis experiment 5toK
$ ------ Job information ------
 solver concurrent jobs 1
$
$ WARNING - NO RESPONSES DEFINED FOR SOLVER "Case1"
$
$
$ HISTORIES FOR SOLVER "Case1"
$
 history 'Force1' "BinoutHistory -res_type rcforc -cmp z_force -id 1 -side SLAVE"
 history 'Disp1' "BinoutHistory -res_type nodout -cmp z_displacement -id 296"
$
$ HISTORY EXPRESSIONS FOR SOLVER "Case1"
$
 history 'Force_vs_Disp1' expression { Crossplot ("-Disp1", "Force1") }

$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
$ SOLVER "Case2"
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
$
$ DEFINITION OF SOLVER "Case2"
$
 solver dyna960 'Case2'
 solver command "ls970.single"
 solver input file "foam2.k"
$ ------ Pre-processor --------
$ NO PREPROCESSOR SPECIFIED
$ ------ Sampling -------------
 solver order linear
 solver experiment design dopt
 solver basis experiment 5toK
$ ------ Job information ------
 solver concurrent jobs 1
$
$ LOCAL DESIGN VARIABLES FOR SOLVER "Case2"
$
 solver variable 'Youngs_Modulus'
$
$ WARNING - NO RESPONSES DEFINED FOR SOLVER "Case2"
$
$
$ HISTORIES FOR SOLVER "Case2"
$
 history 'Force2' "BinoutHistory -res_type rcforc -cmp z_force -id 1 -side SLAVE"
 history 'Disp2' "BinoutHistory -res_type nodout -cmp z_displacement -id 288"
$
$ HISTORY EXPRESSIONS FOR SOLVER "Case2"
$
 history 'Force_vs_Disp2' expression { Crossplot ("-Disp2", "Force2") }

$
$ HISTORIES FROM FILES
$
 history 'Test1' file "Test1.txt"
 history 'Test2' file "Test2.txt"
composites 3

 CHAPTER 20: EXAMPLE PROBLEMS

LS-OPT Version 3 309

$
$ COMPOSITE EXPRESSIONS
$
 composite 'MSE1' { MeanSqErr (Test1, Force_vs_Disp1, 10) }
 composite 'MSE2' { MeanSqErr (Test2, Force_vs_Disp2, 10) }
 composite 'MSE' { sqrt(MSE1 + MSE2) }
$
$ OBJECTIVE FUNCTIONS
$
 objectives 2
 objective 'MSE1' 1
 objective 'MSE2' 1
$
$ THERE ARE NO CONSTRAINTS!!!
$
 constraints 0
$
$ JOB INFO
$
 concurrent jobs 1
 iterate param design 0.01
 iterate param objective 0.01
 iterate param stoppingtype and
 iterate 2
STOP

Maximum residual formulation

In this formulation, the deviations from the respective target values are incorporated as constraint violations,
so that the optimization problem for parameter identification becomes:

Minimize e,
subject to

e
s

Gf

j

jj ≤
−)(x

; j = 1,…,8

e ≥ 0

This formulation is automatically activated in LS-OPT by specifying the individual responses in equality
constraints, i.e. without specifying the objective function as the maximum constraint violation. This is due
to the fact LS-OPT automatically minimizes the infeasibility e , ignoring the objective function until a
feasible design is found. When used in parameter identification, all the constraints are in general never
completely satisfied due to typically over-determined systems that are used and therefore the objective
function specification may be omitted.

As a method of second choice, the Minmax method presently requires a more laborious input preparation
than the MSE approach. It will be simplified, using a single command, in a later version of LS-OPT.

"Example 6c"
$ Created on Sun Apr 4 18:00:20 2004
solvers 2
responses 8
histories 2
$
$ DESIGN VARIABLES
$

CHAPTER 20: EXAMPLE PROBLEMS

310 LS-OPT Version 3

variables 2
 Variable 'Youngs_Modulus' 700000
 Lower bound variable 'Youngs_Modulus' 500000
 Upper bound variable 'Youngs_Modulus' 2e+06
 Variable 'Yield_Stress' 1500
 Lower bound variable 'Yield_Stress' 500
 Upper bound variable 'Yield_Stress' 2000

$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
$ OPTIMIZATION METHOD
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
$
Optimization Method SRSM

$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
$ SOLVER "Case1"
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
$
$ DEFINITION OF SOLVER "Case1"
$
 solver dyna960 'Case1'
 solver command "ls970.single"
 solver input file "foam1.k"
 solver order linear
 solver experiment design dopt
 solver number experiments 5
 solver basis experiment 3toK
 solver concurrent jobs 1
$
$ WARNING - NO RESPONSES DEFINED FOR SOLVER "Case1"
$
$
$ HISTORIES FOR SOLVER "Case1"
$
 history 'Force1' "BinoutHistory -res_type rcforc -cmp z_force -id 1 -side SLAVE "
$
$ RESPONSE EXPRESSIONS FOR SOLVER "Case1"
$
 response 'F1_1' expression {Force1(0.002)}
 response 'F2_1' expression {Force1(0.004)}
 response 'F3_1' expression {Force1(0.006)}
 response 'F4_1' expression {Force1(0.008)}

$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
$ SOLVER "Case2"
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
$
$ DEFINITION OF SOLVER "Case2"
$
 solver dyna960 'Case2'
 solver command "ls970.single"
 solver input file "foam2.k"
 solver order linear
 solver experiment duplicate 'Case1'
 solver concurrent jobs 1
$
$ WARNING - NO RESPONSES DEFINED FOR SOLVER "Case2"
$
$
$ HISTORIES FOR SOLVER "Case2"
$
 history 'Force2' "BinoutHistory -res_type rcforc -cmp z_force -id 1 -side SLAVE "
$
$ RESPONSE EXPRESSIONS FOR SOLVER "Case2"
$
 response 'F1_2' expression {Force2(0.002)}
 response 'F2_2' expression {Force2(0.004)}
 response 'F3_2' expression {Force2(0.006)}
 response 'F4_2' expression {Force2(0.008)}

composites 1

 CHAPTER 20: EXAMPLE PROBLEMS

LS-OPT Version 3 311

$
$ COMPOSITE RESPONSES
$
 composite 'Residual' type targeted
 composite 'Residual' response 'F1_1' 10162 scale 1
 weight 1
 composite 'Residual' response 'F2_1' 12964 scale 1
 weight 1
 composite 'Residual' response 'F3_1' 14840 scale 1
 weight 1
 composite 'Residual' response 'F4_1' 17672 scale 1
 weight 1
 composite 'Residual' response 'F1_2' 17393 scale 1
 weight 1
 composite 'Residual' response 'F2_2' 19559 scale 1
 weight 1
 composite 'Residual' response 'F3_2' 22098 scale 1
 weight 1
 composite 'Residual' response 'F4_2' 26833 scale 1
 weight 1
$
$ NO OBJECTIVES DEFINED
$
 objectives 0
$
$ CONSTRAINT DEFINITIONS
$
 constraints 8
 constraint 'F1_1'
 lower bound constraint 'F1_1' 10162
 upper bound constraint 'F1_1' 10162
 constraint 'F2_1'
 lower bound constraint 'F2_1' 12964
 upper bound constraint 'F2_1' 12964
 constraint 'F3_1'
 lower bound constraint 'F3_1' 14840
 upper bound constraint 'F3_1' 14840
 constraint 'F4_1'
 lower bound constraint 'F4_1' 17672
 upper bound constraint 'F4_1' 17672
 constraint 'F1_2'
 lower bound constraint 'F1_2' 17393
 upper bound constraint 'F1_2' 17393
 constraint 'F2_2'
 lower bound constraint 'F2_2' 19559
 upper bound constraint 'F2_2' 19559
 constraint 'F3_2'
 lower bound constraint 'F3_2' 22098
 upper bound constraint 'F3_2' 22098
 constraint 'F4_2'
 lower bound constraint 'F4_2' 26833
 upper bound constraint 'F4_2' 26833
$
$ JOB INFO
$
 iterate param design 0.01
 iterate param objective 0.01
 iterate param stoppingtype or
 iterate 5
STOP

20.5.2 Results

The results for both methods are compared below. Note that the optimum Young’s modulus differs slightly
due to its relative insignificance in the optimization as depicted in the following ANOVA plot representing
the 4th point of the history plot and demonstrated by the size of its confidence interval (see table).

CHAPTER 20: EXAMPLE PROBLEMS

312 LS-OPT Version 3

Mean Squared Error (MSE) formulation

Printout of the lsopt_report file:

===
 M E A N S Q U A R E D E R R O R V A L U E S

 ITERATION 5
===

--
Objective name MSE
--
MSE1 .000221574
MSE2 .000175544
--
Total .000397118
--

===
 M E A N S Q U A R E D E R R O R R E S I D U A L S

 ITERATION 5
===

 COMPOSITE : MSE1

 "Force_vs_Disp1" calibrated to "Test1"
--

 CHAPTER 20: EXAMPLE PROBLEMS

LS-OPT Version 3 313

 Computed MSE Value = 0.00026367
 Predicted MSE Value = 0.000221574

--
 TEST DATA | COMPUTED RESULTS |
------|----------|----------|----------|----------|----------|----------|----------|----------
 Point Point Target | Computed Computed | Predicted Predicted| Weight Scale
 No. Location Value | Value Error | Value Error | Value Value
------|----------|----------|----------|----------|----------|----------|----------|----------
 1 0.3617 1.016e+04| 1.027e+04 107.9| 1.026e+04 98.01| 1 1.767e+04
 2 0.483 1.11e+04| 1.08e+04 -298.9| 1.08e+04 -299.4| 1 1.767e+04
 3 0.6044 1.203e+04| 1.143e+04 -605.1| 1.157e+04 -458| 1 1.767e+04
 4 0.7257 1.296e+04| 1.283e+04 -129.6| 1.276e+04 -204.2| 1 1.767e+04
 5 0.8471 1.359e+04| 1.317e+04 -422.7| 1.314e+04 -447| 1 1.767e+04
 6 0.9684 1.421e+04| 1.397e+04 -240| 1.397e+04 -242.4| 1 1.767e+04
 7 1.09 1.484e+04| 1.49e+04 58.49| 1.49e+04 58.67| 1 1.767e+04
 8 1.211 1.578e+04| 1.592e+04 136.1| 1.591e+04 131| 1 1.767e+04
 9 1.332 1.673e+04| 1.688e+04 148.9| 1.674e+04 16.58| 1 1.767e+04
 10 1.454 1.767e+04| 1.743e+04 -243.2| 1.742e+04 -248.4| 1 1.767e+04
--

 COMPOSITE : MSE2

 "Force_vs_Disp2" calibrated to "Test2"
--

 Computed MSE Value = 9.06349e-05
 Predicted MSE Value = 0.000175544

--
 TEST DATA | COMPUTED RESULTS |
------|----------|----------|----------|----------|----------|----------|----------|----------
 Point Point Target | Computed Computed | Predicted Predicted| Weight Scale
 No. Location Value | Value Error | Value Error | Value Value
------|----------|----------|----------|----------|----------|----------|----------|----------
 1 0.3617 1.739e+04| 1.753e+04 138.8| 1.762e+04 223.9| 1 2.683e+04
 2 0.483 1.812e+04| 1.823e+04 112.7| 1.824e+04 127.4| 1 2.683e+04
 3 0.6044 1.884e+04| 1.897e+04 130.5| 1.896e+04 121.3| 1 2.683e+04
 4 0.7257 1.956e+04| 1.973e+04 170.2| 1.972e+04 165.1| 1 2.683e+04
 5 0.8471 2.04e+04| 2.053e+04 120.7| 2.052e+04 118.2| 1 2.683e+04
 6 0.9684 2.125e+04| 2.137e+04 123.3| 2.137e+04 119.3| 1 2.683e+04
 7 1.09 2.209e+04| 2.228e+04 184| 2.228e+04 184.3| 1 2.683e+04
 8 1.211 2.367e+04| 2.438e+04 705.9| 2.471e+04 1037| 1 2.683e+04
 9 1.332 2.525e+04| 2.519e+04 -59.33| 2.539e+04 132.9| 1 2.683e+04
 10 1.454 2.683e+04| 2.674e+04 -95.55| 2.684e+04 5.068| 1 2.683e+04
--

===

===
 C O N F I D E N C E I N T E R V A L S

 ITERATION 5
===

--
 90% Confidence intervals for individual optimal parameters
--
Name Value Confidence
 Interval
 Lower Upper
--
Youngs_Modulus 739559.415 72970.5803 1406148.25
Yield_Stress 1009.14575 978.501323 1039.79017
--

===

CHAPTER 20: EXAMPLE PROBLEMS

314 LS-OPT Version 3

Figure 20-27: Optimization history of MSE2. The history plots comparing the response to the test data are
selected by clicking near the selected iteration on the plot and then on the MeanSqErr button.

Figure 20-28: Comparison of force-displacement and data from Test1 (baseline)

 CHAPTER 20: EXAMPLE PROBLEMS

LS-OPT Version 3 315

Figure 20-29: Comparison of force-displacement and data from Test1 (optimum)

Maximum residual formulation

DESIGN POINT

Variable Name Lower Bound Value Upper Bound
--------------------------------|-----------|----------|-----------|--------
Youngs_Modulus 5e+05 7.083e+05 2e+06
Yield_Stress 500 1001 2000
--------------------------------|-----------|----------|-----------|--------

RESPONSE FUNCTIONS:

 | Scaled | Unscaled |
 |---------------------|---------------------|
RESPONSE | Computed Predicted| Computed Predicted|
--------------------------------|----------|----------|----------|----------|
F1_1 | 1.02e+04 1.02e+04| 1.02e+04 1.02e+04|
F2_1 | 1.273e+04 1.295e+04| 1.273e+04 1.295e+04|
F3_1 | 1.478e+04 1.477e+04| 1.478e+04 1.477e+04|
F4_1 | 1.735e+04 1.748e+04| 1.735e+04 1.748e+04|
F1_2 | 1.743e+04 1.748e+04| 1.743e+04 1.748e+04|
F2_2 | 1.957e+04 1.956e+04| 1.957e+04 1.956e+04|
F3_2 | 2.21e+04 2.234e+04| 2.21e+04 2.234e+04|
F4_2 | 2.653e+04 2.678e+04| 2.653e+04 2.678e+04|
--------------------------------|----------|----------|----------|----------|

COMPOSITE FUNCTIONS:

COMPOSITE NAME	Computed	Predicted
Residual | 505.2 332.9|
--------------------------------|----------|----------|

CONSTRAINT FUNCTIONS:

CONSTRAINT NAME	Computed	Predicted	Lower	Upper	Viol?
F1_1 | 1.02e+04 1.02e+04| 1.016e+04 1.016e+04|YES

CHAPTER 20: EXAMPLE PROBLEMS

316 LS-OPT Version 3

F2_1 | 1.273e+04 1.295e+04| 1.296e+04 1.296e+04|YES
F3_1 | 1.478e+04 1.477e+04| 1.484e+04 1.484e+04|YES
F4_1 | 1.735e+04 1.748e+04| 1.767e+04 1.767e+04|YES
F1_2 | 1.743e+04 1.748e+04| 1.739e+04 1.739e+04|YES
F2_2 | 1.957e+04 1.956e+04| 1.956e+04 1.956e+04|
F3_2 | 2.21e+04 2.234e+04| 2.21e+04 2.21e+04|YES
F4_2 | 2.653e+04 2.678e+04| 2.683e+04 2.683e+04|YES
--------------------------------|----------|----------|----------|----------|-----

CONSTRAINT VIOLATIONS:

 | Computed Violation | Predicted Violation |
CONSTRAINT NAME |----------|----------|----------|----------|
 | Lower | Upper | Lower | Upper |
--------------------------------|----------|----------|----------|----------|
F1_1 | - 37.3| - 35.91|
F2_1 | 230.2 - | 10.99 - |
F3_1 | 61.33 - | 65.56 - |
F4_1 | 326.2 - | 194.5 - |
F1_2 | - 40.46| - 85.06|
F2_2 | - 10.74| 0.9383 - |
F3_2 | - 2.992| - 240.1|
F4_2 | 298.1 - | 49.21 - |
--------------------------------|----------|----------|----------|----------|

MAXIMUM VIOLATION:

 | Computed | Predicted |
 Quantity |---------------------------|---------------------------|
 | Constraint Value | Constraint Value |
-------------------|----------------|----------|----------------|----------|
Maximum Violation |F4_1 326.2|F3_2 240.1|
Smallest Margin |F3_2 2.992|F2_2 0.9383|
-------------------|----------------|----------|----------------|----------|

20.6 Small car crash and NVH (MDO) (5 variables)

This example has the following features:

• LS-DYNA is used for both explicit crash and implicit NVH simulations.
• Variable screening is performed.
• Multidisciplinary design optimization (MDO) is illustrated with a simple example.
• Mode tracking is used.
• The standard LS-DYNA interface is used to extract the results.

20.6.1 Parameterization and Variable screening

To illustrate a relatively simple example of multidisciplinary design optimization (MDO), the small car of
Section 20.2 is extended to have five variables. In addition, one Noise, Vibration and Harshness (NVH)
parameter is considered as a constraint, i.e. the first torsional vibrational mode frequency.

Figure 20-30 shows the modified small car. Rails are added, and the combined bumper-hood section is
separated into a grill, hood and bumper. The mass of the affected components in the initial design is 1.328

 CHAPTER 20: EXAMPLE PROBLEMS

LS-OPT Version 3 317

units while the torsional mode frequency is 2.281Hz. This corresponds to mode number 15. The Head Injury
Criterion (HIC) based on a 15ms interval is initially 17500. The initial intrusion of the bumper is 531 mm.

Hood thickness
Grill thickness

Bumper
thickness

Roof thickness

Rail_front
thickness

Rail_back
thickness

Figure 20-30: Small car with crash rails – definition of design variables

The optimization problem is defined as follows:

Minimize Mass(xcrash)

subject to HIC(xcrash) < 900
 Intrusion(xcrash) < 500mm
 Torsional mode frequency(xNVH) > 3Hz

where xcrash = (t_hood, t_bumper, t_rail_back, t_rail_front, t_roof) and
xNVH = (t_hood). These variables were selected by first conducting an LS-OPT run in which all five
variables were included for both crash and NVH (linear response surfaces). Figure 20-31 shows the
ANOVA charts produced from these results using the Viewer. Using these charts, all five variables were
selected for crash while only t_hood was kept for NVH. Note that, in this first iteration, there is a
significant error in the intrusion prediction while mass has no error because of its linearity.

CHAPTER 20: EXAMPLE PROBLEMS

318 LS-OPT Version 3

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

t_rail_back

t_hood

t_bumper

t_roof

t_rail_front

ANOVA Plot for Mass
(Lower half of 90% confidence interval in red)

 (a) (b)

 (c) (d)

Figure 20-31: ANOVA plots for small car response

20.6.2 MDO with D-optimal experimental design and SRSM

The LS-OPT input file below illustrates how the variables were reduced for the NVH solver. Note how the
two solvers, i.e., crash and NVH, are specified. Variables are flagged as local with the Local
variable_name statement, and then linked to a solver using the Solver variable
variable_name command.

"Small Car Problem: Five variables: Partial variables Crash-NVH MDF"
$ Created on Sun Jan 5 16:12:00 2003
solvers 2
responses 8
$
$ NO HISTORIES ARE DEFINED
$
$ DESIGN VARIABLES
$
variables 5
 Variable 't_rail_back' 2
 Lower bound variable 't_rail_back' 1
 Upper bound variable 't_rail_back' 6

 CHAPTER 20: EXAMPLE PROBLEMS

LS-OPT Version 3 319

 Range 't_rail_back' 2
 Local 't_rail_back'
 Variable 't_hood' 2
 Lower bound variable 't_hood' 1
 Upper bound variable 't_hood' 6
 Range 't_hood' 2
 Variable 't_bumper' 3
 Lower bound variable 't_bumper' 1
 Upper bound variable 't_bumper' 6
 Range 't_bumper' 2
 Local 't_bumper'
 Variable 't_roof' 2
 Lower bound variable 't_roof' 1
 Upper bound variable 't_roof' 6
 Range 't_roof' 2
 Local 't_roof'
 Variable 't_rail_front' 5
 Lower bound variable 't_rail_front' 1
 Upper bound variable 't_rail_front' 6
 Range 't_rail_front' 2
 Local 't_rail_front'

$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
$ SOLVER "CRASH"
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
$
$ DEFINITION OF SOLVER "CRASH"
$
 solver dyna960 'CRASH'
 solver command "lsdyna.single"
 solver input file "car6_crash.k"
 solver order linear
 solver experiment design dopt
 solver basis experiment 3toK
 solver concurrent jobs 1
$
$ LOCAL DESIGN VARIABLES FOR SOLVER "CRASH"
$
 solver variable 't_rail_back'
 solver variable 't_bumper'
 solver variable 't_roof'
 solver variable 't_rail_front'
$
$ RESPONSES FOR SOLVER "CRASH"
$
 response 'Acc_max' 1 0 "DynaASCII Nodout X_ACC 432 Max SAE 60"
 response 'Mass' 1 0 "DynaMass 2 3 4 5 6 7 MASS"
 response 'Intru_2' 1 0 "DynaASCII Nodout X_DISP 432 Timestep"
 response 'Intru_1' 1 0 "DynaASCII Nodout X_DISP 184 Timestep"
 response 'HIC' 1 0 "DynaASCII Nodout HIC15 9810. 1 432"
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
$ SOLVER "NVH"
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
$
$ DEFINITION OF SOLVER "NVH"
$
 solver dyna960 'NVH'

CHAPTER 20: EXAMPLE PROBLEMS

320 LS-OPT Version 3

 solver command "lsdyna.double"
 solver input file "car6_NVH.k"
 solver order linear
 solver experiment design dopt
 solver basis experiment 5toK
 solver concurrent jobs 1
$
$ RESPONSES FOR SOLVER "NVH"
$
 response 'Frequency' 1 0 "DynaFreq 15 FREQ"
 response 'Mode' 1 0 "DynaFreq 15 NUMBER"
 response 'Generalized_Mass' 1 0 "DynaFreq 15 GENMASS"

composites 4
$
$ COMPOSITE RESPONSES
$
 composite 'Intrusion' type weighted
 composite 'Intrusion' response 'Intru_2' -1 scale 1
 composite 'Intrusion' response 'Intru_1' 1 scale 1
 composite 'HIC_scaled' type targeted
 composite 'HIC_scaled' response 'HIC' 0 scale 900
 weight 1
 composite 'Freq_scaled' type targeted
 composite 'Freq_scaled' response 'Frequency' 0 scale 3
 weight 1
$
$ COMPOSITE EXPRESSIONS
$
 composite 'Intrusion_scaled' {Intrusion/500}
$
$ OBJECTIVE FUNCTIONS
$
 objectives 1
 objective 'Mass' 1
$
$ CONSTRAINT DEFINITIONS
$
 constraints 3
 constraint 'HIC_scaled'
 upper bound constraint 'HIC_scaled' 1
 constraint 'Freq_scaled'
 lower bound constraint 'Freq_scaled' 1
 constraint 'Intrusion_scaled'
 upper bound constraint 'Intrusion_scaled' 1
$
$ JOB INFO
$
 iterate param design 0.01
 iterate param objective 0.01
 iterate param stoppingtype and
 iterate 10
STOP

