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PREFACE TO VERSION 1 
LS-OPT originated in 1995 from research done within the Department of Mechanical Engineering, 
University of Pretoria, South Africa. The original development was done in collaboration with colleagues in 
the Department of Aerospace Engineering, Mechanics and Engineering Science at the University of Florida 
in Gainesville. 

 

Much of the later development at LSTC was influenced by industrial partners, particularly in the automotive 
industry. Thanks are due to these partners for their cooperation and also for providing access to high-end 
computing hardware. 

 

At LSTC, the author wishes to give special thanks to colleague and co-developer Dr. Trent Eggleston. 
Thanks are due to Mr. Mike Burger for setting up the examples. 

 

Nielen Stander 

Livermore, CA 

August, 1999 

 

PREFACE TO VERSION 2 
Version 2 of LS-OPT evolved from Version 1 and differs in many significant regards. These can be 
summarized as follows: 

 

1. The addition of a mathematical library of expressions for composite functions. 
2. The addition of variable screening through the analysis of variance. 
3. The expansion of the multidisciplinary design optimization capability of LS-OPT. 
4. The expansion of the set of point selection schemes available to the user. 
5. The interface to the LS-DYNA binary database. 
6. Additional features to facilitate the distribution of simulation runs on a network. 
7. The addition of Neural Nets and Kriging as metamodeling techniques. 
8. Probabilistic modeling and Monte Carlo simulation. A sequential search method. 

 

As in the past, these developments have been influenced by industrial partners, particularly in the 
automotive industry. Several developments were also contributed by Nely Fedorova and Serge Terekhoff of 
SFTI. Invaluable research contributions have been made by Professor Larsgunnar Nilsson and his group in 
the Mechanical Engineering Department at Linköping University, Sweden and by Professor Ken Craig’s 
group in the Department of Mechanical Engineering at the University of Pretoria, South Africa. The authors 
also wish to give special thanks to Mike Burger at LSTC for setting up further examples for Version 2.  
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Nielen Stander, Ken Craig, Trent Eggleston and Willem Roux 

Livermore, CA 

January, 2003 
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PREFACE TO VERSION 3 
The development of LS-OPT has continued with an emphasis on the integration with LS-DYNA and LS-
PREPOST and differs from the previous version in the following significant regards: 

 

1. LS-OPT is now available for Microsoft Windows. 
2. Commands have been added to simplify parameter identification using continuous curves of 

measured data. 
3. Stochastic fields have been added to LS-DYNA (Version 971) to provide the capability of modeling 

geometric and shell thickness variability. 
4. Extended visualization of statistical quantities based on multiple runs were implemented by further 

integrating LS-PREPOST. 
5. An internal d3plot interface was developed. 
6. Reliability-Based Design Optimization (RBDO) is now possible using the probability of failure in 

the design constraints. 
7. Neural network committees were introduced as a means to quantify and generalize response 

variability. 
8. Mixed discrete-continuous optimization is now possible. 
9. Parameter identification is enhanced by providing the necessary graphical pre- and postprocessing 

features. Confidence intervals are introduced to quantify the uncertainty of the optimal parameters. 
10. The importation of user-defined sampling schemes has been refined. 
11. Matrix operations have been introduced. 
12. Data extraction can be done by specifying a coordinate (as an alternative to a node, element or part) 

to identify the spatial location. The coordinate can be referred to a selected state. 
13. A simple feature is provided to gather and compress the database for portability. 
14. A utility is provide to both reduce the d3plot file sizes by deleting results and to transform the d3plot 

results to a moving coordinate system. 
15. Checking of LS-DYNA keyword files is introduced as a means to avoid common output request 

problems. 
16. Statistical distributions can be plotted in the distribution panel in the GUI. 
17. A feature is introduced to retry aborted runs on queuing systems. 
18. 3-Dimensional point plotting of results is introduced as an enhancement of metamodel plotting. 
19. Radial basis function networks as surrogate models. 
20. Multi-objective optimization for converging to the Pareto optimal front (direct & metamodel-based). 
21. Robust parameter (Taguchi) design is supported. The variation of a response can be used as an 

objective or a constraint in the optimization process. 
22. Mapping of results to the FE mesh of the base design: the results are considered at fixed coordinates. 

These capabilities allow the viewing of metalforming robustness measures in LS-PREPOST. 
23. The ANSA morpher is supported as a preprocessor. 
24. The truncated normal distribution is supported. 
25. Extra input files can be provided for variable parsing. 
26. A library-based user-defined metamodel is supported. 
27. User-defined analysis results can be imported. 
28. PRESS predictions can be plotted as a function of the computed values. 
29. The DynaStats panel has been redesigned completely (Version 3.4) 
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30. Strategies for metamodel-based optimization are provided as GUI options 
31. An algorithm panel has been added for setting optimization algorithm parameters. 
32. User-defined sampling points can be evaluated using an existing metamodel. 
33. The Adaptive Simulated Annealing algorithm has been added as a core optimization solver. Hybrid 

algorithms such as the Hybrid SA and Hybrid GA have also been added. 
34. Kriging has been updated and accelerated. 
35. Enhancements were made to the Accuracy selection in the viewer by allowing color-coded point 

attributes such as feasibility and iteration number. 
36. The Tradeoff selection has also been enhanced by converting it to a 3-D application with color 

coding for the 4th dimension as well as color status of points for feasibility and iteration number. 
 

As in the past, these developments were strongly influenced by industrial partners, particularly in the 
automotive industry. LS-OPT is also being applied, among others, in metal forming and the identification of 
system and material parameters. In addition to long-time participants: Professor Larsgunnar Nilsson 
(Mechanical Engineering Department, Linköping University, Sweden) and Professor Ken Craig 
(Department of Mechanical Engineering, University of Pretoria, South Africa), significant contributions 
have been made by Dr. Daniel Hilding, Mr. David Björkevik and Mr. Christoffer Belestam of Engineering 
Research AB (Linköping) as well as Dr.-Ing. Heiner Müllerschön, Dipl.-Ing. Marko Thiele and Dipl.-Math. 
Katharina Witowski of DYNAmore GmbH, Stuttgart, Germany. 

 

Nielen Stander, Willem Roux and Tushar Goel 

Livermore, CA 

January, 2009 



 

 7

PREFACE TO VERSION 4 
The development of LS-OPT has continued with an emphasis on the integration with LS-DYNA and LS-
PREPOST. The main focus of Version 4 has been the development of a new graphical postprocessor as well 
as the improvement of the job scheduling system, especially with regard to scheduling on computer clusters. 
The following features have been added: 

 

Version 4.0: 

1. The Viewer has been redesigned completely to accommodate a multi-window format using a split-
window and detachable window feature. 

2. The Correlation matrix for simulation variables and results has been added.  

3. For visualizing the Pareto Optimal Frontier, Hyper-Radial Visualization and Parallel Coordinate 
plots have been added to the more traditional scatter plot.  Multiple points can be selected to create a 
table of response values. Point highlighting is cross-connected between plot types. 

4. An interface for the METAPost postprocessor has been added. 

5. Topology optimization LS-OPT®/Topology has been added as a separate module. Please refer to the 
LS-OPT/Topology User's Manual. 

6. Many of the features such as the Reliability-Based Design Optimization have been significantly 
accelerated. 

7. The Blackbox queuing system has been streamlined in terms of providing better diagnostics and a 
special queuing system Honda has been added. 

8. The NASTRAN®  interface for frequency extraction and mode tracking has been added. 

 

Version 4.1: 

9. Discrete sampling can be done on a variable by variable basis for most sampling schemes including 
D-Optimality, Space Filling and Full Factorial. 

10. The Space Filling algorithm has been improved for accuracy and speed. 

11. Job scheduling has been significantly improved. Environment variables can be exported through 
queuing systems. 

12. Job data is displayed on the run progress bars with a selection to view the solver log file at any stage 
of the run.  

13. Three injury criteria: a3ms, Chest Compression and Viscous Criterion have been added. 

14. SPH, DBBEMAC and NODFOR groups have been added to the LS-DYNA response interface. 

15. GenEx, the LS-OPT Generic Extractor provides features for extracting entities from text files. This 
allows LS-OPT to be used with any solver code that produces a text database. 

16. Responses can be linked to LS-DYNA cases (*CASE keyword). 
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17. In addition to polynomials, Radial Basis Functions can now be used for parameter identification. 

18. The following features have been added to the Viewer: Self-Organizing Maps (for multi-objective 
optimization), two-dimensional interpolation matrix using metamodels, global sensitivities (Sobol), 
Computed (simulation) and Predicted (metamodel) histories, Parallel Coordinate plot for simulation 
results. 

19. Experiments can be replicated for stochastic fields. Improvements have been made to Stochastic 
Fields (*PERTURBATION) in LS-DYNA. Special coordinate systems have been added. 
*PERTURBATION_MATERIAL has been added for MAT24. 

20. To avoid synchronization errors, the Experiments and AnalysisResults databases have been 
converted to self-contained .csv files. 

21. The Run page has been rationalized. Clean start options are now available for all tasks. 

22. A selected subset of Pareto optimal points can be exported to a standard format. The file can be used 
to schedule the points as simulations. 

Version 4.2: 

23. The algorithm for constrained experimental design has been greatly improved. An optimization 
algorithm was introduced to locate design points within specified constraint bounds. 

24. LSTCVM has been added as a Secure Proxy Server for distributing solver jobs across a computer 
cluster. Running LS-OPT on a Windows machine controlling solver jobs on a Linux cluster is now 
possible. 

25. Individual jobs can be stopped using LSKILLJOB from the LS-OPT GUI. This feature has been 
implemented to kill lagging jobs which tend to hold up the entire optimization run. Accelerated job 
killing is provided as an option. A job can also be flagged for restart. LSTCVM and LSKILLJOB 
combined with LSCHEDULER and other auxiliary programs provide a sophisticated job distribution 
system. 

26. More injury criteria are now available, namely MOC, NNIC, NIC, Nkm, LNLI, TTI and TI. A 3-
node version of the injury criterion Clip3m has been added. 

27. Kinematics for NODOUT-based responses and histories. Includes the calculation of deformation and 
distance in global, local and local-in-reference-frame coordinate systems. 

28. DBFSI (fluid structure interaction) is available in the history and response interfaces. 

29. Curve Mapping has been added to improve the curve matching metric for material identification, 
especially for hysteretic curves, curves with steep sections and cases where only partial test data is 
available. A newly developed Partial Curve Mapping algorithm is used. 

30. Metamodel prediction accuracy based on PRESS error has been added as a stopping criterion for the 
Sequential Response Surface Method (SRSM). 

31. Automatic internal constraint scaling based on the constraint bounds has been added to the GUI. 
This feature ensures that constraint violations are treated equally irrespective of their magnitudes. 

32. The Dominated Hypervolume method as a stopping criterion for multi-objective optimization 
methods (GA). Crowding Distance and Spread of the Pareto Optimal Front can be monitored 
graphically. 
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33. Self-Organizing Maps is available to visualize simulation results. 

34. Refinements have been made to the 2D Metamodel Cross-Section display by adding simulation 
points. The History display was improved by allowing the selection and display of multiple histories. 
There is stronger unification amongst the different types of displays. 

35. LS-OPT database archiving has been expanded to include extra files such as solver input files. 

36. Histories have been added to the GenEx (generic extraction) result extraction feature. In the past, 
only responses could be extracted. 

37. The input file environment can be used to store include files. LS-OPT will in this case automatically 
be able to parse and transmit the files (e.g. to a cluster). 

38. A derivative history function has been added to compute the derivative of a time history, e.g. 
acceleration from velocity. 

39. A general filtering feature for time histories has been added. Filtering has been available for LS-
DYNA-extracted data, but can now be applied to any time history, also those produced using 
expressions or generic extraction. 

Version 4.3 

40. The MAC criterion replaces the Generalized Mass criterion for mode tracking (merged to Version 
4.2). An option to turn off mode tracking was added. 

41. Mode tracking is supported for all versions of LS-DYNA, including LS-DYNA MPP (merged to 
Version 4.2). 

42. Sampling of the Pareto Optimal Front as a sampling option. A Space Filling algorithm, to maximize 
the distance between any two points in the design space, is used. 

43. Option for selecting the number of verification runs for the trade-off curve of multi-objective 
optimization. Space Filling sampling is done to obtain a well-distributed trade-off set. 

44. Head injury criterion (HIC) using three nodes for the different coordinate directions. 

45. Support Vector Regression introduced as a metamodeling type. 

46. User-defined postprocessor option. 0. 

 

The automotive and other industries have again made significant contributions to the development of new 
features in LS-OPT. In addition to long-time participant Professor Larsgunnar Nilsson (Mechanical 
Engineering Department, Linköping University, Sweden), Dr. Daniel Hilding, Mr. David Björkevik and Mr. 
Christoffer Belestam of Engineering Research AB (Linköping) as well as Dr.-Ing. Heiner Müllerschön and 
Dipl.-Math. Katharina Witowski of DYNAmore GmbH, Stuttgart, Germany have made major contributions 
as developers. Dr. Trent Eggleston has recently created LSTCVM and LSKILLJOB and, while working 
with customers, has made vast improvements to solver job scheduling via queuing systems. 

 

Nielen Stander and Anirban Basudhar 

Livermore, CA 

August, 2012



 

 10



 

 11

TABLE OF CONTENTS 
 

Preface to Version 1......................................................................................................................................... iii 
Preface to Version 2......................................................................................................................................... iii 
Preface to Version 3.......................................................................................................................................... v 
Preface to Version 4.......................................................................................................................................... 7 
Table of Contents............................................................................................................................................ 11 
Table of Figures .............................................................................................................................................. 24 
1. Introduction............................................................................................................................................. 31 

1.1. Overview of the manual.................................................................................................................. 33 
2. Response Surface Methodology ............................................................................................................. 35 

2.1. Introduction..................................................................................................................................... 35 
2.1.1. Approximating the response ......................................................................................................... 35 
2.1.2. Factors governing the accuracy of the response surface............................................................... 37 
2.1.3. Advantages of the method ............................................................................................................ 37 

Design exploration .............................................................................................................................. 37 
Global optimization ............................................................................................................................ 37 

2.1.4. Other types of response surfaces................................................................................................... 37 
2.2. Experimental design........................................................................................................................ 37 

2.2.1. Factorial design............................................................................................................................. 38 
2.2.2. Koshal design................................................................................................................................ 38 

First order model................................................................................................................................. 38 
Second order model ............................................................................................................................ 38 

2.2.3. Central composite design.............................................................................................................. 39 
2.2.4. D-optimal design........................................................................................................................... 39 
2.2.5. Latin Hypercube Sampling (LHS) ................................................................................................ 40 

Maxi-min............................................................................................................................................. 41 
Centered L2-discrepancy .................................................................................................................... 41 

2.2.6. Space-filling designs..................................................................................................................... 41 
2.2.7. Random number generator............................................................................................................ 45 
2.2.8. Reasonable experimental designs ................................................................................................. 45 

2.3. Model adequacy checking............................................................................................................... 45 
2.3.1. Residual sum of squares................................................................................................................ 45 
2.3.2. RMS error ..................................................................................................................................... 46 
2.3.3. Maximum residual ........................................................................................................................ 46 
2.3.4. Prediction error ............................................................................................................................. 46 
2.3.5. PRESS residuals............................................................................................................................ 46 
2.3.6. The coefficient of multiple determination R2 ............................................................................... 47 
2.3.7. R2 for Prediction ........................................................................................................................... 47 
2.3.8. Iterative design and prediction accuracy....................................................................................... 48 

2.4. ANOVA .......................................................................................................................................... 48 
2.4.1. The confidence interval of the regression coefficients ................................................................. 48 
2.4.2. The significance of a regression coefficient bj.............................................................................. 49 

2.5. REFERENCES ............................................................................................................................... 49 



 

 12

3. Metamodeling Techniques...................................................................................................................... 51 
3.1. Neural networks .............................................................................................................................. 51 

3.1.1. Model adequacy checking............................................................................................................. 55 
3.1.2. Feedforward neural networks ....................................................................................................... 57 
3.1.3. Radial basis function networks ..................................................................................................... 61 

3.2. Kriging* .......................................................................................................................................... 65 
3.3. Concluding remarks: which metamodel?........................................................................................ 66 
3.4. REFERENCES ............................................................................................................................... 67 

4. Optimization ........................................................................................................................................... 70 
4.1. Theory of optimization ................................................................................................................... 70 
4.2. Normalization of constraints and variables..................................................................................... 71 
4.3. Gradient computation and the solution of optimization problems.................................................. 72 
4.4. Optimization methods..................................................................................................................... 73 
4.5. Strategies for metamodel-based optimization................................................................................. 74 

4.5.1. Single stage ................................................................................................................................... 74 
4.5.2. Sequential strategy ........................................................................................................................ 74 
4.5.3. Sequential strategy with domain reduction................................................................................... 74 
4.5.4. How do I choose an appropriate strategy for metamodel-based optimization?............................ 75 

4.6. Sequential response surface method (SRSM)................................................................................. 75 
4.7. Leapfrog optimizer for constrained minimization (LFOPC) .......................................................... 78 
4.8. Genetic algorithm............................................................................................................................ 79 

4.8.1. Terminology.................................................................................................................................. 79 
4.8.2. Encoding ....................................................................................................................................... 80 
4.8.3. Algorithm...................................................................................................................................... 80 

Initialization ........................................................................................................................................ 81 
Function evaluation............................................................................................................................. 81 
Selection or reproduction operator...................................................................................................... 81 
Crossover ............................................................................................................................................ 82 
Mutation.............................................................................................................................................. 83 
Elitism in simple genetic algorithm .................................................................................................... 83 
Stopping criterion................................................................................................................................ 83 

4.9. Multi-objective optimization using genetic algorithms .................................................................. 84 
4.9.1. Non-domination criterion.............................................................................................................. 84 
4.9.2. Pareto optimal solutions................................................................................................................ 84 
4.9.3. Pareto optimal set.......................................................................................................................... 85 
4.9.4. Pareto optimal front ...................................................................................................................... 85 
4.9.5. Ranking ......................................................................................................................................... 85 
4.9.6. Convergence vs. diversity............................................................................................................. 86 
4.9.7. Elitist non-dominated sorting genetic algorithm (NSGA-II) ........................................................ 86 
4.9.8. Elitism in NSGA-II ....................................................................................................................... 88 
4.9.9. Diversity preservation mechanism in NSGA-II – crowding distance calculation........................ 89 

4.10. Adaptive simulated annealing (ASA) ......................................................................................... 89 
4.10.1. Algorithm.................................................................................................................................... 89 
4.10.2. Acceptance function.................................................................................................................... 90 
4.10.3. Sampling algorithm..................................................................................................................... 91 
4.10.4. Cooling schedule......................................................................................................................... 92 



 

 13

4.10.5. Stopping criterion........................................................................................................................ 92 
4.10.6. Re-annealing ............................................................................................................................... 93 

4.11. Hybrid algorithms ....................................................................................................................... 94 
4.12. Visualization of the Pareto optimal frontier................................................................................ 95 

4.12.1. Trade-off plot .............................................................................................................................. 95 
4.12.2. Hyper-radial visualization (HRV)............................................................................................... 95 
4.12.3. Parallel co-ordinate plot (PCP) ................................................................................................... 98 
4.12.4. Self organizing maps (SOM) ...................................................................................................... 98 

4.13. Performance metrics for multi-objective optimization ............................................................... 99 
4.13.1. Number of nondominated points .............................................................................................. 100 
4.13.2. Spread ....................................................................................................................................... 100 
4.13.3. Standard deviation of crowding distance.................................................................................. 100 
4.13.4. Min/Max of objectives.............................................................................................................. 100 
4.13.5. Hypervolume............................................................................................................................. 100 
4.13.6. Number of common points ....................................................................................................... 100 
4.13.7. Number of new nondominated solutions .................................................................................. 101 
4.13.8. Number of old dominated solutions n(Q) ................................................................................. 101 
4.13.9. Consolidation ratio.................................................................................................................... 101 
4.13.10. Improvement ratio................................................................................................................... 101 

4.14. Discrete optimization ................................................................................................................ 102 
4.14.1. Discrete variables...................................................................................................................... 102 
4.14.2. Discrete optimization................................................................................................................ 102 
4.14.3. Mixed-discrete optimization ..................................................................................................... 102 
4.14.4. Discrete optimization algorithm: genetic algorithm ................................................................. 103 
4.14.5. Objective function for discrete optimization ............................................................................ 103 
4.14.6. Sequential strategy .................................................................................................................... 103 

4.15. Summary of the optimization process....................................................................................... 103 
4.15.1. Convergence to an optimal point .............................................................................................. 104 

4.16. REFERENCES ......................................................................................................................... 105 
5. Applications of Optimization................................................................................................................ 108 

5.1. Multicriteria design optimization.................................................................................................. 108 
5.1.1. Euclidean distance function ........................................................................................................ 108 
5.1.2. Maximum distance...................................................................................................................... 109 

5.2. Multidisciplinary design optimization .......................................................................................... 110 
5.3. System identification using nonlinear regression ......................................................................... 111 

5.3.1. Ordinate-based Curve Matching ................................................................................................. 111 
5.3.2. Curve Mapping ........................................................................................................................... 112 
5.3.3. Minimizing the maximum residual (Min-Max).......................................................................... 116 
5.3.4. Nonlinear regression: Confidence intervals................................................................................ 116 

5.4. Worst-case design ......................................................................................................................... 117 
5.5. Reliability-based design optimization (RBDO)*.......................................................................... 119 
5.6. REFERENCES ............................................................................................................................. 119 

6. Probabilistic Fundamentals................................................................................................................... 121 
6.1. Introduction................................................................................................................................... 121 
6.2. Probabilistic variables................................................................................................................... 121 