 CHAPTER 20: EXAMPLE PROBLEMS

LS-OPT Version 3 321

The optimization results are shown in Figure 20-32 for the objective, three constraints, mode sequence
number and maximum constraint violation. The initial design is infeasible due to too high a HIC value, too
high an intrusion and too low a torsional frequency. To meet all these constraints, the mass of the affected
components has to increase substantially. Convergence is obtained at about the 8th iteration, and when the
optimization terminates, a 0.0003 violation in the scaled constraints remains. The mode tracking feature in
LS-DYNA is used to keep track of the frequency mode (Figure 20-32(e)). Note that the mode number
changes from 15 to 18.

a) Objective (Mass) b) HIC

CHAPTER 20: EXAMPLE PROBLEMS

322 LS-OPT Version 3

c) Torsional mode frequency

d) Intrusion

e) Mode sequence f) Maximum constraint violation

Figure 20-32: Optimization histories (Small car MDO) – D-optimal (SRSM)

 CHAPTER 20: EXAMPLE PROBLEMS

LS-OPT Version 3 323

20.6.3 Sequential random search

The small car crash design problem was also optimized using the Sequential Random Search procedure
described in Section 2.13. Because of the multidisciplinary nature of the problem, all the variables were
selected to be fully shared. The design points for the NVH discipline were forced to be coincident with the
points of the crash discipline (see Section 0). The number of simulations per iteration is 16. The input file is
therefore as follows:

"Small Car Problem: Five variables: Partial variables Crash-NVH MDF"
$ Created on Tue Feb 4 17:27:53 2003
solvers 2
responses 8
$
$ NO HISTORIES ARE DEFINED
$
$
$ DESIGN VARIABLES
$
variables 5
 Variable 't_rail_back' 2
 Lower bound variable 't_rail_back' 1
 Upper bound variable 't_rail_back' 6
 Range 't_rail_back' 2
 Variable 't_hood' 2
 Lower bound variable 't_hood' 1
 Upper bound variable 't_hood' 6
 Range 't_hood' 2
 Variable 't_bumper' 3
 Lower bound variable 't_bumper' 1
 Upper bound variable 't_bumper' 6
 Range 't_bumper' 2
 Variable 't_roof' 2
 Lower bound variable 't_roof' 1
 Upper bound variable 't_roof' 6
 Range 't_roof' 2
 Variable 't_rail_front' 5
 Lower bound variable 't_rail_front' 1
 Upper bound variable 't_rail_front' 6
 Range 't_rail_front' 2
$
$ SEQUENTIAL RANDOM SEARCH
$
optimization method randomsearch
$
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
$ SOLVER "CRASH"
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
$
$ DEFINITION OF SOLVER "CRASH"
$
 solver dyna960 'CRASH'
 solver command "ls970.single"
 solver input file "car6_crash.k"

CHAPTER 20: EXAMPLE PROBLEMS

324 LS-OPT Version 3

 solver experiment design latin_hypercube
 solver number experiments 16
 solver concurrent jobs 1
$
$ RESPONSES FOR SOLVER "CRASH"
$
 response 'Acc_max' 1 0 "DynaASCII Nodout X_ACC 432 Max SAE 60"
 response 'Mass' 1 0 "DynaMass 2 3 4 5 6 7 MASS"
 response 'Intru_2' 1 0 "DynaASCII Nodout X_DISP 432 Timestep"
 response 'Intru_1' 1 0 "DynaASCII Nodout X_DISP 184 Timestep"
 response 'HIC' 1 0 "DynaASCII Nodout HIC15 9810. 1 432"

$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
$ SOLVER "NVH"
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
$
$ DEFINITION OF SOLVER "NVH"
$
 solver dyna960 'NVH'
 solver command "ls970.double"
 solver input file "car6_NVH.k"
 solver concurrent jobs 1
 solver experiment duplicate 'CRASH'
$
$ RESPONSES FOR SOLVER "NVH"
$
 response 'Frequency' 1 0 "DynaFreq 15 FREQ"
 response 'Mode' 1 0 "DynaFreq 15 NUMBER"
 response 'Generalized_Mass' 1 0 "DynaFreq 15 GENMASS"

composites 4
$
$ COMPOSITE RESPONSES
$
 composite 'Intrusion' type weighted
 composite 'Intrusion' response 'Intru_2' -1 scale 1
 composite 'Intrusion' response 'Intru_1' 1 scale 1
 composite 'HIC_scaled' type targeted
 composite 'HIC_scaled' response 'HIC' 0 scale 900
 weight 1
 composite 'Freq_scaled' type targeted
 composite 'Freq_scaled' response 'Frequency' 0 scale 3
 weight 1
$
$ COMPOSITE EXPRESSIONS
$
 composite 'Intrusion_scaled' {Intrusion/500}
$
$ OBJECTIVE FUNCTIONS
$
 objectives 1
 objective 'Mass' 1
$
$ CONSTRAINT DEFINITIONS
$
 constraints 3
 constraint 'HIC_scaled'

 CHAPTER 20: EXAMPLE PROBLEMS

LS-OPT Version 3 325

 upper bound constraint 'HIC_scaled' 1
 constraint 'Freq_scaled'
 lower bound constraint 'Freq_scaled' 1
 constraint 'Intrusion_scaled'
 upper bound constraint 'Intrusion_scaled' 1
$
$ JOB INFO
$
 iterate param design 0.001
 iterate param objective 0.001
 iterate param stoppingtype or
 iterate 40
STOP

The results are presented in Figure 20-33 (a) to (f). The random search method converges after
approximately 105 crash + 105 NVH simulations (7 iterations) while the response surface approach requires
about 60 crash + 30 NVH simulations (6 iterations). These numbers might vary because of the random
nature of the methods involved. Note the effects of mode tracking in Figure 20-33 (e).

a) Objective (Mass) b) HIC

CHAPTER 20: EXAMPLE PROBLEMS

326 LS-OPT Version 3

c) Torsional mode frequency

d) Intrusion

e) Mode sequence f) Maximum constraint violation

Figure 20-33: Optimization histories (Small car MDO) – Latin Hypercube Sampling (SRS)

 CHAPTER 20: EXAMPLE PROBLEMS

LS-OPT Version 3 327

20.7 Large car crash and NVH (MDO) (7 variables)

(Example by courtesy of DaimlerChrysler)

This example has the following features:

• LS-DYNA is used for both explicit full frontal crash and implicit NVH simulations.
• Multidisciplinary design optimization (MDO) is illustrated with a realistic full vehicle example.
• Extraction is performed using standard LS-DYNA interfaces.

This example illustrates a realistic application of Multidisciplinary Design Optimization (MDO) and
concerns the coupling of the crash performance of a large vehicle with one of its Noise Vibration and
Harshness (NVH) criteria, namely the torsional mode frequency [16]. The MDO formulation used is
depicted in Figure 20-34.

System-level Optimizer
Goal: Minimize Mass
s.t. Crashworthiness and
 NVH constraints

Multidisciplinary Analyses

Crashworthiness
analysis

NVH analysis

State variables

Design variables

Figure 20-34: Multidisciplinary feasible (MDF) MDO architecture

20.7.1 Modeling

The crashworthiness simulation considers a model containing approximately 30 000 elements of a National
Highway Transportation and Safety Association (NHTSA) vehicle [49] undergoing a full frontal impact. A
modal analysis is performed on a so-called ‘body-in-white’ model containing approximately 18 000
elements. The crash model for the full vehicle is shown in Figure 20-35 for the undeformed and deformed
(time = 78ms) states, and with only the structural components affected by the design variables, both in the
undeformed and deformed (time = 72ms) states, in Figure 20-36. The NVH model is depicted in Figure
20-37 in the first torsion vibrational mode. Only body parts that are crucial to the vibrational mode shapes
are retained in this model. The design variables are all thicknesses or gages of structural components in the

CHAPTER 20: EXAMPLE PROBLEMS

328 LS-OPT Version 3

engine compartment of the vehicle (Figure 20-36), parameterized directly in the LS-DYNA input file.
Twelve parts are affected, comprising aprons, rails, shotguns, cradle rails and the cradle cross member
(Figure 20-36). LS-DYNA v.960 is used for both the crash and NVH simulations, in explicit and implicit
modes respectively.

(a) (b)

Figure 20-35: Crash model of vehicle showing road and wall

(a) Undeformed (b) Deformed (78ms)

(a) (b)

Figure 20-36: Structural components affected by design variables –

(a) Undeformed and (b) deformed (time = 72ms)

Left and right
apron

Inner and
outer rail Front cradle upper and

lower cross members

Left and right
cradle rails

Shotgun outer
 and inner

 CHAPTER 20: EXAMPLE PROBLEMS

LS-OPT Version 3 329

Figure 20-37: Body-in-white model of vehicle in torsional vibration mode (38.7Hz)

20.7.2 Formulation of optimization problem

To illustrate the effect of coupling between the disciplines, both full and partial sharing of the design
variables are considered. In addition, different starting designs are considered in a limited investigation of
the global optimality of the design.

The optimization problem for the different starting designs considered is defined as follows:

Minimize Mass

subject to
 Maximum intrusion(xcrash) > 551.8mm

 (Fully-shared variables)
 Maximum intrusion(xcrash) = 551.8mm
 (Partially-shared variables)

 Stage 1 pulse(xcrash) > 14.34g
 Stage 2 pulse(xcrash) > 17.57g
 Stage 3 pulse(xcrash) > 20.76g

 37.77Hz < Torsional mode frequency(xNVH) < 39.77Hz (Fully-shared variables)
 38.27Hz < Torsional mode frequency(xNVH) < 39.27Hz (Partially-shared variables)

Fully-shared variables:
xcrash = xNVH = [rail_inner, rail_outer, cradle_rails, aprons, shotgun_inner, shotgun_outer,
cradle_crossmember]T.

Partially-shared variables – Starting design 1 (Baseline):
xcrash = [rail_inner, rail_outer, cradle_rails, aprons, shotgun_inner, shotgun_outer]T;
xNVH = [cradle_rails, shotgun_inner, shotgun_outer, cradle_crossmember]T.

CHAPTER 20: EXAMPLE PROBLEMS

330 LS-OPT Version 3

Partially-shared variables – Starting design 2 (Minimum weight):
xcrash = [rail_inner, rail_outer, cradle_rails, aprons]T;
xNVH = [cradle_rails, shotgun_inner, shotgun_outer, cradle_crossmember]T.

Partially-shared variables – Starting design 3 (Maximum weight):
xcrash = [rail_inner, rail_outer, cradle_rails, aprons, shotgun_inner, shotgun_outer, cradle crossmember]T;
xNVH = [cradle_rails, shotgun_inner, shotgun_outer, cradle_crossmember]T.

The different variables set above were obtained by using ANOVA variable screening (Section 16.5). The
Mass objective in each case incorporates all the components defined in Figure 20-36. The allowable
torsional mode frequency band is reduced to 1Hz for the partially-shared cases to provide an optimum
design that is more similar to the baseline.

The three stage pulses are calculated from the SAE filtered (60Hz) acceleration and displacement of a left
rear sill node in the following fashion:

 Stage i pulse = – k ∫
2

1

d
d

d

xa ;

 k = 0.5 for i = 1, 1.0 otherwise;

with the limits (d1;d2) = (0;184); (184;334); (334;Max(displacement)) for i = 1,2,3 respectively, all
displacement units in mm and the minus sign to convert acceleration to deceleration. The Stage 1 pulse is
represented by a triangle with the peak value being the value used.

The constraints are scaled using the target values to balance the violations of the different constraints. This
scaling is only important in cases where multiple constraints are violated as in the current problem.

20.7.3 Implementation in LS-OPT

The LS-OPT input file is given below. Note how the two disciplines (crash and NVH) are treated separately.
Variables are flagged as local with the Local variable_name statement, and then linked to a solver
using the Solver variable variable_name command.

"Full Vehicle MDO : Crash and NVH"
$
$ DEFINITION OF MULTIDISCIPLINARY QUANTITIES
$
solvers 2
variables 7
responses 12
histories 2
composites 5
$
$ SHARED DESIGN VARIABLES
$
Variable 'cradle_rails' 1.93
 Lower bound variable 'cradle_rails' 1
 Upper bound variable 'cradle_rails' 3

 CHAPTER 20: EXAMPLE PROBLEMS

LS-OPT Version 3 331

 Range 'cradle_rails' 0.4
 Variable 'cradle_csmbr' 1.93
 Lower bound variable 'cradle_csmbr' 1
 Upper bound variable 'cradle_csmbr' 3
 Range 'cradle_csmbr' 0.4
 Variable 'shotgun_inner' 1.3
 Lower bound variable 'shotgun_inner' 1
 Upper bound variable 'shotgun_inner' 2.5
 Range 'shotgun_inner' 0.3
 Variable 'shotgun_outer' 1.3
 Lower bound variable 'shotgun_outer' 1
 Upper bound variable 'shotgun_outer' 2.5
 Range 'shotgun_outer' 0.3
 Variable 'rail_inner' 2
 Lower bound variable 'rail_inner' 1
 Upper bound variable 'rail_inner' 3
 Range 'rail_inner' 0.4
 Local 'rail_inner'
 Variable 'rail_outer' 1.5
 Lower bound variable 'rail_outer' 1
 Upper bound variable 'rail_outer' 3
 Range 'rail_outer' 0.4
 Local 'rail_outer'
 Variable 'aprons' 1.3
 Lower bound variable 'aprons' 1
 Upper bound variable 'aprons' 2.5
 Range 'aprons' 0.3
 Local 'aprons'
$
$ DEFINITION OF SOLVER "CRASH"
$
 solver dyna 'CRASH'
$
$ VARIABLES FOR SOLVER "CRASH"
$
 Solver Variable 'rail_inner'
 Solver Variable 'rail_outer'
 Solver Variable 'aprons'
$
$ EXPERIMENTAL DESIGN OF SOLVER "CRASH"
$
 Solver Order linear
 Solver Experimental design dopt
 Solver Basis experiment 3toK
 Solver Number experiment 13
$
$ SOLVER AND PREPROCESSOR COMMANDS OF SOLVER "CRASH"
$
 solver command "lsdyna.single"
 solver input file "dyna.input"
$
$ HISTORIES DEFINED FOR SOLVER "CRASH"
$
 history 'XDISP' "DynaASCII Nodout X_DISP 26730 TIMESTEP"
 history 'XACCEL' "DynaASCII Nodout X_ACC 26730 TIMESTEP SAE 60"
$
$ RESPONSES FOR SOLVER "CRASH"

CHAPTER 20: EXAMPLE PROBLEMS

332 LS-OPT Version 3

$
 response 'Vehicle_Mass_crash' 2204.62 0 "DynaMass 29 30 32 33 34 35 79 81 82 83 MASS"
 response 'Vehicle_Mass_crash' linear
 response 'Disp' 1 0 "DynaASCII Nodout X_DISP 26730 MAX"
 response 'Disp' linear
 response 'time_to_184' expression {Lookup("XDISP(t)",184)}
 response 'time_to_334' expression {Lookup("XDISP(t)",334)}
 response 'time_to_max' expression {LookupMax("XDISP(t)")}
 response 'Integral_0_184' expression {Integral("XACCEL(t)",0,time_to_184,"XDISP(t)")}
 response 'Integral_184_334' expression
{Integral("XACCEL(t)",time_to_184,time_to_334,"XDISP(t)")}
 response 'Integral_334_max' expression
{Integral("XACCEL(t)",time_to_334,time_to_max,"XDISP(t)")}
 response 'Stage1Pulse' expression {(Integral_0_184/(-9810))*2/184}
 response 'Stage2Pulse' expression {(Integral_184_334/(-9810))/(334-184)}
 response 'Stage3Pulse' expression {(Integral_334_max/(-9810))/(Disp-334)}
$
$ HISTORIES AND RESPONSES DEFINED BY EXPRESSIONS FOR SOLVER "CRASH"
$
 composite 'Disp_scaled' type targeted
 composite 'Disp_scaled' response 'Disp' 0 scale 551.81
 weight 1
 composite 'Stage1Pulse_scaled' {Stage1Pulse/14.34}
 composite 'Stage2Pulse_scaled' {Stage2Pulse/17.57}
 composite 'Stage3Pulse_scaled' {Stage3Pulse/20.76}
$
$ SOLVER SPECIFIC JOB INFO FOR SOLVER "CRASH"
$
 solver concurrent jobs 4
$
$ DEFINITION OF SOLVER "NVH"
$
 solver dyna 'NVH'
$
$ VARIABLES FOR SOLVER "NVH"
$
$
$ EXPERIMENTAL DESIGN OF SOLVER "NVH"
$
 Solver Order linear
 Solver Experimental design dopt
 Solver Basis experiment 3toK
 Solver Number experiment 8
$
$ SOLVER AND PREPROCESSOR COMMANDS OF SOLVER "NVH"
$
 solver command "lsdyna.double"
 solver input file "dyna_biw.input"
$
$ RESPONSES FOR SOLVER "NVH"
$
 response 'Frequency' 1 0 "DynaFreq 1 FREQ"
 response 'Frequency' linear
$
$ NO HISTORIES DEFINED FOR SOLVER "NVH"
$
$

 CHAPTER 20: EXAMPLE PROBLEMS

LS-OPT Version 3 333

$ HISTORIES AND RESPONSES DEFINED BY EXPRESSIONS FOR SOLVER "NVH"
$
 composite 'Frequency_scaled' type targeted
 composite 'Frequency_scaled' response 'Frequency' 0 scale 38.77
 weight 1
$
$ SOLVER SPECIFIC JOB INFO FOR SOLVER "NVH"
$
 Solver concurrent jobs 1
$
$ OBJECTIVE FUNCTIONS
$
 objectives 1
 objective 'Vehicle_Mass_crash' 1
$
$ CONSTRAINT DEFINITIONS
$
 constraints 5
 constraint 'Disp_scaled'
 lower bound constraint 'Disp_scaled' 1
 upper bound constraint 'Disp_scaled' 1
 constraint 'Stage1Pulse_scaled'
 lower bound constraint 'Stage1Pulse_scaled' 1
 constraint 'Stage2Pulse_scaled'
 lower bound constraint 'Stage2Pulse_scaled' 1
 constraint 'Stage3Pulse_scaled'
 lower bound constraint 'Stage3Pulse_scaled' 1
 constraint 'Frequency_scaled'
 lower bound constraint 'Frequency_scaled' 0.98710
 upper bound constraint 'Frequency_scaled' 1.01290
$
$ MULTIDISCIPLINARY JOB INFO
$
 iterate param design 0.01
 iterate param objective 0.01
 iterate 10
STOP

20.7.4 Simulation results

The deceleration versus displacement curves of the baseline crash model and Iteration 6 design are shown in
Figure 20-38 for the partially-shared variable case. The stage pulses as calculated by Equation 4 are also
shown, with the optimum values only differing slightly from the baseline. The reduction in displacement at
the end of the curve shows that there is spring-back or rebound at the end of the simulation.

20.7.5 Optimization history results

The bounds on the design variables are given in Table 20-4 together with the different initial designs or
starting locations used. Starting design 1 corresponds to the baseline model as shown in Figure 20-35
through Figure 20-37, while the other two designs correspond to the opposite corners of the design space
hypercube, i.e. the lightest design and heaviest design possible with the design variables used.

CHAPTER 20: EXAMPLE PROBLEMS

334 LS-OPT Version 3

0

5

10

15

20

25

30

35

0 100 200 300 400 500 600

Displacement [mm]

D
ec

el
er

at
io

n
[g

]
accel_vs_displacement: baseline
accel_vs_displacement: Iteration 6
StagePulses: baseline
StagePulses: Iteration 6

Figure 20-38: Deceleration (Filtered: SAE 60Hz) versus displacement of baseline and Iteration 6 design –
(Partially-shared variables): Starting design 1

Table 20-4: Bounds on design variables and starting designs for optimization

 Rail_
inner
mm]

Rail_
outer
[mm]

Cradle
rail

[mm]

Aprons
[mm]

Shotgun
inner
[mm]

Shotgun
outer
[mm]

Cradle cross
member

[mm]
Lower bound 1 1 1 1 1 1 1
Upper bound 3 3 2.5 2.5 3 3 2.5

Starting
design 1

(Baseline)
2 1.5 1.93 1.3 1.3 1.3 1.93

Starting
design 2

(Minimum
weight)

1 1 1 1 1 1 1

Starting
design 3

(Maximum
weight)

3 3 2.5 2.5 3 3 2.5

 CHAPTER 20: EXAMPLE PROBLEMS

LS-OPT Version 3 335

Table 20-5: Comparison of objective and constraints for all optimization cases

 Case It.
No.

Mass
[kg]

Maximum
displacement

[mm]

Stage 1
pulse
[g]

Stage 2
pulse
[g]

Stage 3
pulse
[g]

Frequency
[Hz]

Constraint 551.8 14.34 17.57 20.76 [37.77;39.77] or
[38.27;39.27]

Fully
shared

Starting
design 1
(base)

9 42.9 552.0 14.74 17.46 20.73 38.48

Starting
design 1
(base)

9 42.4 551.6 14.62 17.53 20.77 38.26

Starting
design 2

(min)
8 43.2 552.5 14.66 17.56 20.69 38.15

Pa
rti

al
ly

 sh
ar

ed

Starting
design 3
(max)

6 43.8 553.7 14.46 17.48 20.61 39.07

Beginning with starting design 1, the optimization history of the objective and constraints are shown for the
full and partially-shared variable cases in Figure 20-39 through Figure 20-42. Most of the reduction in mass
occurs in the first iteration (Figure 20-39), although this results in a significant violation of the maximum
displacement and second stage pulse constraints, especially in the fully-shared variable case. The second
iteration corrects this, and from here the optimizer tries to reconcile four constraints that are marginally
active. Most of the intermediate constraint violations (see e.g. Figure 20-40) can be ascribed to the
difference between the value predicted by the response surface and the value computed by the simulation.
The torsional frequency remains within the bounds set during the optimization for the full-shared case.

42

42.5

43

43.5

44

44.5

0 1 2 3 4 5 6 7 8 9

Iteration

M
as

s
[k

g]

Fully shared

Partially shared

Figure 20-39: Optimization history of component mass (Objective) – Starting design 1

CHAPTER 20: EXAMPLE PROBLEMS

336 LS-OPT Version 3

544

546

548

550

552

554

556

0 1 2 3 4 5 6 7 8 9 10

Iteration

M
ax

im
um

 d
is

pl
ac

em
en

t [
m

m
]

Maximum displacement (Full)

Maximum displacement (Partial)

Lower bound

Figure 20-40: Optimization history of maximum displacement – Starting design 1

14

15

16

17

18

19

20

21

22

0 1 2 3 4 5 6 7 8 9 10
Iteration

A
cc

el
er

at
io

n
[g

]

Stage1Pulse (Full)
Stage2Pulse (Full)
Stage3Pulse (Full)
Stage1Pulse (Partial)
Stage2Pulse (Partial)
Stage3Pulse (Partial)
Lower bound: Stage 1
Lower bound: Stage 2
Lower bound: Stage 3

Figure 20-41: Optimization history of Stage pulses – Starting design 1

 CHAPTER 20: EXAMPLE PROBLEMS

LS-OPT Version 3 337

37.5

38

38.5

39

39.5

40

0 1 2 3 4 5 6 7 8 9 10

Iteration

Fr
eq

ue
nc

y
[H

z]
Frequency (Full)

Frequency (Partial)

Upper bound (Full)

Lower bound (Full)

Upper bound (Partial)

Lower bound (Partial)

Figure 20-42: Optimization history of torsional mode frequency – Starting design 1

1. The results of the partially-shared variable case for starting design 1 (Figure 20-41) can be seen to be
superior to the fully-shared case. The reason for this is that all the disciplinary responses are now sensitive
to their respective variables, allowing faster convergence. Interestingly, most of the mass reduction in this
case occurs in the cradle cross member, a variable that is only included in the NVH simulation. The
variation of the remaining variables is however enough to meet all the crash constraints. The reduction in
the allowable frequency band made the NVH performance more interesting in Phase 1 than Phase 2. It can
be seen in Figure 20-42 that the lower bound becomes active during the optimization process, but that the
optimizer then pulls the torsional mode frequency within the prescribed range. The final design iteration
considered (iteration 9) was repeated (see point 10 in Figure 20-40 through Figure 20-42) with the variables
rounded to the nearest 0.1mm due to the 0.1mm manufacturing tolerance typically used in the stamping of
automotive parts. It is shown that the design is lighter by 4.75% from the baseline, but at the cost of a 2.4%
violation in the Stage 2 pulse. The other constraints are satisfied.

A summary result for the heaviest and lightest starting designs (2 and 3) is given in Figure 20-43 for the
objective function. In both cases, an ANOVA was performed after one iteration of full sharing only, in order
to reduce the number of discipline-specific variables using variable screening. The optimization was then
restarted using the variable sets as defined above. As expected, both designs converge to an intermediate
mass in an attempt to satisfy all the constraints. The heaviest design history exhibits the largest mass change
because of the significant increase in the thickness of the components over the baseline design. The initial
allowable range or move limit on the design variables was doubled in the heaviest design case, to investigate
the effect of the initial subregion size on the convergence rate. It can be seen that this resulted in the
objective being minimized in relatively few iterations.

CHAPTER 20: EXAMPLE PROBLEMS

338 LS-OPT Version 3

25

35

45

55

65

75

0 1 2 3 4 5 6 7 8 9 10

Iteration

M
as

s
[k

g]
Max Design

Min Design

Figure 20-43: Optimization history of component mass (Objective) – Starting designs 2 and 3

Table 20-6: Comparison of design variables for all optimization cases

 Case Rail_
inner
[mm]

Rail_
outer
[mm]

Cradle
rail

[mm]

Aprons
[mm]

Shotgun
inner
[mm]

Shotgun
outer
[mm]

Cradle
cross member

[mm]

Fully
shared

Starting
design 1
(base)

2.322 1.286 1.842 1.158 1.196 1.614 1.486

Starting
design 1
(base)

1.948 1.475 1.275 1.992 1.346 1.383 1

Starting
design 2
(lightest)

2.04 1.884 1.507 1.441 1.11 1.372 1.161

Pa
rti

al
ly

 sh
ar

ed

Starting
design 3

(heaviest)
1.95 1.765 1.469 1.303 2.123 1.391 1.208

20.7.6 Comparison of optimum designs

The optimum designs obtained in each case above are compared in Table 20-5 for the objective function and
constraints, and in Table 20-6 for the design variables. Note how the partially shared variable Starting
design 1 case has the lowest mass while performing the best as far as the constraints are concerned. The
extreme starting designs gave interesting results. After rapidly improving from the initial violations, they
both converged to local minima. The maximum design (Starting design 3) started the furthest away from the
optimum design, but converged rapidly due to the increased initial move limit. This highlights the need for a
global optimization algorithm, even for these costly simulation-based MDO problems. All the designs

 CHAPTER 20: EXAMPLE PROBLEMS

LS-OPT Version 3 339

converge to different design vectors, with different combinations of the component thicknesses resulting in
similar performance.

20.7.7 Convergence and computational cost

Comparing the fully- and partially-shared variable cases for starting design 1, it can be seen that the
optimization process converged in 9 iterations in the first case, while in the latter, a good compromised
design was found in only 6 iterations. Coupled to the reduction in design variables, especially for the NVH
simulations, the reduction in the number of simulations as shown in Table 20-7 is the result. To explain the
number of simulations, clarification of the experimental design used is in order. A 50% over-sampled
D-optimal experimental design is used, whereby the number of experimental points for a linear
approximation is determined from the formula: 1.5(n + 1) + 1, where n refers to the number of design
variables. Consequently, for the full sharing, 7 variables imply 13 experimental design points, while for the
partial sharing, 6 variables for crash imply 11 design points, and 4 variables for NVH imply 8 points (see
Chapter 8). The NVH simulations, although not time-consuming due to their implicit formulation, involve a
large use of memory due to double-precision matrix operations. Crashworthiness simulations, on the other
hand, require little memory because of single-precision vector operations, but are time-consuming due to
their explicit nature. It is therefore preferable to assign as many processors as possible to the
crashworthiness simulations, while limiting the number of simultaneous NVH simulations to the available
computer memory to prevent swapping.

Table 20-7: Number of simulations for Fully- and Partially-Shared Variable Cases (Starting design 1)

Case Number of crash
simulations for
‘convergence’

Number of NVH simulations
for ‘convergence’

Fully-shared variables 9 x 13 = 127 9 x 13 = 127
Partially-shared variables 6 x 11 = 66 6 x 8 = 48

CHAPTER 20: EXAMPLE PROBLEMS

340 LS-OPT Version 3

20.8 Knee impact with variable screening (11 variables)

(Example by courtesy of Visteon and Ford Motor Company)

This example has the following features:

• Variable screening is illustrated for a knee impact minimization study for a problem with both thickness

and shape variables.
• The use of ANOVA for variable screening is shown.
• LS-DYNA is used for the explicit impact simulation.
• An independent parametric preprocessor is used.
• Extraction is performed using standard LS-DYNA interfaces.
• The minimum of two maxima is obtained in the objective (multi-criteria or multi-objective problem).

20.8.1 Problem statement

Figure 20-44 shows the finite element model of a typical automotive instrument panel (IP) [2]. For model
simplification and reduced per-iteration computational times, only the driver's side of the IP is used in the
analysis, and consists of around 25 000 shell elements. Symmetry boundary conditions are assumed at the
centerline, and to simulate a bench component "Bendix" test, body attachments are assumed fixed in all 6
directions. Also shown in Figure 20-44 are simplified knee forms which move in a direction as determined
from prior physical tests. As shown in the figure, this system is composed of a knee bolster (steel, plastic or
both) that also serves as a steering column cover with a styled surface, and two energy absorption (EA)
brackets (usually steel) attached to the cross vehicle IP structure. The brackets absorb a significant portion
of the lower torso energy of the occupant by deforming appropriately. Sometimes, a steering column
isolator (also known as a yoke) may be used as part of the knee bolster system to delay the wrap-around of
the knees around the steering column. The last three components are non-visible and hence their shape can
be optimized. The 11 design variables are shown in Figure 20-45. The three gauges and the yoke cross-
sectional radius are also considered in a separate sizing (4 variable) optimization.

 CHAPTER 20: EXAMPLE PROBLEMS

LS-OPT Version 3 341

Styled surface,
non-optimizable

Non-visible,
optimizable
structural part

Simplified
knee forms

Figure 20-44: Typical instrument panel prepared for a "Bendix" component test

Knee Bolster Gauge

Right Bracket Gauge

Yoke Cross-
section
Radius

Left EA Width

Left EA Depth
Front

Left EA
Depth

Bottom

Left EA Inner
Flange Width

Left EA Depth
Top

Oblong Hole
 Radius

Right EA
Width

Left Bracket Gauge

Figure 20-45: Typical major components of a knee bolster system and definition of design variables

CHAPTER 20: EXAMPLE PROBLEMS

342 LS-OPT Version 3

The simulation is carried out for a 40 ms duration by which time the knees have been brought to rest. It
may be mentioned here that the Bendix component test is used mainly for knee bolster system development;
for certification purposes, a different physical test representative of the full vehicle is performed. Since the
simulation used herein is at a subsystem level, the results reported here may be used mainly for illustration
purposes.

20.8.2 Definition of optimization problem

The optimization problem is defined as follows:

Minimize (max (Knee_F_L, Knee_F_R))
Subject to

Left Knee intrusion < 115mm
Right Knee intrusion < 115mm

Yoke displacement < 85mm

Minimization over both knee forces is achieved by constraining them to impossibly low values. The
optimization algorithm will therefore always try to minimize the maximum knee force. The knee forces
have been filtered, SAE 60 Hz, to improve the approximation accuracy.

20.8.3 Implementation

Truegrid is used to parameterize the geometry. The section of the Truegrid input file (s7.tg) where the
design variables are substituted, is shown below.

para
 w1 <<L_Flange_Width>> c Left EA flange width
 w2 <<R_Flange_Width>> c Right EA flange width
 thick1 <<L_Bracket_Gauge>> c Left bracket gauge
 thick2 <<R_Bracket_Gauge>> c Right bracket gauge
 thick3 <<Bolster_gauge>> c Knee bolster gauge
 f1 <<T_Flange_Depth>> c Left EA Depth Top
 f2 <<F_Flange_Depth>> c Left EA Depth Front
 f3 <<B_Flange_Depth>> c Left EA Depth Bottom
 f4 <<I_Flange_Width>> c Left EA Inner Flange Width
 r1 <<Yolk_Radius>> c Yolk bar radius
 r2 <<R_Bracket_Radius>> c Oblong hole radius

The LS-OPT input file is shown below for the 11-variable shape optimization case:

"Knee Impact Simulation (Shape Optimization)"
$ Created on Wed Oct 4 13:31:36 2000
$
$ DESIGN VARIABLE DEFINITIONS
$
variables 11
 Variable 'L_Bracket_Gauge' 1.1
 Lower bound variable 'L_Bracket_Gauge' 0.7
 Upper bound variable 'L_Bracket_Gauge' 3
 Range 'L_Bracket_Gauge' 2

 CHAPTER 20: EXAMPLE PROBLEMS

LS-OPT Version 3 343

 Variable 'T_Flange_Depth' 28.3
 Lower bound variable 'T_Flange_Depth' 20
 Upper bound variable 'T_Flange_Depth' 50
 Range 'T_Flange_Depth' 10
 Variable 'F_Flange_Depth' 27.5
 Lower bound variable 'F_Flange_Depth' 20
 Upper bound variable 'F_Flange_Depth' 50
 Range 'F_Flange_Depth' 10
 Variable 'B_Flange_Depth' 22.3
 Lower bound variable 'B_Flange_Depth' 15
 Upper bound variable 'B_Flange_Depth' 50
 Range 'B_Flange_Depth' 10
 Variable 'I_Flange_Width' 7
 Lower bound variable 'I_Flange_Width' 5
 Upper bound variable 'I_Flange_Width' 25
 Range 'I_Flange_Width' 5
 Variable 'L_Flange_Width' 32
 Lower bound variable 'L_Flange_Width' 20
 Upper bound variable 'L_Flange_Width' 50
 Range 'L_Flange_Width' 10
 Variable 'R_Bracket_Gauge' 1.1
 Lower bound variable 'R_Bracket_Gauge' 0.7
 Upper bound variable 'R_Bracket_Gauge' 3
 Range 'R_Bracket_Gauge' 2
 Variable 'R_Flange_Width' 32
 Lower bound variable 'R_Flange_Width' 20
 Upper bound variable 'R_Flange_Width' 50
 Range 'R_Flange_Width' 10
 Variable 'R_Bracket_Radius' 15
 Lower bound variable 'R_Bracket_Radius' 10
 Upper bound variable 'R_Bracket_Radius' 25
 Range 'R_Bracket_Radius' 5
 Variable 'Bolster_gauge' 3.5
 Lower bound variable 'Bolster_gauge' 1
 Upper bound variable 'Bolster_gauge' 6
 Range 'Bolster_gauge' 3
 Variable 'Yolk_Radius' 4
 Lower bound variable 'Yolk_Radius' 2
 Upper bound variable 'Yolk_Radius' 8
 Range 'Yolk_Radius' 2
solvers 1
responses 7
$
$ DEFINITION OF SOLVER "1"
$
 solver dyna '1'
 solver command "lsdyna"
 solver input file "trugrdo"
 solver insert file "ford7.k"
 prepro truegrid
 prepro command "cp ../../curves .; cp ../../node .; cp ../../elem .; cp ../../elem-
bar .; tg"
 prepro input file "s7.tg"
$
$ DESIGN FUNCTIONS FOR SOLVER "1"
$
response 'L_Knee_Force' 0.000153846 0 "DynaASCII rcforc R_FORCE 1 MAX SAE 60.0"

CHAPTER 20: EXAMPLE PROBLEMS

344 LS-OPT Version 3

response 'R_Knee_Force' 0.000153846 0 "DynaASCII rcforc R_FORCE 2 MAX SAE 60.0"
response 'L_Knee_Disp' 0.00869565 0 "DynaASCII Nodout R_DISP 24897 MAX"
response 'R_Knee_Disp' 0.00869565 0 "DynaASCII Nodout R_DISP 25337 MAX"
response 'Yoke_Disp' 0.0117647 0 "DynaASCII Nodout R_DISP 28816 MAX"
response 'Kinetic_Energy' 6.49351e-06 0 "DynaASCII glstat K_ENER 0 TIMESTEP"
response 'Mass' 638.162 0 "DynaMass 7 8 48 62 MASS"
$
$ (DUMMY) OBJECTIVE FUNCTION
$
 objectives 1
 objective 'Mass' response 'Mass' 1
$
$ CONSTRAINT DEFINITIONS
$
 constraints 6
 constraint 'L_Knee_Force' response 'L_Knee_Force'
 upper bound constraint 'L_Knee_Force' 0.5
 constraint 'R_Knee_Force' response 'R_Knee_Force'
 upper bound constraint 'R_Knee_Force' 0.5
 constraint 'L_Knee_Disp' response 'L_Knee_Disp'
 strict
 upper bound constraint 'L_Knee_Disp' 1
 constraint 'R_Knee_Disp' response 'R_Knee_Disp'
 upper bound constraint 'R_Knee_Disp' 1
 constraint 'Yoke_Disp' response 'Yoke_Disp'
 upper bound constraint 'Yoke_Disp' 1
 constraint 'Kinetic_Energy' response 'Kinetic_Energy'
 upper bound constraint 'Kinetic_Energy' 1
$
$ EXPERIMENTAL DESIGN
$
 Order linear
 Experimental design dopt
 Basis experiment 3toK
 Number experiment 19
$
$ JOB INFO
$
 concurrent jobs 5
 iterate param design 0.01
 iterate param objective 0.01
 iterate 5
STOP

 CHAPTER 20: EXAMPLE PROBLEMS

LS-OPT Version 3 345

Results of initial optimization (shape and size)

Table 20-8: Knee impact optimization results

Parameter Baseline Shape Optimized
(11 variables)

Sizing
(4 variables)

Left Bracket Gauge [mm] 1.1 0.94 1.22
Right Bracket Gauge [mm] 1.1 0.7* 0.7
Knee Bolster Gauge [mm] 3.5 5.58 5.7
Yoke Cross-Section Radius [mm] 4 2.90 2.69
Oblong Hole Radius [mm] 15 14.4 15
Right EA Width [mm] 32 15.4 32
Left EA Depth Top [mm] 28.3 25.2 28.3
Left EA Depth Front [mm] 27.5 26.4 27.5
Left EA Depth Bottom [mm] 22.3 14.9 22.3
Left EA Inner Flange Width [mm] 7 6.9 7
Left EA Width [mm] 32 46.8 32
Maximum Left Knee Force [N] 6626 6045 6136
Maximum Right Knee Force [N] 8602 5763 6110
Maximum Left Knee Disp.[mm] 96.4 100.9 97.2
Maximum Right Knee Disp.[mm] 98.7 99.9 91.9
Yoke displacement [mm] 85.9 70.4 93.8

20.8.4 Variable screening
Using the ANOVA technique (Section 2.9), the number of design variables are reduced from 11 to 7. An
extract from the lsopt_anova file is given below, where the ranked factors (more detail below) are
rounded to the nearest 10%. From this output, it was decided to eliminate the variables
(T_Flange_Depth, F_Flange_Depth, B_Flange_Depth, and I_Flange_Width) from
the optimization process.

CHAPTER 20: EXAMPLE PROBLEMS

346 LS-OPT Version 3

S u m m a r y o f s i g n i f i c a n c e o f v a r i aS u m m a r y o f s i g n i f i c a n c e o f v a r i a b l e sb l e s

--

L_Knee_Force R_Knee_Force L_Knee_L_Knee_Force R_Knee_Force L_Knee_Disp Disp R_Knee_R_Knee_Disp Disp

--------------------------------||----------------------------||----------------------------||----------------------------||----------------------------||

L_Bracket_Gauge |========== | |====== |=L_Bracket_Gauge |========== | |====== |========== |========= |

T_Flange_Depth | | |== | T_Flange_Depth | | |== | ||

F_Flange_Depth | | |=== | F_Flange_Depth | | |=== | ||

B_Flange_Depth | | |==== | B_Flange_Depth | | |==== | ||

I_Flange_Width |= | |====== |=I_Flange_Width |= | |====== |= ||

L_Flange_Width |=== | |= |=L_Flange_Width |=== | |= |= ||

R_Bracket_Gauge | |========== |========= | R_Bracket_Gauge | |========== |========= | ||

R_Flange_Width |= | |===== | R_Flange_Width |= | |===== | ||

R_Bracket_Radius| | |= | R_Bracket_Radius| | |= | ||

Bolster_gauge |======= | |========== |=Bolster_gauge |======= | |========== |========= |======== |

Yolk_Radius |== |==== |===== |=Yolk_Radius |== |==== |===== |=== |== |

--------------------------------||----------------------------||----------------------------||----------------------------||----------------------------||

More detailed results based on the 90 and 95% confidence intervals show e.g. that the left knee force is
mostly influenced by the left bracket gauge, bolster gauge and left flange width, as would be expected. If the
spread in the data (as denoted by the upper and lower limits of the respective confidence intervals) causes
the sensitivity (coefficient value) to change sign (as e.g. in the case of T_Flange_Depth in the table
below), then that variable’s contribution to the respective response is deemed insignificant.

Approximating Response 'L_Knee_Force' using 19 points
--
Individual regression coefficients: significance and confidence

 | Coeff. | Confidence Int.(90%)| Confidence Int.(95%) |% Confidence
 Coeff. | |---------------------|----------------------| not
 | Value | Lower | Upper | Lower | Upper | zero
 ----------------|----------|----------|----------|----------|-----------|------
 L_Bracket_Gauge | 0.5736| 0.4929| 0.6543| 0.4729| 0.6743| 100
 T_Flange_Depth | 0.09883| -0.002844| 0.2005| -0.02807| 0.2257| 87
 F_Flange_Depth | 0.07274| 0.00908| 0.1364| -0.006714| 0.1522| 92
 B_Flange_Depth | -0.05128| -0.1224| 0.01982| -0.14| 0.03746| 76
 I_Flange_Width | 0.1106| 0.03974| 0.1815| 0.02216| 0.1991| 97
 L_Flange_Width | 0.1988| 0.1358| 0.2618| 0.1202| 0.2775| 100
 R_Bracket_Gauge | -0.01627| -0.123| 0.09045| -0.1495| 0.1169| 21
 R_Flange_Width | -0.1345| -0.2268| -0.04219| -0.2497| -0.01929| 96
 R_Bracket_Radius| 0.08237| -0.01147| 0.1762| -0.03475| 0.1995| 84
 Bolster_gauge | 0.4067| 0.3275| 0.4859| 0.3078| 0.5055| 100
Yolk_Radius	0.1723	0.08353	0.2611	0.0615	0.2831	99

 CHAPTER 20: EXAMPLE PROBLEMS

LS-OPT Version 3 347

Ranking of terms based on coefficient bounds
--

 Coeff. |Absolute Value (90%)|10-Scale
 ----------------|--------------------|--------
 L_Bracket_Gauge | 0.4929 | 10.0
 Bolster_gauge | 0.3275 | 6.6
 L_Flange_Width | 0.1358 | 2.8
 Yolk_Radius | 0.08353 | 1.7
 R_Flange_Width | 0.04219 | 0.9
 I_Flange_Width | 0.03974 | 0.8
 F_Flange_Depth | 0.00908 | 0.2
 T_Flange_Depth | Insignificant | 0.0
 R_Bracket_Radius| Insignificant | 0.0
 B_Flange_Depth | Insignificant | 0.0
 R_Bracket_Gauge | Insignificant | 0.0
 ----------------|--------------------|--------

This result is based on one iteration only. Reducing the number of variables from 11 to 7 reduces the
number of LS-DYNA simulations from 19 to 13 when using the default D-optimal design settings.

20.8.5 Optimization with reduced variables

The optimization history of the knee forces using the original 11 variables and the reduced set (7 variables)
is shown in Figure 20-46.

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 1 2 3 4 5

Iteration Number

M
ax

im
um

 K
ne

e
Fo

rc
e

11 Variables
(Predicted)

11 Variables
(Computed)

7 Variables
(Predicted)

7 Variables
(Computed)

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 1 2 3 4 5

Iteration Number

M
ax

im
um

 K
ne

e
Fo

rc
e

11 Variables
(Predicted)

11 Variables
(Computed)

7 Variables
(Predicted)

7 Variables
(Computed)

Figure 20-46: Comparison of optimization history of maximum knee force for full and reduced variable sets

CHAPTER 20: EXAMPLE PROBLEMS

348 LS-OPT Version 3

20.9 Optimization with analytical design sensitivities

This example demonstrates how analytical gradients (Section 11.8) provided by a solver can be used for
optimization using the SLP algorithm and the domain reduction scheme [68] (Section 2.12). The solver, a
Perl program is shown below, followed by the command file for optimization. In this example the input
variables are read from the file: XPoint placed in the run directory by LS-OPT. The input variables can
also be read by defining this file as an input file and using the <<variable_name>> format to label the
variable locations for substitution. Note that each response requires a unique Gradient file.