6.2.1. Variable linking .......................................................................................................................... 122 



 

 14

6.3. Basic computations ....................................................................................................................... 122 
6.3.1. Mean, variance, standard deviation, and coefficient of variation ............................................... 122 
6.3.2. Correlation of responses ............................................................................................................. 123 
6.3.3. Confidence intervals ................................................................................................................... 123 

6.4. Probabilistic methods.................................................................................................................... 124 
6.4.1. Monte Carlo simulation .............................................................................................................. 124 
6.4.2. Monte Carlo analysis using metamodels .................................................................................... 126 
6.4.3. Correlated variables .................................................................................................................... 127 
6.4.4. First-Order Second-Moment Method (FOSM)........................................................................... 127 
6.4.5. Design for six-sigma methods .................................................................................................... 128 
6.4.6. The most probable point ............................................................................................................. 128 
6.4.7. FORM (First Order Reliability Method)..................................................................................... 130 
6.4.8. Design sensitivity of the most probable point............................................................................. 131 

6.5. Required number of simulations................................................................................................... 132 
6.5.1. Overview..................................................................................................................................... 132 
6.5.2. Background................................................................................................................................. 132 
6.5.3. Competing role of variance and bias .......................................................................................... 133 
6.5.4. Confidence interval on the mean ................................................................................................ 134 
6.5.5. Confidence interval on a new evaluation.................................................................................... 134 
6.5.6. Confidence interval on the noise (stochastic process) variance.................................................. 135 
6.5.7. Probability of observing a specific failure mode ........................................................................ 136 

6.6. Outlier analysis ............................................................................................................................. 137 
6.7. Stochastic contribution analysis.................................................................................................... 138 

6.7.1. Linear estimation ........................................................................................................................ 138 
6.7.2. Second and higher order estimation............................................................................................ 139 

6.8. Robust parameter design............................................................................................................... 141 
6.8.1. Fundamentals .............................................................................................................................. 141 
6.8.2. Methodology............................................................................................................................... 142 
6.8.3. Experimental design.................................................................................................................... 143 

6.9. REFERENCES ............................................................................................................................. 143 
7. Design Optimization Process................................................................................................................ 145 

7.1. A modus operandi for design using response surfaces ................................................................. 145 
7.1.1. Preparation for design ................................................................................................................. 145 
7.1.2. A step-by-step design optimization procedure ........................................................................... 147 

7.2. Recommended test procedure ....................................................................................................... 148 
7.3. Pitfalls in design optimization ...................................................................................................... 148 

7.3.1. Global optimality ........................................................................................................................ 148 
7.3.2. Noise ........................................................................................................................................... 149 
7.3.3. Non-robust designs ..................................................................................................................... 149 
7.3.4. Impossible designs ...................................................................................................................... 149 
7.3.5. Non-unique designs .................................................................................................................... 149 

7.4. REFERENCES ............................................................................................................................. 150 
8. Graphical User Interface and Command Language.............................................................................. 151 

8.1. LS-OPT user interface (LS-OPTui) .............................................................................................. 151 
8.2. Problem description and author name........................................................................................... 152 
8.3. Command language ...................................................................................................................... 153 



 

 15

8.3.1. Names ......................................................................................................................................... 154 
8.3.2. Command lines ........................................................................................................................... 155 
8.3.3. File names ................................................................................................................................... 155 
8.3.4. Command file structure............................................................................................................... 155 
8.3.5. Environments .............................................................................................................................. 155 
8.3.6. Expressions ................................................................................................................................. 156 

9. Program Execution................................................................................................................................ 157 
9.1. Work directory .............................................................................................................................. 157 
9.2. Execution commands .................................................................................................................... 157 
9.3. Directory structure ........................................................................................................................ 157 
9.4. Job monitoring .............................................................................................................................. 158 
9.5. Result extraction ........................................................................................................................... 159 
9.6. Restarting ...................................................................................................................................... 159 
9.7. Output files.................................................................................................................................... 160 
9.8. Log files and status files ............................................................................................................... 162 
9.9. Managing disk space during run time........................................................................................... 163 
9.10. Error termination of a solver run .............................................................................................. 164 
9.11. Parallel processing .................................................................................................................... 164 
9.12. Remote job scheduling.............................................................................................................. 164 
9.13. Using an external queuing or job scheduling system................................................................ 165 

9.13.1. Introduction............................................................................................................................... 165 
9.13.2. Installation................................................................................................................................. 166 

Installation for all remote machines running LS-DYNA.................................................................. 166 
Installation on the local machine ...................................................................................................... 167 

9.13.3. Examples................................................................................................................................... 167 
9.13.4. Mechanics of the queuing process ............................................................................................ 171 
9.13.5. Environment variables .............................................................................................................. 173 
9.13.6. Abnormal termination and retrying the job submission ........................................................... 173 

User-defined abnormal termination .................................................................................................. 173 
Queuer timout ................................................................................................................................... 174 

9.13.7. Troubleshooting ........................................................................................................................ 174 
9.13.8. User-defined queuing systems .................................................................................................. 175 
9.13.9. Blackbox queueing system ....................................................................................................... 175 
9.13.10. Honda queuing system............................................................................................................ 178 
9.13.11. Microsoft Windows Compute Cluster server ......................................................................... 180 

9.14. Enabling LSTCVM job proxy support ..................................................................................... 181 
9.14.1. LSTCVM options ..................................................................................................................... 181 
9.14.2. LSTCVM server installation..................................................................................................... 181 
9.14.3. Environment Variables ............................................................................................................. 182 
9.14.4. Configuring the  lstcvm_run client ..................................................................................... 182 
9.14.5. Database recovery..................................................................................................................... 182 
9.14.6. Simple manual setup for running LS-OPT and solvers on different machines ........................ 183 

9.15. Passing environment variables through LS-OPT...................................................................... 184 
9.15.1. Adding a new environment variable definition ........................................................................ 185 
9.15.2. Editing an existing environment variable definition................................................................. 186 
9.15.3. Set by browsing......................................................................................................................... 186 



 

 16

9.15.4. Edit browse list ......................................................................................................................... 190 
9.15.5. How the browse list is used by LSOPT .................................................................................... 190 

9.16. Killing jobs................................................................................................................................ 191 
9.16.1. Overview of How Jobs are Killed............................................................................................. 191 
9.16.2. Killing Jobs using LS-OPT, LS-OPTui, and LSKILLJOB. ..................................................... 193 
9.16.3. Flagging a Job for Restart ......................................................................................................... 198 

10. Interfacing to a Solver, Preprocessor or Postprocessor .................................................................... 200 
10.1. Parsing, copying and transmitting of LS-DYNA input and include files ................................. 200 
10.2. Labeling design variables in a solver and preprocessor............................................................ 201 

10.2.1. The LS-OPT parameter format ................................................................................................. 202 
10.3. Interfacing to a Solver............................................................................................................... 204 

10.3.1. Interfacing with LS-DYNA ...................................................................................................... 205 
10.3.2. Interfacing with LS-DYNA/MPP ............................................................................................. 208 
10.3.3. Interfacing with the MSC-NASTRAN® solver (SOL 103) ...................................................... 208 
10.3.4. Interfacing with a user-defined solver ...................................................................................... 210 
10.3.5. How to run LS-DYNA from LS-OPT using the license server (Windows) ............................. 210 

10.4. Preprocessors ............................................................................................................................ 211 
10.4.1. LS-PREPOST ........................................................................................................................... 211 
10.4.2. LS-INGRID............................................................................................................................... 212 
10.4.3. TrueGrid.................................................................................................................................... 212 
10.4.4. ANSA (BETA CAE Systems SA) ............................................................................................ 213 
10.4.5. AutoDV..................................................................................................................................... 214 
10.4.6. HyperMorph.............................................................................................................................. 215 
10.4.7. User-defined preprocessor ........................................................................................................ 216 

10.5. Postprocessors........................................................................................................................... 217 
10.5.1. μETA (BETA CAE Systems SA) ............................................................................................. 218 
10.5.2. User-defined post-processor ..................................................................................................... 219 

10.6. Extra input files......................................................................................................................... 220 
11. Design Variables, Constants, and Dependents ................................................................................. 222 

11.1. Selection of design variables .................................................................................................... 223 
11.2. Definition of upper and lower bounds of the design space....................................................... 223 
11.3. Size and location of region of interest (range).......................................................................... 223 
11.4. Local variables .......................................................................................................................... 224 
11.5. Discrete variables...................................................................................................................... 224 
11.6. Assigning variable to solver...................................................................................................... 224 
11.7. Constants................................................................................................................................... 225 
11.8. Dependent variables.................................................................................................................. 225 
11.9. System variables ....................................................................................................................... 226 
11.10. Worst-case design ..................................................................................................................... 226 

12. Probabilistic Modeling and Monte Carlo Simulation ....................................................................... 227 
12.1. Probabilistic problem modeling................................................................................................ 227 
12.2. Probabilistic distributions ......................................................................................................... 228 

12.2.1. Beta distribution........................................................................................................................ 228 
12.2.2. Binomial distribution ................................................................................................................ 229 
12.2.3. Lognormal distribution ............................................................................................................. 229 
12.2.4. Normal distribution................................................................................................................... 230 



 

 17

12.2.5. Truncated normal distribution................................................................................................... 231 
12.2.6. Uniform distribution ................................................................................................................. 232 
12.2.7. User defined distribution........................................................................................................... 233 
12.2.8. Weibull distribution .................................................................................................................. 235 

12.3. Probabilistic variables............................................................................................................... 236 
12.3.1. Setting the nominal value of a probabilistic variable................................................................ 237 
12.3.2. Bounds on probabilistic variable values ................................................................................... 238 
12.3.3. Noise variable subregion size ................................................................................................... 238 
12.3.4. Correlated variables .................................................................................................................. 239 

12.4. Probabilistic simulation ............................................................................................................ 239 
12.4.1. Monte Carlo analysis ................................................................................................................ 239 
12.4.2. Monte Carlo analysis using a metamodel ................................................................................. 240 
12.4.3. Accuracy of metamodel based Monte Carlo............................................................................. 241 
12.4.4. Adding the noise component to metamodel Monte Carlo computations.................................. 242 
12.4.5. FORM (First Order Reliability Method) analysis..................................................................... 242 

12.5. Stochastic contribution analysis (DSA) .................................................................................... 243 
12.6. Covariance ................................................................................................................................ 244 
12.7. Robust design............................................................................................................................ 244 

13. Metamodels and Point Selection....................................................................................................... 246 
13.1. Metamodel definition................................................................................................................ 246 

13.1.1. Response surface methodology................................................................................................. 247 
13.1.2. Neural networks and radial basis function networks ................................................................ 247 
13.1.3. Variability of neural networks* ................................................................................................ 247 
13.1.4. Basis functions and optimization criterion for RBF ................................................................. 249 
13.1.5. Efficiency of neural networks*................................................................................................. 249 
13.1.6. Kriging parameters.................................................................................................................... 250 
13.1.7. User-defined metamodel........................................................................................................... 250 

13.2. Global sensitivity analysis ........................................................................................................ 253 
13.3. Point selection schemes ............................................................................................................ 253 

13.3.1. Overview................................................................................................................................... 253 
13.3.2. D-Optimal point selection......................................................................................................... 256 
13.3.3. Latin Hypercube Sampling ....................................................................................................... 257 
13.3.4. Space Filling ............................................................................................................................. 257 
13.3.5. Space Filling of Pareto Optimal Frontier.................................................................................. 258 

How to use the Pareto Optimal Frontier as a basis set for sampling ................................................ 258 
13.3.6. User-defined point selection ..................................................................................................... 259 

Comma separated variables .............................................................................................................. 259 
Free format........................................................................................................................................ 260 

13.4. Sampling at discrete points ....................................................................................................... 260 
13.5. Duplicating an experimental design.......................................................................................... 260 
13.6. Replicate experimental points................................................................................................... 261 
13.7. Augmentation of an existing design ......................................................................................... 261 
13.8. Specifying an irregular design space ........................................................................................ 262 
13.9. Automatic updating of an experimental design ........................................................................ 263 
13.10. Using design sensitivities for optimization............................................................................... 263 

13.10.1. Analytical sensitivities ............................................................................................................ 263 



 

 18

13.10.2. Numerical sensitivities............................................................................................................ 264 
13.11. Checkpoints............................................................................................................................... 265 
13.12. Metamodel Evaluation using a set of design points.................................................................. 265 
13.13. Alternative point selection ........................................................................................................ 266 
13.14. Changing the number of points on restart*............................................................................... 267 
13.15. Repeatability of point selection ................................................................................................ 269 
13.16. Remarks: Point selection........................................................................................................... 269 

14. History and Response Results........................................................................................................... 270 
14.1. Defining a response history (vector)......................................................................................... 270 

14.1.1. Crossplot history ....................................................................................................................... 272 
14.1.2. Derivative history...................................................................................................................... 273 
14.1.3. Filtered history .......................................................................................................................... 274 
14.1.4. History files............................................................................................................................... 275 

14.2. Defining a response (scalar)...................................................................................................... 275 
14.3. Specifying the metamodel type................................................................................................. 276 
14.4. Extracting history and response quantities: LS-DYNA............................................................ 277 
14.5. LS-DYNA Binout results.......................................................................................................... 278 

14.5.1. Binout histories ......................................................................................................................... 279 
14.5.2. Binout responses ....................................................................................................................... 280 

14.6. LS-DYNA D3Plot results ......................................................................................................... 282 
14.6.1. D3Plot histories......................................................................................................................... 282 
14.6.2. D3Plot responses....................................................................................................................... 284 

14.7. Mass .......................................................................................................................................... 285 
14.8. Frequency and mode tracking................................................................................................... 286 
14.9. Extracting metal forming response quantities: LS-DYNA....................................................... 287 

14.9.1. Thickness and thickness reduction............................................................................................ 287 
14.9.2. FLD constraint .......................................................................................................................... 288 
14.9.3. Principal stress .......................................................................................................................... 291 

14.10. Kinematics ................................................................................................................................ 291 
14.11. The GenEx application for extracting entities from a text file ................................................. 294 

14.11.1. The main window ................................................................................................................... 294 
14.11.2. Creating a .g6 file for LS-OPT............................................................................................ 297 
14.11.3. How to use GenEx from LS-OPT for extracting responses.................................................... 298 
14.11.4. An example using GenEx to extract responses....................................................................... 298 
14.11.5. An example using "Repeated anchor vector" to extract histories........................................... 306 
14.11.6. An example using "Column vector" to extract histories......................................................... 308 
14.11.7. How to extract the histories from LS-OPT............................................................................. 309 

14.12. User-defined interface for extracting results............................................................................. 310 
14.13. Responses without metamodels ................................................................................................ 311 
14.14. Matrix operations ...................................................................................................................... 311 

14.14.1. Initializing a matrix................................................................................................................. 313 
14.14.2. Creating a rotation matrix using 3 specified points ................................................................ 313 

14.15. Injury criteria ............................................................................................................................ 314 
14.16. Head Injury Criteria .................................................................................................................. 314 

14.16.1. HIC.......................................................................................................................................... 314 
14.17. Neck Criteria............................................................................................................................. 314 



 

 19

14.17.1. MOC ....................................................................................................................................... 314 
14.17.2. NIC (rear impact).................................................................................................................... 316 
14.17.3. Nij (Nce, Ncf, Nte, Ntf) .......................................................................................................... 316 
14.17.4. Nkm (Nfa, Nea, Nfp, Nep)...................................................................................................... 318 
14.17.5. LNL......................................................................................................................................... 320 

14.18. Chest Criteria ............................................................................................................................ 321 
14.18.1. Chest compression .................................................................................................................. 321 
14.18.2. Viscous criterion (VC)............................................................................................................ 322 
14.18.3. Thoracic Trauma Index (TTI)................................................................................................. 324 

14.19. Criteria for the Lower Extremities............................................................................................ 325 
14.19.1. Tibia Index (TI)....................................................................................................................... 325 

14.20. Additional Criteria .................................................................................................................... 326 
14.20.1. A3ms ....................................................................................................................................... 326 

14.21. Binout injury criteria................................................................................................................. 327 
14.22. Virtual history ........................................................................................................................... 328 
14.23. REFERENCES ......................................................................................................................... 329 

15. Composite Functions ........................................................................................................................ 330 
15.1. Introduction............................................................................................................................... 330 

15.1.1. Composite vs. response expressions ......................................................................................... 330 
15.2. Expression composite ............................................................................................................... 330 

15.2.1. General expressions .................................................................................................................. 330 
15.2.2. Special expressions ................................................................................................................... 330 

15.3. Standard composite................................................................................................................... 331 
15.3.1. Targeted composite (square root of MSE)................................................................................ 331 
15.3.2. Mean squared error composite.................................................................................................. 331 
15.3.3. Weighted composite.................................................................................................................. 331 

15.4. Defining the composite function............................................................................................... 332 
15.5. Assigning design variable or response  components to the composite..................................... 333 
15.6. Curve Matching ........................................................................................................................ 334 

15.6.1. Ordinate-based Curve Matching ............................................................................................... 334 
15.6.2. Curve Mapping ......................................................................................................................... 338 

16. Objectives and Constraints ............................................................................................................... 340 
16.1. Formulation............................................................................................................................... 340 
16.2. Defining an objective function.................................................................................................. 341 
16.3. Defining a constraint................................................................................................................. 342 
16.4. Bounds on the constraint functions........................................................................................... 343 
16.5. Minimizing the maximum response or violation* .................................................................... 344 
16.6. Internal scaling of constraints ................................................................................................... 346 

17. Running the Design Task.................................................................................................................. 348 
17.1. Optimization ............................................................................................................................. 348 

17.1.1. Number of optimization iterations ............................................................................................ 348 
17.1.2. Optimization termination criteria.............................................................................................. 348 

17.2. Probabilistic evaluation............................................................................................................. 349 
17.3. Restarting .................................................................................................................................. 350 
17.4. Baseline run only ...................................................................................................................... 350 
17.5. Omit last verification run .......................................................................................................... 350 



 

 20

17.6. Job concurrency ........................................................................................................................ 350 
17.7. Job distribution.......................................................................................................................... 350 
17.8. Job and analysis monitoring...................................................................................................... 351 
17.9. Pause and Resume..................................................................................................................... 351 
17.10. Repair or modification of an existing job ................................................................................. 351 
17.11. Tools ......................................................................................................................................... 353 
17.12. Importing user-defined analysis results .................................................................................... 354 
17.13. Saving/compressing the LS-OPT database after completing a run .......................................... 355 

18. Viewing Results ................................................................................................................................ 356 
18.1. Viewer overview....................................................................................................................... 356 

18.1.1. Plot Selector .............................................................................................................................. 356 
18.1.2. General Plot Options................................................................................................................. 357 
18.1.3. Plot Rotation ............................................................................................................................. 358 
18.1.4. Point Selection .......................................................................................................................... 359 
18.1.5. Split Window ............................................................................................................................ 361 
18.1.6. Save Plot Setup ......................................................................................................................... 362 
18.1.7. Command line options .............................................................................................................. 363 
18.1.8. Iteration Panel ........................................................................................................................... 364 
18.1.9. Ranges....................................................................................................................................... 364 

18.2. Visualization of Simulation Results.......................................................................................... 365 
18.2.1. Correlation Matrix .................................................................................................................... 365 
18.2.2. Scatter Plot ................................................................................................................................ 367 
18.2.3. Parallel Coordinate Plot ............................................................................................................ 368 
18.2.4. History Plot ............................................................................................................................... 370 
18.2.5. Statistical Tools......................................................................................................................... 371 
18.2.6. Correlation Bars ........................................................................................................................ 374 

18.3. Visualization of Metamodel Results......................................................................................... 375 
18.3.1. Surface Plot............................................................................................................................... 376 
18.3.2. 2D Interpolator Plot .................................................................................................................. 381 
18.3.3. Accuracy Plot............................................................................................................................ 382 
18.3.4. Sensitivities ............................................................................................................................... 383 
18.3.5. History Plot ............................................................................................................................... 386 

18.4. Visualization of Optimization Results ...................................................................................... 387 
18.4.1. Optimization History ................................................................................................................ 387 
18.4.2. Variables Plot............................................................................................................................ 389 

18.5. Visualization of Pareto Optimal Solutions ............................................................................... 390 
18.5.1. Tradeoff Plot ............................................................................................................................. 390 
18.5.2. Parallel Coordinate Plot ............................................................................................................ 391 
18.5.3. Hyper-Radial Visualization ...................................................................................................... 392 
18.5.4. Self-Organizing Maps............................................................................................................... 393 

18.6. Stochastic Analysis ................................................................................................................... 394 
18.6.1. Statistics .................................................................................................................................... 394 
18.6.2. Correlation Bars ........................................................................................................................ 397 
18.6.3. Stochastic Contribution............................................................................................................. 398 

18.7. References................................................................................................................................. 399 
19. Applications of Optimization............................................................................................................ 400 



 

 21

19.1. Multidisciplinary design optimization (MDO) ......................................................................... 400 
19.1.1. Command file............................................................................................................................ 400 

19.2. Worst-case design ..................................................................................................................... 401 
19.3. Reliability-based design optimization (RBDO)*...................................................................... 401 

20. Optimization Algorithm Selection and Settings ............................................................................... 402 
20.1. Introduction............................................................................................................................... 402 
20.2. Selecting an optimization methodology.................................................................................... 402 
20.3. Selecting strategies for metamodel-based optimization ........................................................... 403 

20.3.1. Single stage ............................................................................................................................... 404 
20.3.2. Sequential strategy .................................................................................................................... 404 
20.3.3. Sequential strategy with domain reduction............................................................................... 405 