Solver program:

Open output files for response results

open(FOUT,">fsol");
open(G1OUT,">g1sol");
open(G2OUT,">g2sol");

Output files for gradients

open(DF,">Gradf");
open(DG1,">Gradg1");
open(DG2,">Gradg2");

Open the input file "XPoint" (automatically
placed by LS-OPT in the run directory)

open(X,"<XPoint");

Compute results and write to the files
(i.e. conduct the simulation)

while (<X>) {
 ($x1,$x2) = split;
}

print FOUT ($x1*$x1) + (4*($x2-0.5)*($x2-0.5)),"\n";
Derivative of f(x1,x2)
#-----------------------
print DF (2*$x1)," "; # df/dx1
print DF (8*($x2-0.5)),"\n"; # df/dx2

print G1OUT $x1 + $x2,"\n";
Derivative of g1(x1,x2)
#------------------------
print DG1 1," ";
print DG1 1,"\n";

print G2OUT (-2*$x1) + $x2,"\n";
Derivative of g2(x1,x2)
#------------------------
print DG2 -2," ";
print DG2 1,"\n";

 CHAPTER 20: EXAMPLE PROBLEMS

LS-OPT Version 3 349

Signal normal termination

print "N o r m a l\n";

Command file:

"Example 2b: QP problem (analytical sensitivity analysis)"
solvers 1
responses 3
$
$ DESIGN VARIABLES
$
variables 2
 Variable 'x1' 1
 Lower bound variable 'x1' -3
 Upper bound variable 'x1' 3
 Range 'x1' 1
 Variable 'x2' 1
 Lower bound variable 'x2' 0
 Upper bound variable 'x2' 2
 Range 'x2' 1
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
$ SOLVER "1"
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
solver own '1'
 solver command "/home/LSOPT_EXE/perl ../../ex2"
 solver experimental design analytical_DSA
$
$ RESPONSES FOR SOLVER "1"
$ The Gradf, Gradg1 and Gradg2 files are individually copied to "Gradient"
 response 'f' 1 0 "cp Gradf Gradient; cat fsol"
 response 'g1' 1 0 "cp Gradg1 Gradient; cat g1sol"
 response 'g2' 1 0 "cp Gradg2 Gradient; cat g2sol"

$
$ OBJECTIVE FUNCTIONS
$
 objectives 1
 maximize
 objective 'f' 1
$
$ CONSTRAINT DEFINITIONS
$
 constraints 2
 constraint 'g1'
 upper bound constraint 'g1' 1
 constraint 'g2'
 upper bound constraint 'g2' 2
$
$ JOB INFO
$
 iterate param design 0.01
 iterate param objective 0.01
 iterate param stoppingtype and
 iterate 5
STOP

CHAPTER 20: EXAMPLE PROBLEMS

350 LS-OPT Version 3

Typical ″Gradient″ file (e.g. for f):

1.8000000000 –3.20000000000

The optimization results are shown in the plots below. An iteration represents a single simulation. The dots
represent the computed results while the solid line represents a linear approximation constructed from the
gradient information of the previous point.

 CHAPTER 20: EXAMPLE PROBLEMS

LS-OPT Version 3 351

20.10 Probabilistic Analysis

20.10.1 Overview
This example has the following features:
• Probabilistic analysis
• Monte Carlo analysis
• Monte Carlo analysis using a metamodel
• Bifurcations analysis

20.10.2 Problem description
A symmetric short crush tube impacted by a moving wall as shown in the figure is considered. The design
criterion is the intrusion of the wall into the space initially occupied by the tube (alternatively, how much
the structure is shortened by the impact with the wall).

Figure 20-47: Tube impact

CHAPTER 20: EXAMPLE PROBLEMS

352 LS-OPT Version 3

Both the shell thickness and the yield strength of the structure follow a probabilistic distribution. The shell
thickness is normally distributed around a value of 1.0 with a standard deviation of 5% while the yield
strength is normally distributed around a value scaled to 1.0 with a standard deviation of 10%.

The nominal design has an intrusion of 144.4 units. The probability of the intrusion being greater than 150
units is computed. The best-known results are obtained using a Monte Carlo analysis of 1500 runs. The
problem is analyzed using a Monte-Carlo evaluation of 60 runs and a quadratic response surface build using
a 3k experimental design. The results from the different methods are close to each other as can be seen in the
following table.

Response Monte Carlo
1500 runs

Monte Carlo
60 runs

Response Surface
9 runs

Average Intrusion 141.3 141.8 141.4
Intrusion Standard Deviation 15.8 15.2 15.0
Probability of Intrusion > 150 0.32 0.33 0.29

Using the response surface, the derivatives of the intrusions with respect to the design variables are
computed as given in the following table.

Variable Intrusion derivative
Shell Thickness 208
Yield Strength 107

The quadratic response surface also allows the investigation of the dependence of the response variation on
each design variable variation. The values of the intrusion standard deviation given in the following table
are computed considering the variable as the only source of variation in the structure (the variation of the
other design variables are set to zero).

Source of variation Intrusion Standard Deviation
Shell Thickness 10.4
Yield Strength 10.7

The details of the analyses are given the following subsections.

20.10.3 Monte Carlo evaluation
The probabilistic variation is described by specifying statistical distributions and assigning the statistical
distributions to noise variables.

"Tube Crush Monte Carlo "
$ Created on Tue Apr 1 11:26:07 2003
solvers 1
$
distribution 2
 distribution 't' NORMAL 1.0 0.05
 distribution 'y' NORMAL 1.0 0.10

 CHAPTER 20: EXAMPLE PROBLEMS

LS-OPT Version 3 353

$
$ DESIGN VARIABLES
$
variables 2
 noise variable 'T1' distribution 't'
 noise variable 'YS' distribution 'y'
$
$ DEFINITION OF SOLVER "SOLVER_1"
$
 solver dyna960 'SOLVER_1'
 solver command "ls970.single"
 solver input file "tube.k"
 solver experiment design lhd centralpoint
 solver number experiments 60
$
$ HISTORIES FOR SOLVER "SOLVER_1"
$
histories 1
 history 'NHist' "BinoutHistory -res_type nodout -cmp z_displacement -id 486"
$
$ RESPONSES FOR SOLVER "SOLVER_1"
$
responses 2
 response 'NodDisp' 1 0 "BinoutResponse -res_type nodout -cmp z_displacement -id 486
-select MIN "
 response 'DispT' {LookupMin("NHist(t)")}
$
$
$
 constraints 1
 constraint 'NodDisp'
 lower bound constraint 'NodDisp' -150
$
$ JOB INFO
$
 analyze monte carlo
STOP

The LS-OPT output:

Direct Monte Carlo simulation considering 2 stochastic variables.

STATISTICS OF VARIABLES

Variable 'T1'
Distribution Information

Number of points : 60
Mean Value : 1
Standard Deviation : 0.04948

CHAPTER 20: EXAMPLE PROBLEMS

354 LS-OPT Version 3

Coef of Variation : 0.04948
Maximum Value : 1.12
Minimum Value : 0.8803

Variable 'YS'
Distribution Information

Number of points : 60
Mean Value : 1
Standard Deviation : 0.09895
Coef of Variation : 0.09895
Maximum Value : 1.239
Minimum Value : 0.7606

STATISTICS OF RESPONSES

Response 'NodDisp'
Distribution Information

Number of points : 60
Mean Value : -141.8
Standard Deviation : 15.21
Coef of Variation : 0.1073
Maximum Value : -102.3
Minimum Value : -168.9

Response 'DispT'
Distribution Information

Number of points : 60
Mean Value : 7.726
Standard Deviation : 0.6055
Coef of Variation : 0.07837
Maximum Value : 8.4
Minimum Value : 5.5

STATISTICS OF COMPOSITES

STATISTICS OF CONSTRAINTS

Constraint 'NodDisp'
Distribution Information

 CHAPTER 20: EXAMPLE PROBLEMS

LS-OPT Version 3 355

Number of points : 60
Mean Value : -141.8
Standard Deviation : 15.21
Coef of Variation : 0.1073
Maximum Value : -102.3
Minimum Value : -168.9

Lower Bound:

 Bound -150
 Evaluations exceeding this bound 20
 Probability of exceeding bound 0.3333
 Confidence Interval on Probability.
 Standard Deviation of Prediction Error: 0.06086
 Lower Bound | Probability | Higher Bound
 0.2116 | 0.3333 | 0.455
 Confidence Interval of 95% assuming Normal Distribution
 Confidence Interval of 75% using Tchebysheff's Theorem

Reliability Assuming Normal Distribution
==
Lower Bound:

 Bound -150
 Probability of exceeding Bound ... 0.2956
 Reliability Index (Beta) 0.5372

 ANALYSIS COMPLETED

20.10.4 Monte Carlo using metamodel
The bounds on the design variables are set to be two standard distributions away from the mean (the default
for noise variables). Noise variables are not used because of the need to have more control over the variable
bounds — specifically we want to change the standard deviation of some variables without affecting the
variable bounds (the metamodel is computed scaled with respect to the upper and lower bounds on the
variables).

The command file for using a metamodel is:
$
"Tube Crush Metamodel Monte Carlo"
$ Created on Tue Apr 1 11:26:07 2003
solvers 1
$
distribution 2
 distribution 't' NORMAL 1.0 0.05
 distribution 'y' NORMAL 1.0 0.10
$
$ DESIGN VARIABLES
$
variables 2
 variable 'T1' 1.0

CHAPTER 20: EXAMPLE PROBLEMS

356 LS-OPT Version 3

 upper bound variable 'T1' 1.1
 lower bound variable 'T1' 0.9
 variable 'T1' distribution 't'
 variable 'YS' 1.0
 upper bound variable 'YS' 1.2
 lower bound variable 'YS' 0.8
 variable 'YS' distribution 'y'
$
$ DEFINITION OF SOLVER "SOLVER_1"
$
 solver dyna960 'SOLVER_1'
 solver command "ls970.single"
 solver input file "tube.k"
 solver experiment design 3toK
 solver order quadratic
$
$ HISTORIES FOR SOLVER "SOLVER_1"
$
histories 1
 history 'NHist' "BinoutHistory -res_type nodout -cmp z_displacement -id 486"
$
$ RESPONSES FOR SOLVER "SOLVER_1"
$
responses 2
 response 'NodDisp' 1 0 "BinoutResponse -res_type nodout -cmp z_displacement -id 486 -
select MIN"
 response 'DispT' {LookupMin("NHist(t)")}
$
$
$
 constraints 1
 constraint 'NodDisp'
 lower bound constraint 'NodDisp' -150.0
$
$ JOB INFO
$
 analyze metamodel monte carlo
STOP

The accuracy of the response surface is of interest:

Approximating Response 'NodDisp' (ITERATION 1)
--
Polynomial approximation: using 9 points

 Global error parameters of response surface

Quadratic Function Approximation:

Mean response value = -142.0087

RMS error = 2.0840 (1.47%)
Maximum Residual = 3.3633 (2.37%)
Average Error = 1.6430 (1.16%)

 CHAPTER 20: EXAMPLE PROBLEMS

LS-OPT Version 3 357

Square Root PRESS Residual = 6.2856 (4.43%)
Variance = 13.0296
R^2 = 0.9928
R^2 (adjusted) = 0.9856
R^2 (prediction) = 0.9346
The probabilistic evaluation results:

Monte Carlo simulation considering 2 stochastic variables.
Computed using 1000000 simulations

--
Results for reliability analysis using approximate functions
--

STATISTICS OF VARIABLES

Variable 'T1'
Distribution Information

Number of points : 1000000
Mean Value : 1
Standard Deviation : 0.04997
Coef of Variation : 0.04997
Maximum Value : 1.227
Minimum Value : 0.7505

Variable 'YS'
Distribution Information

Number of points : 1000000
Mean Value : 1
Standard Deviation : 0.09994
Coef of Variation : 0.09994
Maximum Value : 1.472
Minimum Value : 0.5187

STATISTICS OF RESPONSES

Response 'NodDisp'
Distribution Information

Number of points : 1000000

CHAPTER 20: EXAMPLE PROBLEMS

358 LS-OPT Version 3

Mean Value : -141.4
Standard Deviation : 14.95
Coef of Variation : 0.1058
Maximum Value : -68.5
Minimum Value : -206.3
Response 'DispT'
Distribution Information

Number of points : 1000000
Mean Value : 7.68
Standard Deviation : 0.546
Coef of Variation : 0.0711
Maximum Value : 9.267
Minimum Value : 2.565

STATISTICS OF COMPOSITES

STATISTICS OF CONSTRAINTS

Constraint 'NodDisp'
Distribution Information

Number of points : 1000000
Mean Value : -141.4
Standard Deviation : 14.95
Coef of Variation : 0.1058
Maximum Value : -68.5
Minimum Value : -206.3

Lower Bound:

 Bound -150
 Evaluations exceeding this bound 285347
 Probability of exceeding bound 0.2853
 Confidence Interval on Probability.
 Standard Deviation of Prediction Error: 0.0004516
 Lower Bound | Probability | Higher Bound
 0.2844 | 0.2853 | 0.2863
 Confidence Interval of 95% assuming Normal Distribution
 Confidence Interval of 75% using Tchebysheff's Theorem

 ANALYSIS COMPLETED

 CHAPTER 20: EXAMPLE PROBLEMS

LS-OPT Version 3 359

20.10.5 Bifurcation analysis
A bifurcation analysis of the tube is conducted as described in Section 4.6, Section 19, and Example 20.11.
The resulting buckling modes found for the metamodel-based analysis are as shown in Figure 20-48. An
extra half wave is formed for the one design.

Figure 20-48 Tube Buckling

CHAPTER 20: EXAMPLE PROBLEMS

360 LS-OPT Version 3

20.11 Bifurcation/Outlier Analysis

20.11.1 Overview
This example has the following features:
• Monte Carlo analysis
• Identification of different buckling modes in the structure

20.11.2 Problem description
The plate as shown in Figure 20-49 has two buckling modes. Buckling in the positive z-direction occurs
with a probability of 80% while buckling in the negative z-direction occurs with a probability of 20%. The
statistical distribution of the tip nodes imperfection controls the probability of buckling.

Figure 20-49 Plate Buckling Example

20.11.3 Monte Carlo evaluation
A Latin hypercube experimental design is used for the Monte Carlo analysis. We analyze only five points.
Given that the probability of 20% of buckling in the negative z-direction and a Latin hypercube
experimental design, one run will buckle in the negative z-direction. The next section will demonstrate how
to find out which run contains the different buckling mode.

"Monte Carlo Analysis; 2 buckling modes"
$
solvers 1
$
distribution 1
 distribution 'i' UNIFORM -0.001 0.004
$
$ DESIGN VARIABLES
$
variables 1
 noise variable 'Imp' distribution 'i'
$
$
$ SOLVER_1

 CHAPTER 20: EXAMPLE PROBLEMS

LS-OPT Version 3 361

$
solver dyna960 'SOLVER_1'
 solver command "ls970.single"
 solver input file "plate.k"
 solver experiment design lhd centralpoint
 solver number experiments 5
$
$ RESPONSES
$
responses 4
 response 'tip_x' 1 0 "BinoutResponse -res_type nodout -cmp x_displacement -id 12 -
select TIME "
 response 'tip_y' 1 0 "BinoutResponse -res_type nodout -cmp y_displacement -id 12 -
select TIME "
 response 'tip_z' 1 0 "BinoutResponse -res_type nodout -cmp z_displacement -id 12 -
select TIME "
 response 'tip_r' 1 0 "BinoutResponse -res_type nodout -cmp displacement -invariant
MAGNITUDE -id 12 -select TIME "
$
$
$ JOB
$
 analyze monte carlo
STOP

20.11.4 Automatic identification of buckling modes
Different buckling modes can be identified automatically and displayed in LS-PREPOST. To identify
bifurcations, we display the FE jobs having the extreme values. For this structure, either the global extreme
z-displacement or the tip z-displacement can be considered in order to identify the bifurcation. Automated
identification of the bifurcation is done in the GUI as as shown in Figure 20-50 with the bifurcation as
displayed using LS-PREPOST as shown in Figure 20-51. Some background on bifurcation indentification
can be found in Section 19.9. A more user-intensive procedure is described in the next section.

Figure 20-50 Selecting the automated identification of a bifurcation. The user must (i) select to overlay the
FE models associated with the maximum and minimum residual and (ii) chose whether the residual is the

global residual or a residual at a specific node.

CHAPTER 20: EXAMPLE PROBLEMS

362 LS-OPT Version 3

Figure 20-51 LS-OPT identified and displayed this bifurcation automatically using the GUI setting shown in

the previous figure.

20.11.5 Manual identification of buckling modes
The different buckling modes are identified using the DYNA Stats panel in LS-OPT.

Next, LS-PREPOST can be launched to investigate the range (or standard deviation) of all the displacement
components. From the displacement resultant plot, amongst others, it is clear that the bifurcation is at the
tip. Looking at the other component plots, we find the z-displacement has a range of 5.3 and the x-
displacement a range of 4.5. The displacement magnitude computed using the maximum vector has a range
of 6.9.

 CHAPTER 20: EXAMPLE PROBLEMS

LS-OPT Version 3 363

Figure 20-52 Range of z-component displacement

Either the z-displacement or the maximum vector displacement magnitude can therefore be used to identify
the buckling modes. Fringe plots of the run index of the maximum and minimum displacement identifies the
runs as 2 and 4.

Figure 20-53 Index of run with maximum z-component displacement

CHAPTER 20: EXAMPLE PROBLEMS

364 LS-OPT Version 3

Figure 20-54 Index of run with minimum z-component displacement

LS-OPT allows you to specify the job number to use for the LS-PREPOST plot. Plotting the results of run 2
and 4 we find the second buckling mode as:

Figure 20-55 Second buckling mode

 CHAPTER 20: EXAMPLE PROBLEMS

LS-OPT Version 3 365

20.12 Robust Parameter Design
Consider the two-bar truss problem as shown in Figure 20-56. Variable x1, the area, is a noise variable
described using a normal distribution with a mean of 2.0 and a standard deviation of 0.1. The distance
between the legs, x2, is a control variable which will be adjusted to control the variance of the responses.
The maximum stress is considered as the objective for the robust design process.

Figure 20-56 The two-bar truss problem. The problem has two variables: the thickness of the bars and the

leg widths as shown. The bar thicknesses are noise variables while the leg widths are adjusted (control
variables) to minimize the effect of the variation of the bar thicknesses. The maximum stress in the structure

is monitored.

An response surface considering the effect of variables and the interaction between variables is used to
approximate the stress response.

"Two-bar Truss"
$
solvers 1
responses 2
$
$ PROBABILISTIC DISTRIBUTIONS
$
distribution 1
 distribution 'area' NORMAL 2.0 0.1
$
$ DESIGN VARIABLES
$
variables 2
 Noise variable 'Area' distribution 'area'
 Variable 'Base' 0.8
 Lower bound variable 'Base' 0.1

CHAPTER 20: EXAMPLE PROBLEMS

366 LS-OPT Version 3

 Upper bound variable 'Base' 1.6
 Range 'Base' 1.6

$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
$ SOLVER "SOLVER_1"
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
$
$ DEFINITION OF SOLVER "SOLVER_1"
$
 solver own 'SOLVER_1'
 solver command "echo N o r m a l"
$ ------ Pre-processor --------
$ NO PREPROCESSOR SPECIFIED
$ ------ Metamodeling ---------
 solver order interaction
 solver experiment design 3toK
$ ------ Job information ------
 solver concurrent jobs 1
$
$ RESPONSE EXPRESSIONS FOR SOLVER "SOLVER_1"
$
 response 'Weight' expression { Area * sqrt(1+Base*Base) }
 response 'Stress' expression { 0.124 * sqrt(1+Base*Base) * (8/Area + 1./Area/Base) }
$
composites 1
$
$ STD DEV COMPOSITES
$
 composite 'StressStandardDeviation' noise 'Stress'
$
$ OBJECTIVE FUNCTIONS
$
 objectives 1
 objective 'StressStandardDeviation' 1
$
$ CONSTRAINT DEFINITIONS
$
 constraints 0
$
$ JOB INFO
$
 iterate param design 0.01
 iterate param objective 0.01
 iterate param stoppingtype and
 iterate 10
STOP

The stress response is shown in Figure 20-57. From the figure it can be seen that the ‘base’ variable must be
set to values of large than 0.4 to obtain a minimum variation of the stress considering that the design will
then be in the flattest region of the response. A value of 0.5 is obtained in the optimization results as shown
in Figure 20-58. Also shown in the optimization results is the design history of the stress standard deviation.
Note that the standard deviation response stayed fairly insensitive to changes in the control variable after
iteration 4 and that the initial subregion size for the ‘base’ variable was too large, resulting in initial increase
in ‘base’ variable due to an inaccurate initial response surface.

 CHAPTER 20: EXAMPLE PROBLEMS

LS-OPT Version 3 367

Figure 20-57 Contours of stress response. The flattest part of the response is when variable 'base' equals 0.5.

Figure 20-58 Optimization histories. Design variable ‘base’ is shown on the left and the standard deviation

of the stress response is shown on the right.

 368

Bibliography

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485

[1] Akaike, H. Statistical predictor identification. Ann.Inst.Statist.Math., 22, pp. 203-217, 1970.
[2] Akkerman, A., Thyagarajan, R., Stander, N., Burger, M., Kuhn, R., Rajic, H. Shape optimization for

crashworthiness design using response surfaces. Proceedings of the 1st International Workshop on
Multidisciplinary Design Optimization, Pretoria, South Africa, 8-10 August 2000, pp. 270-279.

[3] Arora, J.S. Introduction to Optimum Design. 1st ed. McGraw-Hill, 1989.
[4] Arora, J.S. Sequential linearization and quadratic programming techniques. In Structural

Optimization: Status and Promise, Ed. Kamat, M.P., AIAA, 1993.
[5] Bakker, T.M.D. Design Optimization with Kriging Models. WBBM Report Series 47, Ph.D. thesis,

Delft University Press, 2000.
[6] Barthelemy, J.-F. M. Function Approximation. In Structural Optimization: Status and Promise, Ed.

Kamat, M.P., 1993.
[7] Basu, A., Frazer, L.N. Rapid determination of the critical temperature in simulated annealing

inversion, Science, 249, pp. 1409-1412, 1990.
[8] Bishop, C.M. Neural Networks for Pattern Recognition. Oxford University Press, 1995.
[9] Bounds, D. G., New optimization methods from physics and biology, Nature, 329, pp. 215-218, 1987.
[10] Box, G.E.P., Draper, N.R. A basis for the selection of a response surface design. Journal of the

American Statistical Association, 54, pp. 622-654, 1959.
[11] Box., G.E.P., Draper, N.R. Empirical Model Building and Response Surfaces, Wiley, New York,

1987.
[12] Burgee, S., Giunta, A. A., Narducci, R., Watson, L. T., Grossman, B. and Haftka, R. T. A coarse

grained parallel variable-complexity multidisciplinary optimization paradigm, The International
Journal of Supercomputer Applications and High Performance Computing, 10(4), pp. 269-299, 1996.

[13] Chan, K., Saltelli, A., Tarantola, S. Sensitivity analysis of model output: variance-based methods
make the difference. Proceedings of the 1997 Winter Simulation Conference. 2002, Atlanta, GA.

[14] Chen W., Jin, R., Sudjianto A. Analytical variance-based global sensitivity analysis in simulation-
based design under uncertainty. Proceedings of DETC’04, Sept 28-October 2, 2004, Salt Lake City,
Utah, USA.