20.4. Domain reduction in metamodel-based optimization ............................................................... 406 
20.4.1. Setting the subdomain parameters ............................................................................................ 406 
20.4.2. Changing the behavior of the subdomain ................................................................................. 408 

20.5. Selecting an algorithm for metamodel-based optimization ...................................................... 409 
20.6. Setting parameters in the LFOPC algorithm............................................................................. 410 
20.7. Setting parameters in the genetic algorithm.............................................................................. 411 
20.8. Setting parameters in the simulated annealing algorithm......................................................... 413 
20.9. Termination criterion for multi-objective optimizers ............................................................... 414 
20.10. Verification runs ....................................................................................................................... 416 

21. LS-DYNA Results Statistics............................................................................................................. 418 
21.1. Working with the plots.............................................................................................................. 419 
21.2. Monte Carlo .............................................................................................................................. 420 
21.3. Metamodels and residuals......................................................................................................... 421 
21.4. Monte Carlo and metamodel analysis commands .................................................................... 423 
21.5. Correlation ................................................................................................................................ 424 

21.5.1. Correlation of fringe plots or histories with responses ............................................................. 424 
21.5.2. Correlation between variables................................................................................................... 426 

21.6. Stochastic contribution of a variable (Design sensitivity analysis) .......................................... 427 
21.7. Safety margin ............................................................................................................................ 427 
21.8. Visualization in LS-PREPOST................................................................................................. 429 
21.9. Viewing LS-OPT histories........................................................................................................ 430 
21.10. Bifurcation investigations ......................................................................................................... 432 

21.10.1. Automatic detection ................................................................................................................ 433 
21.10.2. Manual detection..................................................................................................................... 434 

21.11. Displacement magnitude issues* .............................................................................................. 435 
21.12. Metalforming options................................................................................................................ 436 
21.13. Re-use and persistence of an evaluation methodology* ........................................................... 439 

22. Example Problems ............................................................................................................................ 440 
22.1. Two-bar truss (2 variables) ....................................................................................................... 440 

22.1.1. Description of problem ............................................................................................................. 440 
22.1.2. A first approximation using linear response surfaces ............................................................... 443 
22.1.3. Updating the approximation to second order............................................................................ 446 
22.1.4. Reducing the region of interest for further refinement ............................................................. 449 
22.1.5. Conducting a trade-off study .................................................................................................... 451 
22.1.6. Automating the design process ................................................................................................. 452 



 

 22

22.2. Small car crash (2 variables)..................................................................................................... 455 
22.2.1. Introduction............................................................................................................................... 455 
22.2.2. Design criteria and design variables ......................................................................................... 456 
22.2.3. Design formulation ................................................................................................................... 456 
22.2.4. Modeling................................................................................................................................... 457 
22.2.5. First linear iteration................................................................................................................... 458 
22.2.6. First quadratic iteration ............................................................................................................. 461 
22.2.7. Automated run .......................................................................................................................... 463 
22.2.8. Trade-off using neural network approximation ........................................................................ 465 
22.2.9. Mixed-discrete optimization ..................................................................................................... 467 
22.2.10. Optimization using Direct GA simulation .............................................................................. 468 
22.2.11. RBDO (Reliability-based design optimization) using FOSM (First Order Second Moment 
Method)*............................................................................................................................................... 470 

22.3. Impact of a cylinder (2 variables) ............................................................................................. 470 
22.3.1. Problem statement..................................................................................................................... 471 
22.3.2. A first approximation................................................................................................................ 473 
22.3.3. Refining the design model using a second iteration ................................................................. 476 
22.3.4. Third iteration ........................................................................................................................... 478 
22.3.5. Response filtering: using the peak force as a constraint ........................................................... 480 

22.4. Sheet-metal forming (3 variables) ............................................................................................ 483 
22.4.1. Problem statement..................................................................................................................... 483 
22.4.2. First Iteration............................................................................................................................. 485 
22.4.3. Automated design ..................................................................................................................... 492 

22.5. System identification (elastoplastic material) (2 variables)...................................................... 496 
22.5.1. Problem statement..................................................................................................................... 496 
22.5.2. Ordinate-based Curve Matching ............................................................................................... 497 
22.5.3. Maximum residual formulation ................................................................................................ 499 
22.5.4. Results....................................................................................................................................... 502 
22.5.5. Mean Squared Error (MSE) formulation .................................................................................. 502 
22.5.6. Maximum residual formulation ................................................................................................ 505 

22.6. Large vehicle crash and vibration (MDO/MOO) (7 variables) ................................................ 506 
22.6.1. FE Modeling ............................................................................................................................. 506 
22.6.2. Design formulation ................................................................................................................... 508 
22.6.3. Input preparation....................................................................................................................... 509 
22.6.4. Variable screening .................................................................................................................... 512 
22.6.5. Optimization history results and Pareto optimal front.............................................................. 514 
22.6.6. Summary of results ................................................................................................................... 516 
22.6.7. Multi-objective optimization using Direct GA simulation ....................................................... 520 

22.7. Knee impact with variable screening (11 variables)................................................................. 523 
22.7.1. FE modeling.............................................................................................................................. 523 
22.7.2. Design formulation ................................................................................................................... 524 
22.7.3. Input preparation....................................................................................................................... 525 
22.7.4. Variable screening .................................................................................................................... 528 
22.7.5. Optimization strategy................................................................................................................ 530 
22.7.6. Optimization history results...................................................................................................... 530 
22.7.7. Summary of results ................................................................................................................... 531 



 

 23

22.8. Optimization with analytical design sensitivities ..................................................................... 535 
22.9. Probabilistic Analysis ............................................................................................................... 537 

22.9.1. Overview................................................................................................................................... 537 
22.9.2. Problem description .................................................................................................................. 538 
22.9.3. Monte Carlo evaluation............................................................................................................. 539 
22.9.4. Monte Carlo using metamodel.................................................................................................. 542 
22.9.5. Bifurcation analysis .................................................................................................................. 545 

22.10. Bifurcation/Outlier Analysis..................................................................................................... 546 
22.10.1. Overview................................................................................................................................. 546 
22.10.2. Problem description ................................................................................................................ 546 
22.10.3. Automatic identification of buckling modes........................................................................... 548 
22.10.4. Manual identification of buckling modes ............................................................................... 549 

22.11. Robust Parameter Design.......................................................................................................... 552 
22.12. Using Stochastic Fields............................................................................................................. 554 

Using only a stochastic field ................................................................................................................. 556 
22.12.1. A variable and a stochastic field ............................................................................................. 558 
22.12.2. Replicate experiments using stochastic fields......................................................................... 559 
22.12.3. Using fixed stochastic fields ................................................................................................... 561 

22.13. REFERENCES ......................................................................................................................... 562 
 
 



 

 24

TABLE OF FIGURES 
 
Figure 2-1: Six space-filling designs: 5 points in a 2-dimensional box region .............................................. 43 
Figure 3-1: Schematic of a neural network with 2 inputs and a hidden layer of 4 neurons with activation 
function f. ........................................................................................................................................................ 53 
Figure 3-2: Sigmoid transfer function y=1/(1+exp(-x)) typically used with feedforward networks.............. 54 
Figure 3-3: Radial basis transfer function y=exp(-x2) .................................................................................... 54 
Figure 3-4: Weighted sum of radial basis transfer functions. Three radial basis functions (dashed lines) are 
scaled and summed to produce a function (solid line).................................................................................... 54 
Figure 3-5: A radial basis network approximation (solid line) of the function, which fits the 21 data points 
(plus symbols)................................................................................................................................................. 54 
Figure 3-6: The same 21 data points as in Figure 3-5. Test points reveal that the function has been overfit. 
RBF neuron's spread is too small. RBF network could have done better with a higher spread constant....... 55 
Figure 3-7: The same 21 data points as in Figure 3-5. Approximation with overlapping RBF neurons. The 
spread of RBF units is too high. ..................................................................................................................... 55 
Figure 4-1: Adaptation of subregion in SRSM: (a) pure panning, (b) pure zooming and (c) a combination of 
panning and zooming...................................................................................................................................... 76 
Figure 4-2: The sub-region contraction rate λ as a function of the oscillation indicator ĉ  and the absolute 
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1. Introduction 

 

In the conventional design approach, a design is improved by evaluating its response and making design 
changes based on experience or intuition. This approach does not always lead to the desired result, that of a 
‘best’ design, since design objectives are sometimes in conflict, and it is not always clear how to change the 
design to achieve the best compromise of these objectives. A more systematic approach can be obtained by 
using an inverse process of first specifying the criteria and then computing the ‘best’ design. The procedure 
by which design criteria are incorporated as objectives and constraints into an optimization problem that is 
then solved, is referred to as optimal design. 

The state of computational methods and computer hardware has only recently advanced to the level where 
complex nonlinear problems can be analyzed routinely. Many examples can be found in the simulation of 
impact problems and manufacturing processes. The responses resulting from these time-dependent 
processes are, as a result of behavioral instability, often highly sensitive to design changes. Program logic, 
as for instance encountered in parallel programming or adaptivity, may cause spurious sensitivity. Roundoff 
error may further aggravate these effects, which, if not properly addressed in an optimization method, could 
obstruct the improvement of the design by corrupting the function gradients. 

Among several methodologies available to address optimization in this design environment, response 
surface methodology (RSM), a statistical method for constructing smooth approximations to functions in a 
multi-dimensional space, has achieved prominence in recent years. Rather than relying on local information 
such as a gradient only, RSM selects designs that are optimally distributed throughout the design space to 
construct approximate surfaces or ‘design formulae’. Thus, the local effect caused by ‘noise’ is alleviated 
and the method attempts to find a representation of the design response within a bounded design space or 
smaller region of interest. This extraction of global information allows the designer to explore the design 
space, using alternative design formulations. For instance, in vehicle design, the designer may decide to 
investigate the effect of varying a mass constraint, while monitoring the crashworthiness responses of a 
vehicle. The designer might also decide to constrain the crashworthiness response while minimizing or 
maximizing any other criteria such as mass, ride comfort criteria, etc. These criteria can be weighted 
differently according to importance and therefore the design space needs to be explored more widely. 

Part of the challenge of developing a design program is that designers are not always able to clearly define 
their design problem. In some cases, design criteria may be regulated by safety or other considerations and 
therefore a response has to be constrained to a specific value. These can be easily defined as mathematical 
constraint equations. In other cases, fixed criteria are not available but the designer knows whether the 
responses must be minimized or maximized. In vehicle design, for instance, crashworthiness can be 
constrained because of regulation, while other parameters such as mass, cost and ride comfort can be treated 
as objectives to be incorporated in a multi-objective optimization problem. Because the relative importance 
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of various criteria can be subjective, the ability to visualize the trade-off properties of one response vs. 
another becomes important. 

Trade-off curves are visual tools used to depict compromise properties where several important response 
parameters are involved in the same design. They play an extremely important role in modern design where 
design adjustments must be made accurately and rapidly. Design trade-off curves are constructed using the 
principle of Pareto optimality. This implies that only those designs of which the improvement of one 
response will necessarily result in the deterioration of any other response are represented. In this sense no 
further improvement of a Pareto optimal design can be made: it is the best compromise. The designer still 
has a choice of designs but the factor remaining is the subjective choice of which feature or criterion is more 
important than another. Although this choice must ultimately be made by the designer, these curves can be 
helpful by limiting the number of possible solutions. An example in vehicle design is the trade-off between 
mass (or energy efficiency) and safety. 

Adding to the complexity, is the fact that mechanical design is really an interdisciplinary process involving 
a variety of modeling and analysis tools. To facilitate this process, and allow the designer to focus on 
creativity and refinement, it is important to provide suitable interfacing utilities to integrate these design 
tools. Designs are bound to become more complex due to the legislation of safety and energy efficiency as 
well as commercial competition. It is therefore likely that in future an increasing number of disciplines will 
have to be integrated into a particular design. This approach of multidisciplinary design requires the 
designer to run more than one case, often using more than one type of solver. For example, the design of a 
vehicle may require the consideration of crashworthiness, ride comfort, noise level as well as durability. 
Moreover, the crashworthiness analysis may require more than one analysis case, e.g. frontal and side 
impact. It is therefore likely that as computers become more powerful, the integration of design tools will 
become more commonplace, requiring a multidisciplinary design interface. 

Modern architectures often feature multiple processors and all indications are that the demand for 
distributed computing will strengthen into the future. This is causing a revolution in computing as single 
analyses that took a number of days in the recent past can now be done within a few hours. Optimization, 
and RSM in particular, lend themselves very well to being applied in distributed computing environments 
because of the low level of message passing. Response surface methodology is efficiently handled, since 
each design can be analyzed independently during a particular iteration. Needless to say, sequential methods 
have a smaller advantage in distributed computing environments than global search methods such as RSM. 

The present version of LS-OPT also features Monte Carlo based point selection schemes and optimization 
methods. The respective relevance of stochastic and response surface based methods may be of interest. In a 
pure response surface based method, the effect of the variables is distinguished from chance events while 
Monte Carlo simulation is used to investigate the effect of these chance events. The two methods should be 
used in a complimentary fashion rather than substituting the one for the other. In the case of events in which 
chance plays a significant role, responses of design interest are often of a global nature (being averaged or 
integrated over time). These responses are mainly deterministic in character. The full vehicle crash example 
in this manual can attest to the deterministic qualities of intrusion and acceleration pulses. These types of 
responses may be highly nonlinear and have random components due to uncontrollable noise variables, but 
they are not random.  

Stochastic methods have an important purpose when conducted directly or on the surrogate (approximated) 
design response in reliability based design optimization and robustness improvement. This methodology is 
currently under development and will be available in future versions of LS-OPT. 
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1.1. Overview of the manual 

This LS-OPT® manual consists of three parts. In the first part, the Theoretical Manual (Chapters 2 through 
6), the theoretical background is given for the various features in LS-OPT. The next part is the User’s 
Manual (Chapters 7 through 20), which guides the user in the use of LS-OPTui, the graphical user interface. 
These chapters also describe the command language syntax. The final part of the manual is the Examples 
section (Chapter 22), where eight examples are used to illustrate the application of LS-OPT to a variety of 
practical applications. Appendices contain interface features (Appendix A and Appendix B), database file 
descriptions (Appendix C), a mathematical expression library (Appendix D), a Glossary (Appendix E) and 
a Quick Reference Manual (Appendix ). 

 

Sections containing advanced topics are indicated with an asterisk (*). 

 
How to read this manual: 

Most users will start learning LS-OPT by consulting the User’s Manual section beginning with Chapter 7 
(The design optimization process). The Theoretical Manual (Chapters 2 through 6) serves mainly as an in-
depth reference section for the underlying methods. The Examples section is included to demonstrate the 
features and capabilities and can be read together with Chapters 7 to 22 to help the user to set up a problem 
formulation. The items in the Appendices are included for reference to detail, while the Quick Reference 
Manual provides an overview of all the features and command file syntax. 

 

Links can be used for cross-referencing and will take the reader to the relevant item such as Section 12.4.5, 
Reference [4] or Figure 3-5 (just click on any of the afore-mentioned references). 
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2. Response Surface Methodology  

2.1. Introduction 

An authoritative text on Response Surface Methodology (RSM) [1] defines the method as “a collection of 
statistical and mathematical techniques for developing, improving, and optimizing processes.” Although an 
established statistical method for several decades [2], it has only recently been actively applied to 
mechanical design [3]. Due to the importance of weight as a criterion and the multidisciplinary nature of 
aerospace design, the application of optimization and RSM to design had its early beginnings in the 
aerospace industry. A large body of pioneering work on RSM was conducted in this and other mechanical 
design areas during the eighties and nineties [3]-[6]. RSM can be categorized as a Metamodeling technique 
(see Chapter 3 for other Metamodeling techniques namely Neural Networks, and Radial Basis Functions 
available in LS-OPT). 

Although inherently simple, the application of response surface methods to mechanical design has been 
inhibited by the high cost of simulation and the large number of analyses required for many design 
variables. In the quest for accuracy, increased hardware capacity has been consumed by greater modeling 
detail and therefore optimization methods have remained largely on the periphery of the area of mechanical 
design. In lieu of formal methods, designers have traditionally resorted to experience and intuition to 
improve designs. This is seldom effective and also manually intensive. Moreover, design objectives are 
often in conflict, making conventional methods difficult to apply, and therefore more analysts are 
formalizing their design approach by using optimization. 

2.1.1. Approximating the response 

Response Surface Methodology (or RSM) requires the analysis of a predetermined set of designs. A design 
surface is fitted to the response values using regression analysis. Least squares approximations are 
commonly used for this purpose. The response surfaces are then used to construct an approximate design 
“subproblem” which can be optimized. 

The response surface method relies on the fact that the set of designs on which it is based is well chosen. 
Randomly chosen designs may cause an inaccurate surface to be constructed or even prevent the ability to 
construct a surface at all. Because simulations are often time-consuming and may take days to run, the 
overall efficiency of the design process relies heavily on the appropriate selection of a design set on which 
to base the approximations. For the purpose of determining the individual designs, the theory of 
experimental design (Design of Experiments or DOE) is required. Several experimental design criteria are 
available but one of the most popular for an arbitrarily shaped design space is the D-optimality criterion. 
This criterion has the flexibility of allowing any number of designs to be placed appropriately in a design 
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space with an irregular boundary. The understanding of the D-optimality criterion requires the formulation 
of the least squares problem. 

 

Consider a single response variable y dependent upon a number of variables x. The exact functional 
relationship between these quantities is 

)(xη=y        (2-1) 

The exact functional relationship is now approximated (e.g. polynomial approximation) as 

)()( xx f=η        (2-2) 

The approximating function f is assumed to be a summation of basis functions: 
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where L is the number of basis functions iφ  used to approximate the model. 
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P is the number of experimental points and y is the exact functional response at the experimental points xi. 

The solution to the unknown coefficients is: 
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where X  is the matrix 
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The next critical step is to choose appropriate basis functions. A popular choice is the quadratic 
approximation 
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but any suitable function can be chosen. LS-OPT allows linear, elliptical (linear and diagonal terms), 
interaction (linear and off-diagonal terms) and quadratic functions. 
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2.1.2. Factors governing the accuracy of the response surface 

Several factors determine the accuracy of a response surface [1]. 
1. The size of the subregion 

For problems with smooth responses, the smaller the size of the subregion, the greater the accuracy. For 
the general problem, there is a minimum size at which there is no further gain in accuracy. Beyond this 
size, the variability in the response may become indistinguishable due to the presence of ‘noise’.  

2. The choice of the approximating function 

Higher order functions are generally more accurate than lower order functions. Theoretically, over-
fitting (the use of functions of too high complexity) may occur and result in suboptimal accuracy, but 
there is no evidence that this is significant for polynomials up to second order [1]. 

3. The number and distribution of the design points 

For smooth problems, the prediction accuracy of the response surface improves as the number of points 
is increased. However, this is only true up to roughly 50% oversampling [1] (very roughly). 

2.1.3. Advantages of the method 

Design exploration 
As design is a process, often requiring feedback and design modifications, designers are mostly 
interested in suitable design formulae, rather than a specific design. If this can be achieved, and the 
proper design parameters have been used, the design remains flexible and changes can still be made at a 
late stage before verification of the final design. This also allows multidisciplinary design to proceed 
with a smaller risk of having to repeat simulations. As designers are moving towards computational 
prototyping, and as parallel computers or network computing are becoming more commonplace, the 
paradigm of design exploration is becoming more important. Response surface methods can thus be 
used for global exploration in a parallel computational setting. For instance, interactive trade-off studies 
can be conducted. 

Global optimization 
Response surfaces have a tendency to capture globally optimal regions because of their smoothness and 
global approximation properties. Local minima caused by noisy response are thus avoided. 

2.1.4. Other types of response surfaces  

Neural and Radial Basis Function networks and Kriging approximations can also be used as response 
surfaces and are discussed under the heading of metamodels in Sections 3.1 and 3.2. 

2.2. Experimental design 

Experimental design is the selection procedure for finding the points in the design space that must be 
analyzed. Many different types are available [1]. The factorial, Koshal, composite, D-optimal and Latin 
Hypercube designs are detailed here.  
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2.2.1. Factorial design 

This is a nl  grid of designs and forms the basis of many other designs. l  is the number of grid points in one 
dimension. It can be used as a basis set of experiments from which to choose a D-optimal design. In LS-
OPT, the 3n and 5n designs are used by default as the basis experimental designs for first and second order 
D-optimal designs respectively. 

 

Factorial designs may be expensive to use directly, especially for a large number of design variables. 

2.2.2. Koshal design 

This family of designs is saturated for modeling of any response surface of order d. 

First order model 
For n = 3, the coordinates are: 
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As a result, four coefficients can be estimated in the linear model 

[ ]T
nxx ,...,,1 1=φ        (2-8) 

Second order model 
For n = 3, the coordinates are: 
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As a result, ten coefficients can be estimated in the quadratic model 

T
nnin xxxxxxxx ],...,,...,,,,...,,1[ 2
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2

1=φ      (2-9) 

2.2.3. Central composite design 

This design uses the 2n factorial design, the center point, and the ‘face center’ points and therefore consists 
of P = 2n + 2n + 1 experimental design points. For n = 3, the coordinates are: 
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The points are used to fit a second-order function. The value of 4 2n=α . 

2.2.4. D-optimal design 

This method uses a subset of all the possible design points as a basis to solve XX Tmax . The subset is 

usually selected from an nl -factorial design where l is chosen a priori as the number of grid points in any 
particular dimension. Design regions of irregular shape, and any number of experimental points, can be 
considered [7]. The experiments are usually selected within a sub-region in the design space thought to 
contain the optimum. A genetic algorithm is used to solve the resulting discrete maximization problem. See 
References [1] and [5]. 

 

The numbers of required experimental designs for linear as well as quadratic approximations are 
summarized in the table below. The value for the D-optimality criterion is chosen to be 1.5 times the Koshal 
design value plus one. This seems to be a good compromise between prediction accuracy and computational 



CHAPTER 2: 1BRESPONSE SURFACE METHODOLOGY 

LS-OPT Version 4.3  40 

cost [7]. The factorial design referred to below is based on a regular grid of 2n points (linear) or 3n points 
(quadratic). 

 

Table 2-1: Number of experimental points required for experimental designs 

Linear approximation Quadratic approximation Number of 
Variables n Koshal D-optimal Factorial Koshal D-optimal Factorial 

Central 
Composite 

1 2 4 2 3 5 3 3
2 3 5 4 6 10 9 9
3 4 7 8 10 16 27 15
4 5 8 16 15 23 81 25
5 6 10 32 21 32 243 43
6 7 11 64 28 43 729 77
7 8 13 128 36 55 2187 143
8 9 14 256 45 68 6561 273
9 10 16 512 55 83 19683 531
10 11 17 1024 66 100 59049 1045

 

2.2.5. Latin Hypercube Sampling (LHS) 

The Latin Hypercube design is a constrained random experimental design in which, for n points, the range 
of each design variable is subdivided into n non-overlapping intervals on the basis of equal probability. One 
value from each interval is then selected at random with respect to the probability density in the interval. 
The n values of the first value are then paired randomly with the n values of variable 2. These n pairs are 
then combined randomly with the n values of variable 3 to form n triplets, and so on, until k-tuplets are 
formed. 

 

Latin Hypercube designs are independent of the mathematical model of the approximation and allow 
estimation of the main effects of all factors in the design in an unbiased manner. On each level of every 
design variable only one point is placed. There are the same number of levels as points, and the levels are 
assigned randomly to points. This method ensures that every variable is represented, no matter if the 
response is dominated by only a few ones. Another advantage is that the number of points to be analyzed 
can be directly defined. Let P denote the number of points, and n the number of design variables, each of 
which is uniformly distributed between 0 and 1. Latin hypercube sampling (LHS) provides a P-by-n matrix 
S = Sij that randomly samples the entire design space broken down into P equal-probability regions: 

( ) ,/ PS ijijij ζ−η=       (2-10) 

where Pjj ηη ,...,1  are uniform random permutations of the integers 1 through P and ijζ  independent random 
numbers uniformly distributed between 0 and 1. A common simplified version of LHS has centered points 
of P equal-probability sub-intervals: 
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( ) PS ijij /5.0−η=       (2-11) 

LHS can be thought of as a stratified Monte Carlo sampling. Latin hypercube samples look like random 
scatter in any bivariate plot, though they are quite regular in each univariate plot. Often, in order to generate 
an especially good space filling design, the Latin hypercube point selection S described above is taken as a 
starting experimental design and then the values in each column of matrix S is permuted so as to optimize 
some criterion. Several such criteria are described in the literature. 

Maxi-min 
One approach is to maximize the minimal distance between any two points (i.e. between any two rows 
of S). This optimization could be performed using, for example, Adaptive Simulated Annealing (see 
Section 4.10). The maximin strategy would ensure that no two points are too close to each other. For 
small P, maximin distance designs will generally lie on the exterior of the design space and fill in the 
interior as P becomes larger. See Section 2.2.6 for more detail. 

Centered L2-discrepancy 
Another strategy is to minimize the centered L2-discrepancy measure. The discrepancy is a quantitative 
measure of non-uniformity of the design points on an experimental domain. Intuitively, for a uniformly 
distributed set in the n-dimensional cube nI  = [0,1]n, we would expect the same number of points to be 
in all subsets of nI  having the same volume. Discrepancy is defined by considering the number of 
points in the subsets of nI . Centered L2 (CL2) takes into account not only the uniformity of the design 
points over the n-dimensional box region nI , but also the uniformity of all the projections of points over 
lower-dimensional subspaces: 
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  (2-12) 

2.2.6. Space-filling designs 

In the modeling of an unknown nonlinear relationship, when there is no persuasive parametric regression 
model available, and the constraints are uncertain, one might believe that a good experimental design is a set 
of points that are uniformly scattered on the experimental domain (design space). Space-filling designs 
impose no strong assumptions on the approximation model, and allow a large number of levels for each 
variable with a moderate number of experimental points. These designs are especially useful in conjunction 
with nonparametric models such as neural networks (feedforward networks, radial basis functions) and 
Kriging, [8], [9]. Space-filling points can also be submitted as the basis set for constructing an optimal (D-
Optimal, etc.) design for a particular model (e.g. polynomial). Some space-filling designs are: random Latin 
Hypercube Sampling (LHS), Orthogonal Arrays, and Orthogonal Latin Hypercubes. 
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The key to space-filling experimental designs is in generating 'good' random points and achieving 
reasonably uniform coverage of sampled volume for a given (user-specified) number of points. In practice, 
however, we can only generate finite pseudo-random sequences, which, particularly in higher dimensions, 
can lead to a clustering of points, limiting their uniformity. To find a good space-filling design is a nonlinear 
programming hard problem, which – from a theoretical point of view – is difficult to solve exactly. This 
problem, however, has a representation, which might be within the reach of currently available tools. To 
reduce the search time and still generate good designs, the popular approach is to restrict the search within a 
subset of the general space-filling designs. This subset typically has some good 'built-in' properties with 
respect to the uniformity of a design.  

 

The constrained randomization method termed Latin Hypercube Sampling (LHS) and proposed in [10], has 
become a popular strategy to generate points on the 'box' (hypercube) design region. The method implies 
that on each level of every design variable only one point is placed, and the number of levels is the same as 
the number of runs. The levels are assigned to runs either randomly or so as to optimize some criterion, e.g. 
so that the minimal distance between any two design points is maximized ('maximin distance' criterion). 
Restricting the design in this way tends to produce better Latin hypercubes. However, the computational 
cost of obtaining these designs is high. In multidimensional problems, the search for an optimal Latin 
hypercube design using traditional deterministic methods (e.g. the optimization algorithm described in [11]) 
may be computationally prohibitive. This situation motivates the search for alternatives.  

 

Probabilistic search techniques, adaptive simulated annealing and genetic algorithms are attractive 
heuristics for approximating the solution to a wide range of optimization problems. In particular, these 
techniques are frequently used to solve combinatorial optimization problems, such as the traveling salesman 
problem. Morris and Mitchell [12] adopted the simulated annealing algorithm to search for optimal Latin 
hypercube designs.  

 
In LS-OPT, space-filling designs can be useful for constructing experimental designs for the following 
purposes:  

1. The generation of basis points for the D-optimality criterion. This avoids the necessity to create a 
very large number of basis points using e.g. the full factorial design for large n. E.g. for n=20 and 3 
points per variable, the number of points = 320  ≈ 3.5*109. 

2. The generation of design points for all approximation types, but especially for neural networks and 
Kriging.  

3. The augmentation of an existing experimental design. This means that points can be added for each 
iteration while maintaining uniformity and equidistance with respect to pre-existing points.0. 

LS-OPT contains 6 algorithms to generate space-filling designs (see Table 2-2). Only Algorithm 5 has been 
made available in the graphical interface. LS-OPTui. 
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Figure 2-1: Six space-filling designs: 5 points in a 2-dimensional box region 

 

Table 2-2: Description of space-filling algorithms 

Algorithm  
Number 

Description 

0 Random 
1 'Central point' Latin Hypercube Sampling (LHS) design with random 

pairing  
2 'Generalized' LHS design with random pairing 
3 Given an LHS design, permutes the values in each column of the LHS 

matrix so as to optimize the maximin distance criterion taking into account 
a set of existing (fixed) design points. This is done using simulated 
annealing. Fixed points influence the maximin distance criterion, but are 
not allowed to be changed by Simulated Annealing moves. 

4 Given an LHS design, moves the points within each LHS subinterval 
preserving the starting LHS structure, optimizing the maximin distance 
criterion and taking into consideration a set of fixed points. 

5 Given an arbitrary design (and a set of fixed points), randomly moves the 
points so as to optimize the maximin distance criterion using simulated 
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annealing (see 4.10). 

 

Discussion of algorithms 
The Maximin distance space-filling algorithms 3, 4 and 5 minimize the energy function defined as the 
negative minimal distance between any two design points. Theoretically, any function that is a metric can be 
used to measure distances between points, although in practice the Euclidean metric is usually employed.  

The three algorithms, 3, 4 and 5, differ in their selection of random Adaptive Simulated Annealing moves 
from one state to a neighboring state. For algorithm 3, the next design is always a 'central point' LHS design 
(Eq. 2.21). The algorithm swaps two elements of I, Sij and Skj, where i and k are random integers from 1 to 
N, and j is a random integer from 1 to n. Each step of algorithm 4 makes small random changes to a LHS 
design point preserving the initial LHS structure. Algorithm 5 transforms the design completely randomly - 
one point at a time. In more technical terms, algorithms 4 and 5 generate a candidate state, S ′ , by modifying 
a randomly chosen element Sij of the current design, S, according to:  

ξ+= ijij SS '        (2-13) 

where ξ is a random number sampled from a normal distribution with zero mean and standard deviation 
σξ ∈ [σmin, σmax]. In algorithm 4 it is required that both '

ijS  and ijS  in Eq. (2.23) belong to the same Latin 
hypercube subinterval.  

Notice that maximin distance energy function does not need to be completely recalculated for every iterative 
step of simulated annealing. The perturbation in the design applies only to some of the rows and columns of 
S. After each step we can recompute only those nearest neighbor distances that are affected by the stepping 
procedures described above. This reduces the calculation and increased the speed of the algorithm.  

To perform an annealing run for the algorithms 3, 4 and 5, the values for Tmax and Tmin can be adapted to the 
scale of the objective function according to: 

ETT Δ×= maxmax : ,  
ETT Δ×= minmin :       (2-14) 

where ΔE > 0 is the average value of |E'-E| observed in a short preliminary run of simulated annealing and 
Tmax and Tmin are positive parameters.  

 

The basic parameters that control the adaptive simulated annealing in algorithms 3, 4 and 5 can be 
summarized as follows: 

1. Energy function: negative minimal distance between any two points in the design.  

2. Stepping scheme: depends on whether the LHS property is preserved or not.  

3. Scalar parameters: 0. 

o Parameters for the cooling schedule:  

o scaling factor for the initial (maximal) temperature, Tmax,  
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o scaling factor for the minimal temperature, Tmin,  

o ratio of cost temperature and the parameter temperatures,  

o number of iterations at each temperature, νT.  

o parameter temperature update interval 

o Parameters that control the standard deviation of ξ in (2.13):  

o upper bound, σmax,  

o lower bound, σmin.  

o Termination criteria: o 

maximal number of energy function evaluations, Nit. 

2.2.7. Random number generator 

The Mersenne Twister [13] is used in Neural Network construction and Monte Carlo, Latin Hypercube, 
Space Filling and D-Optimal point selection and probabilistic analysis. The Mersenne Twister (MT19937) is 
a pseudo-random number generator developed by Matsumoto and Nishimura and has the merit that it has a 
far longer period and far higher order of equi-distribution than any other implemented generators. It has 
been proved that the period is 219937-1, and a 623-dimensional equi-distribution property is assured. Features 
have been provided to seed the generator to enable sensitivity studies. 

2.2.8. Reasonable experimental designs 

A ‘reasonable’ design space refers to a region of interest which, in addition to having specified bounds on 
the variables, is also bounded by specified values of the responses. This results in an irregular shape of the 
design space. 

In LS-OPT, constrained experimental designs can be obtained for the D-Optimality criterion as well as for 
Space Filling. 

Reasonable experimental designs can only be obtained using explicit constraints, i.e. constraints which are 
not defined by a metamodel.  

2.3. Model adequacy checking 

As indicated in the previous sections, response surfaces are useful for interactive trade-off studies. For the 
trade-off surface to be useful, its capability of predicting accurate response must be known. Error analysis is 
therefore an important aspect of using response surfaces in design. Inaccuracy is not always caused by 
random error (noise) only, but modeling error (sometimes called bias error), especially in a large subregion 
or where there is strong non-linearity present, could play a very significant role. There are several error 
measures available to determine the accuracy of a response surface. 

2.3.1. Residual sum of squares 

For the predicted response iŷ and the actual response yi, this error is expressed as 
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If applied only to the regression points, this error measure is not very meaningful unless the design space is 
oversampled e.g., ε = 0 if the number of points P equals the number of basis functions L in the 
approximation. 

2.3.2. RMS error 

The residual sum-of-squares is sometimes used in its square root form, RMSε , and called the “RMS error”: 

( )∑
=

−=ε
P

i
iiRMS yy

P 1

2ˆ1

       
(2-16) 

2.3.3. Maximum residual 

This is the maximum residual considered over all the design points and is given by 

ii yy ˆmaxmax −=ε .        (2-17) 

2.3.4. Prediction error 

The same as the RMS error, but using only responses at preselected prediction points independent of the 
regression points. This error measure is an objective measure of the prediction accuracy of the response 
surface since it is independent of the number of construction points. It is important to know that the choice 
of a larger number of construction points will, for smooth problems, diminish the prediction error. 

 

The prediction points can be determined by adding rows to X 
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and solving 

AAXXXX TT
a

T
a += maxmax        (2-19) 

for xp. 

2.3.5. PRESS residuals 

The prediction sum of squares residual (PRESS) uses each possible subset of P – 1 responses as a regression 
data set, and the remaining response in turn is used to form a prediction set [1]. PRESS can be computed 
from a single regression analysis of all P points. 
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where hii are the diagonal terms of 

( ) .1 TT XXXXH −
=        (2-21) 

H is the “hat” matrix, the matrix that maps the observed responses to the fitted responses, i.e. 

.ˆ Hyy =        (2-22) 

The PRESS residual can also be written in its square root form 
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For a saturated design, H equals the unit matrix I so that the PRESS indicator becomes undefined. 

2.3.6. The coefficient of multiple determination R2 

The coefficient of determination R2 is defined as: 
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where P is the number of design points and y , iŷ and yi represent the mean of the responses, the predicted 
response, and the actual response, respectively. This indicator, which varies between 0 and 1, represents the 
ability of the response surface to identify the variability of the design response. A low value of R2 usually 
means that the region of interest is either too large or too small and that the gradients are not trustworthy. 
The value of 1.0 for R2 indicates a perfect fit. However, the value will not warn against an overfitted model 
with poor prediction capabilities. 

2.3.7. R2 for Prediction 

For the purpose of prediction accuracy the 2
predictionR  indicator has been devised [1]. 

,12

yy
prediction S

PRESSR −=       (2-25) 

where 
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2
predictionR  represents the ability of the model to detect the variability in predicting new responses [1]. 

2.3.8. Iterative design and prediction accuracy 

In an iterative scheme with a shrinking region the R2 value tends to be small at the beginning, then 
approaches unity as the region of interest shrinks, thereby indicating improvement of the modeling ability. It 
may then reduce again as the noise starts to dominate in a small region causing the variability to become 
indistinguishable. In the same progression, the prediction error will diminish as the modeling error fades, 
but will stabilize at above zero as the modeling error is replaced by the random error (noise). 

2.4. ANOVA 

Since the number of regression coefficients determines the number of simulation runs, it is important to 
remove those coefficients or variables which have small contributions to the design model. This can be done 
by doing a preliminary study involving a design of experiments and regression analysis. The statistical 
results are used in an analysis of variance (ANOVA) to rank the variables for screening purposes. The 
procedure requires a single iteration using polynomial regression, but results are produced after every 
iteration of a normal optimization procedure. 

2.4.1. The confidence interval of the regression coefficients 

The 100(1 – α)% confidence interval for the regression coefficients Ljb j ,...,1,0=∧  is determined by the 
inequality 

,5.05.0 jjjjj bbbb Δ+≤β≤Δ−        (2-27) 

where 

( ) ,ˆ2 2
,2/ jjLPj Ctb σ=αΔ −α       

 (2-28) 

and 2σ̂  is an unbiased estimator of the variance 2σ  given by 
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jjC  is the diagonal element of ( ) 1−XXT  corresponding to bj and tα/2,P-L is Student’s t-Distribution. 100(1 –
 α)% therefore represents the level of confidence that bj will be in the computed interval. 
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2.4.2. The significance of a regression coefficient bj 

The contribution of a single regressor variable to the model can also be investigated. This is done by means 
of the partial F-test where F is calculated to be 
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ε−ε
= 2

22

       (2-30) 

where r = 1 and the reduced model is the one in which the regressor variable in question has been removed. 
Each of the 2ε  terms represents the sum of squared residuals for the reduced and complete models 
respectively. 

 

It turns out that the computation can be done without analyzing a reduced model by computing 
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F can be compared with the F-statistic Fα,1,P-L so that if F > Fα,1,P-L, βj is non-zero with (100 – α)% 
confidence. The confidence level α that βj is not zero can also be determined by computing the α for 
F = Fα,1,P-L. The importance of βj is therefore estimated by both the magnitude of bj as well as the level of 
confidence in a non-zero βj. 

The significance of regressor variables may be represented by a bar chart of the magnitudes of the 
coefficients bj with an error bar of length )(2 αjbΔ  for each coefficient representing the confidence interval 
for a given level of confidence α. The relative bar lengths allow the analyst to estimate the importance of 
the variables and terms to be included in the model while the error bars represent the contribution to noise or 
poorness of fit by the variable. 

All terms have been normalized to the size of the design space so that the choice of units becomes irrelevant 
and a reasonable comparison can be made for variables of different kinds, e.g. sizing and shape variables or 
different material constants. 
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3. Metamodeling Techniques 

Metamodeling techniques allow the construction of surrogate design models for the purpose of design 
exploration such as variable screening, optimization and reliability. LS-OPT provides the capability of using 
three types of metamodeling techniques, namely polynomial response surfaces (already discussed, see 
Section 2.1), Neural Networks (NN) (Section 3.1.2) and Radial Basis Function Networks (RBF) (Section 
3.1.3). All three of these approaches can be useful to provide a predictive capability for optimization or 
reliability. In addition, linear polynomials, although perhaps less accurate, are highly suitable for variable 
screening (Section 2.4). At the core, these techniques differ in the regression methods employed to construct 
the surrogate models. The polynomial response surface method and the RBF’s use linear regression, while 
neural networks use nonlinear regression methods requiring an optimization algorithm. 

 

When using polynomials, the user is faced with the choice of deciding which monomial terms to include. In 
addition, polynomials, by way of their nature as Taylor series approximations, are not natural for the 
creation of updateable surfaces. This means that if an existing set of point data is augmented by a number of 
new points which have been selected in a local subregion (e.g. in the vicinity of a predicted optimum), better 
information could be gained from a more flexible type of approximation that will keep global validity while 
allowing refinement in a subregion of the parameter space. Such an approximation would provide a more 
natural approach for combining the results of successive iterations.  

 

3.1. Neural networks 

Neural methods are natural extensions and generalizations of regression methods. Neural networks have 
been known since the 1940's, but it took the dramatic improvements in computers to make them practical, 
[3]. Neural networks - just like regression techniques - model relationships between a set of input variables 
and an outcome. Neural networks can be thought of as computing devices consisting of numerical units 
(‘neurons’), whose inputs and outputs are linked according to specific topologies (see the example in Figure 
3-1). A neural model is defined by its free parameters - the inter-neuron connection strengths (‘weights’) 
and biases. These parameters are typically ‘learned’ from the training data by using an appropriate 
optimization algorithm. The training set consists of pairs of input (design) vectors and associated outputs 
(responses). The training algorithm tries to steer network parameters towards minimizing some distance 
measure, typically the mean squared error (MSE) of the model computed on the training data. 
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Several factors determine the predictive accuracy of a neural network approximation and, if not properly 
addressed, may adversely affect the solution. For a neural network, as well as for any other data-derived 
model, the most critical factor is the quality of training data. In practical cases, we are limited to a given 
data set, and the central problem is that of not enough data. The minimal number of data points required for 
network training is related to the (unknown) complexity of the underlying function and the dimensionality 
of design space. In reality, the more design variables, the more training samples are required. In the 
statistical and neural network literature this problem is known as the ‘curse of dimensionality’. Most forms 
of neural networks (in particular, feedforward networks) actually suffer less from the curse of 
dimensionality than some other methods, as they can concentrate on a lower-dimensional section of the 
high-dimensional space. For example, by setting the outgoing weights from a particular input to zero, a 
network can entirely ignore that input – see Figure 3-1. Nevertheless, the curse of dimensionality is still a 
problem, and the performance of a network can certainly be improved by eliminating unnecessary input 
variables. 

  

It is clear that if the number of network free parameters is sufficiently large and the training optimization 
algorithm is run long enough, it is possible to drive the training MSE error as close as one likes to zero. 
However, it is also clear that driving MSE all the way to zero is not a desirable thing to do. For noisy data, 
this may indicate over-fitting rather than good modeling. For highly discrepant training data, zero MSE 
makes no sense at all. Regularization means that some constraints are applied to the construction of the 
neural model with the goal of reducing the 'generalization error', that is, the ability to predict (interpolate) 
the unobserved response for new data points that are generated by a similar mechanism as the observed data. 
A fundamental problem in modeling noisy and/or incomplete data is to balance the 'tightness' of the 
constraints with the 'goodness of fit' to the observed data. This tradeoff is called the bias-variance tradeoff 
in the statistical literature. 

  

A multilayer feedforward network and a radial basis function network are the two most common neural 
architectures used for approximating functions. Networks of both types have a distinct layered topology in 
the sense that their processing units (‘neurons’) are divided into several groups ('layers'), the outputs of each 
layer of neurons being the inputs to the next layer (Figure 3-1). 