[15] Cohn, D. Neural network exploration using optimal experiment design, Neural Networks, (9)6, pp.
1071-1083, 1996.

[16] Craig K.J., Stander, N., Dooge, D., Varadappa, S. MDO of automotive vehicle for crashworthiness
and NVH using response surface methods. Paper AIAA2002_5607, 9th AIAA/ISSMO Symposium on
Multidisciplinary Analysis and Optimization, 4-6 Sept 2002, Atlanta, GA.

[17] Daberkow, D.D. and Mavris, D.N. An investigation of metamodeling techniques for complex systems
design. Symposium on Multidisciplinary Analysis and Design, Atlanta, October 2002.

[18] Draper and Smith H; Applied Regression Analysis, Second Edition, Wiley, New York, 1981.
[19] Eschenauer, H., Koski, J., Osyczka, A. Multicriteria Design Optimization. Procedures and

Applications. Springer-Verlag, Berlin, 1990.
[20] Fedorova, N.N., Terekhoff, S.A. Space Filling Designs, Internal Report, April 2002.
[21] Fedorova, N.N. Personal communication, 2004

BIBLIOGRAPHY

LS-OPT Version 3 369

[22] Foresee, F. D., Hagan, M. T. Gauss-Newton approximation to Bayesian regularization. Proceedings of

the 1997 International Joint Conference on Neural Networks, pp. 1930-1935, 1997.
[23] Forsberg, J. Simulation Based Crashworthiness Design – Accuracy Aspects of Structural optimization

using Response Surfaces. Thesis No. 954. Division of Solid Mechanics, Department of Mechanical
Engineering, Linköping University, Sweden, 2002.

[24] Giger, M., Redhe, M. and Nilsson, L, Division of Mechanics, Department of Mechanical Engineering,
Linköping University, Sweden. Personal Communication, January 2003.

[25] Giger, M. An Investigation of Structural Optimization in Crashworthiness Design Using a Stochastic
Approach – A Comparison of Stochastic Optimization and Response Surface Methodology, Thesis,
Division of Mechanics, Department of Mechanical Engineering, Linköping University, Sweden, 2003.

[26] Haftka, R.T., Gürdal, A. Elements of Structural Optimization, Kluwer, 1992.
[27] Hajela, P., Berke L. Neurobiological computational models in structural analysis and design.

Proceedings of the 31st AIAA/ ASME/ ASCE/ AHS/ ASC Structures, Structural Dynamics and
Materials Conference, Long Beach, CA, April, 1990.

[28] Haldar A, Mahadevan,, S. Probability, Reliability and Statistical Methods in Engineering Design,
Wiley, Inc. 2000.

[29] Hock, W., Schittkowski, K. Test examples for nonlinear programming codes. Springer-Verlag, Berlin,
Germany, 1981.

[30] Hornik, K., Stinchcombe, M., White, H. Universal approximation of an unknown mapping and its
derivatives using multilayer feedforward networks. Neural Networks, 3, pp. 535-549, 1990.

[31] Jin, R., Chen, W. and Simpson, T.W. Comparative studies of metamodeling techniques under multiple
modeling criteria, AIAA Paper AIAA-2000-4801.

[32] Kaufman, M.D., Balabanov, V., Burgee, S.L., Giunta, A.A., Grossman, B., Haftka R.T., Mason W.H.,
Watson, L.T. Variable-complexity response surface approximations for wing structural weight in
HSCT design, Computational Mechanics, 18, pp. 112-126, 1996.

[33] Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P. Science, 220, pp. 671-680, 1983.
[34] Knuth, D.E. Seminumerical Algorithms, 2nd ed., Vol. 2 of The Art of Computer Programming

(Reading, MA: Addison-Wesley), §§3.2-3.3, 1981.
[35] Kok, S., Stander, N. Optimization of a Sheet Metal Forming Process using Successive Multipoint

Approximations, Structural Optimization, 18(4), pp. 277-295, 1999.
[36] Kok, S., Stander, N., Roux, W.J. Thermal optimization in transient thermoelasticity using response

surface approximations, International Journal for Numerical Methods in Engineering, 43, pp. 1-21,
1998.

[37] Kokoska S. and Zwillinger D. CRC Standard Probability and Statistics Tables and Formulae, Student
Edition. Chapman & Hall/CRC, New York, 2000.

[38] Krige, D.G. A statistical approach to some mine valuation and allied problems on the Witwatersrand.
Masters thesis, University of the Witwatersrand, South Africa, 1951.

[39] Lawrence, S.C., Lee Giles, Ah Chung Tsoi. What size neural network gives optimal generalization?
Convergence Properties of Backpropogation. Technical Report UMIACS-TR-96-22 and CS-TR-3617,
University of Maryland, 1996.

[40] Lewis, K., Mistree, F. The other side of multidisciplinary design optimization: accommodating a
mutiobjective, uncertain and non-deterministic world, Engineering Optimization, 31, pp. 161-189,
1998.

[41] Luenberger, D.G. Linear and Nonlinear Programming. Second Edition. Addison Wesley, 1984.

BIBLIOGRA

370 LS-OPT Version 3

[42] Matsumoto, M. and Nishimura, T., Mersenne Twister: A 623-Dimensionally Equidistributed Uniform

Pseudo-Random Number Generator, ACM Transactions on Modeling and Computer Simulation, 8(1),
pp. 3-30, 1998.

[43] McKay, M.D., Conover, W.J., Beckman, R.J. A comparison of three methods for selecting values of
input variables in the analysis of output from a computer code, Technometrics, pp. 239-245, 1979.

[44] MacKay, D. J. C. Bayesian interpolation. Neural Computation, 4(3), pp. 415-447, 1992.
[45] Mendenhall W.; Wackerly D.D; Scheaffer, R.L. Mathematical Statistics with Applications. PWS Kent,

Boston, 1990.
[46] Moody, J.E. The effective number of parameters: An analysis of generalization and regularization in

nonlinear learning systems. in J.E. Moody, S.J. Hanson, and R.P. Lippmann, editors, Advances in
Neural Information Processing Systems, 4, Morgan Kaufmann Publishers, San Mateo, CA, 1992.

[47] Morris, M., Mitchell, T. Exploratory design for computer experiments. Journal of Statistical Planning
Inference, 43, pp. 381-402, 1995.

[48] Myers, R.H., Montgomery, D.C. Response Surface Methodology. Process and Product Optimization
using Designed Experiments. Wiley, 1995.

[49] National Crash Analysis Center (NCAC). Public Finite Element Model Archive,
www.ncac.gwu.edu/archives/model/index.html 2001.

[50] Park, J.-S. Optimal Latin-hypercube designs for computer experiments. Journal of Statistical Planning
Inference, 39, pp. 95-111, 1994.

[51] Redhe, M. and Nilsson, L. Using space mapping and surrogate models to optimize vehicle
crashworthiness design, Paper 2002-5607. 9th AIAA/ISSMO Symposium on Multidisciplinary
Analysis and Optimization, Atlanta, September 4-6, 2003.

[52] Riedmiller, M., Braun, H. A direct adaptive method for faster backpropagation learning: The RPROP
algorithm. In H. Ruspini, editor, Proceedings of the IEEE International Conference on Neural
Networks (ICNN), pages 586 - 591, San Francisco, 1993.

[53] Roux, W.J. Structural Optimization using Response Surface Approximations, PhD thesis, University
of Pretoria, April 1997.

[54] Roux, W.J., du Preez, R.J., Stander, N. The design optimization of a semi-solid tire using response
surface approximations, Engineering Computations, 16, pp. 165-184, 1999.

[55] Roux, W.J., Stander N., Haftka R.T. Response surface approximations for structural optimization,
International Journal for Numerical Methods in Engineering, 42, pp. 517-534, 1998.

[56] Roy RK. Design of experiments using the Taguchi approach. Wiley, New York NY. 2001.
[57] Rummelhart, D.E., Hinton, G.E., Williams, R.J. Learning internal representations by error

propagation. In D.E. Rumelhart and J.L. McClelland, editors, Parallel Distributed Processing, Vol. I
Foundations, pages 318-362. MIT Press, Cambridge, MA, 1986.

[58] Sanchez SM. Robust design: seeking the best of all possible worlds. In Proceedings of the 2000 Winter
Simulation Conference, ed Joines JA, Barton RR, Kan K, and Fishwick PA. 69-76, Institute of
Electrical and Electronic Engineers. Piscataway, NJ.

[59] Simpson, T.W., Lin, D.K.J. and Chen, W. Sampling Strategies for Computer Experiments: Design and
Analysis. International Journal for Reliability and Applications, Aug. 2001 (Revised Manuscript).

[60] Sjöberg, J., Ljung, L. Overtraining, regularization, and searching for minimum in neural networks.
Preprints of the 4th IFAC Int. Symp. on Adaptive Systems in Control and Signal Processing, p. 669,
July 1992.

[61] Schoofs, A.J.G. Experimental Design and Structural Optimization, PhD thesis, Technische
Universiteit Eindhoven, August 1987.

BIBLIOGRAPHY

LS-OPT Version 3 371

[62] Schuur, P.C. Classification of acceptance criteria for the simulated annealing algorithm. Mathematics

of Operations Research, 22(2), pp. 266-275, 1997.
[63] Simpson, T.W. A concept exploration method for product family design. Ph.D. Thesis, Georgia

Institute of Technology, 1998.
[64] Sobieszczanski-Sobieski, J., Haftka, R.T., Multidisciplinary aerospace design optimization: Survey of

recent developments, Structural Optimization, 14, No.1, pp. 1-23, 1997.
[65] Sobieszczanski-Sobieski, J., Kodiyalam, S., Yang, R-.J. Optimization of car body under constraints of

noise, vibration, and harshness (NVH), and crash, AIAA Paper 2000-1521, 2000.
[66] Snyman, J.A. An improved version of the original leap-frog dynamic method for unconstrained

minimization LFOP1(b). Appl. Math. Modelling, 7, pp. 216-218, 1983.
[67] Snyman, J.A. The LFOPC leap-frog algorithm for constrained optimization. Comp. Math. Applic., 40,

pp. 1085-1096, 2000.
[68] Stander, N., Craig, K.J. On the robustness of a simple domain reduction scheme for simulation-based

optimization, Engineering Computations, 19(4), pp. 431-450, 2002.
[69] Stander, N.; Reichert, R.; Frank, T. 2000: Optimization of nonlinear dynamic problems using

successive linear approximations. AIAA Paper 2000-4798.
[70] Stander, N., Roux, W.J., Giger, M., Redhe, M., Fedorova, N. and Haarhoff, J. Crashworthiness

optimization in LS-OPT: Case studies in metamodeling and random search techniques. Proceedings of
the 4th European LS-DYNA Conference, Ulm, Germany, May 22-23, 2003. (Also www.lstc.com).

[71] Stander, N., Snyman, J.A., Coster, J.E., On the robustness and efficiency of the SAM algorithm for
structural optimization. International Journal for Numerical Methods in Engineering, 38, pp. 119-135,
1995.

[72] Sunar, M., Belegundu, A.D. Trust region methods for structural optimization using exact second order
sensitivity. International Journal for Numerical Methods in Engineering, 32, pp. 275-293, 1991.

[73] Thanedar, P.B., Arora, J.S., Tseng, C.H., Lim, O.K., Park, G.J. Performance of some SQP algorithms
on structural design problems. International Journal for Numerical Methods in Engineering, 23, pp.
2187-2203, 1986.

[74] Toropov, V.V. Simulation approach to structural optimization. Structural Optimization, 1, pp. 37-46,
1989.

[75] Tu, J. and Choi, K.K. Design potential concept for reliability-based design optimization. Technical
report R99-07. Center for computer aided design and department of mechanical engineering. College
of engineering. University of Iowa. December 1999.

[76] Van Campen, D.H., Nagtegaal R., Schoofs, A.J.G. Approximation methods in structural optimization
using experimental designs for multiple responses, In: Eschenauer, H.; Koski, J.; Osyczka, A. (Eds.)
Multicriteria Design Optimization - Procedures and Applications, Springer-Verlag: Berlin,
Heidelberg, New York, pp. 205-228, 1990.

[77] Vanderplaats, G.N. Numerical Optimization Techniques for Engineering Design: with Applications.
McGraw-Hill, New York, 1984.

[78] Wahba, G. Spline Models for Observational Data. Volume 59 of Regional Conference Series in
Applied Mathematics. SIAM Press, Philadelphia, 1990.

[79] Wall, L., Christiansen, T., Schwartz, R. Programming Perl, O’Reilly & Associates, Inc., Cambridge,
1991.

[80] White, H., Hornik, K., Stinchcombe, M. Universal approximation of an unknown mapping and its
derivatives. Artificial Neural Networks: Approximations and Learning Theory, H. White, ed., Oxford,
UK: Blackwell, 1992.

BIBLIOGRA

372 LS-OPT Version 3

[81] Wilson, B., Cappelleri, D.J., Frecker, M.I. and Simpson, T.W. Efficient Pareto Frontier Exploration

using surrogate approximations. Optimization and Engineering, 2 (1), pp.31-50, 2001.
[82] Xu, Q-S., Liang, Y-Z., Fang, K-T., The effects of different experimental designs on parameter

estimation in the kinetics of a reversible chemical reaction. Chemometrics and Intelligent Laboratory
Systems, 52, pp. 155-166, 2000.

[83] Yamazaki, K., Han, J., Ishikawa, H., Kuroiwa, Y. Maximation of crushing energy absorption of
cylindrical shells – simulation and experiment, Proceedings of the OPTI-97 Conference, Rome, Italy,
September 1997.

[84] Ye, K., Li, W., Sudjianto, A., Algorithmic construction of optimal symmetric Latin Hypercube
designs, Journal of Statistical Planning and Inferences, 90, pp. 145-159, 2000.

[85] Zang, T.A., Green, L.L., Multidisciplinary Design Optimization techniques: Implications and
opportunities for fluid dynamics research, AIAA Paper 99-3798, 1999.

 373

Appendix A

LS-DYNA D3Plot Result Components

The table contains component names for element variables. The result type and component name must be
specified in the “D3Plot” interface commands to extract response variables.

Result Type Number Description Component name
Stress 1

2
3
4
5
6

xx, yy, zz, xy, yz, zx stress xx_stress
yy_stress
zz_stress
xy_stress
yz_stress
zx_stress

 7 Effective plastic strain plastic_strain
 8 Pressure or average strain pressure
 9 von Mises stress von_mises
 10 First principal deviator maximum 1st_prin_dev_stress
 11 Second principal deviator 2st_prin_dev_stress
 12 Third principal deviator minimum 3rd_prin_dev_stress
 13 Maximum shear stress max_shear_stress
 14 1st principal maximum stress 1st_principal_stress
 15 2nd principal stress 2st_principal_stress
 16 3rd principal min 3st_principal_stress
Ndv 17 x-displacement x_displacement
 18 y-displacement y_displacement
 19 z-displacement z_displacement
 20 Displacement magnitude result_displacement
 21 x-velocity x_velocity
 22 y-velocity y_velocity
 23 z-velocity z_velocity
 24 Velocity magnitude result_velocity
 64 xy-displacement xy_displacement
 65 yz-displacement yz_displacement
 66 zx-displacement zx_displacement
Result 26 Mxx bending resultant Mxx_bending
 27 Myy bending resultant Myy_bending
 28 Mxy bending resultant Mxy_bending
 29 Qxx shear resultant Qxx_shear
 30 Qyy shear resultant Qyy_shear
 31 Nxx normal resultant Nxx_normal
 32 Nyy normal resultant Nyy_normal
 33 Nxy normal resultant Nxy_normal
 34 Surface stress Nxx/t + 6Mxx/t2 Nxx/t+6Mxx/t^2

APPENDIX A: LS-DYNA D3PLOT RESULT COMPONENTS

374 LS-OPT Version 3

Result Type Number Description Component name
 35 Surface stress Nxx/t – 6Mxx/t2 Nxx/t-6Mxx/t^2
 36 Surface stress Nyy/t – 6Myy/t2 Nyy/t-6Myy/t^2
 37 Surface stress Nyy/t + 6Myy/t2 Nyy/t+6Myy/t^2
 38 Surface stress Nxy/t – 6Mxy/t2 Nxy/t+6Mxy/t^2
 39 Surface stress Nxy/t + 6Mxy/t2 Nxy/t+6Mxy/t^2
 40 Effective upper surface stress u_surf_eff_stress
 41 Effective lower surface stress l_surf_eff_stress
Strain 43 Lower surface effective plastic strain l_surf_plastic_strain
 44 Upper surface effective plastic strain u_surf_plastic_strain
 45

46
47
48
49
50

Lower surface xx, yy, zz, xy, yz, zx strain l_surf_xx_strain
l_surf_yy_strain
l_surf_zz_strain
l_surf_xy_strain
l_surf_yz_strain
l_surf_zx_strain

 51
52
53
45
55
56

Upper surface xx, yy, zz, xy, yz, zx strain u_surf_xx_strain
u_surf_yy_strain
u_surf_zz_strain
u_surf_xy_strain
u_surf_yz_strain
u_surf_zx_strain

 57
58
59
60
61
62

Middle surface xx, yy, zz, xy, yz, zx strain m_surf_xx_strain
m_surf_yy_strain
m_surf_zz_strain
m_surf_xy_strain
m_surf_yz_strain
m_surf_zx_strain

 69
70
71
72
73
74
75
76
77
78
79
80

Lower, upper, middle principal + effective strains l_surf_max_princ_strain
l_surf_2nd_princ_strain
l_surf_min_princ_strain
l_surf_effective_princ_strain
u_surf_max_princ_strain
u_surf_2nd_princ_strain
u_surf_min_princ_strain
u_surf_effective_princ_strain
m_surf_max_princ_strain
m_surf_2nd_princ_strain
m_surf_min_princ_strain
m_surf_effective_princ_strain

Misc 25 Temperature temperature
 63 Internal energy density internal energy
 67 Shell thickness shell_thickness
 68 Shell thickness reduction (%) %_thickness_reduction
 81 History variable 1 history_var#1
FLD 501

502
503
504

Lower, upper, middle, maxima surface eps1/fldc lower_eps1/fldc
upper_eps1/fldc
middle_eps1/fldc
maxima_eps1/fldc

 505
506
507
508

Lower, upper, middle, maxima surface fldc-eps1 lower_fldc-eps1
upper_ fldc-eps1
middle_ fldc-eps1
maxima_ fldc-eps1

 509
510
511

Lower, upper, middle, maxima surface eps1 lower_ eps1
upper_ eps1
middle_ eps1

BIBLIOGRAPHY

LS-OPT Version 3 375

Result Type Number Description Component name
512 maxima_ eps1

 513
514
515
516

Lower, upper, middle, maxima surface eps2 lower_ eps1
upper_ eps1
middle_ eps1
maxima_ eps1

Beam 701 Axial Force axial_force
 702 S Force s_force
 703 T Force t_force
 704 SS Moment ss_moment
 705 TT Moment tt_moment
 706 Torsion torsion
 707 Axial_stress axial_stress
 708 RS Shear Stress rs_shear_stress
 709 TR Shear Stress tr_shear_stress
 710 Plastic Strain plastic_strain
 711 Axial strain axial_strain

 377

Appendix B

LS-DYNA Binout Result Components

Airbag Statistics: ABSTAT

Component Description
Volume
pressure
internal_energy
dm_dt_in
dm_dt_out
total_mass
gas_temp
density
surface_area
reaction

Volume
Pressure
Internal energy
Input mass flow rate
Output mass flow rate
Mass
Temperature
Density
Area
Reaction

Boundary Nodal Forces: BNDOUT

Component Description
Subdirectory discrete/nodes
x_force
y_force
z_force
x_total
y_total
z_total
energy
etotal

X-force
Y-force
Z-force
Total X-force
Total Y-force
Total Z-force
Energy
Total Energy

Discrete Element Forces: DEFORC

Component Description
x_force
y_force
z_force
resultant_force
displacement

X-force
Y-force
Z-force
Resultant force
Change in length

Element Output: ELOUT

Component Description
Subdirectory solid
sig_xx
sig_xy
sig_yy
sig_yz
sig_zx
sig_zz
yield
effsg
eps_xx
eps_xy
eps_yy
eps_yz
eps_zx
eps_zz

XX-stress
YY-stress
ZZ-stress
XY-stress
YZ-stress
ZX-stress
Yield function
Effective stress
XX-strain
YY-strain
ZZ-strain
XY-strain
YZ-strain
ZX-strain

Subdirectory beam
axial
shear_s
shear_t
moment_s
moment_t
torsion

Axial force resultant
s-Shear resultant
t-Shear resultant
s-Moment resultant
t-Moment resultant
Torsional resultant

APPENDIX : LS-DYNA BINOUT RESULT COMPONENTS

378 LS-OPT Version 3

Element Output: ELOUT

Component Description
Subdirectory shell
sig_xx
sig_yy
sig_zz
sig_xy
sig_yz
sig_zx
plastic_strain
upper_eps_xx
lower_eps_xx
upper_eps_yy
lower_eps_yy
upper_eps_zz
lower_eps_zz
upper_eps_xy
lower_eps_xy
upper_eps_yz
lower_eps_yz
upper_eps_zx
lower_eps_zx

XX-stress
YY-stress
ZZ-stress
XY-stress
YZ-stress
ZX-stress
Plastic strain
XX-strain

YY-strain

ZZ-strain

XY-strain

YZ-strain

ZX-strain

Subdirectory thickshell
sig_xx
sig_yy
sig_zz
sig_xy
sig_yz
sig_zx
yield
upper_eps_xx
lower_eps_xx
upper_eps_yy
lower_eps_yy
upper_eps_zz
lower_eps_zz
upper_eps_xy
lower_eps_xy
upper_eps_yz
lower_eps_yz
upper_eps_zx
lower_eps_zx

XX-stress
YY-stress
ZZ-stress
XY-stress
YZ-stress
ZX-stress
Yield
XX-strain

YY-strain

ZZ-strain

XY-strain

YZ-strain

ZX-strain

Contact Entities Resultants: GCEOUT

Component Description
x_force
y_force
z_force
force_magnitude
x_moment
y_moment
z_moment
moment_magnitude

X-force
Y-force
Z-force
Force magnitude
X-moment
Y-moment
Z-moment
Moment magnitude

Global Statistics: GLSTAT

Component Description
kinetic_energy
internal_energy
total_energy
energy_ratio
stonewall_energy
spring_and_damper_energy
hourglass_energy
sliding_interface_energy
external_work
global_x_velocity
global_y_velocity
global_z_velocity
system_damping_energy
energy_ratio_wo_eroded
eroded_internal_energy
eroded_kinetic_energy

Kinetic energy
Internal energy
Total energy
Ratio
Stonewall energy
Spring & Damper energy
Hourglass energy
Sliding interface energy
External work
Global x-velocity
Global y-velocity
Global z-velocity
System damping energy
Energy ratio w/o eroded
Eroded internal energy
Eroded kinetic energy