  

In a feedforward network, each neuron performs a biased weighted sum of their inputs and passes this value 
through a transfer (activation) function to produce the output. Activation function of intermediate ('hidden') 
layers is generally a Sigmoidal function (Figure 3-2), while network input and output layers are usually 
linear (transparent). In theory, such networks can model functions of almost arbitrary complexity, see [4] 
and [5]. All parameters in a feedforward network are usually determined at the same time as part of a single 
(non-linear) optimization strategy based on the standard gradient algorithms (the steepest descent, RPROP, 
Levenberg-Marquardt, etc.). The gradient information is typically obtained using a technique called 
backpropagation, which is known to be computationally effective [6]. For feedforward networks, 
regularization may be done by controlling the number of network weights (‘model selection’), by imposing 
penalties on the weights (‘ridge regression’) [7], or by various combinations of these strategies [8]. 

  

A radial basis function network has a single hidden layer of radial units, each actually modeling a response 
function, peaked at the center, and monotonically varying outwards (Figure 3-3). Each unit responds (non-
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linearly) to the distance of points from its center. The RBF network output layer is typically linear. 
Intuitively, it is clear that a weighted sum of the sufficient radial units will always be enough to model any 
set of training data (see Figure 3-4 and Figure 3-5). The formal proofs of this property can be found, for 
example, in [9] and [10]. An RBF network can be trained extremely quickly, orders of magnitude faster than 
a feedforward network. The training process typically takes place in two distinct stages. First, the centers 
and deviations of the radial units (i.e. the hidden layer's weights) must be set; then the linear output layer is 
optimized. It is important that deviations are chosen so that RBFs overlap with some nearby units. 
Discovering a sub-optimal ‘spread’ parameter typically implies the preliminary experimental stage. If the 
RBFs are too spiky, the network will not interpolate between known points (see Figure 3-6). If the RBFs are 
very broad, the network loses fine detail ( 

Figure 3-7). This is actually another manifestation of the over/under-fitting dilemma. 

  

In the final shape, after training, a multilayer neural network with linear output (Figure 3-1) can resemble a 
general linear regression model - a least squares approximation. The major differences lie in the choice of 
basis functions and in the algorithms to construct the model (i.e. to adjust model's free parameters). 
Techniques to identify the systematical errors in the model and to estimate the uncertainty of model’s 
prediction of future observations also become more complex. Unlike polynomial regressors, hidden neurons 
do not lend themselves to immediate interpretations in terms of input (design) variables. 

  

The next sections discuss various goodness-of-fit assessment approaches applicable to neural networks. We 
also discuss how to estimate the variance of the neural model and how to compute derivatives of a neural 
network with respect to any of its inputs. Two neural network types, feedforward and radial basis, are 
considered. 

 

Figure 3-1: Schematic of a neural network with 2 inputs and a hidden layer of 4 neurons with activation 
function f.  
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Figure 3-2: Sigmoid transfer function 
y=1/(1+exp(-x)) typically used with feedforward 
networks 

 

Figure 3-3: Radial basis transfer function y=exp(-
x2)  

 

 

 

Figure 3-4: Weighted sum of radial basis transfer 
functions. Three radial basis functions (dashed 
lines) are scaled and summed to produce a 
function (solid line). 

 
 
 

Figure 3-5: A radial basis network approximation 
(solid line) of the function, which fits the 21 data 
points (plus symbols). 
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Figure 3-6: The same 21 data points as in Figure 
3-5. Test points reveal that the function has been 
overfit. RBF neuron's spread is too small. RBF 
network could have done better with a higher 
spread constant.  

Figure 3-7: The same 21 data points as in Figure 
3-5. Approximation with overlapping RBF 
neurons. The spread of RBF units is too high.  

 

3.1.1. Model adequacy checking 

Nature is rarely (if ever) perfectly predictable. Real data never exactly fit the model that is being used. One 
must take into consideration that the prediction errors not only come from the variance error due to the 
intrinsic noise and unreliabilities in the measurement of the dependent variables but also from the systematic 
(bias) error due to model mis-specification. According to George E.P. Box's famous maxim, "all models are 
wrong, some are useful". To be genuinely useful, a fitting procedure should provide the means to assess 
whether or not the model is appropriate and to test the goodness-of-fit against some statistical standard. 
There are several error measures available to determine the accuracy of the model. Among them are: 
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where P denotes the number of data points, yi is the observed response value (’target value’), iŷ  is the 

model’s prediction of response, ŷ  is the mean (average) value of ŷ , y  is the mean (average) value of y, 
and 2σ̂ is given by 
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Mean squared error (MSE for short) and root mean squared error (RMS) summarize the overall model error. 
Unique or rare large error values can affect these indicators. Sometimes, MSE and RMS measures are 
normalized with sample variance of the target value (see formulae for nMSE and nRMS) to allow for 
comparisons between different datasets and underlying functions. R2 and R are relative measures. The 
coefficient of multiple determination R2 (’R-square’) is the explained variance relative to the total variance 
in the target value. This indicator is widely used in linear regression analysis. R2 represents the amount of 
response variability explained by the model. R is the correlation coefficient between the network response 
and the target. It is a measure of how well the variation in the output is explained by the targets. If this 
number is equal to 1, then there is a perfect correlation between targets and outputs. Outliers can greatly 
affect the magnitudes of correlation coefficients. Of course, the larger the sample size, the smaller is the 
impact of one or two outliers. 

 

Training accuracy measures (MSE, RMS, R2, R, etc.) are computed along all the data points used for 
training. As mentioned above, the performance of a good model on the training set does not necessarily 
mean good prediction of new (unseen) data. The objective measures of the prediction accuracy of the model 
are test errors computed along independent testing points (i.e. not training points). This is certainly true 
provided that we have an infinite number of testing points. In practice, however, test indicators are usable, 
only if treated with appropriate caution. Actual problems are often characterized by the limited availability 
of data, and when the training datasets are quite small and the test sets are even smaller, only quite large 
differences in performance can be reliably discerned by comparing training and test indicators. 

 

The generalized cross-validation (GCV) [11] and Akaike’s final prediction error (FPE) [12] provide 
computationally feasible means of estimating the appropriateness of the model. The k-fold cross-validation 
(denoted here as CV-k), generalized cross-validation (GCV) [11] and Akaike's final prediction error (FPE) 
[12] provide computationally feasible means of estimating the appropriateness of the model.  

 

GCV and FPE estimates combine the training MSE with a measure of the model complexity: 

( ) ,/1 2PMSEMSEGCV ν−=         (3-5) 

,GCVGCV MSERMS = ;ˆ 2σGCVGCV MSEnMSE =       .ˆ 2σ= GCVGCV RMSnRMS   (3-6) 

( ) ( ),/1/1 PPMSEMSEFPE νν −+=         (3-7) 

,FPEFPE MSERMS = ;ˆ 2σFPEFPE MSEnMSE =       .ˆ 2σ= FPEFPE RMSnRMS   (3-8) 

where ν is the (effective) number of model parameters. 
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In theory, GCV estimates should be related to ν. As a very rough approximation to ν, we can assume that all 
of the network free parameters are well determined so that ν = M, where M is the total number of network 
weights and biases. This is what we would expect to be the case for large P so that P >> M. Note that GCV 
is undefined when ν is equal to the number of training points (P). In theory, GCV and FPE estimates should 
be related to the effective number of model's parameters ν. Techniques to assess ν for neural networks will 
be discussed later. As a very rough approximation, we can assume that all of the network free parameters 
are well determined so that ν = M, where M is the total number of network weights and biases. This is what 
we would expect to be the case for large P so that P >> M. Note that both GCV and FPE are undefined 
when the effective number of model's parameters (ν) is equal to the number of training points (P). GCV and 
FPE measures are asymptotically equivalent for large P. 

 

In k-fold cross-validation the training dataset is divided into k randomly selected disjoint subsets of roughly 
equal size P(j). The model is trained and tested k times. Each time kj ,...,1=  it is trained on all data except 
for points from subset j and then tested on j-th subset. Formally, let )()()( ,...,1),( jj

i
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,kCVkCV MSERMS −− = ;ˆ 2σ= −− kCVkCV MSEnMSE       .ˆ 2σ= −− kCVkCV RMSnRMS (3-10) 

The CV estimate is a random number that depends on the division into folds. Repeating cross-validation 
multiple times using different splits into folds provides a better approximation to complete N-fold cross-
validation (leave-one-out). Leave-one-out measure is almost unbiased, but for typical real world datasets it 
has high variance, leading to unreliable estimates. Small datasets are simply not suitable for CV estimates, 
since data distribution can change considerably after we separate out even a small portion of data. In 
addition, the CV approach is usually too expensive. The question is whether the advantages of CV (if any) 
are big enough to justify the computational cost of training multiple networks rather than one. 

 

Anyway, no accuracy estimation can be correct all the time. Most probably it is impossible to evaluate a 
model by means of a single descriptive measure. We should always consider several accuracy measures 
when deciding on the appropriateness of the model, especially if this model is trained on noisy and/or 
incomplete data. In certain cases the crucial phase of integrating disparate measures into a single judgment 
could be delegated to a statistical decision-making tool. Of course, when the quantity of data required for 
statistical methods is simply not available, human experts' knowledge should be used for the really big 
decisions. 

3.1.2. Feedforward neural networks 

Feedforward (FF) neural networks have a distinct layered topology. Each unit performs a biased weighted 
sum of their inputs and passes this value through a transfer (activation) function to produce the output. The 
outputs of each layer of neurons are the inputs to the next layer. In a feedforward network, the activation 
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function of intermediate (’hidden’) layers is generally a sigmoidal function (Figure 3-3), network input and 
output layers being linear. Consider a FF network with K inputs, one hidden layer with H sigmoid units and 
a linear output unit. For a given input vector ( )Kxx ,...,1=x  and network weights 

( )HKH WWWWWW ,...,,,...,, 1110,10=W , the output of the network is: 
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where ( ).1/1)( xexf −+=  

The computational graph of Eq. (3-11) is shown schematically in Figure 3-1. The extension to the case of 
more than one hidden layers can be obtained accordingly. It is straightforward to show that the derivative of 
the network Eq. (3-11) with respect to any of its inputs is given by: 
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Neural networks have been mathematically shown to be universal approximators of continuous functions 
and their derivatives (on compact sets) [4]. In other words, when a network (5) converges towards the 
underlying function, all the derivatives of the network converge towards the derivatives of this function. 

 

Standard non-linear optimization techniques including a variety of gradient algorithms (the steepest descent, 
RPROP, Levenberg-Marquardt, etc.) are applied to adjust FF network’s weights and biases. For neural 
networks, the gradients are easily obtained using a chain rule technique called ‘backpropagation’ [6]. The 
second-order Levenberg-Marquardt algorithm appears to be the fastest method for training moderate-sized 
FF neural networks (up to several hundred adjustable weights) [3]. However, when training larger networks, 
the first-order RPROP algorithm becomes preferable for computational reasons [13].  

 

Regularization: For FF networks, regularization may be done by controlling the number of network weights 
(’model selection’), by imposing penalties on the weights (’ridge regression’), or by various combinations of 
these strategies ([7], [8]). Model selection requires choosing the number of hidden units and, sometimes, the 
number of network hidden layers. Most straightforward is to search for an ’optimal’ network architecture 
that minimizes MSEGCV, MSEFPE or MSECV–k. Often, it is feasible to loop over 1, 2,... hidden units and 
finally select the network with the smallest GCV error. In any event, in order for the GCV measure to be 
applicable, the number of training points P should not be too small compared to the required network size 
M. 

 

Over-fitting: To prevent over-fitting, it is always desirable to find neural solutions with the smallest number 
of parameters. In practice, however, networks with a very parsimonious number of weights are often hard to 
train. The addition of extra parameters (i.e. degrees of freedom) can aid convergence and decrease the 
chance of becoming stuck in local minima or on plateaus [14]. Weight decay regularization involves 
modifying the performance function F, which is normally chosen to be the mean sum of squares of the 
network errors on the training set (Eq. 3-1). When minimizing MSE (Eq. 3-1) the weight estimates tend to 
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be exaggerated. We can impose a penalty for this tendency by adding a term that consists of the sum of 
squares of the network weights (see also (Eq. 3-1)): 

,WD EEF α+β=         (3-13) 

where 

( ) ,ˆ5.0
1

2∑
=

−=
P

i
iiD yyE

      
,5.0

1

2∑
=

=
M

i
iW WE

         

where M is the number of weights and P the number of points in the training set. 

 

Notice that network biases are usually excluded from the penalty term EW. Using the modified performance 
function (Eq. 3-13) will cause the network to have smaller weights, and this will force the network response 
to be smoother and less likely to overfit. This eliminates the guesswork required in determining the 
optimum network size. Unfortunately, finding the optimal value for α and β is not a trivial task. If we make 
α /β too small, we may get over-fitting. If α /β is too large, the network will not adequately fit the training 
data. A rule of thumb is that a little regularization usually helps [15]. It is important that weight decay 
regularization does not require that a validation subset be separated out of the training data. It uses all of the 
data. This advantage is especially noticeable in small sample size situations. Another nice property of 
weight decay regularization is that it can lend numerical robustness to the Levenberg-Marquardt algorithm. 
The L-M approximation to the Hessian of Eq. (3-13) is moved further away from singularity due to a 
positive addend to its diagonal: 
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In [3], [16], [17]and [18] the Bayesian (’evidence framework’ or ’type II maximum likelihood’) approach to 
regularization is discussed. The Bayesian re-estimation algorithm is formulated as follows. At first, we 
choose the initial values for α and β. Then, a neural network is trained using a standard non-linear 
optimization algorithm to minimize the error function (Eq. 3-13). After training, i.e. in the minimum of Eq. 
(3-13), the values for α and β are re-estimated, and training restarts with the new performance function. 
Regularization hyper-parameters are computed in a sequence of 3 steps: 
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where λm, m = 1,…,M are (positive) eigenvalues of matrix H in Eq. (3-14), ν is the estimate of the effective 
number of parameters of a neural network, 

;2 WEν=α  

( ) .2 DEP ν−=β  

It should be noted that the algorithm (Eq. 3-15) relies on numerous simplifications and assumptions, which 
hold only approximately in typical real-world problems [19]. In the Bayesian formalism a trained network is 
described in terms of the posterior probability distribution of weight values. The method typically assumes a 
simple Gaussian prior distribution of weights governed by an inverse variance hyper-parameter 

2/1 weightsσ=α . If we present a new input vector to such a network, then the distribution of weights gives rise 
to a distribution of network outputs. There will be also an addend to the output distribution arising from the 
assumed β=σ /12

noise Gaussian noise on the output variables: 

( ) ( ).,0 2
noiseNyy σ+= x  

With these assumptions, the negative log likelihood of network weights W given P training points 
x(1), … , x(P) is proportional to MSE (Eq. 3-1)), i.e., the maximum likelihood estimate for W is that which 
minimizes (Eq. 3-1) or, equivalently, ED. In order for Bayes estimates of α and β to do a good job of 
minimizing the generalization in practice, it is usually necessary that the priors on which they are based are 
realistic. The Bayesian formalism also allows us to calculate error bars on the network outputs, instead of 
just providing a single ’best guess’ output ŷ . Given an unbiased model, minimization of the performance 
function (Eq. 3-1) amounts to minimizing the variance of the model. The estimate for output variance 2

|ˆ xyσ  
of the network at a particular point x is given by: 

( ) ( ).12
|ˆ xgAxg −≈σ T
xy          (3-16) 

Equation (3-16) is based on a second-order Taylor series expansion of Eq. (3-13) around its minimum and 
assumes that W∂∂ŷ  is locally linear. 

Variability of Feedforward neural networks 

Neural networks have a natural variability because of the following reasons [20]: 

1. Local behavior of the neural network training algorithms 

2. Uncertainty (noise) in the training data.0. 
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The neural network training error function usually has multiple local and global minima. With different 
initial weights, the training algorithm typically ends up in different (but usually almost equally good/bad) 
local minima. The larger the amount of noise in the data, the larger is the difference between these NN 
solutions. The user is allowed to specify a neural network committee to find the average net and quantify the 
variability (Section 13.1.3). The starting weights for network training are randomly generated using a user-
specified seed to ensure repeatability (see Section 2.2.7). 

3.1.3. Radial basis function networks 

A radial basis function neural network has a distinct 3-layer topology. The input layer is linear (transparent). 
The hidden layer consists of non-linear radial units, each responding to only a local region of input space. 
The output layer performs a biased weighted sum of these units and creates an approximation of the input-
output mapping over the entire space.  

 

While several forms of radial basis function are considered in the literature, the most common functions are 
the Hardy’s multi-quadrics and the Gaussian basis function. These are given as: 

 

Hardy’s multi-quadric:  

( ) ( )./1,..., 22
1 hKh rxxg σ+=        (3-17) 

Gaussian:  
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The activation of hth radial basis function is determined by the Euclidean distance ( )∑
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between the input vector ( )Kxx ,...,1=x  and RBF center ( )hkhh WWW ,...,1=   in K-dimensional space. The 
Gaussian basis function is a localized function (peaked at the center and descending outwards) with the 
property that 0→hg  as ∞→r . Parameter hσ  controls the smoothness properties of the RBF unit.  

 

For a given input vector x the output of RBF network with K inputs and a hidden layer with H basis 
function units is given by (see also Eqs. 3-17 and 3-18):  
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Notice that hidden layer parameters ( )hkhh WWW ,...,1=  represent the center of hth radial unit, while 0hW  
corresponds to its deviation. Parameters 0W  and HWW ,...,1  are the output layer's bias and weights, 
respectively. 

 

A linear super-position of localized functions as in (13) is capable of universal approximation. The formal 
proofs of this property can be found, for example, in [9] and [10]. It is straightforward to show that the 
derivative of the network (13) with respect to any of its inputs is given by: 

( ) ,,...,1,)(2
1

'
0 KkfWxWW

x
Y H

h
hhkkhh

k

=⋅−⋅=
∂
∂ ∑

=

ρ                                     (3-20) 

where 'f  denotes the first derivative of the transfer function ( ) ).exp(: ' ρρ −−=ff  

  

Theory tells us that when a network (Eq. 3-19) converges towards the underlying function, all the 
derivatives of the network converge towards the derivatives of this function.  

 

A key aspect of RBF networks, as distinct from feedforward neural networks, is that they can be interpreted 
in a way which allows the hidden layer parameters (i.e. the parameters governing the radial functions) to be 
determined by semi-empirical, unsupervised training techniques. Accordingly, although a radial basis 
function network may require more hidden units than a comparable feedforward network, RBF networks 
can be trained extremely quickly, orders of magnitude faster than FF networks. 

  

For RBF networks, the training process generally takes place in two distinct stages. First, the centers and 
deviations of the radial units (i.e. hidden layer parameters HKWW ,...,11  and 010 ,..., HWW ) must be set. All the 
basis functions are then kept fixed, while the linear output layer (i.e., HWW ,...,0 ) is optimized in the second 
phase of training. In contrast, all of the parameters in a FF network are usually determined at the same time 
as part of a single training (optimization) strategy. Techniques for selecting HKWW ,...,11  and 010 ,..., HWW  are 
discussed at length in following paragraphs. Here we shall assume that the RBF parameters have already 
been chosen, and we focus on the problem of optimizing the output layer weights.  

 

Mathematically, the goal of output layer optimization is to minimize a performance function, which is 
normally chosen to be the mean sum of squares of the network errors on the training set (Eq. 3-1). If the 
hidden layer's parameters HKWWW ,...,11,10  in (3.4-2) are kept fixed, then the performance function (Eq. 3-1) 
is a quadratic function of the output layer' parameters HWW ,...,0  and its minimum can be found in terms of 
the solution of a set of linear equations (e.g., using singular value decomposition). The possibility of 
avoiding the need for time-consuming and costly non-linear optimization during training is one of the major 
advantages of RBF networks over FF networks. However, when the number of optimized parameters 
( 1+H , in our case) is small enough, non-linear optimization (Levenberg-Marquardt, etc.) may also be cost-
effective.  



CHAPTER 3: 2BMETAMODELING TECHNIQUES 
 

LS-OPT Version 4.3  63 

It is clear that the ultimate goal of RBF neural network training is to find a smooth mapping which captures 
the underlying systematic aspects of the data without fitting the noise. However, for noisy data, the exact 
RBF network, which passes exactly through every training data point, is typically a highly oscillatory 
function. There are a number of ways to address this problem. By analogy with FF network training, one 
can add to (Eq. 3-1) a regularization term that consists of the mean of the sum of squares of the optimized 
weights. In conventional curve fitting this form of regularization is called ridge regression. The sub-optimal 
value for hyperparameters α and β in (3-13) can be found by applying Bayesian re-estimation formulae (Eq. 
3-14) - (Eq. 3-15). It is also feasible to iterate over several trial values of α and β.  

 

For RBF networks, however, the most effective regularization methods are probably those pertaining to 
selecting radial centers and deviations in the first phase of RBF training. The commonly held view is that 
RBF centers and deviations should be chosen so as to form a representation of the probability density of the 
input data. The classical approach is to set RBF centers equal to all the input vectors from the training 
dataset. The width parameters hσ  are typically chosen – rather arbitrarily – to be some multiple σS  of the 
average spacing between the RBF centers (e.g. to be roughly twice the average distance). This ensures that 
the RBF's overlap to some degree and hence give a relatively smooth representation of data. 

  

To simplify matters, the same value of the width parameter hσ  for all RBF units is usually considered. 
Sometimes, instead of using just one value for all RBF's, each RBF unit's deviation hσ  is individually set to 
the distance to its NN <<σ  nearest neighbors. Hence, deviations hσ  become smaller in densely populated 
areas of space, preserving fine detail, and are higher in sparse areas of space, interpolating between points 
where necessary. Again the choice of σN  is somewhat arbitrary. RBF networks with individual radial 
deviations hσ  can be particularly useful in situations where data tend to cluster in only a small subregion of 
the design space (for example, around the optimum of the underlying system which RSM is searching for) 
and are sparse elsewhere.  