APPENDIX : LS-DYNA BINOUT RESULT COMPONENTS

LS-OPT Version 3 379

Joint Element Forces: JNTFORC

Component Description
Subdirectory joints
x_force
y_force
z_force
x_moment
y_moment
z_moment
resultant_force
resultant_moment

X-force
Y-force
Z-force
X-moment
Y-moment
Z-moment
R-force
R-moment

Subdirectory type0
 d(phi)_dt
d(psi)_dt
d(theta)_dt
joint_energy
phi_degrees
phi_moment_damping
phi_moment_stiffness
phi_moment_total
psi_degrees
psi_moment_damping
psi_moment_stiffness
psi_moment_total
theta_degrees
theta_moment_damping
theta_moment_stiffness
theta_moment_total

d(phi)/dt
d(psi)/dt (degrees)
d(theta)/dt (degrees)
joint energy
phi (degrees)
phi moment-damping
phi moment-stiffness
phi moment-total
psi (degrees)
psi-moment-damping
psi-moment-stiffness
psi-moment-total
theta (degrees)
theta-moment-damping
theta-moment-stiffness
theta-moment-total

Material Summary: MATSUM

Component Description
kinetic_energy
internal_energy
x_momentum
y_momentum
z_momentum
x_rbvelocity
y_rbvelocity
z_rbvelocity
hourglass_energy

Kinetic energy
Internal energy
X-momentum
Y-momentum
Z-momentum
X-rigid body velocity
Y-rigid body velocity
Z-rigid body velocity
Hourglass energy

Contact Node Forces: NCFORC

Component Description
Subdirectory master_00001 and slave_00001
x_force
y_force
z_force
pressure
x
y
z

X-force
Y-force
Z-force
Pressure
X coordinate
Y coordinate
Z coordinate

Nodal Point Response: NODOUT

Component Description
Translational components
x_displacement
y_displacement
z_displacement
x_velocity
y_velocity
z_velocity
x_acceleration
y_acceleration
z_acceleration
x_coordinate
y_coordinate
z_coordinate

X-displacement
Y-displacement
Z-displacement
X-velocity
Y-velocity
Z-velocity
X-acceleration
Y-acceleration
Z-acceleration
X-coordinate
Y-coordinate
Z-coordinate

Rotational components
rx_acceleration
rx_displacement
rx_velocity
ry_acceleration
ry_displacement
ry_velocity
rz_acceleration
rz_displacement
rz_velocity

XX-rotation
YY-rotation
ZZ-rotation
XX-rotational velocity
YY-rotational velocity
ZZ-rotational velocity
XX-rotational acceleration
YY-rotational acceleration
ZZ-rotational acceleration

Injury coefficients
CSI
HIC15
HIC36

Chest Severity Index
Head Injury Coefficient (15 ms)
Head Injury Coefficient (36 ms)

APPENDIX : LS-DYNA BINOUT RESULT COMPONENTS

380 LS-OPT Version 3

Nodal Forces: NODFOR

Component Description
x_force
y_force
z_force
x_total
y_total
z_total
energy
etotal

X-force
Y-force
Z-force
X-total force
Y-total force
Z-total force
Energy
Total Energy

Rigid Body Data: RBDOUT

Component Description
Translational components
global_dx
global_dy
global_dz
global_vx
global_vy
global_vz
global_ax
global_ay
global_az
global_x
global_y
global_z
local_dx
local_dy
local_dz
local_vx
local_vy
local_vz
local_ax
local_ay
local_az

X-displacement
Y-displacement
Z-displacement
X-velocity
Y-velocity
Z-velocity
X-acceleration
Y-acceleration
Z-acceleration
X-coordinate
Y-coordinate
Z-coordinate
Local X-displacement
Local Y-displacement
Local Z-displacement
Local X-velocity
Local Y-velocity
Local Z-velocity
Local X-acceleration
Local Y-acceleration
Local Z-acceleration

Component Description
Rotational components
global_rax
global_ray
global_raz
global_rdx
global_rdy
global_rdz
global_rvx
global_rvy
global_rvz
local_rdx
local_rdy
local_rdz
local_rvx
local_rvy
local_rvz
local_rax
local_ray
local_raz

X-rotation
Y-rotation
Z-rotation
X-velocity
Y-velocity
Z-velocity
X-acceleration
Y-acceleration
Z-acceleration
Local X-rotation
Local Y-rotation
Local Z-rotation
Local X-velocity
Local Y-velocity
Local Z-velocity
Local X-acceleration
Local Y-acceleration
Local Z-acceleration

Direction cosines
dircos_11
dircos_12
dircos_13
dircos_21
dircos_22
dircos_23
dircos_31
dircos_32
dircos_33

11 direction cosine
12 direction cosine
13 direction cosine
21 direction cosine
22 direction cosine
23 direction cosine
31 direction cosine
32 direction cosine
33 direction cosine

Injury coefficients
CSI
HIC15
HIC36

Chest Severity Index
Head Injury Coefficient (15 ms)
Head Injury Coefficient (36 ms)

Reaction Forces: RCFORC

Component Description
x_force
y_force
z_force
mass

X-force
Y-force
Z-force
Mass

APPENDIX : LS-DYNA BINOUT RESULT COMPONENTS

LS-OPT Version 3 381

RigidWall Forces: RWFORC

Component Description
Subdirectory forces
normal_force
x_force
y_force
z_force

normal
X-force
Y-force
Z-force

Section Forces: SECFORC

Component Description
x_force
y_force
z_force
x_moment
y_moment
z_moment
x_centroid
y_centroid
z_centroid
total_force
total_moment
area

X-force
Y-force
Z-force
X-moment
Y-moment
Z-moment
X-center
Y-center
Z-center
Resultant force
Resultant moment
Area

Single Point Constraint Reaction Forces: SPCFORC

Component Description
x_force
y_force
z_force
x_resultant
y_resultant
z_resultant
x_moment
y_moment
z_moment

X-force
Y-force
Z-force
Total X-force
Total Y-force
Total Z-force
X-moment
Y-moment
Z-moment

Spotweld and Rivet Forces: SWFORC

Component Description
axial
shear
failure_flag

Axial force
Shear force
Failure flag

 383

Appendix C

Database files

D.1 Design flow

Source Database file Process Output Database file Level of directory
for output database

Command file (com) Point selection Experiments Solver
Experiments Simulation runs Solver output files Run
Solver output files Result extraction AnalysisResults

StatResults
Solver
Work

AnalysisResults Approximation DesignFunctions
Net

Solver

DesignFunctions Optimize OptimumResults
OptimizationHistory

Work
Work

D.2 Database file formats

The Experiments file

This file appears in the solver directory and is used to save the experimental point coordinates for the
analysis runs. The file consists of lines having the following format repeated for each experimental point.

x[1], x[2], ..., x[n]

where x[1] to x[n] are the values of the n solver design variables at the experimental point.

The AnalysisResults file

This file is used to save the responses at the experimental points and appears in the solver directory. Every
line describes an experimental point and gives the response values at the experimental point. The file
consists of lines having the following format repeated for each experimental point.

x[1], x[2], ..., x[n],RespVal[1], RespVal[2], ..., RespVal[m]

where x[1] to x[n] are the values of the n solver design variables at the experimental point. RespVal[1] to
RespVal[m] are the values of the m solver responses. Values of 2.0*1030 are assigned to responses of
simulations with error terminations. The AnalysisResults file is synchronous with the
Experiments file.

APPENDIX C: DATABASE FILES

384 LS-OPT Version 3

The DesignFunctions file

The DesignFunctions file, which appears in the solver directory, is used to save a description of the
polynomial design functions. It is an XML file with XML tags chosen such that the file is easy to read.
Open a DesignFunction.* file in a text editor to understand the content of the database.

The order of the constants in the database is for polynomial design functions is:
beta_0, beta_1, ... , beta_n, beta_1_1, beta_1_2, beta_1_3, ..., beta_1_n,
 beta_2_2, beta_2_3,, beta_2_n,
 , beta_i_n,
 beta_n_n
with
 f(x) = beta_0 + beta_1*x_1 + + beta_n*x_n +
 beta_1_1*x_1*x_1 + beta_1_2*x_1*x_2 + ... + beta_1_n*x_1*x_n
 + beta_2_2*x_2*x_2 + ... + beta_2_n*x_2*x_n
 ...
 + beta_2_n*x_n*x_n

 The following enumerations are used in the database.

Function Types
NO_SURFACE 0
LINEAR 77
MULT 78
QUADRATIC 79
INTERACTION 80
ELLIPTIC 81
SPHERICAL 82
FEEDFORWARD 83
FF_COMMITTEE 84
RADIALBASIS 85
NEURALNETWORK 86
ANALYTICAL_DSA_SURFACE 87
NUMERICAL_DSA_SURFACE 88
KRIGING 89

Response Interface Type
 RESP_INTERF_NULL 0 Interface unknown
 USERINTERFACE 700 User defined
 BINARY 701 LS-DYNA d3plot
 ASCII 702 LS-DYNA ascii files
 REXPRESSION 703 Mathematical expression
 XYFILE 704 User specified history file [t,f(t)]
 LSDA_BINARY 705
 FREQUENCY 706 Frequency, Mode #, Generalized Mass

APPENDIX C: DATABASE FILES

LS-OPT Version 3 385

 MASSC 707 Mass from d3hsp
 D3P_DISP 708 Disp from d3 plot file

The flags for active coefficients exclude the constant a0.

The OptimizationHistory file

This file is used to save the optimization history results and appears in the work directory. Each line
contains the values at the optimum point of an iteration.

Entities Count
Objective values Number of objectives
Variables Number of variables
Variable lower bounds Number of variables
Variable upper bounds Number of variables
RMS errors Number of responses
Average errors Number of responses
Maximum errors Number of responses
R2 errors Number of responses
Adjusted R2 errors Number of responses
PRESS errors Number of responses
Prediction R2 Number of responses
Maximum prediction error Number of responses
Responses Number of responses
Multi-objective 1
Constraint values Number of constraints
Composite values Number of composites
Responses (computed) Number of responses
Max. constraint violation 1
Composites (computed) Number of composites
Constraints (computed) Number of constraints
Objectives (computed) Number of objectives
Multi-objective (computed) 1
Max. constraint violation (computed) 1
Constants Number of constants
Dependents Number of dependents

Values of 2.0*1030 are assigned to responses of error terminations.

APPENDIX C: DATABASE FILES

386 LS-OPT Version 3

The ExtendedResults file

This file contains all points represented in the AnalysisResults file and appears in the solver directory.
All values are based on the simulation results. A line has the following format:

Entities Count
Objective weights Number of objectives
Objective values Number of objectives
Variables Number of solver variables
Responses Number of solver responses
Multi-objective 1
Constraint values Number of constraints
Composite values Number of composites
Max. constraint violation 1
Constants Number of constants
Dependents Number of dependents

The values represent the number of entities in the solver. Values of 2.0*1030 are assigned to responses of
simulations with error terminations.

The OptimumResults file

This file contains just the optimum design point data and appears in the main work directory. All values are
metamodel values, i.e. interpolated.

Entities Count
Objective weights Number of objectives
Objective values Number of objectives
Variables Number of variables
Responses Number of responses
Multi-objective 1 or 0 (no objectives)
Constraint values Number of constraints
Composite values Number of composites
Max. constraint violation 1
Constants Number of constants
Dependents Number of dependents

The lsopt_db file

The file should not be used or edited by the user. It is used to communicate the state of the databases
between various LS-OPT components. The content of the file is subject to change.

 387

Appendix D

Mathematical Expressions

Mathematical expressions are available for the following entities:

Dependent
Result
matrix
history
response
composite
multiobjective

E.1 Syntax rules

1. Mathematical expressions are placed in curly brackets in the command file or in double angular brackets

(e.g. <<Thickness*25.4>>) in the input template files.
2. Expressions consist of parameters and constants. A parameter can be any previously defined entity.
3. Expressions can be wrapped to appear on multiple lines.
4. Mathematical expressions can be used for any floating-point number, e.g. upper bound of constraint,

convergence tolerance, objective weight, etc.
5. An expression is limited to 1024 characters.
6. Empty or underscore (_) arguments in functions will generate default values.

APPENDIX D: MATHEMATICAL EXPRESSIONS

388 LS-OPT Version 3

E.2 Intrinsic functions

Note: Trigonometric functions use and return degrees, not radians.

int(a) integer
nint(a) nearest integer
abs(a) absolute value
mod(a,b) remainder of a/b
sign(a,b) transfer of sign from b to |a|
max(a,b) maximum of a and b
min(a,b) minimum of a and b
sqrt(a) square root
exp(a) ea
pow(a,b) ab
log(a) natural logarithm
log10(a) base 10 logarithm
sin(a) sine
cos(a) cosine
tan(a) tangent
asin(a) arc sine
acos(a) arc cosine
atan(a) arc tangent
atan2(a,b) arc tangent of a/b
sinh(a) hyperbolic sine
cosh(a) hyperbolic cosine
tanh(a) hyperbolic tangent
asinh(a) arc hyperbolic sine
acosh(a) arc hyperbolic cosine
atanh(a) arc hyperbolic tangent
sec(a) secant
csc(a) cosecant
ctn(a) cotangent

Matrix functions (3×3 only):

inv(A) Inverse of matrix A
tr(A) Transpose of matrix A
rx(angle) Rotation about x-axis (angle in rad)
ry(angle) Rotation about y-axis (angle in rad)
rz(angle) Rotation about z-axis (angle in rad)

APPENDIX D: MATHEMATICAL EXPRESSIONS

LS-OPT Version 3 389

E.3 Special functions

Special response functions can be specified to apply to response histories. These include integration, minima
and maxima and finding the time at a specific value of the function. General expressions (in double quotes)
can be used for limits and for the integration variable. Histories must be defined as strings in double quotes
and functions of time using the symbol t, e.g. ”Velocity(t)”.

Expression Symbols
Integral(expression[,t_lower,t_upper,variable])

∫
b

a
tdgtf)()(

Derivative(expression[,T_constant])
Tttf =∆∆ |/ ~ Tttf =|d/d

Min(expression[,t_lower,t_upper]))]([minmin tff
t

=

Max(expression[,t_lower,t_upper]))]([maxmax tff
t

=

Initial(expression) First function value on record
Final(expression) Last function value on record
Lookup(expression,value) Inverse function t(f = F)
LookupMin(expression[,t_lower,t_upper]) Inverse function t(f = fmin)
LookupMax(expression[,t_lower,t_upper]) Inverse function t(f = fmax)
MeanSqErr(target_curve,computed_curve[,
num_reg_points, start_point, end_point,
weight_type, scale_type,
weight_value, scale_value,
weight_curve_name, scale_curve_name])

Mean Squared Error function
2

1

)(1
∑ ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛ −

=

P

p p

pp
p s

Gf
W

P
x

Crossplot (history_z, history_F [, numpoints,
begin_time, end_time])

F(z) given F(t) and z(t)

Rotate(x1,y1,z1, x2,y2,z2, x3,y3,z3) Rotation matrix defined by 3
points. See Section 12.

Matrix3x3Init(x1,y1,z1, x2,y2,z2, x3,y3,z3) Initialize 3×3 matrix

The arguments used in the expressions have the following explanations:

Argument Explanation Symbol Type
t_lower lower limit of integration or range a generic
t_upper upper limit of integration or range b generic
variable integration variable g(t) generic
expression history defined as an expression string f(t) generic
value value for which lookup is required F generic
T_constant specific time Τ generic
target_curve,computed_curve Target, computed curve names G history
Num_reg_points Number of regression points n integer
Start_point, end_point Location of first/last regression points z0, zP float
Weight_type, Scale_type Weight and scale types reserved
Weight_value, scale_value Uniform weight and scale values W, s float
History_z, history_F History names for abscissa and z(t), F(t) history

APPENDIX D: MATHEMATICAL EXPRESSIONS

390 LS-OPT Version 3

ordinate
numpoints Number of points in curve - integer
Begin_time, end_time Begin and end times t1,tP float
x1,y1,z1,x2,y2,z2,x3,y3,z3 Matrix components - generic

“Generic” implies that the quantity can be an expression, another defined entity or a constant number. An
entity (which may be specified in an expression) can be any defined LS-OPT entity. Thus constant,
variable, dependent, history, response and composite are acceptable. An expression is
given in double quotes, e.g., ”4.2 * C1_1 * Displacement(t)”.

E.4 Reserved variable names

Name Explanation
t Time
LowerLimit 0.0
UpperLimit Maximum event time over all histories of all solvers

Omitting the lower and upper bounds implies operation over the entire available history.
The Lookup function allows finding the value of t for a specified value of f(t) = F. If such a value cannot
be found, the largest value of t in the history is returned. The LookupMin and LookupMax functions
return the value of t at the minimum or maximum respectively.

The implied variable represented in the first column of any history file is t. Therefore all history files
produced by the DynaASCII extraction command contain functions of t. The fourth argument of the
Integral function defaults to t. The variable t must increase monotonically.

The derivative assumes a piecewise linear function defined by the points in the history.n file. T_constant in
the Derivative function defaults to the end time.

If a time is specified smaller than the smallest time value of the computed history, the first value is returned
(same as Initial). If a time is specified larger than the largest time value of the computed history, the
last value is returned (same as Final). For derivatives the first or last slopes are returned respectively.

E.5 Constants associated with histories

The following commands can be given to override defaults for history operations:

Constant Explanation Default
variable fdstepsize Finite difference step size for

numerical derivatives with
respect to variables

0.0001*(Upper bound – Lower bound)

historysize Number of time points for new
history

10000

APPENDIX D: MATHEMATICAL EXPRESSIONS

LS-OPT Version 3 391

Command file syntax:
variable fdstepsize value
historysize integer value

• The variable fdstepsize is used to find the gradients of expression composite functions. These

are used in the optimization process.
• The historysize is used when new histories are generated.

E.6 Generic expressions

Expressions can be specified for any floating-point number. In some cases, previously defined parameters
can be used as follows:

Number type Parameter type
Constant none
Starting variable constant
Range variable
Variable bounds variable
Shift factor for response variable
Scale factor for response variable
Constraint bounds variable
Objective weight variable
Target value (composite) variable
Scale factor (composite) variable
Weight (composite) variable
Parameters of SRSM none
Parameters of LFOPC none

The parameter type represents the highest entity in the hierarchy. Thus constants are included in the variable
parameters.

In LS-OPT, expressions can be entered for variables, constants, dependents, histories, responses constraints
and objectives.

APPENDIX D: MATHEMATICAL EXPRESSIONS

392 LS-OPT Version 3

Example:

constant ’Target1’ {12756.333/1000.}
constant ’Target2’ {966002/1000.}
variable ’Emod’ 1e7
composite ’Residual’ type targeted
composite ’Residual’ response ’F1’ {Target1} scale {Target1}
composite ’Residual’ response ’F2’ {Target2} scale {Target2}
objective ’Residual’
$
variable fdstepsize {1/500.}
time fdstepsize {1/300.}
history size 10000

APPENDIX D: MATHEMATICAL EXPRESSIONS

LS-OPT Version 3 393

E.7 Examples illustrating syntax of expressions

Example 1:

The following example shows a simple evaluation of variables and functions. The histories are specified in
plot files his1 and his2. A third function his3 is constructed from the files by averaging.

File his1:

0 0.0
100 1000
200 500
300 500

File his2:

0 0.0
100 2000
200 2000
300 2000

Input file:
"Mathematical Expressions"
$
$ CONSTANTS
$
constants 3
constant ’lowerlimit’ 0
constant ’upperlimit’ .200
constant ’angle’ 30
$
$ DESIGN VARIABLE DEFINITIONS
$
variables 2
Variable ’x1’ 45
Lower bound variable ’x1’ -10
Upper bound variable ’x1’ 50
Variable ’x2’ 45
Lower bound variable ’x2’ -10
Upper bound variable ’x2’ 50
$
$ DEPENDENT VARIABLES
$
dependents 2
dependent ’ll’ {lowerlimit * 1000}
dependent ’ul’ {upperlimit * 1000}
$
.
.
.

APPENDIX D: MATHEMATICAL EXPRESSIONS

394 LS-OPT Version 3

$
$ HISTORIES
$
history 3
history ’his1’ file "../../his1"
history ’his2’ file "../../his2"
history ’his3’ {(his1(t) + his2(t))/2}
$
$ RESPONSES
$
responses 42
response ’LOWER’ expression {LowerLimit}
response ’UPPER’ expression {UpperLimit}
response ’UL’ expression {ul}
response ’First’ expression {Initial("his1(t)")}
response ’Last’ expression {Final("his1(t)")}
response ’Last3’ expression {Final("(his1(t) + his2(t))/2")}
response ’Max1’ expression {Max("his1(t)")}
response ’Max2’ expression {Max("his1(t)","ll * 1.0")}
response ’Maximum11’ expression {Max("his1(t)","ll",ul)}
response ’Maximum32’ expression {Max("his3(t)",ll,ul)}
response ’Minimum32’ expression {Min("his3(t)",ll,ul)}
response ’Inverse11’ expression {Lookup("his1(t)",75)}
response ’Inverse21’ expression {Lookup("his2(t)",75)}
response ’Inverse31’ expression {Lookup("his3(t)",75)}
response ’Inverse33’ expression {Lookup("(his1(t) + his2(t))/2",75)}
response ’MaxI’ expression {max(Inverse11,Inverse21)}
response ’MinI’ expression {min(Inverse11,Inverse21)}
response ’hist’ expression {his3(Inverse31)}
response ’hist66’ expression {his3(66.1) + 0.1}
response ’nhist66’ expression {nint(hist66)}
response ’ihist66’ expression {int(hist66)}
response ’Integ11’ expression {Integral("his1(t)")}
response ’Integ14’ expression {Integral("his1(t)",ll,ul,"t")}
response ’Integ15’ expression {Integral("his1(t)",ll,UPPER,"t")}
response ’Integ22’ expression {Integral("his2(t)",ll,ul,"t")}
response ’Integ32’ expression {Integral("his3(t)",ll,ul,"t")}
response ’Integ33’ expression {Integral("(his1(t) + his2(t))/2",ll,ul,"t")}
response ’Integ34’ expression {Integral("his3(t)")}
response ’Integ35’ expression {Integral("his3(t)",ll)}
response ’Integ36’ expression {Integral("his3(t)",ll,ul)}
$
$ Cross-functional integrals
$
response ’Integ2’ expression {Integral("his1(t)",ll,ul,"his2(t)")}
response ’Integ3a’ expression {Integral("his1(t)",0,30,"his2(t)")}
response ’Integ3b’ expression {Integral("his1(t)",30,100,"his2(t)")}
response ’Integ4’ expression {Integ1 + Integ2}
response ’Integ5’ expression {Integral("sin(t) * his1(t) * his2(t)",ll,ul,"t")}
response ’Integ7’ expression {Integral("sin(t) * his1(t) * his2(t)")}
response ’Velocity1’ expression {Derivative(”Displacement(t)”,0.08)}
response ’Velocity2’ expression {Derivative(”Displacement(t)”)}
$
$ COMPOSITE FUNCTIONS
$
composites 1
composite ’Integ6’ {(Integ3a/(4*Maximum11) + Integ2/2)**.5}
$

APPENDIX D: MATHEMATICAL EXPRESSIONS

LS-OPT Version 3 395

$ OBJECTIVE FUNCTIONS
$
objectives 1
objective ’Integ6’
$
$ CONSTRAINT FUNCTIONS
$
constraints 1
constraint ’Integ1’
$
iterate 0
STOP

Example 2:

constant ’v0’ 15.65
$--
$ Extractions
$--
history ’engine_velocity’ "DynaASCII nodout X_VEL 73579 TIMESTEP 0.0 SAE 30"
history ’Apillar_velocity_1’ "DynaASCII nodout X_VEL 41195 TIMESTEP 0.0 SAE 30"
history ’Apillar_velocity_2’ "DynaASCII nodout X_VEL 17251 TIMESTEP 0.0 SAE 30"
history ’global_velocity’ "DynaASCII glstat X_VEL 0 TIMESTEP 0.0"
$--
$ Mathematical Expressions for dependent histories
$--
history ’Apillar_velocity_average’ {(Apillar_velocity_1 +
 Apillar_velocity_2)/2}
$
$ Find the time when the engine velocity = 0
$
response ’time_to_engine_zero’ expression {Lookup("engine_velocity(t)",0)}
$
$ Find the average velocity at time of engine velocity = 0
$
response ’vel_A_engine_zero’ expression {Apillar_velocity_average
 (time_to_engine_zero)}
$
$ Integrate the average A-pillar velocity up to zero engine velocity
$ Divide by the time to get the average
$
response ’PULSE_1’ expression {Integral
 ("Apillar_velocity_average(t)",
 0,
 time_to_engine_zero
)
 /time_to_engine_zero}
$
$ Find the time at which the global velocity is zero
$
response ’time_to_zero_velocity’ expression {Lookup("global_velocity(t)",0)}
$
$ Find the average A-pillar velocity where global velocity is zero
$
response ’velocity_final’ {Apillar_velocity_average(time_to_zero_velocity)}
response ’PULSE_2’ expression {Integral
 ("Apillar_velocity_average(t)",
 time_to_engine_zero,

APPENDIX D: MATHEMATICAL EXPRESSIONS

396 LS-OPT Version 3

 time_to_zero_velocity
)
 /(time_to_zero_velocity - time_to_engine_zero)}

APPENDIX D: MATHEMATICAL EXPRESSIONS

LS-OPT Version 3 397

 399

Appendix E

Simulated Annealing

The Simulated Annealing (SA) algorithm for global optimization can be viewed as an extension to local
stochastic optimization techniques. The basic idea is very simple. SA takes a (biased) random walk through
the space and aims to find a global optimum from among multiple local solutions. In trying to minimize a
function, instead of always going downhill, SA algorithm goes downhill most of the time. It means that the
SA process sometimes goes uphill. This allows simulated annealing to move consistently towards lower
function values, yet still 'jump' out of local minima and globally explore different states of the optimized
system. The SA algorithm was first formulated for various combinatorial problems, [33]. The approach was
later extended to continuous optimization problems. In [47] the simulated annealing algorithm was adopted
to search for optimal Latin hypercube designs.

The term 'simulated annealing' derives from the rough analogy of the way that the liquids freeze and
crystallize, or metals cool and anneal, starting at a high temperature, [33]. When the liquid is hot, the
molecules move freely, and very many changes of energy can occur. When the liquid is cooled, this thermal
mobility is partially lost. If the rate of cooling is sufficiently slow, the atoms are often able to line
themselves up and form a pure crystal, which is the state of minimum (most stable) energy for this physical
system. If a liquid metal is cooled quickly or 'quenched', it usually does not reach this state but rather ends
up in a polycrystalline or amorphous state having somewhat higher energy. So the essence of the whole
process is slow cooling.

Nature's minimization algorithm is based on the fact that a system in thermal equilibrium at temperature T
has its energy, E, probabilistically distributed among all different energy states as determined by the
Boltzmann distribution:

 Probability(E) ~ exp(-E / κBT). (F.1)

Hence, even at low temperature, there is a chance, albeit very small, of a system being in a high-energy
state. This slight probability of choosing a state that gives higher energy is what allows the physical system
to get out of local (i.e. amorphous) minima in favor of finding a better, more stable, orientation. The
quantity κB (Boltzmann's constant) is a constant of nature that relates temperature to energy.

In simulated annealing algorithm parlance, the objective function of the optimization problem is often called
'energy'. The optimization algorithm proceeds in small iterative steps. At each iteration, SA algorithm
randomly generates a candidate state and, through a random mechanism (controlled by a parameter called
temperature in view of the analogy with the physical process) decide whether to move to the candidate state
or to stay in the current one at the next iteration. More formally, a general SA algorithm can be described as
follows.

APPENDIX E: SIMULATED ANNEALING

400 LS-OPT Version 3

Step 0. Let x(0) ∈ X be a given starting state of the optimized system, E = E(x).
Start the sequence of observed states: X(0)={x(0)}.
Set the starting temperature T(0) to a high value: T(0) = Tmax, and initialize the counter of iterations to k = 0.

Step 1. Sample a point x' from the candidate distribution, D(X(k)), and set X(k+1) = X(k) U {x').
The sequence X(k+1) contains all the states observed up to iteration k.

Step 2. Sample a uniform random number ζ in [0,1] and set

 x(k+1) = x' if ζ ≤ A(x',x(k),T(k)) or (F.2)
 x(k+1) = x(k) otherwise.

Step 3. Apply the cooling schedule to the temperature, i.e. set T(k+1) = C(X(k+1), T(k)).

Step 4. Check a stopping criterion and if it fails set k := k+1 and go back to Step 1.

The distribution of the next candidate state, D, the acceptance function, A, the cooling schedule, C, and the
stopping criterion must be specified in order to define the SA algorithm. Appropriate choices are essential to
guarantee the efficiency of the algorithm. Many different definitions of the above entities have been given in
the existing literature about SA. These will be discussed in the next few paragraphs, trying to emphasize
some key ideas that have driven the choices of the researches in this field.

In the existing literature about SA algorithms very few acceptance functions have been employed. In most
cases the acceptance function is the so-called Metropolis function:

⎭
⎬
⎫

⎩
⎨
⎧ −′−

=′
T

xExETxxA))()((exp(,1min),,((F.4)

Another possibility is the so-called Barker criterion:

⎟
⎠
⎞

⎜
⎝
⎛ −′

+
=′

T
xExE

TxxA
))()(exp((1

1),,((F.5)

The theoretical motivation for such a restricted choice of acceptance functions can be found in [62]. It is
shown that under appropriate assumptions, many acceptance functions, which share some properties, are
equivalent to (F.4) or (F.5) after a monotonic transformation of the temperature T.

Due to the difficult nature of the problems solved by SA algorithms, it is hard, if not impossible, to define a
general stopping rule, which guarantees to stop when the global optimum has been detected or when there is
a sufficiently high probability of having detected it. Thus the stopping rules proposed in the literature about
SA all have a heuristic nature and are, in fact, more problem dependent than SA algorithm dependent. These

APPENDIX E: SIMULATED ANNEALING

LS-OPT Version 3 401

heuristics are usually based on the idea to stop the iterative algorithm when it does not make a noticeable
progress over a number of iterations.

The choice of the next candidate distribution and the cooling schedule for the temperature are typically the
most important (and strongly interrelated) issues in the definition of a SA algorithm. The next candidate
state, x', is usually selected randomly among all the neighbors of the current solution, x, with the same
probability for all neighbors. However, with a complicated neighbor structure, a non-uniformly random
selection might be appropriate. The choice of the size of the neighborhood typically follows the idea that
when the current function value is far from the global minimum, the algorithm should have more freedom,
i.e. larger 'step sizes' are allowed.

The basic idea of the cooling schedule is to start the algorithm off at high temperature and then gradually to
drop the temperature to zero. The primary goal is to quickly reach the so called effective temperature,
roughly defined as the temperature at which low function values are preferred but it is still possible to
explore different states of the optimized system, [7]. After that the simulated annealing algorithm lowers the
temperature by slow stages until the system 'freezes' and no further changes occur. A straightforward and
most popular strategy is to decrement T by a constant factor every νT iterations:

 TTT µ=: (F.6)

where µT is slightly greater than 1 (e.g. µT = 1.001).

The value of νT should be large enough, so that 'thermal equilibrium' is achieved before reducing the
temperature. A rule of thumb is to take νT proportional to the size of neighborhood of the current solution.
Often, the cooling schedule (F.6) also provides a condition for terminating SA iterations:

 minTT < (F.7)

Some of the convergence results for SA rely on the fact that the support of the next candidate distribution is
the whole feasible region (though in some cases the probability of sampling states far from the current one
decreases to 0 as the iteration counter increases). For these convergence results it is often only required that
the temperature decreases to 0, no matter at which rate. For some other convergence results the support of
the next candidate distribution is only a neighborhood of the current state, and to make the algorithm able to
climb the barriers separating the different local minima, it is required that the temperature decreases to 0
slowly enough.

It is clear that the selection of the initial temperature, Tmax, has a profound influence on the rate of
convergence of the SA algorithm. At temperatures much higher than the effective temperature, the
algorithm behaves very much like a random search, while at temperatures much lower than the effective
temperature it behaves like (an inefficient implementation of) a deterministic algorithm for local
optimization. Intuitively, the cooling schedule (F.6) should begin one order of magnitude higher than the
effective temperature and end one order of magnitude lower, [7].

It is difficult to give the initial temperature directly, because this value depends on the neighborhood
structure, the scale of the objective function, the initial solution, etc. In [33] a suitable initial temperature is
one that results in an average uphill move acceptance probability of about 0.8. This Tmax can be estimated by

APPENDIX E: SIMULATED ANNEALING

402 LS-OPT Version 3

conducting an initial search, in which all uphill moves are accepted and calculating the average objective
increase observed. In some other papers it is suggested that parameter Tmax is set to a value, which is larger
than the expected value of |E'-E| that is encountered from move to move. In [7] it is suggested to spend most
of the computational time in short sample runs with different Tmax in order to detect the effective
temperature. In practice, the optimal control of T may require physical insight and trial-and-error
experiments. According to [9], "choosing an annealing schedule for practical purposes is still something of a
black art".

Simulated annealing has proved surprisingly effective for a wide variety of hard optimization problems in
science and engineering. Many of the applications in our list of references attest to the power of the method.
This is not to imply that a serious implementation of simulated annealing to a difficult real world problem
will be easy. In the real-life conditions, the energy trajectory, i.e. the sequence of energies following each
move accepted, and the energy landscape itself can be terrifically complex. Note that state space, which
consists of wide areas with no energy change, and a few "deep, narrow valleys", or even worse, "golf-
holes", is not suited for simulated annealing, because in a "long, narrow valley" almost all random steps are
uphill. Choosing a proper stepping scheme is crucial for SA in these situations. However, experience has
shown that simulated annealing algorithms get more likely trapped in the largest basin, which is also often
the basin of attraction of the global minimum or of the deep local minimum. Anyway, the possibility, which
can always be employed with simulated annealing, is to adopt a multistart strategy, i.e. to perform many
different runs of the SA algorithm with different starting points.

Another potential drawback of using SA for hard optimization problems is that finding a good solution can
often take an unacceptably long time. While SA algorithms may detect quickly the region of the global
optimum, they often require many iterations to improve its approximation. For small and moderate
optimization problems, one may be able to construct effective procedures that provide similar results much
more quickly, especially in cases when most of the computing time is spent on calculations of values of the
objective function. But it should be noted that for the large-scale multidimensional problems an algorithm,
which always (or often) obtains a solution near the global optimum is valuable, since various local
deterministic optimization methods allow quick refinement of a nearly correct solution.

In summary, simulated annealing is a powerful method for global optimization in challenging real world
problems. Certainly, some "trial and error" experimentation is required for an effective implementation of
the algorithm. The energy (cost) function should employ some heuristic related to the problem at hand,
clearly reflecting how 'good' or 'bad' is a given solution. Random perturbations of the system state and
corresponding cost change calculations should be simple enough, so that SA algorithm can perform its
iterations very fast. The scalar parameters of the simulated annealing algorithm (Tmax, µT, νT, in particular)
have to be chosen carefully. If the parameters are chosen such that the optimization evolves too fast, the
solution converges directly to some, possibly good, solution depending on the initial state of the problem.

 403

Appendix F

Glossary

ANOVA. Analysis of variance. Used to perform variable screening by identifying insignificant variables.
Variable regression coefficients are ranked based on their significance as obtained through a partial F-test.
(See also variable screening).

Bias error. The total error – the difference between the exact and computed response - is composed of a
random and a bias component. The bias component is a systematic deviation between the chosen model
(approximation type) and the exact response of the structure (FEA analysis is usually considered to be the
exact response). Also known as the modeling error. (See also random error).

Binout. The name of the binary output file generated by LS-DYNA (Version 970 onwards).

Composite function. A function constructed by combining responses and design variables into a single
value. Symbolized by F.

Concurrent simulation. The running of simulation tasks in parallel without message passing between the
tasks.

Confidence interval. The interval in which a parameter may occur with a specified level of confidence.
Computed using Student’s t-test. Typically applied to accompany the significance of a variable in the form
of an error bar.

Constraint. An absolute limit on a response variable specified in terms of an upper or lower limit.

Constrained optimization. The mathematical optimization of a function subject to specified limits on other
functions.

Conventional Design. The procedure of using experience and/or intuition and/or ad hoc rules to improve a
design.

Crossplot. A curve obtained by using the two ordinate values at a coinciding abscissa obtained from two
separate functions. The two ordinate values are used as the abscissa and ordinate in the new crossplot. In
LS-OPT two separate time histories are typically used to construct a single crossplot.

Dependent. A function which is dependent on variables. Dependent variable.

 APPENDIX G: GLOSSARY

404 LS-OPT Version 3

Design of Experiments. See experimental design.

Design parameter. See design variable.

Design formula. A simple mathematical expression which gives the response of a design when the design
variables are substituted. See response surface.

Design space. A region in the n-dimensional space of the design variables (x1 through xn to which the
design is limited. The design space is specified by upper and lower bounds on the design variables.
Response variables can also be used to bound the design space.

Design surface. The response variable as a function of the design variables, used to construct the
formulation of a design problem. (See also response surface, design rule).

Design sensitivity. The gradient vector of the response. The derivatives of the response function in terms of
the design variables. df /dxi.

Design variable. An independent design parameter which is allowed to vary in order to change the design.
Symbolized by (xi or x (vector containing several design variables)).

Discipline. An area of analysis requiring a specific set of simulation tools, usually because of the unique
nature of the physics involved, e.g. structural dynamics or fluid dynamics. In the context of MDO, often
used interchangeably with solver.

DOE. Design of Experiments. See experimental design.

D-optimal. The state of an experimental design in which the determinant of the moment matrix XX T of
the least squares formulation is maximized.

DSA. Design sensitivity analysis.

Elliptic approximation. An approximation in which only the diagonal Hessian terms are used.

Experiment. Evaluation of a single design.

Experimental Design. The selection of designs to enable the construction of a design response surface.
Sometimes referred to as the Point Selection Scheme.

Feasible Design. A design which complies with the constraint bounds.

Function. A mathematical expression for a response variable in terms of design variables. Often used
interchangeably with “response”. Symbolized by f.

Functionally efficient. See Pareto optimal.

APPENDIX G: GLOSSARY

LS-OPT Version 3 405

Function evaluation. Using a solver to analyze a single design and produce a result. See Simulation.

Global variable. A variable of which the scope spans across all the design disciplines or solvers. Used in
the MDO context.
Global approximation. A design function which is representative of the entire design space.

Global Optimization. The mathematical procedure for finding the global optimum in the design space. E.g.
Genetic Algorithm, Particle Swarm, etc.

Gradient vector. A vector consisting of the derivatives of a function f in terms of a number of variables x1
to xn. s = [df /dxi]. See Design Sensitivity.

History. Response history containing two columns of (usually time) data generated by a simulation.

Importance. See Weight.

Infeasible Design. A design which does not comply with the constraint functions. An entire design space or
region of interest can sometimes be infeasible.

Iteration. A cycle involving an experimental design, function evaluations of the designs, approximation and
optimization of the approximate problem.

Kriging. A Metamodeling technique using Bayesian regression. (see e.g. [5,23]).

Latin Hypercube Sampling. The use of a constrained random experimental design as a point selection
scheme for response approximation.

Least Squares Approximation. The determination of the coefficients in a mathematical expression so that
it approximates certain experimental results by the minimization of the sum of the squares of the
approximation errors. Used to determine response surfaces as well as calibrating analysis models.

Local Approximation. See Gradient vector.

Local variable. A variable of which the scope is limited to a particular discipline or disciplines. Used in the
MDO context.

Material identification. See parameter identification.

MDO. Multidisciplinary design optimization.

Metamodeling. The construction of surrogate design models such as polynomial response surfaces,
Artificial Neural Networks or Kriging surfaces from simulations at a set of design points.

Min-Max optimization problem. An optimization problem in which the maximum value considering
several responses or functions is minimized.

 APPENDIX G: GLOSSARY

406 LS-OPT Version 3

Model calibration. The optimal adjustment of parameters in a numerical model to simulate the physical
model as closely as possible.

Modeling error. See bias error.
Multidisciplinary design optimization (MDO). The inclusion of multiple disciplines in the design
optimization process. In general, only some design variables need to be shared between the disciplines to
provide limited coupling in the optimization of a multidisciplinary target or objective.

Multi-objective. An objective function which is constituted of more than one objective. Symbolized by F.

Multi-criteria. Refers to optimization problems in which several criteria are considered.

MP. Mathematical Programming. Mathematical optimization.

MSE. Mean Squared Error. Used for system identification.

Neural network approximation. The use of trained feed-forward neural networks to perform non-linear
regression, thereby constructing a non-linear response surface.

Numerical sensitivity. A derivative of a function computed by using finite differences.

Noise. See random error.

Objective. A function of the design variables that the designer wishes to minimize or maximize. If there
exists more than one objective, the objectives have to be combined mathematically into a single objective.
Symbolized by Φ .

Optimal design. The methodology of using mathematical optimization tools to improve a design iteratively
with the objective of finding the ‘best’ design in terms of predetermined criteria.

Point selection scheme. Same as experimental design.

Parameter identification. See System identification.

Pareto optimal. A multi-objective design is Pareto-optimal if none of the objectives can be improved
without at least one objective being affected adversely. Also referred to as functionally efficient.

Preference function. A function of objectives used to combine several objectives into a single one suitable
for the standard MP formulation.

Preprocessor. A graphical tool used to prepare the input for a solver.

Random error. The total error – the difference between the exact and computed response - is composed of
a random and a bias component. The random component is, as the name implies, a random deviation from

APPENDIX G: GLOSSARY

LS-OPT Version 3 407

the nominal value of the exact response, often assumed to be normally distributed around the nominal value.
(See also bias error).

Reasonable design space. A subregion of the design space within the region of interest. It is bounded by
lower and upper bounds of the response values.

Region of interest. A sub-region of the design space. Usually defined by a mid-point design and a range of
each design variable. Usually dynamic.

Reliability-based design optimization (RBDO). The performing of design optimization while considering
reliability-based failure criteria in the constraints of the design optimization formulation. This implies the
inclusion of random variables in the generation of responses and then extracting the standard deviation of
the responses about their mean values due to the random variance and including the standard deviation in
the constraint(s) calculation.

Residual. The difference between the computed response (using simulation) and the predicted response
(using a response surface).

Response quantity. See response.

Response Surface. A mathematical expression which relates the response variables to the design
parameters. Typically computed using statistical methods.

Response. A numerical indicator of the performance of the design. A function of the design variables
approximated using a metamodel which can be used for optimization. Symbolized by f. Collected over all
design iterations for plotting. (See also history).

Result. A numerical indicator of the performance of the design. A result is not associated with a metamodel,
but is typically used for intermediate calculations in metamodel-based analysis.

RSM. Response Surface Methodology.

Run directory. The directory in which the simulations are done. Two levels below the Work directory. The
run directory contains status files, the design coordinate file XPoint and all the simulation output. The
logxxxx file which contains a log of the file transfer, the output log of the solver and a log of the result
extraction also resides in this directory.

Saturated design. An experimental design in which the number of points equals the number of unknown
coefficients of the approximation. For a saturated design no test can be made for the lack of fit.

Scale factor. A factor which is specified as a divisor of a response in order to normalize the response.

Sensitivity. See Design sensitivity.

 APPENDIX G: GLOSSARY

408 LS-OPT Version 3

Sequential Random Search. An iterative method in which the best design is selected from all the
simulation results of each iteration. A Monte Carlo based point selection scheme is typically applied to
generate a set of design points.

Slack constraint. A constraint with a slack variable. The violation of this constraint can be minimized.

Slack variable. The variable which is minimized to find a feasible solution to an optimization problem, e.g.
e in: min e subject to .0;)(≥≤ eexg j See Strictness.

Simulation. The analysis of a physical process or entity in order to compute useful responses. See Function
evaluation.

Solver. A computational tool used to analyze a structure or fluid using a mathematical model. See
Discipline.

Solver directory. A subdirectory of the work directory that bears the name of a solver and where database
files resulting from extraction and the optimization process are stored.

Space Filling Experimental Design. A class of experimental designs that employ an algorithm to
maximize the minimum distance between any two points.

Space Mapping. A technique which uses a fine design model to improve a coarse surrogate model. The
hope is, that if the misalignment between the coarse and fine models is not too large, only a few fine model
simulations will be required to significantly improve the coarse model. The coarse model can be a response
surface.

Stochastic. Involving or containing random variables. Involving probability or chance.

Stopping Criterion. A mathematical criterion for terminating an iterative procedure.

Strictness. A number between 0 and 1 which signifies the strictness with which a design constraint must be
treated. A zero value implies that the constraint may be violated. If a feasible design is possible all
constraints will be satisfied. Used in the design formulation to minimize constraint violations. See Slack
variable.

Subproblem. The approximate design subproblem constructed using response surfaces. It is solved to find
an approximate optimum.

Subregion. See region of interest.

Successive Approximation Method. An iterative method using the successive solution of approximate
subproblems.

System identification. A procedure in which a numerical model is calibrated by optimizing selected
parameters in order to minimize the residual error with respect to certain targeted responses. The targeted
responses are usually derived from experimental results.

Target. A desired value for a response. The optimizer will not use this value as a rigid constraint. Instead, it
will try to get as close as possible to the specified value.

APPENDIX G: GLOSSARY

LS-OPT Version 3 409

Template. An input file in which some of the data has been replaced by variable names, e.g.
<<Radius>>. A template may also contain the LS-DYNA *PARAMETER keyword with corresponding
@-parameters. LS-OPT will recognize the parameters defined in the template and display them in the GUI.

Trade-off curve. A curve constructed using Pareto optimal designs.

Transformed variables. Variables which are transformed (mapped) to a different n-space using a
functional relationship. The experimental design and optimization are performed in this space.

Variable screening. Method to remove insignificant variables from the design optimization process based
on a ranking of regression coefficients using analysis of variance (ANOVA). (See also ANOVA).