 

One must take into consideration that after the first phase of RBF training is over, there's no way to 
compensate for large inaccuracies in radial deviations hσ  by, say, adding a regularization term to the 
performance function. If the basis functions are too spiky, the network will not interpolate between known 
points, and thus, will lose the ability to generalize. If the Gaussians are very broad, the network is likely to 
lose fine detail. The popular approach to find a sub-optimal spread parameter is to loop over several trial 
values of σS  and σN , and finally select the RBF network with the smallest GCV (FPE, CV-k) error. This is 
somewhat analogous to searching for an optimal number of hidden units of a feedforward neural network. 

  

In order to eliminate all the guesswork required in determining RBF deviations, it might seem natural to 
treat 010 ,..., HWW  ( Hσσ ,...,1 , to be precise) in (Eqs. 3-17 and 3-18) as adjustable parameters, which are 
optimized in the second phase of training along with the output layer's weights and bias. Practical 
applications of this approach, however, are rare. The reason may be that it requires the use of a non-linear 
optimization method in combination with a sophisticated regularization scheme specially designed so as to 
guarantee that the radial functions will remain localized. 
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 It should be noted that RBF networks may have certain difficulties if the number of RBF units (H) is large. 
This is often the case in multidimensional problems. The difficulty arises because for a large number of 
RBF's, a large number of training samples are required in order to ensure that the neural network parameters 
are properly determined. A large number of RBF units also increase the computation time spent on 
optimization of the network output layer and, consequently, the RBF architecture loses its main (if not the 
only one) advantage over FF networks – fast training. 

  

Radial basis function networks actually suffer more from the curse of dimensionality than feedforward 
neural networks. To explain this statement, consider the effect of adding an extra, perfectly spurious input 
variable to a network. A feedforward network can learn to set the outgoing weights of the spurious input to 
zero, thus ignoring it. An RBF network has no such luxury: data in the relevant lower-dimensional space get 
‘smeared’ out through the irrelevant dimension, requiring larger numbers of units to encompass the 
irrelevant variability.  

 

In principle, the number of RBF's (H) need not equal the number of training samples (P), and RBF units are 
not constrained to be centered on the training data points. In fact, when data contain redundant information, 
we do not need all data points in learning. One simple procedure for selecting RBF centers is to set them 
equal to a random subset of the input vectors from the training set. Since they are randomly selected, they 
will 'represent' the distribution of the (redundant) training data in a statistical sense. Of course, H and P 
should not be too small in this case. 

  

It is clear, however, that the optimal choice of RBF centers based on the input data alone need not be 
optimal for representing the input-output mapping as reflected in the observed data. In order to overcome 
these limitations, the selection procedure should take into account the output values, or at least, approximate 
estimates (assumptions) of the global behavior of the underlying system. The common neural term for such 
techniques involving output values is ‘active learning’. In the context of active learning, RBF networks can 
be thought of as DOE metamodels analogous to polynomials, [16] and [19]. Given a candidate list of points, 
an active learner is searching for the 'best' points in order to position RBF centers. Popular in neural 
applications is to treat RBF active learning as 'pruning' technique intended for identifying critical data and 
discarding redundant points, or more accurately, not selecting some training points as RBF centers. RBF 
active learning methods are being successfully applied to approximate huge datasets that come from natural 
stochastic processes. It is questionable, however, whether active learning can be useful for non-redundant 
datasets, specifically for RSM design sets generated by performing DOE analysis based on low-order 
polynomial metamodels. 

  

To briefly summarize, parameters governing radial units (radial centers and deviations) play a key role in 
generalization performance of a RBF model. The appropriate selection of RBF centers implies that we 
choose a minimal number of training data points that carry enough information to build an adequate input-
output representation of the underlying function. Unfortunately, this is easier said than done. Indeed, there is 
a general agreement that selecting RBF centers and deviations is more Art than Science. 
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3.2. Kriging* 

Kriging is named after D. G. Krige [22], who applied empirical methods for determining true ore grade 
distributions from distributions based on sampled ore grades. In recent years, the Kriging method has found 
wider application as a spatial prediction method in engineering design. Detailed mathematical formulations 
of Kriging are given by Simpson [23] and Bakker [24].  

 

The basic postulate of this formulation [23] is: 

( ) ( ) ( ),xxx Zfy +=        (3-21) 

where y is the unknown function of interest, f(x) is a known polynomial and Z(x) is the stochastic 
component with mean zero and covariance: 

Cov[Z(xi),Z(xj)] =  σ 2R([R(xi,xj)]).       (3-22) 

With L the number of sampling points, R is the L x L correlation matrix with R(xi,xj) the correlation 
function between data points xi and xj. R is symmetric positive definite with unit diagonal.  

 

Two commonly applied correlation functions used are: 

1. Exponential:   ( )∏
=

Θ−=
n

k
kk dR

1

exp  and 

2. Gaussian:    ( ).exp
1

2∏
=

Θ−=
n

k
kk dR 0. 

where n is the number of variables and dk = xk
i – xk 

j, the distance between the kth components of points xi 
and xj

 . There are n unknown Θ -values to be determined. The default function in LS-OPT is Gaussian. 

 

Once the correlation function has been selected, the predicted estimate of the response ŷ(x) is given by: 

ŷ = β̂  + rT(x)R-1(y-f β̂ )       (3-23) 

where rT(x) is the correlation vector (length L) between a prediction point x and the L sampling points, y 
represents the responses at the L points and f is a L-vector of basis functions (ones, if f(x) is taken as a 
constant). One can choose either a constant, linear, or quadratic basis function in LS-OPT. The default 
choice is the constant basis function.  

The vector r and scalar β̂  are given by: 

rT(x) = [R(x,x1),R(x,x2),…,R(x,xL)]T  

β̂  = (f TR -1f)-1f TR -1y. 
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The estimate of variance from the underlying global model is: 

( ) ( ).ˆˆ1ˆ 12 ββσ fyfy −−= −R
L

T
 

The maximum likelihood estimates for kΘ , k = 1,…, n can be found by solving the following constrained 
maximization problem: 

( ) ( )[ ],lnˆln
2
1max 2 R+−=ΘΦ σL  subject to .0 kk ∧>Θ  

where both σ̂  and R | are functions of Θ . This is the same as minimizing 

( ) .0:,ˆ /12 >ΘR tosubjectnσ  

This optimization problem is solved using the real-coded genetic algorithm (Section 4.8). A small constant 
number is adaptively added to the diagonal of matrix R to avoid ill-conditioning. The net effect is that the 
approximating functions might not interpolate the observed response values exactly. However, these 
observations are still closely approximated. 

3.3. Concluding remarks: which metamodel? 

There is little doubt that the polynomial-based response surfaces are very robust, especially for sequential 
optimization methods. A negative aspect of using polynomials is the fact that the user is obliged to choose 
the order of polynomial. Also, a greater possibility exists for bias error of a nonlinear response. They are 
also, in most cases, not suitable for updating in sequential methods. Linear approximations may only be 
useful within a certain subregion and therefore quadratic polynomials or other higher order approximations 
such as RBF networks may be required for greater global accuracy. However the linear SRSM method has 
proved to be excellent for sequential optimization and can be used with confidence [25][26][27]. 

 

RBF Networks appear to be generally the best of the neural networks metamodels. They have the following 
advantages: 

o Higher prediction accuracy due to built-in cross validation. Although FF networks may appear more 
accurate due to a smaller fitting error (RMSE), their prediction error is generally larger than that of 
RBF networks. An appealing plot of predicted vs. computed responses showing the training points or 

2R values approaching unity or small RMS error values should not be construed as representing a 
higher accuracy. 

o Higher speed due to their linear nature. When sizable FF committees (e.g. with 9 members) are used 
they may be vastly more expensive to construct than RBF networks. This is true especially for a 
relatively small number of variables. 

o Relative independence of the calculation time with respect to the number of functions. Although 
there is a slight overhead which depends on this number, the user does not have to be as careful with 
limiting the number of responses. 
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FF Neural Networks function well as global approximations and no serious deficiencies have been observed 
when used as prescribed in Section 4.5. FF networks have been used for sequential optimization [27] and 
can be updated during the process. A more recent study [28] which focuses on the accuracy comparison for 
FF neural networks and RBF networks for different types of optimization strategies concluded that, for 
crashworthiness analysis, RBF and FF metamodels are mostly similar in terms of the accuracy of a large 
number of checkpoint results. However, the same study showed that Neural Networks are sometimes better 
than RBF networks for smooth problems. As mentioned earlier, RBF networks have a distinct speed 
advantage. Reference [28] also assesses the use of FF committees and concludes that, although expensive, 
there are some cases where they may be necessary. 

 

Although the literature seems to indicate that Kriging is one of the more accurate methods [23], there is 
evidence of Kriging having fitting problems with certain types of experimental designs [29]. Kriging is very 
sensitive to noise, since it interpolates the data [30]. The authors of this manual have also experienced fitting 
problems with non-smooth surfaces (Z(x) observed to peak at data points) in some cases, apparently due to 
large values of Θ  that may be due to local optima of the maximum likelihood function. The model 
construction can be very time consuming [30] (also experienced with LS-OPT). Furthermore, the slight 
global altering of the Kriging surface due to local updating has also been observed [27]. Some efforts have 
been made in LS-OPT to reduce the effect of clustering of points.  

 

Reference [27] compares the use of three of the metamodeling techniques for crashworthiness optimization. 
This paper, which incorporates three case studies in crashworthiness optimization, concludes that while 
RSM, NN and Kriging were similar in performance, RSM and NN were shown to be the most robust for this 
application. RBF networks were not available at the time of that study and Kriging has also been improved 
in the mean time. 
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4. Optimization 

4.1. Theory of optimization 

Optimization can be defined as a procedure for “achieving the best outcome of a given operation while 
satisfying certain restrictions” [1]. This objective has always been central to the design process, but is now 
assuming greater significance than ever because of the maturity of mathematical and computational tools 
available for design. 

 
Mathematical and engineering optimization literature usually presents the above phrase in a standard form 
as 
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where f, g and h are functions of independent variables x1, x2, x3, …, xn. The function f, referred to as the 
cost or objective function, identifies the quantity to be minimized or maximized. The functions g and h are 
constraint functions representing the design restrictions. The variables collectively described by the vector x 
are often referred to as design variables or design parameters. 

The two sets of functions gj and hk define the constraints of the problem. The equality constraints do not 
appear in any further formulations presented here because algorithmically each equality constraint can be 
represented by two inequality constraints in which the upper and lower bounds are set to the same number, 
e.g. 

0)(00)( ≤≤≈= xx kk hh       (4-2) 

Equations (2.1) then become 
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The necessary conditions for the solution *x  to Eq. (2.3) are the Karush-Kuhn-Tucker optimality 
conditions: 
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       (4-4) 

These conditions are derived by differentiating the Lagrangian function of the constrained minimization 
problem 

).()()( xλxx gfL T+=        (4-5) 

and applying the conditions 

)optimality(0* ≥∂∇ xfT
       (4-6) 

and 

ty)(feasibili0* ≤∂∇ xgT
        (4-7) 

to a perturbation *x∂ . jλ  represents the Lagrange multiplier which may be nonzero only if the 

corresponding constraint is active, i.e.  0)( * =xjg . For *x to be a local constrained minimum, the Hessian 

of the Lagrangian function, )()( *2*2 xgx ∇λ+∇ Tf  on the subspace tangent to the active constraint g  must 
be positive definite at *x . 

 

These conditions are not used explicitly in LS-OPT and are not tested at optima. They are more of 
theoretical interest in this manual, although the user should be aware that some optimization algorithms are 
based on these conditions. 

4.2. Normalization of constraints and variables 

It is a good idea to eliminate large variations in the magnitudes of design variables and constraints by 
normalization.  

 

Constraints. In LS-OPT, a typical constraint is formulated as follows: 

.,...,2,1;)( mjUgL jjj =≤≤ x        (4-8) 

 

This inequality represents two constraints: 
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.,...,2,1);( mjgL jj =≤ x       (4-9) 

.,...,2,1;)( mjUg jj =≤x         

which, when normalized, become: 
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A feature is provided in the GUI to automatically switch on constraint scaling using a single check box. As 

in Equation .,...,2,1;
)(

1 mj
L
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j

j =≤
x

        (4-10), the values of the 

bounds, jL  and jU are used as default scale factors, but can be selected.  

Variables. The design variables have been normalized internally by scaling the design space [xL ; xU] to 
[0;1], where xL is the lower and xU the upper bound. The formula 

.
iLiU

iLi
i xx
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=ξ
      

(4-11) 

is used to transform each variable xi to a normalized variable, iξ . 

4.3. Gradient computation and the solution of optimization problems 

Solving the optimization problem requires an optimization algorithm. The list of optimization methods is 
long and the various algorithms are not discussed in any detail here. For this purpose, the reader is referred 
to the texts on optimization, e.g. [1] or [2]. It should however be mentioned that the Sequential Quadratic 
Programming method is probably the most popular algorithm for constrained optimization and is considered 
to be a state-of-the-art approach for structural optimization [3], [4]. In LS-OPT, the subproblem is optimized 
by an accurate and robust gradient-based algorithm: the dynamic leap-frog method [5]. Both these 
algorithms and most others have in common that they are based on first order formulations, i.e. they require 
the first derivatives of the component functions 

iji dxdgdxdf and  

to construct the local approximations. These gradients can be computed either analytically or numerically. 
In order for gradient-based algorithms such as SQP to converge, the functions must be continuous with 
continuous first derivatives. 
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Analytical differentiation requires the formulation and implementation of derivatives with respect to the 
design variables in the simulation code. Because of the complexity of this task, analytical gradients (also 
known as design sensitivities) are mostly not readily available. 

Numerical differentiation is typically based on forward difference methods that require the evaluation of n 
perturbed designs in addition to the current design. This is simple to implement but is expensive and 
hazardous because of the presence of round-off error. As a result, it is difficult to choose the size of the 
intervals of the design variables, without risking spurious derivatives (the interval is too small) or 
inaccuracy (the interval is too large). Some discussion on the topic is presented in Reference [1]. 

 

As a result, gradient-based methods are typically only used where the simulations provide smooth 
responses, such as linear structural analysis, certain types of nonlinear analysis or smooth metamodels 
(mathematical approximations) of the actual response. 

 

In non-linear dynamic analysis such as the analysis of impact or metal-forming, the derivatives of the 
response functions are mostly severely discontinuous. This is mainly due to the presence of friction and 
contact. The response (and therefore the sensitivities) may also be highly nonlinear due to the chaotic nature 
of impact phenomena and therefore the gradients may not reveal much of the overall behavior. Furthermore, 
the accuracy of numerical sensitivity analysis may also be adversely affected by round-off error. Analytical 
sensitivity analysis for friction and contact problems is a subject of current research. 

 

It is mainly for the above reasons that researchers have resorted to global approximation methods (also 
called metamodels) for smoothing the design response. The art and science of developing design 
approximations has been a popular theme in design optimization research for decades (for a review of the 
various approaches, see e.g. Reference [6] by Barthelemy). Barthelemy categorizes two main global 
approximation methods, namely response surface methodology [7] and neural networks [8]. Since then 
other approximations such as Radial Basis Function networks and Kriging have also become popular 
metamodels. 

 

In the present implementation, the gradient vectors of general composites based on mathematical 
expressions of the basic response surfaces are computed using numerical differentiation. A default interval 
of 1/1000 of the size of the design space is used in the forward difference method. 

4.4. Optimization methods 

The two basic optimization branches employed in LS-OPT are Metamodel-based optimization and Direct 
optimization. Metamodel-based optimization is used to create and optimize an approximate model 
(metamodel) of the design instead of optimizing the design through direct simulation. The metamodel is 
thus created as a simple and inexpensive surrogate of the actual design. Once the metamodel is created, it 
can be used to find the optimum or, in the case of multiple objectives, the Pareto Optimal Front. 
Metamodeling techniques are discussed in Chapter 3. 
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The nature and capacity of the simulation environment as well as the purpose of the optimization effort 
typically dictate the strategies for metamodel-based optimization. The strategies depend mostly on whether 
the user wants to build a metamodel that can be used for global exploration or whether she is only interested 
in finding an optimal set of parameters. An important criterion for choosing a strategy is also whether the 
user wants to build the metamodel and solve the problem iteratively or whether he has a "simulation budget" 
i.e., a certain number of simulations that he wants to use as effectively as possible to build a metamodel and 
obtain as much information about the design as possible. 

4.5. Strategies for metamodel-based optimization 

There are three recommended strategies for automating the metamodel-based optimization procedure. These 
strategies apply to the tasks: Metamodel-based Optimization and RBDO. The setup for each strategy is 
explained in detail in Section 20.3. 

4.5.1. Single stage 

In this approach, the experimental design for choosing the sampling points is done only once. A typical 
application would be to choose a large number of points (as much as can be afforded) to build metamodels 
such as, RBF networks using the Space Filling sampling method. This is probably the best way of sampling 
for Space Filling since the Space Filling algorithm positions all the points in a single cycle. 

4.5.2. Sequential strategy 

In this approach, sampling is done sequentially. A small number of points is chosen for each iteration and 
multiple iterations are requested. The approach has the advantage that the iterative process can be stopped as 
soon as the metamodels or optimum points have sufficient accuracy. It was demonstrated in Reference [16] 
that, for Space Filling, the Sequential approach had similar accuracy compared to the Single Stage approach, 
i.e. 10×30 points added sequentially is almost as good as 300 points. Therefore both the Single Stage and 
Sequential Methods are good for design exploration using a surrogate model. For instance when 
constructing a Pareto Optimal Front, the use of a Single Stage or Sequential strategy is recommended in lieu 
of a Sequential strategy with domain reduction (see Section 4.5.3). 

 

Both the previous strategies work better with metamodels other than polynomials because of the flexibility 
of metamodels such as neural networks to adjust to an arbitrary number of points. 

4.5.3. Sequential strategy with domain reduction 

This approach is the same as that in 4.5.2 but in each iteration the domain reduction strategy is used to 
reduce the size of the subregion. During a particular iteration, the subregion is used to bind the positions of 
new points. This method is typically the only one suitable for polynomials. There are two approaches to 
Sequential Domain Reduction strategies. The first is global and the second, local. 
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Sequential adaptive metamodeling (SAM) 

As for the sequential strategy in Section 4.5.2 without domain reduction, sequential adaptive sampling is 
done and the metamodel constructed using all available points, including those belonging to previous 
iterations. The difference is that in this case, the size of the subregion is adjusted (usually reduced) for each 
iteration (see Section 4.6). This method is good for converging to an optimum and moderately good for 
constructing global approximations for design exploration such as a Pareto Optimal front. The user should 
however expect to have poorer metamodel accuracy at design locations remote from the current optimum. 

Sequential response surface method (SRSM) 

SRSM is the original LS-OPT automation strategy of Section 4.6 and allows the building of a new response 
surface (typically linear polynomial) in each iteration. The size of the subregion is adjusted for each 
iteration (see Section 4.6). Points belonging to previous iterations are ignored. This method is only suitable 
for convergence to an optimum and should not be used to construct a Pareto optimal front or do any other 
type of design exploration. Therefore the method is ideal for system identification (see Section 5.3). 

4.5.4. How do I choose an appropriate strategy for metamodel-based optimization? 

Selecting the Strategy is the main selection for metamodel-based optimization. In the GUI, the three main 
choices, namely Single stage, Sequential or Sequential with Domain Reduction can be selected. If the Pareto 
Frontier option has been selected for a multi-objective optimization, Domain Reduction is automatically 
grayed out so is no longer an option. Hence few choices remain. 

In the case of a single objective the user might want to change the design formulation or parameters such as 
constraint bounds after the run. In this case, Sequential (no Domain Reduction) should be used. 

The Single Stage approach is intended for users who want to create a globally explorable model and have a 
fixed budget (e.g. 1000 runs). A very similar globally explorable design model can also be created with the 
Sequential strategy (without Domain Reduction) but an advantage of Sequential methods is that one can set 
stopping tolerances. These allow the accuracy of the design model to be maximized if sufficient computing 
resources are available. 

Changing the strategy is flexible, so if, for instance, the user completes a Single Stage run and then decides 
that a refinement of the design model is needed, he can switch to Sequential and restart. Once the strategy is 
selected the remaining options are defaulted. For Sequential, the only remaining strategy settings are the 
convergence tolerances and limits. 

4.6. Sequential response surface method (SRSM) 

The purpose of the SRSM method is to allow convergence of the single-objective solution to a prescribed 
tolerance. 

 

The SRSM method [15] uses a region of interest, a subspace of the design space, to determine an 
approximate optimum. A range is chosen for each variable to determine its initial size. A new region of 
interest centers on each successive optimum. Progress is made by moving the center of the region of interest 
as well as reducing its size. Figure 4-1 shows the possible adaptation of the subregion. 
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Figure 4-1: Adaptation of subregion in SRSM: (a) pure panning, (b) pure zooming and (c) a combination 
of panning and zooming 
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where n is the number of design variables. The modification of the ranges on the variables for the next 
iteration depends on the oscillatory nature of the solution and the accuracy of the current optimum. 