Weight. A measure of importance of a response function or objective. Typically varies between 0 and 1.

Work directory. The directory is which the input files reside and where output is produced. See also Run
directory.

 411

Appendix G

LS-OPT Commands: Quick Reference Manual

Note:

All commands are case insensitive.
The commands which are definitions are given in boldface.
Page reference numbers of the syntax definition are given in the last column.
Command phrases in { } are optional.

string: Extraction command, solver/preprocessor command or file name in double quotes
name: Name in single quotes
expression: Mathematical expression in curly brackets

H.1 Problem description

Constants number The number of constants in the problem 85
Variables number The number of variables in the problem 85
Dependents number The number of dependent variables 85
Histories number The number of histories 85
Responses number The number of responses 85
Composites number The number of composite functions 85
Objectives number The number of objectives 85
Constraints number The number of constraints 85
Solvers number The number of solvers 85
Distribution number The number of probabilistic distributions 85

H.2 Parameter definition

Constant name value constant 120

 APPENDIX H: QUICK REFERENCE MANUAL

412 LS-OPT Version 3

H.3 Probabilistic distributions

Distribution name type values 123

type values
NORMAL mu sigma
UNIFORM lower upper
USER_DEFINED_PDF filename
USER_DEFINED_CDF filename
LOGNORMAL mu sigma
WEIBULL scale shape
BETA lower upper shape1 shape2

H.4 Design space and region of interest

Variable name value Starting value for design variable 118
Range name value Range of variable to define region of interest 118
Lower bound variable name value Lower bound of Variable 118
Upper bound variable name value Upper bound of Variable 118
Dependent name expression Dependent variable 120
Variable name max Saddle direction flag 121
Constant name value Value of constant 120
Local name Variable is not global 119

H.5 Multidisciplinary or multi-case environment

Solver package_name name software package identifier 107
Solver input file name solver input file name 107
Solver command string solver command line 107
Solver append file string name of file to be appended to input 107

Prepro name software package identifier 111
Prepro command string pre-processor command file 111
Prepro input file name pre-processor input file 111
Prepro output file name pre-processor output file name for Templex 113

Queue queue type queue for workload scheduling 96

Interval value time interval for progress reports 107
Concurrent jobs number number of concurrent jobs 95
Solver variable Flag for solver variable 119

APPENDIX H: QUICK REFERENCE MANUAL

LS-OPT Version 3 413

H.6 Package identifiers

ingrid LS-INGRID 111
truegrid TrueGrid 112
hypermorph HyperMorph 114
dyna LS-DYNA (versions prior to 960) 107
dyna960 LS-DYNA Version 960/970 107
own user-defined 110
depmorpher DEP-Morpher 115

H.7 Queuer identifiers

lsf Load Sharing Facility
loadleveler IBM LoadLeveler
pbs PBS
nqe NQE
aqs AQS

 APPENDIX H: QUICK REFERENCE MANUAL

414 LS-OPT Version 3

H.8 Metamodel

Solver order [linear|elliptic|
interaction|quadratic|FF|kriging]

Type of approximating function 145

Solver FF_committee size number Size of a FFNN committee 143
Solver FF_committee discard number Discard 2*number committee members 143
Solver FF_committee use [MEAN|MEDIAN] Centering procedure for NN evaluation 143

H.9 Point selection

Solver experimental design design Experimental design type 145

Solver basis experiment design Basis experiment for D-optimal design
points selection scheme 145

Solver number basis experiments number Number of experimental points 145
Solver number experiment number Number of experimental points 145
Solver update doe Updating of experimental points 152
Solver experiment duplicate name Duplicate previously defined experiment 149

Solver alternate experiment 1 Alternative experimental design required
for first iteration 154

Solver alternate order[linear] Type of alternative approximating
function 154

Solver alternate experimental design design Alternative experimental design type 154

Solver alternate basis experiment design Alternative basis experiment for D-
optimal design points selection scheme 154

Solver alternate number basis experiments
number

Alternative number of experimental
points 154

Solver alternate number experiment number Alternative number of experimental
points 154

Solver experiment augment iteration number Change number of points starting with
iteration 155

H.10 Point selection types

Experiment Description Identifier Default approximation
Linear Koshal lin_koshal linear
Quadratic Koshal quad_koshal quadratic
Central Composite composite quadratic
Latin Hypercube latin_hypercube linear
Monte Carlo monte_carlo linear
Plan plan linear
User-defined user linear
D-optimal dopt linear
Space filling space_filling -

APPENDIX H: QUICK REFERENCE MANUAL

LS-OPT Version 3 415

Duplicate duplicate -
Factorial Designs
2n 2toK Linear
3n 3toK quadratic
M M M
11n 11toK quadratic

H.11 Database recovery

Solver recover dyna[d3plot|d3hsp|
binout|d3eigv]

Recover DYNA database files of a
remote job for given prefix 100

Solver recover file file_wildcard Recover database file(s) of a remote job 101

H.12 Design problem formulation

History name string Defines history function 158
History name expression Defines history function 158
History name file string History from file 158
Historysize number Defines maximum number of data points in history function 161
Result name string Defines a result 180
Result name expression Defines a result 180
Matrix name expression Defines a matrix 180
Response name string Defines response function 162
Response name expression Defines response function 162
Response
 [linear|elliptic|quadratic|FF|kriging] Type of approximation 186

Composite name type [weighted|targeted] Type of composite function 185
Composite name expression Defines composite function 186
Composite name response name value* { scale factor } Component definition 186
Composite name variable name value* { scale factor } Component definition 186
Weight value Weight (only targeted) 187

Objective name { weight } Objective definition 194
Constraint name Constraint definition 195
[Lower|upper] bound constraint name value Bound on constraint 196
Strict / slack Strictness environment 197
Move / stay / move start Reasonable space 150
Constraint name scale [lower|upper] bound factor Internal scale factor 199

Maximize Maximize objective 194

* value = target value for type = targeted, weight for type = weighted

 APPENDIX H: QUICK REFERENCE MANUAL

416 LS-OPT Version 3

H.13 LS-DYNA result interfaces

DynaMass p1 p2 p3 ... pn mass_attribute Mass 172
DynaThick [THICKNESS|REDUCTION] p1 p2 ... pm
[MIN|MAX|AVE]

Shell
thickness 175

DynaFLD p1 p2 ... pn intercept neg_slope pos_slope FLD 177
DynaFLDg [LOWER|CENTER|UPPER] p1 p2 ... pn
load_curve_id General FLD 177

DynaPStress [S1|S2|S3|MEAN] p1 p2 ... pn
[MIN|MAX|AVE]

Principal
stress 178

DynaFreq mode_original [FREQ|NUMBER|GENMASS] Modal data 173
BinoutHistory –res_type res_type {-sub sub} –cmp
component {-invariant invariant –id id –pos position
–side side –filter filter_type –filter_freq
filter_freq –units units –ave_points ave_points -
start_time -start_time start_time –end_time
end_time}

Binout 166

BinoutResponse {history_options} –select
MAX|MIN|AVE|TIME Binout 167

D3PlotHistory –res_type res_type {-sub sub} –cmp
component {–id id –pos position –pids part_ids –loc
ELEMENT|NODE –select selection –coord x y z –tref
ref_state -setid setid}{–start_time start_time –
end_time end_time }

d3plot 169

D3PlotResponse {history_options} –select selection d3plot 171

H.14 Solution tasks

Iterate n Iterate over n successive approximations 201
Analyze Monte Carlo Monte Carlo evaluation 135
Analyze Metamodel Monte Carlo Monte Carlo evaluation with metamodel 136

H.15 LS-DYNA Results Statistics

analyze dynastat {history name} Compute LS-DYNA results statistics 236
dynastat order approx_order Use metamodels; order of metamodel 232
dynstat outlier ON/OFF Report metamodel outliers 232
dynastat max vector ON/OFF Displacement magnitude formulation 244

APPENDIX H: QUICK REFERENCE MANUAL

LS-OPT Version 3 417

dynastat component vector ON/OFF Displacement magnitude formulation 244
dynastat correlation response name Correlation 238
dynstat solver name Solver 236
dynastat iteration number Iteration 236

H.16 Intrinsic functions for mathematical expressions

Note: Trigonometric functions use and return degrees, not radians.

int(a) integer
nint(a) nearest integer
abs(a) absolute value
mod(a,b) remainder of a/b
sign(a,b) transfer of sign from b to |a|
max(a,b) maximum of a and b
min(a,b) minimum of a and b
sqrt(a) square root
exp(a) ea
pow(a,b) ab
log(a) natural logarithm
log10(a) base 10 logarithm
sin(a) sine
cos(a) cosine
tan(a) tangent
asin(a) arc sine
acos(a) arc cosine
atan(a) arc tangent
atan2(a,b) arc tangent of a/b
sinh(a) hyperbolic sine
cosh(a) hyperbolic cosine
tanh(a) hyperbolic tangent
asinh(a) arc hyperbolic sine
acosh(a) arc hyperbolic cosine
atanh(a) arc hyperbolic tangent
sec(a) secant
csc(a) cosecant
ctn(a) Cotangent

3×3 Matrix functions:

 APPENDIX H: QUICK REFERENCE MANUAL

418 LS-OPT Version 3

inv(A) Inverse of matrix A
tr(A) Transpose of matrix A
rx(angle) Rotation about x-axis (angle in rad)
ry(angle) Rotation about y-axis (angle in rad)
rz(angle) Rotation about z-axis (angle in rad)

H.17 Special functions for mathematical expressions

Expression Symbols Type
Integral(expression[,t_lower,t_upper,variable]) ∫

b

a
tdgtf)()(Resp.

Derivative(expression[,T_constant]) Tttf =∆∆ |/ ~ Tttf =|d/d Resp.

Min(expression[,t_lower,t_upper]))]([minmin tff
t

= Resp.

Max(expression[,t_lower,t_upper]))]([maxmax tff
t

= Resp.

Initial(expression) First function value
on record

Resp.

Final(expression) Last function value
on record

Resp.

Lookup(expression,value) Inverse function
t(f = F)

Resp.

LookupMin(expression[,t_lower,t_upper]) Inverse function
t(f = fmin)

Resp.

LookupMax(expression[,t_lower,t_upper]) Inverse function
t(f = fmax)

Resp.

Crossplot(expr_f,expr_g[,numpts,t_lower,t_upper]) Crossplot g(t) vs. f(t) History
MeanSqErr(target_G,history_f[,numpts,z_low,z_up,
 wgt_typ,scl_typ,wgt_val,scl_val,
 wgt_curve,scl_curve])

2

1

)(1 ∑
=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −P

p p

pp
p s

Gf
W

P
x Comp.

Matrix3x3Init(x1,y1,z1, x2,y2,z2, x3,y3,z3) Initialize 3×3 matrix Matrix
Rotate(x1,y1,z1, x2,y2,z2, x3,y3,z3) Rotation matrix

defined by 3 points.
Matrix

H.18 Selecting an optimization method

Optimization method srsm Successive Response Surface Method (SRSM) 225
Optimization method randomsearch Sequential Random Search (SRS) 225

APPENDIX H: QUICK REFERENCE MANUAL

LS-OPT Version 3 419

H.19 Setting parameters for optimization algorithm

iterate param identifier value Define parameters in LFOPC 226
iterate param rangelimit variable value Define minimum range of variable in SRSM 227

	Contents
	Preface to Version 1
	Preface to Version 2
	Preface to Version 3
	Introduction
	THEORETICAL MANUAL

	Optimization Methodology
	Introduction
	Theory of Optimization
	Gradient Computation and the Solution of Optimization Proble
	Normalization of constraints and variables
	Response Surface Methodology
	Approximating the response
	Factors governing the accuracy of the response surface
	Advantages of the method
	Other types of response surfaces

	Experimental design
	Factorial design
	Koshal design
	First order model
	Second order model

	Central Composite design
	D-optimal design
	Latin Hypercube Sampling (LHS)
	Maximin
	Centered L2-discrepancy

	Space-filling designs
	Discussion of algorithms

	Random number generator

	Reasonable experimental designs*
	Model adequacy checking
	Residual sum of squares
	RMS error
	Maximum residual
	Prediction error
	PRESS residuals
	The coefficient of multiple determination R2
	R2 for Prediction
	Iterative design and prediction accuracy

	ANOVA
	The confidence interval of the regression coefficients
	The significance of a regression coefficient bj

	Metamodeling techniques
	Neural network approximations*
	Model adequacy checking
	Feed-forward neural networks
	Variability of Feedforward Neural Networks

	Kriging*
	Concluding remarks: which metamodel?

	Core optimization algorithm (LFOPC)
	Successive response surface method (SRSM)
	Sequential random search (SRS)
	Discrete optimization
	Discrete variables
	Discrete optimization
	Mixed-discrete optimization
	Discrete optimization algorithm: genetic algorithm
	Objective function for discrete optimization
	Sequential strategy

	Summary of the optimization process
	Convergence to an optimal point
	Design exploration

	Applications of Optimization
	Multicriteria Design Optimization
	Euclidean Distance Function
	Maximum distance

	Multidisciplinary Design Optimization
	System Identification using nonlinear regression
	Nonlinear regression: minimizing Mean Squared Error (MSE)
	Minimizing the maximum residual (Min-Max)
	Nonlinear regression: confidence intervals

	Worst-case design
	Reliability-based design optimization (RBDO)*

	Probabilistic Fundamentals
	Introduction
	Probabilistic variables
	Variable linking

	Basic computations
	Mean, variance, standard deviation, and coefficient of varia
	Correlation of responses
	Confidence intervals

	Probabilistic methods
	Monte Carlo analysis
	Monte Carlo analysis using metamodels
	First-Order Second-Moment Method (FOSM)
	The most probable point
	FORM (First Order Reliability Method)
	Design sensitivity of the most probable point

	Required number of simulations
	Overview
	Background
	Competing role of variance and bias
	Confidence interval on the mean
	Confidence interval on a new evaluation
	Confidence interval on the random deviation (σ2)
	Probability of observing a specific failure mode

	Outlier analysis
	Stochastic contribution analysis
	Linear Estimation
	Second and higher order estimation

	Robust parameter design
	Fundamentals
	Methodology
	Experimental Design
	USER’S MANUAL

	Design Optimization Process
	LS-OPT Features
	A modus operandi for design using response surfaces
	Preparation for design
	A step-by-step design optimization procedure

	Recommended test procedure
	Pitfalls in design optimization
	Advanced methods for design optimization
	Neural Nets and Kriging*

	Graphical User Interface and Command Language
	LS-OPT user interface (LS-OPTui)
	Problem description and author name
	Command Language
	Names
	Command lines
	File names
	Command file structure
	Environments
	Expressions

	Program Execution
	Work directory
	Execution commands
	Directory structure
	Job Monitoring
	Result extraction
	Restarting
	Output files
	Using a table of existing results to conduct an analysis
	Log files and status files
	Managing disk space during run time
	Error termination of a solver run
	Parallel processing
	Using an external queuing or job scheduling system
	Introduction
	Installation
	Installation for all remote machines running LS-DYNA
	Installation on the local machine

	Example
	Mechanics of the queuing process
	Environment variables
	Troubleshooting
	User-defined queuing systems
	Database recovery
	LS-DYNA:
	User-defined :

	Interfacing to a solver or preprocessor
	Labeling design variables in a solver and preprocessor
	The LS-OPT Parameter Format

	Interfacing to a Solver
	Interfacing with LS-DYNA
	The *PARAMETER format
	Check of the *DATABASE cards
	Altering the d3plot databases

	Interfacing with LS-DYNA/MPP
	Interfacing with a user-defined solver

	Preprocessors
	LS-INGRID
	TrueGrid
	AutoDV
	HyperMorph
	DEP-Morpher
	User-defined preprocessor

	Design Variables, Constants, and Dependents
	Selection of design variables
	Definition of upper and lower bounds of the design space
	Size and location of region of interest (range)
	Local variables
	Discrete Variables
	Assigning variable to solver
	Constants
	Dependent Variables
	Worst-case design

	Probabilistic Modeling and Monte Carlo Simulation
	Probabilistic problem modeling
	Probabilistic distributions
	Beta distribution
	Binomial distribution
	Lognormal distribution
	Normal distribution
	Uniform distribution
	User defined distribution
	Weibull distribution

	Probabilistic variables
	Setting the nominal value of a probabilistic variable
	Bounds on probabilistic variable values
	Noise variable subregion size

	Probabilistic simulation
	Monte Carlo analysis
	Monte Carlo analysis using a metamodel
	FORM (First Order Reliability Method) analysis
	Accuracy of metamodel based Monte Carlo
	Histograms of responses
	Adding the noise component to metamodel Monte Carlo computat

	Stochastic Contribution Analysis (DSA)
	Covariance
	Robust Design

	Metamodels and Point Selection
	Metamodel definition
	Response Surface Methodology
	Neural Networks and Kriging *
	Variability of Neural Networks

	Point Selection Schemes
	Overview
	D-Optimal point selection
	Latin Hypercube Sampling
	Space filling
	User-defined point selection

	Sampling at discrete points
	Duplicating an experimental design
	Augmentation of an existing design
	Specifying an irregular design space*
	Automatic updating of an experimental design
	Using design sensitivities for optimization
	Analytical sensitivities
	Numerical sensitivities

	Alternative point selection
	Changing the number of points on restart*
	Repeatability of point selection
	Remarks: Point selection

	History and Response Results
	Defining a response history (vector)
	Crossplot history
	History files

	Defining a response (scalar)
	Specifying the metamodel type
	Extracting history and response quantities: LS-DYNA
	LS-DYNA Binout results
	Binout histories
	Averaging, filtering, and slicing Binout histories

	Binout responses
	Binout injury criteria

	Translating ASCII output commands to Binout commands
	LS-DYNA D3Plot results
	D3Plot histories
	Slicing D3Plot histories
	D3Plot FLD results

	D3Plot responses

	Mass
	Frequency of given modal shape number
	Extracting metal forming response quantities: LS-DYNA
	Thickness and thickness reduction
	FLD constraint
	Bilinear FLD constraint
	General FLD constraint

	Principal stress

	Userdefined interface for extracting results
	Responses without metamodels
	Matrix operations
	Initializing a matrix
	Creating a rotation matrix using 3 specified points

	Composite Functions
	Introduction
	Composite vs. response expressions

	Expression composite
	General expressions
	Special expressions

	Standard composite
	Targeted composite (square root of MSE)
	Mean Squared Error composite
	Weighted composite

	Defining the composite function
	Assigning design variable or response components to the com
	Mean Squared Error

	Objectives and Constraints
	Formulation
	Defining an objective function
	Defining a constraint
	Bounds on the constraint functions
	Minimizing the maximum response or violation*
	Internal scaling of constraints

	Running the Design Task
	Optimization
	Number of optimization iterations
	Optimization termination criteria

	Probabilistic Evaluation
	Restarting
	Job concurrency
	Job distribution
	Job and analysis monitoring
	Repair or modification of an existing job
	Saving/compressing the LS-OPT database after completing a ru

	Viewing Results
	Metamodel
	Setup
	Ranges
	Points
	Point plotting options
	Point status
	Predicting a value

	Fringe plot options for neural nets

	Metamodel accuracy
	Optimization history
	Trade-off and anthill plots
	Variable screening
	Histograms
	Stochastic Contribution
	Covariance and Correlation
	Plot generation

	Applications of Optimization
	Multidisciplinary Design Optimization (MDO)
	Command file

	Worst-case design
	Reliability-based design optimization (RBDO)*

	Optimization Algorithm Selection and Settings
	Selecting an optimization algorithm
	Subdomain reduction
	Setting the subdomain parameters
	Changing the behavior of the subdomain
	Resetting the subdomain range
	Freezing the subdomain range

	Setting parameters in the LFOPC optimization algorithm

	LS-DYNA Results Statistics
	Monte Carlo
	Metamodels and residuals
	Stochastic contribution of a variable (Design sensitivity an
	Safety margin
	Monte Carlo and metamodel analysis commands
	Correlation
	Visualization in LS-PREPOST
	Viewing LS-OPT histories
	Bifurcation investigations
	Automatic detection
	Manual detection

	Displacement magnitude issues*
	EXAMPLES

	Example Problems
	Two-bar truss (2 variables)
	Description of problem
	A first approximation using linear response surfaces
	Updating the approximation to second order
	Reducing the region of interest for further refinement
	Conducting a trade-off study
	Automating the design process

	Small car crash (2 variables)
	Introduction
	Design criteria and design variables
	Design formulation
	Modeling
	First linear iteration
	First quadratic iteration
	Automated run
	Trade-off using neural network approximation*
	Mixed-discrete optimization
	RBDO (Reliability-based design optimization) using FOSM (Fir

	Impact of a cylinder (2 variables)
	Problem statement
	A first approximation
	Refining the design model using a second iteration
	Third iteration
	Response filtering: using the peak force as a constraint

	Sheet-metal forming (3 variables)
	Problem statement
	First Iteration
	Automated design

	System identification (elastoplastic material) (2 variables)
	Problem statement
	Mean Squared Error (MSE) formulation
	Maximum residual formulation

	Results
	Mean Squared Error (MSE) formulation
	Maximum residual formulation

	Small car crash and NVH (MDO) (5 variables)
	Parameterization and Variable screening
	MDO with D-optimal experimental design and SRSM
	Sequential random search

	Large car crash and NVH (MDO) (7 variables)
	Modeling
	Formulation of optimization problem
	Implementation in LS-OPT
	Simulation results
	Optimization history results
	Comparison of optimum designs
	Convergence and computational cost

	Knee impact with variable screening (11 variables)
	Problem statement
	Definition of optimization problem
	Implementation
	Variable screening
	Optimization with reduced variables

	Optimization with analytical design sensitivities
	Probabilistic Analysis
	Overview
	Problem description
	Monte Carlo evaluation
	Monte Carlo using metamodel
	Bifurcation analysis

	Bifurcation/Outlier Analysis
	Overview
	Problem description
	Monte Carlo evaluation
	Automatic identification of buckling modes
	Manual identification of buckling modes

	Robust Parameter Design
	Bibliography
	Appendix A
	LS-DYNA D3Plot Result Components
	Appendix B
	LS-DYNA Binout Result Components
	Appendix C
	Database files
	Design flow
	Database file formats

	Appendix D
	Mathematical Expressions
	Syntax rules
	Intrinsic functions
	Special functions
	Reserved variable names
	Constants associated with histories
	Generic expressions
	Examples illustrating syntax of expressions

	Appendix E
	Simulated Annealing
	Appendix F
	Glossary
	Appendix G
	LS-OPT Commands: Quick Reference Manual
	Problem description
	Parameter definition
	Probabilistic distributions
	Design space and region of interest
	Multidisciplinary or multi-case environment
	Package identifiers
	Queuer identifiers
	Metamodel
	Point selection
	Point selection types
	Database recovery
	Design problem formulation
	LS-DYNA result interfaces
	Solution tasks
	LS-DYNA Results Statistics
	Intrinsic functions for mathematical expressions
	Special functions for mathematical expressions
	Selecting an optimization method
	Setting parameters for optimization algorithm