 

Oscillation: A contraction parameter γ is firstly determined based on whether the current and previous 
designs )(kx  and )1( −kx  are on the opposite or the same side of the region of interest. Thus an oscillation 
indicator c may be determined in iteration k as 
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The oscillation indicator (purposely omitting indices i and k) is normalized as ĉ  where 

).(ˆ csigncc = .      (4-15) 

The contraction parameter γ  is then calculated as 

))ˆ1()ˆ1((5.0 cc oscpan −γ++γ=γ .      (4-16) 
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See Figure 4-2. The parameter oscγ  is typically 0.5-0.7 representing shrinkage to dampen oscillation, 
whereas panγ  represents the pure panning case and therefore unity is typically chosen. 
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Figure 4-2: The sub-region contraction rate λ as a function of the oscillation indicator ĉ  and the 
absolute move distance ||d  

Accuracy: The accuracy is estimated using the proximity of the predicted optimum of the current iteration to 
the starting (previous) design. The smaller the distance between the starting and optimum designs, the more 
rapidly the region of interest will diminish in size. If the solution is on the bound of the region of interest, 
the optimal point is estimated to be beyond the region. Therefore a new subregion, which is centered on the 
current point, does not change its size. This is called panning (Figure 4-1(a)). If the optimum point coincides 
with the previous one, the subregion is stationary, but reduces its size (zooming) (Figure 4-1(b)). Both 
panning and zooming may occur if there is partial movement (Figure 4-1(c)). The range )1( +k

ir  for the new 
subregion in the (k + 1)-th iteration is then determined by: 

niterknirr k
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where iλ  represents the contraction rate for each design variable. To determine )(, k
ii dλ  is incorporated by 

scaling according to a zoom parameter η that represents pure zooming and the contraction parameter γ to 
yield the contraction rate 

)()( η−γ+η=λ k
ii d

        
(4-18) 

for each variable (see Figure 4-2). 
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When used in conjunction with neural networks or Kriging, the same heuristics are applied as described 
above. However the nets are constructed using all the available points, including those belonging to 
previous iterations. Therefore the response surfaces are progressively updated in the region of the optimal 
point. 

 

Refer to Section 20.4.1 for the setting of parameters in the iterative Sequential Response Surface Method. 

4.7. Leapfrog optimizer for constrained minimization (LFOPC) 

The optimization algorithm used to solve the approximate subproblem is the LFOPC algorithm of Snyman 
[5]. It is a gradient method that generates a dynamic trajectory path, from any given starting point, towards a 
local optimum. This method differs conceptually from other gradient methods, such as SQP, in that no 
explicit line searches are performed. 

 

The original leap-frog method [9] for unconstrained minimization problems seeks the minimum of a 
function of n variables by considering the associated dynamic problem of a particle of unit mass in an 
n-dimensional conservative force field, in which the potential energy of the particle at point x(t) at time t is 
taken to be the function f(x) to be minimized.  

 

The solution to the constrained problem may be approximated by applying the unconstrained minimization 
algorithm to a penalty function formulation of the original algorithm. The LFOPC algorithm uses a penalty 
function formulation to incorporate constraints into the optimization problem. This implies that when 
constraints are violated (active), the violation is magnified and added to an augmented objective function, 
which is solved by the gradient-based dynamic leap-frog method (LFOP). The algorithm uses three phases: 
Phase 0, Phase 1 and Phase 2. In Phase 0, the active constraints are introduced as mild penalties through the 
pre-multiplication of a moderate penalty parameter value. This allows for the solution of the penalty 
function formulation where the violation of the (active) constraints are pre-multiplied by the penalty value 
and added to the objective function in the minimization process. After the solution of Phase 0 through the 
leap-frog dynamic trajectory method, some violations of the constraints are inevitable because of the 
moderate penalty. In the subsequent Phase 1, the penalty parameter is increased to more strictly penalize 
violations of the remaining active constraints. Finally, and only if the number of active constraints exceed 
the number of design variables, a compromised solution is found to the optimization problem in Phase 2. 
Otherwise, the solution terminates having reached convergence in Phase 1. The penalty parameters have 
default values as listed in the User’s manual (Section 20.9). In addition, the step size of the algorithm and 
the termination criteria of the subproblem solver are listed. 

 

The values of the responses are scaled with the values at the initial design. The variables are scaled 
internally by scaling the design space to [0; 1] interval. The default parameters in LFOPC (as listed in 
Section 20.9) should therefore be adequate. The termination criteria are also listed in Section 20.9. 

 



CHAPTER 4: 3BOPTIMIZATION 
 

LS-OPT Version 4.3  79 

In the case of an infeasible optimization problem, the solver will find the most feasible design within the 
given region of interest bounded by the simple upper and lower bounds. A global solution is attempted by 
multiple starts from the experimental design points. 

4.8. Genetic algorithm 

Genetic algorithms are nature inspired search algorithms that emulate the Darwinian principle of ‘survival 
of the fittest’. The concept of nature inspired algorithms was first envisaged by Prof. John Holland [10] at 
the University of Michigan in mid sixties. Later on this theory gained momentum in engineering 
optimization following the work of Prof. David Goldberg [11] and his students. The differences between 
genetic algorithms and most conventional optimization methods are:  

o GA does not require derivative information to drive the search of optimal points. 

o While conventional methods use a single point at each iteration, GA is a population based approach. 

o GA is a global optimizer whereas conventional methods may get stuck in local optima. 

o GA is a probabilistic optimization method that is, an inferior solution (that may help evolve the 
correct design variables structure) may also have a non-zero probability of participating in the search 
process. 

o The computational cost of using GA may be high compared to derivative based methods. 

4.8.1. Terminology 

The Genetic Algorithm imitates nature so some of its terminology is derived from biology: 

o Individual – Each design variable vector (often known as solution or design point) is called an 
individual. 

o Population – A group of individuals is called a population. The number of individuals in a 
population is termed population size.  

o Chromosome – The binary string used to encode design variables is called chromosome. 
Chromosomes are used with binary encoding or conventional GA only. There is no direct 
correspondence of chromosome in real coded GA. The length of a chromosome is the sum of 
number of bits assigned to each variable.  

o Gene – In binary encoding, each bit is called a gene.  

o Fitness – The fitness of an individual is analogous to objective function. Each individual is assigned 
a fitness value based on its objectives and constraints values. The selection process tries to maximize 
the fitness of a population. The individual with the highest fitness represents the optimal solution to 
a problem. 

o Generation – A generation (iteration in general optimization lingo) comprises of application of 
genetic operators – selection, crossover, and mutation – to create a child population. At the end of 
each generation, the child population becomes the parent population.  
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4.8.2. Encoding 

To use the genetic algorithm for optimization, design variables of a mathematical optimization problem are 
encoded into a format required by GA. There are two prominent ways of encoding design variables: 

o Binary encoding – The conventional approach of using genetic algorithm is to represent an 
optimization problem into a string of binary numbers (chromosomes). The number of bits assigned 
to each variable determines the solution accuracy. If p bits are used to represent a variable with 
lower and upper bounds xl and xu, respectively, the accuracy of this variable can be (xu-xl)/(2p-1). 
While binary encoding is the most natural way to use genetic algorithms, it has two main problems: 
i) discretization of a continuous variable causes loss of accuracy in representation (depends on 
number of bits), ii) Hamming cliff problem – neighbors in real space may not be close in binary 
space such that it may be very difficult to find an optimal solution.  

o Real encoding – To avoid the problems of using binary representation of real variables, researchers 
have suggested directly using real numbers. This required special methods to perform genetic 
operations like crossover and mutation.  

4.8.3. Algorithm 

The steps in a simple genetic algorithm are illustrated with the help of Figure 4-3. 

 

 

Figure 4-3: Simple genetic algorithm. 

Firstly, problem-specific GA parameters like population size Npop, type of encoding, number of bits per 
variables for binary coding, number of generations are defined.  
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Initialization 
Next, the population is randomly initialized i.e., binary chromosomes or real variable vectors for Npop 
individuals are generated randomly.  

 

Function evaluation 
For binary encoding, each chromosome (binary string) is decoded to corresponding design variable 
vector. Next, objective functions, constraints, and constraint violation of each individual in parent 
population is evaluated and accordingly fitness of each individual is assigned. 

  

Selection or reproduction operator 
Selection operator is used to identify individuals with high fitness and to form a mating pool of size 
Npop. This operator reduces diversity in the population by filtering out low fitness schema. Many 
reproduction operators are introduced in literature. Three selection operators implemented in LS-Opt are 
described below.  

o Tournament selection. In tournament selection, ‘Ntourn’ (Ntourn is tournament size) individuals from 
a population, selected at random, participate in a tournament. The individual with the largest fitness 
is declared the winner. Mostly, practitioners use Ntourn = 2. Increasing the tournament size ‘Ntourn’ 
increases selection pressure and might lose diversity in the population that is required to drive the 
search.  

 

o Roulette wheel or proportionate reproduction. In this selection approach, each individual is 
assigned a probability of selection based on its fitness value. In a population of Npop individuals, the 
selection probability of the ith individual is  

 ∑
=

=
popN

j
jii FFP

1
      (4-19) 

where Fi is the fitness of ith individual. High fitness individuals have a high probability of getting 
selected. This scheme is implemented by considering a roulette wheel with circumference marked by the 
fitness of each individual. One individual per spin of the wheel is selected. Then, the expected number 
of copies of the ith individual in the mating pool can be estimated as 
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This selection operator has a higher selection pressure compared to the tournament selection and can 
lead to a premature convergence to local optima. 

 

o Stochastic universal sampling. The roulette wheel selection operator is often noisy because of 
multiple spins that correspond to round-off errors in computer simulations. To reduce this noise, it 
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was suggested to use a single spin of the wheel with Npop equi-spaced pointers. This operator also 
has a high selection pressure. 

 

Crossover 
Crossover is the main exploration operator of genetic search. In this operator, μ  randomly selected 
parents mate with a probability (Pc: crossover probability) to create λ children. These children share the 
attributes from all parents such that they may be better or worse individuals. There are two prominent 
strategies to create children: i) )( λ+μ  strategy selects best individuals from parents and children, and ii) 

),( λμ  strategy replaces parents with children irrespective of their fitness values. LS-OPT has adopted a 
(2, 2) strategy for crossover such that two parents create two children and children replace parents in the 
new generation. If parents do not create children, they are passed to the next generation.  

 

There are many crossover operators in literature. A few popular crossover operators that have been 
shown to perform reasonably well are available in LS-OPT. A brief description of these operators is as 
follows: 

 

o Single point binary crossover 

This crossover operator is used for binary encoding of the individuals. Two parents and a mating site are 
randomly selected. All genes right to the mating sites are swapped between two parents.  

 

o Uniform binary crossover 

This crossover operator is also used for binary encoded individuals. For a randomly selected parent pair, 
genes are swapped based on a flip of a coin for each gene in the chromosome. 

 

o Simulated binary real crossover (SBX) 

This crossover operator, introduced by Deb and Agrawal in 1995 [12], is used with real encoding i.e., 
real variables are used as genes. This crossover emulates the single point binary crossover by assigning a 
probability distribution to each parent. Two children are created from two parents using that probability 
distribution such that the mean of parents and children are the same. The probability distribution is 
controlled by a distribution index ηc such that large value of ηc creates children near parents and small 
value of ηc creates children far from parents. Deb and Beyer [13] showed that SBX possesses self-
adaptation capabilities.  

 

o Blend real crossover (BLX-α) 

This crossover operator was introduced by Eshelman and Schaffer in 1993 [14]. In this crossover, a 
child x is created from two parents x(1) and x(2) (x(2) > x(1)) by randomly selecting a value from the 
interval [x(1) – α(x(2) – x(1)), x(2) + α(x(2) – x(1))]. Typically, α is taken as 0.5.  
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Mutation 
Mutation is carried out with a mutation probability (Pm) to bring random changes in the individuals. This 
operator is very useful when population has lost diversity and the search has become stagnant. Then 
mutation can help improve diversity in the solutions. The mutation operators for binary and real 
encoding are given as follows: 

 

o Simple binary mutation 

In simple binary mutation of an individual, a bitwise mutation is carried out by changing a ‘0’ to ‘1’ or 
vice-versa with a small mutation probability Pm. Typically Pm is taken as the inverse of chromosome 
length such that on an average, one gene (bit) per chromosome is changed. 

 

o Real mutation 

As was used for the SBX operator, a distribution (defined by mutation distribution index) around each 
variable is specified and a random variable is selected from that distribution. Large values of the 
distribution index are recommended to create a child near the parent. 

 

A complete cycle of selection, crossover, and mutation would result in a child population. The population 
size is kept constant for both parent and child populations.  

 

Elitism in simple genetic algorithm 
Due to the disruptive nature of exploration operators, high fitness individuals may get lost while creating 
a child population from the parent population. Sometimes, it is advantageous to keep these high fitness 
individuals to preserve favorable genetic information (schema). This process of artificially saving the 
best individuals is called elitism. To implement this process, the parent and child populations are ranked 
separately. The worst individuals in the child population are replaced by the best individuals from the 
parent population. The number of elites should be carefully chosen because a large number of elite 
solutions may drive the search to local optima by reducing the diversity in the population. On the other 
hand, too few elites may slow the convergence because favorable schema would spread at a slow rate.  

 

After applying elitism, the child population is transferred to the parent population. The best individual 
found in the search process is preserved at each generation. 

 

Stopping criterion 
Many criteria have been specified in literature to terminate the GA search process. Some researchers 
have suggested stopping the search when there is no improvement in the last few generations. However, 
the most common stopping criterion is the fixed number of generations or function evaluations. A user-
defined number of generations is used as the stopping criterion in LS-OPT.  
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At the end of simple genetic algorithm, the best individual (among all searched individuals) is reported as 
the optimal solution. If enough processing capabilities are carried out, the reported best individual would 
represent the global optimal solution.  

4.9. Multi-objective optimization using genetic algorithms  

Multi-objective optimization problems are significantly different than the single-objective optimization 
problems. MOO problems do not have a single optimal solution. Instead there is a set of solutions that 
reflects trade-offs among objectives. For MOO problems, population based methods like genetic algorithms 
are very attractive because many trade-off solutions can be found in a single simulation run. While it is easy 
to compare multiple designs for a single-objective optimization problem, special considerations are required 
to compare different designs. Goldberg [11] proposed a non-domination concept to compare different 
individuals. This idea forms the backbone of most MOGAs and is defined next. 

4.9.1. Non-domination criterion 

A non-domination criterion is used to identify better individuals without introducing any bias towards any 
objective ([17]-[19]). To understand the non-domination criterion, a domination criterion is defined as 
follows.  

A solution x(1) dominates another solution x(2) )( )2()1( xx f , if either of the following three conditions is 
true. 

1. x(1) is feasible and x(2) is infeasible. 

2. Both x(1) and x(2) are infeasible but x(2) is more infeasible compared to x(1). 

3. When both x(1) and x(2) are feasible, x(1) dominates x(2) )( )2()1( xx f  if following two conditions are 
satisfied0. 

o x(1) is no worse than x(2) in ‘all’ objectives, i.e. ],...,2,1[))()(( )2()1( Mjff jj ∈≥/ xx . 

o x(1) is strictly better than x(2) in ‘at least one’ objective, i.e., ],...,2,1[)),()(( )2()1( Mjff jj ∈∧< xx . 

If neither of the two solutions dominates the other, both solutions are non-dominated with respect to each 
other. An individual s is considered non-dominated with respect to a set of solutions S, if no solution in S 
dominates s.  

4.9.2. Pareto optimal solutions 

Any non-dominated solution in the entire design domain is a Pareto optimal solution. By definition, all 
Pareto optimal solutions are non-dominated solutions but vice-versa is not true.  

 

Like single objective optimization problems, there are local and global Pareto optimal solutions. A non-
dominated solution is a local Pareto optimal solution with respect to the considered non-dominated solution 
set, whereas a global Pareto optimal solution is non-dominated with respect to all solutions in the design 
domain.  
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4.9.3. Pareto optimal set 

The set of all Pareto optimal solutions is the Pareto optimal set for the given problem.  

4.9.4. Pareto optimal front 

Function space representation of the Pareto optimal set is Pareto optimal front. When there are two 
conflicting objectives, the POF is a curve, when there are three objectives, POF is a surface, and for higher 
dimensions, POF is a hyper-surface.  

4.9.5. Ranking 

Most MOGA search methods assign rank to different individuals based on non-domination criterion. This 
ranking is used to govern the search process. A rank of one is considered the best rank and low fitness 
individuals are assigned low ranks (large values of rank are low). Different individuals in a population are 
assigned rank as follows: 

1. Initialize rnk = 1. Define a set of individuals S, same as the population. 

2. Run a non-domination check on all individuals in S.  

3. All non-dominated individuals are assigned rank = rnk.  

4. rnk = rnk + 1.  

5. Remove all non-dominated individuals from S.  

6. If Φ≠S , repeat Step 2, else stop.0. 

Note that many individuals can have the same rank.  

 

Different concepts discussed here are illustrated using a two-objective unconstrained minimization problem 
in Figure 4-4. Each dot represents a solution in the design space that is shown as the shaded area. For each 
diamond, there is at least one triangle that is better than the diamond in at least one objective without being 
inferior in other objective. So all individuals represented by diamonds are dominated by the individuals 
represented by triangles. Similarly, all triangles are dominated by squares and squares are dominated by 
circular dots. No solution represented by triangles can be said better than any other solution represented by 
triangles. Thus, they are non-dominated with respect to each other. All individuals represented by circles are 
non-dominated with respect to any other individual hence they have a rank of one (best rank). If all points 
represented by circles are removed, the individuals represented by squares are non-dominated with respect 
to all remaining solutions such that they are assigned a rank of two, and so on. Note that all individuals with 
the same shape of dots have the same rank. For this example, all individuals with rank one (circular dots) 
also represent the true Pareto optimal solutions set. The line on the boundary shows the Pareto optimal front.  
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Figure 4-4: Illustration of non-domination criterion, Pareto optimal set, and Pareto optimal front. 

 

4.9.6. Convergence vs. diversity 

Different multi-objective optimization algorithms are compared using two criteria. First, convergence to the 
global Pareto optimal front, and second, diversity on the Pareto optimal front. The convergence criterion 
requires identifying the global Pareto optimal solution set.  

 

A good multi-objective optimizer is required to maintain diversity (representation of different regions of the 
Pareto optimal front). This is an important criterion since our goal is to find different trade-off solutions. It 
is important to note that diversity on the Pareto optimal front (function space) does not mean the diversity in 
the variable space, i.e., small changes in variables can result in large changes in the function values.  

4.9.7. Elitist non-dominated sorting genetic algorithm (NSGA-II) 

This algorithm was developed by Prof. Kalyanmoy Deb and his students in 2000 [20]. This algorithm first 
tries to converge to the Pareto optimal front and then it spreads solutions to get diversity on the Pareto 
optimal front. Since this algorithm uses a finite population size, there may be a problem of Pareto drift. To 
avoid that problem, Goel et al. [21] proposed maintaining an external archive.  
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Figure 4-5: Elitist non-dominated sorting genetic algorithm (NSGA-II). The shaded blocks are not the 
part of original NSGA-II but additions to avoid Pareto drift. 

 

The implementation of this archived NSGA-II is shown in Figure 4-5, and described as follows: 

1. Randomly initialize the parent population (size Npop). Initialize an empty archive.  

2. Evaluate the population i.e., compute constraints and objectives for each individual. 

3. Rank the population using non-domination criteria. Also compute the crowding distance (this 
distance finds the relative closeness of a solution to other solutions in the function space and is used 
to differentiate between the solutions on same rank). 

4. Employ genetic operators – selection, crossover & mutation – to create a child population. 

5. Evaluate the child population.  

6. Combine the parent and child populations, rank them, and compute the crowding distance. 

7. Apply elitism (defined in a following section): Select best Npop individuals from the combined 
population. These individuals constitute the parent population in the next generation. 

8. Add all rank = 1 solutions to the archive. 

9. Update the archive by removing all dominated and duplicate solutions. 

10. If the termination criterion is not met, go to step 4. Otherwise, report the candidate Pareto optimal set 
in the archive.0. 
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4.9.8. Elitism in NSGA-II 

 

 

Figure 4-6: Elitism in NSGA-II. 

 

Elitism is applied to preserve the best individuals. The mechanism used by NSGA-II algorithm for elitism is 
illustrated in Figure 4-6. After combining the child and parent populations, there are 2Npop individuals. This 
combined pool of members is ranked using non-domination criterion such that there are ni individuals with 
rank i. The crowding distance of individuals with the same rank is computed. Steps in selecting Npop 
individuals are as follows:  

1. Set i = 1, and number of empty slots Nslots = Npop. 

2. If ni < Nslots,  

o Copy all individuals with rank ‘i’ to the new parent population.  

o Reduce the number of empty slots by ni: Nslots = Nslots – ni.  

o Increment ‘i’: i=i+1. 

o Return to Step 2. 

3. If ni > Nslots,0. 

o Sort the individuals with rank ‘i’ in decreasing order of crowding distance. 

o Select Nslots individuals. 

o Stop 
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4.9.9. Diversity preservation mechanism in NSGA-II – crowding distance calculation 

To preserve diversity on the Pareto optimal front, NSGA-II uses a crowding distance operator. The 
individuals with same rank are sorted in ascending order of function values. The crowding distance is the 
sum of distances between immediate neighbors, such that in Figure 4-4, the crowding distance of selected 
individual is ‘a + b’. The individuals with only one neighbor are assigned a very high crowding distance.  

 

Note: It is important to scale all functions such that they are of the same order of magnitude otherwise the 
diversity preserving mechanism would not work properly. 

4.10. Adaptive simulated annealing (ASA) 

The Simulated Annealing (SA) is a global stochastic optimization algorithm that mimics the metallurgical 
annealing process. The original simulated annealing algorithm was developed as a generalization of the 
Metropolis Monte Carlo integration algorithm [22] to solve various combinatorial problems by Kirkpatrick 
et al. [23]. The term 'simulated annealing' derives from the rough analogy of the way that the liquefied 
metals at a high temperature crystallize on freezing. At high temperatures, the atoms in the liquid are at a 
high energy state and move freely. When the liquid is cooled, the energy of the molecules gradually reduces 
as they go through many lower energy states, and consequently their motion. If the liquid metal is cooled 
too quickly or 'quenched', the atoms do not get sufficient time to reach thermal equilibrium at a temperature 
and might result in a polycrystalline structure with higher energy. This atomic structure of material is not 
necessarily the most desired. However, if the rate of cooling is sufficiently slow, the atoms are often able to 
achieve the state of minimum (most stable) energy at each temperature state, resulting in a pure crystalline 
form. This process is termed as ‘annealing’. Kirkpatrick et al. [23] employed this annealing analogy to 
develop an efficient search algorithm. Pincus [24], and Cerny [25] also are also independently credited with 
the development of modern simulated annealing algorithm.  

 

In simulated annealing parlance, the objective function of the optimization algorithm is often called ‘energy’ 
E and is assumed to be related to the state, popularly known as temperature T, by a probability distribution. 
The Boltzmann distribution is the most commonly used probability distribution: 

Probability (E) ~ exp(-E / κBT ),  

where κB is the Boltzmann's constant.  

4.10.1. Algorithm 

The search initializes with the temperature being high and cooling slowly such that the system goes through 
different energy states in search of the lowest energy state that is the global minima of the optimization 
problem. A stepwise description of the simulated annealing algorithm is as follows: 
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Step 1: Initialization 

The search starts by identifying the starting state x(0) ∈ X and corresponding energy E(0) = E(x). The 
temperature T is initialized at a high value: T(0) = Tmax. A cooling schedule, acceptance function, and 
stopping criterion are defined. This is iteration k = 0. X(0) = {x(0)}. 

 

Step 2: Sampling 

A new point x'∈ X is sampled using the candidate distribution D(X(k) ), and set X(k+1) = X(k) U {x'},  and 
corresponding energy is calculated E' = E(x'). 

 

Step 3: Check acceptance 

Sample a uniform random number ζ in [0, 1] and set  

x(k+1) = x' if ζ ≤ A(E',E(k),T(k)) or   

x(k+1) = x(k) otherwise. 

 where A(x) is the acceptance function that determines if the new state is accepted. 

 

Step 4: Temperature update 

Apply the cooling schedule to the temperature: T(k+1) = C( X(k+1), T(k) ). 

 

Step 5: Convergence check 

Stop the search if the stopping criterion is met, else set k = k+1 and go to Step 2.  

 

As is obvious, the efficiency of the simulated annealing algorithm depends on appropriate choices of the 
mechanism to generate new candidate states D, cooling schedule C, acceptance criterion A, and stopping 
criterion. While many options have been proposed in literature, the very fast simulated reannealing 
methodology proposed by Ingber (1989) [27] has been the most promising. This algorithm is also known as 
adaptive simulated annealing (ASA) [28]. The different selections along with a very brief historical 
perspective are outlined as follows. 

4.10.2. Acceptance function 

Two most prominent acceptance functions used to accept a candidate point are the Metropolis criterion and 
the Barker criterion.  
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Metropolis criterion : )}./)(exp(,1min{),,( '' TEETEEA −−=  

 

Barker criterion : )}./)exp((1/{1),,( '' TEETEEA −+=  

 

The theoretical motivation for such a restricted choice of acceptance functions can be found in [29]. It is 
also shown that under appropriate assumptions, many acceptance functions, which share some properties, 
are equivalent to the above two criteria. The Metropolis criterion is the most commonly used selection 
criterion and this is chosen as the acceptance function in LS-OPT. 

4.10.3. Sampling algorithm 

The choice of the next candidate distribution and the cooling schedule for the temperature are typically the 
most important (and strongly interrelated) issues in the definition of a SA algorithm. The next candidate 
state, x', is usually selected randomly among all the neighbors of the current solution, x, with the same 
probability for all neighbors. The choice of the size of the neighborhood typically follows the idea that when 
the current function value is far from the global minimum, the algorithm should have more freedom, i.e., 
larger 'step sizes' are allowed. However, Ingber [27] suggested using a more complicated, non-uniformly 
selection procedure outlined below to allow much faster cooling rates. 

  

Let ith design variable be bounded as, xi ∈ [Ai, Bi]. Then the new sample is given by 
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The most important distinction in ASA with standard SA is the use of an independent temperature schedule 
(Tp,i) for each parameter along with the temperature associated with the energy function. The cooling 
schedule for the parameter temperature, used to generate N dimensional design vector, is 
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The control parameter ci depends on two free parameters mi and ni, defined as 
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The ratio )0(
,

min
, / ipip TT  is the parameter temperature ratio and the parameter Nanneal is linked to the time allowed 

(number of steps) at each parameter temperature state. Ingber [30] found that the search procedure is 
sensitive to the choice of the two parameters and should be selected carefully. Relatively, the parameter 
temperature ratio is the more important of the two parameters.  
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4.10.4. Cooling schedule 

The basic idea of the cooling schedule is to start the algorithm off at high temperature and then gradually 
drop the temperature to zero. The primary goal is to quickly reach the so called effective temperature, 
roughly defined as the temperature at which low function values are preferred but it is still possible to 
explore different states of the optimized system, [31]. After that the simulated annealing algorithm lowers 
the temperature by slow stages until the system 'freezes' and no further changes occur. Geman and Geman 
[32] found the lower bound on the cooling schedule to be 1/log(t) where ‘t’ is an artificial time measure of 
the annealing schedule. Hence, 

).log(/)0()1( kTT i
k

i =+   

This strategy is also known as Boltzmann annealing (Szu and Hartley) [33]. Later van Laarhoven and Aarts 
[34] modified this strategy to enable a much faster cooling schedule of  

./)0()1( kTT i
k

i =+   

A straightforward and most popular strategy is to decrement T by a constant factor every νT iterations:  

TTT μ= /:   

where μT is slightly greater than 1 (e.g. μT = 1.001). The value of νT should be large enough, so that 'thermal 
equilibrium' is achieved before reducing the temperature. A rule of thumb is to take νT proportional to the 
size of neighborhood of the current solution.  

 

Nevertheless, the fastest cooling rate was made possible by using Ingber's algorithm that allowed an 
exponentially faster cooling rate of  
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As was described in the previous section, the cooling rate is governed by the two free parameters that are 
linked to the temperature ratio and annealing scale, 

).log(),/log( )0(min
annealNnTTm ==  

Typically the temperature ratio used to drive the energy (objective) function is linked to the parameter 
temperature ratio called here as ‘cost-parameter annealing ratio’.  

4.10.5. Stopping criterion 

Selection of an appropriate stopping criterion is one of the most difficult tasks in stochastic optimization 
algorithms because it is unknown a priori if the algorithm has reached the global optima or is stuck in a hard 
local optimum. Thus the stopping rules proposed in the literature about SA, all have a heuristic nature and 
are, in fact, more problem dependent than algorithm dependent. Some common ideas in the heuristics are i) 
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stop when it does not make a noticeable progress over a number of iterations, ii) stop when the number of 
function evaluations is reached, and iii) stop when the temperature has fallen substantially to a desired 
minimum level Tmin. The last two criteria are used to terminate the adaptive simulated annealing search in 
LS-OPT. 

4.10.6. Re-annealing 

For multi-dimensional problems, most often the objective function has variable sensitivities for different 
parameters and at different sampling states. Hence, it is worth while to adjust the cooling rates for different 
parameters. Ingber [27] used a reannealing algorithm to periodically update the annealing time associated 
with parameters and the energy function such that the search is more focused in the regions with potential of 
improvements. For this, he suggested computing the sensitivities of the energy function as, 

./ ii xEs ∂∂=   

All the annealing time parameters k are updated by the largest sensitivity smax as follows:  
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The new annealing time associated with the ith parameter is ki = '
ik . Similarly the temperature parameter 

associated with the energy function is scaled. One can easily deduce from the above formulation that 
reannealing stretches the ranges of the insensitive parameters relative to the sensitive parameters. More 
details of reannealing can be obtained elsewhere [30]. 

Some comments 

1. It is difficult to find the initial temperature directly, because this value depends on the neighborhood 
structure, the scale of the objective function, the initial solution, etc. In [23] a suitable initial 
temperature is one that results in an average uphill move acceptance probability of about 0.8. This 
T(0) can be estimated by conducting an initial search, in which all uphill moves are accepted and 
calculating the average objective increase observed. In some other papers, it is suggested that 
parameter T(0) is set to a value, which is larger than the expected value of |E'-E| that is encountered 
from move to move. In [31] it is suggested to spend most of the computational time in short sample 
runs with different T(0) in order to detect the effective temperature. In practice, the optimal control of 
T may require physical insight and trial-and-error experiments. According to [35], "choosing an 
annealing schedule for practical purposes is still something of a black art".  

2. Simulated annealing has proved surprisingly effective for a wide variety of hard optimization 
problems in science and engineering. Many of the applications in our list of references attest to the 
power of the method. This is not to imply that a serious implementation of simulated annealing to a 
difficult real world problem will be easy. In the real-life conditions, the energy trajectory, i.e. the 
sequence of energies following each move accepted, and the energy landscape itself can be highly 
complex. Note that state space, which consists of wide areas with no energy change, and a few 
"deep, narrow valleys", or even worse, "golf-holes", is not suited for simulated annealing, because in 
a "long, narrow valley" almost all random steps are uphill. Choosing a proper stepping scheme is 
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crucial for SA in these situations. However, experience has shown that simulated annealing 
algorithms are more likely trapped in the largest basin, which is also often the basin of attraction of 
the global minimum or of the deep local minimum. Anyway, the possibility, which can always be 
employed with simulated annealing, is to adopt a multi-start strategy, i.e. to perform many different 
runs of the SA algorithm with different starting points.  

3. Another potential drawback of using SA for hard optimization problems is that finding a good 
solution can often take an unacceptably long time. While SA algorithms may quickly detect the 
region of the global optimum, they often require a few iterations to improve its accuracy. For small 
and moderate optimization problems, one may be able to construct effective procedures that provide 
similar results much more quickly, especially in cases when most of the computing time is spent on 
calculations of values of the objective function. However, it should be noted that for large-scale 
multidimensional problems an algorithm which always (or often) obtains a solution near the global 
optimum is valuable, since various local deterministic optimization methods allow quick refinement 
of a nearly correct solution.0.  

 

In summary, simulated annealing is a powerful method for global optimization in challenging real world 
problems. Certainly, some "trial and error" experimentation is required for an effective implementation of 
the algorithm. The energy (cost) function should employ some heuristic related to the problem at hand, 
clearly reflecting how 'good' or 'bad' a given solution is. Random perturbations of the system state and 
corresponding cost change calculations should be simple enough, so that the SA algorithm can perform its 
iterations efficiently. The scalar parameters of the simulated annealing algorithm have to be chosen 
carefully. If the parameters are chosen such that the optimization evolves too fast, the solution converges 
directly to some, possibly good, solution depending on the initial state of the problem.  

4.11. Hybrid algorithms 

As discussed earlier, the stochastic algorithms like the genetic algorithm (GA) and adaptive simulated 
annealing (ASA) are designed to find the global optimal solution. However, one of the most difficult aspects 
of using stochastic algorithms is to identify the correct stopping criterion. A defensive, but likely expensive, 
approach is to run an algorithm sufficiently long to ensure the global optimal solution. However, the speed 
of finding the global optimum can be significantly increased by combining the global optimizers with local 
gradient based optimization methods. This combination, referred to as a hybrid algorithm, is based on a very 
simple idea that the global optimizers reach the basin of the global optimum quickly i.e., they find very high 
quality solutions, but significant effort is then required to achieve small improvements for refining the 
solution. On the other hand, gradient based optimization methods like LFOPC can find an optimal solution 
very quickly when starting from a good solution. Thus, in LS-OPT, a global optimizer such as the GA or 
ASA is used to find a good starting solution followed by a single LFOPC run to converge to the global 
optimum. This approach has been found to be both effective and efficient for global optimization. The 
hybrid algorithms are available for both the GA and ASA options. 
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4.12. Visualization of the Pareto optimal frontier 

Due to the complexity of visualizing the Pareto Optimal Frontier (POF) for high dimensional problems, 
methods to improve exploration of the Pareto set have been devised. Several methods have been 
implemented in LS-OPT. These methods are described below: 

4.12.1. Trade-off plot 

This is the simplest of all plot types. The user creates a scatter plot of different entities, mostly objective 
functions, in a 3-D space. One can also add fourth entity in the form of the color. An example of the Trade-
Off plot in four-dimensional space is shown in Figure 4-7. A serious limitation of this plot type is its 
inability to simultaneously show more than four dimensions. 

 

Figure 4-7: Trade-off plot shows all four objectives of Pareto optimal solutions. 

4.12.2. Hyper-radial visualization (HRV) 

HRV [38] is based on the minimization of the sum of squares of the normalized objective functions which 
allows the POF to be displayed in two dimensions. HRV is effectively a 2-dimensional mapping of the n-
dimensional objective function space. 

 

The mathematical form of the multi-objective optimization problem is as follows: 

Minimize ],...,,[  where)](),...,(),([)( 2121 pn xxxxxfxfxfxF ==      

subject to  
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HRV can be seen as a conversion of the multi-objective optimization problem to a single objective 
optimization problem using the objective: 
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where s = n/2 and the two additive components represent the objectives assigned to the two axes of the plot 
(see Figure 4-8). The case where n is an odd number is discussed below.  

 

 

Figure 4-8: The Pareto frontier and indifference curves 
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The HRV method assumes that the set of Pareto points has already been computed and are available for 
display. First each objective function iF  is normalized to the range of the Pareto points. Normalization is 
done by using the lower and upper values of all the computed Pareto points to define the range for each 
objective. 
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The coordinate ],...,,[ min  min  2min  1 nFFF  represents the Utopian point (see Figure 4-8), i.e. the point 
representing the minima of individual objectives. In the HRV representation, this point becomes the origin 
of the 2-dimensional plot. In addition to normalizing each objective function, the result of the Hyper-Radial 
Calculation (HRC) must also be normalized: 
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Now consider the n-objective sample data, corresponding to Pareto point j (of a total of q Pareto points). 
The objective functions are grouped into 2 sets controlled by the designer and an HRC value is computed 
for each group resulting in the coordinates HRC1 and HRC2. Thus s objectives are represented by HRC1 
while n-s objectives are represented by HRC2. The two groups are therefore 

Group 1:  
s

F
HRCFFFF

s

i
i

s

∑
== 1

2

321

~

1         ],...,,,[  

Group 2:  
sn

F
HRCFFFF

n

si
i

nsss −
=

∑
+=

+++
1

2

321

~

2         ],...,,,[  

The formulation is unbiased because the objectives can be grouped in an arbitrary way without sacrificing 
the unbiased visualization property. This means the radius originating in the Utopian point of any point is 
preserved irrespective of the objective grouping. The 'best' design is therefore considered to be the one 
closest to the Utopian point, i.e., the one with the smallest radius in the 2-dimensional plot. 

 

The distance from the Utopian point is not the only criterion of how good a design is since a designer may 
also have a preference regarding the objectives. Preferences are incorporated by adding weights to the 
objectives represented in the HRC functions: 
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When (n-s < s) as is the case when, for instance, n is an odd number, (2s-n) dummy objective functions are 
added to normalize the visualization. This is to avoid producing an elliptical set of indifference curves. A 
dummy objective is a q-dimensional null vector, q being the number of Pareto points. The addition of such a 
dummy objective ensures the preservation of the indifference radius, so if the groupings are reselected, a 
particular Pareto point will move tangent to its current radius and therefore maintain its level of 
indifference. 

4.12.3. Parallel co-ordinate plot (PCP) 

The parallel coordinate plot shows all entities of a design by a line such that any number of entities can be 
simultaneously shown. An example of PCP is shown in Figure 4-9. The user can move the sliders on each 
entity to filter-out the undesired values and screen the objectives. The screened out solutions are shown as 
the grey-lines in Figure 4-9. 

 

Figure 4-9: Parallel coordinate plot shows objectives and design variables of all points on the Pareto 
front. 

4.12.4. Self organizing maps (SOM) 

Self organizing map [39], proposed by Kohonen in early 1980s, is a very powerful technique to represent n-
dimensional data in two-dimensional space. The designs that are close in the n-dimensional space remain 
close to each other in the mapped space as well. These maps allow the user to explore the solution space in 
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many dimensions simultaneously. Figure 4-10 shows an example of a self organizing map. One can 
simultaneously see design objectives, variables, and constraints.  

By default, the network is trained with 12 rows and 9 columns i.e., 108 nodes but the number of units can be 
controlled in the viewer GUI. With a trained SOM, one can show the following:  

1. Component maps:  Each component map shows one entity e.g., variables, responses, etc. One can 
simultaneously plot different component maps to see the variation in data in different regions. 

2. D-matrix: This map shows the average distance from the neighboring units in the maps. This feature 
helps identify sparse sections in the data.  

3. U-matrix: The U-matrix map shows the actual distances between the two neighboring units.  

4. C-matrix: This plot illustrates the density associated with each SOM unit. For a well trained 
network, the C-matrix plot would also identify sparsely distributed data.0. 

 

Figure 4-10: Self organizing maps display design objectives, variables, and constraints on the Pareto 
front. 

4.13. Performance metrics for multi-objective optimization 

Since multi-objective optimization results in a set of solutions, it requires special metrics to assess the 
convergence to the Pareto optimal front, diversity on the front, and the spread of the front. While the users 
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can get detailed information on performance metrics for multiobjective optimization problems elsewhere 
[17], a few metrics available in LSOPT are described here. 

4.13.1. Number of nondominated points 

This is the number of solutions in the archive of all nondominated solutions at any generation. Usually a 
higher number of nondominated points are achieved when convergence is good. 

4.13.2. Spread 

The spread of the front is calculated as the diagonal of the largest hypercube in the function space that 
encompassed all points. A large spread is desired to find diverse trade-off solutions. The spread measure is 
derived using the extreme solutions making it susceptible to the presence of a few isolated points that could 
artificially improve the spread metric. An equivalent criterion might be the volume of such a hypercube. 

4.13.3. Standard deviation of crowding distance 

This complimentary criterion (to the spread metric) detects the presence of poorly distributed solutions by 
estimating how uniformly the points are distributed in the Pareto optimal set. This metric is defined as, 
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where di is the crowding distance of the solution in the function or variable space. The boundary points are 
assigned a crowding distance of twice the distance to the nearest neighbor. A small value of the uniformity 
measure is desired to achieve a good distribution of points. 

4.13.4. Min/Max of objectives 

This represents the range of individual objectives. A wide range represents more choices for the designer. 

4.13.5. Hypervolume 

A dominated hypervolume metric tries to simultaneously estimate the convergence and spread 
characteristics by computing the union of the volume between the optimal solutions and a reference point. 
For practical purposes, the nadir point of all solutions is used as the reference point. 

 

While all the above metrics are obtained on a single set of solutions, the following performance metrics are 
obtained by comparing multiple sets of solutions. These metrics are helpful in determining the convergence. 
In LSOPT, the set of non-dominated solutions separated by ∆ generations (archive Ai and Ai-Δ) are compared 
and the following metrics are reported. Δ is called generation interval. 

4.13.6. Number of common points 

This is the number of solutions that exist in both sets Ai and Ai-Δ. A large number of common points is 
indicative of the high quality of solutions. The set of common solutions is represented as, 
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and n(Q) is the size of set Q. This is a particularly good metrics when a large generation interval is used. 

4.13.7. Number of new nondominated solutions 

This metrics denotes the number of nondominated solutions that were evolved during the current generation 
interval. The set of such solutions is represented as, 

{ } .,,: iiiiiii AaAaaaaQ ∈∈≠= Δ−Δ−Δ−  

A large number of new solutions relative to the total archive size indicates that the new solutions are still 
being evolved and hence convergence is not yet achieved.  

4.13.8. Number of old dominated solutions n(Q) 

This metrics denotes the number of nondominated solutions in the older archive Ai-Δ that were dominated by 
the solutions in the current archive Ai. The set of dominated solutions is,  

{ } .,,: iiiiiii AaAaaaaQ ∈∈= Δ−Δ−Δ−Δ− p  

A large number of dominated solutions represents significant evolution.  

4.13.9. Consolidation ratio 

This represents the fraction of archive Ai that has evolved up to the i-Δth generation. This is computed as the 
ratio of the number of members in archive Ai-Δ that are also present in the archive Ai (non-dominated 
solutions) to the size of archive Ai. Mathematically, 
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This metric represents the proportion of potentially converged solutions in the archive. In the early phase of 
a MOEA simulation, a large fraction of the non-dominated solutions in the archive Ai-Δ would be dominated 
by the solutions in archive Ai due to evolution, thus resulting in a small fraction of surviving solutions i.e., 
small value of the consolidation ratio. However, significantly better solutions evolve in the later phases such 
that a large proportion of solutions in the archive Ai-Δ remain non-dominated with respect to new solutions 
leading to a high consolidation ratio. In the limiting case, the consolidation ratio approaches one. 

4.13.10. Improvement ratio 

This represents the fraction of archive Ai-Δ dominated by the new solutions in archive Ai. This is computed 
as the ratio of the number of members in archive Ai-Δ that are dominated by the solutions in archive Ai 
(dominated solutions) to the size of archive Ai. Mathematically, 
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The archive Ai includes all non-dominated members of archive Ai-Δ so no member of the archive Ai is 
dominated. The improvement ratio quantifies the extent of improvement in the quality of evolved solutions. 
This metric has a high value in the early phase of simulation which gradually converges to zero when 
convergence is achieved. 

More information about these performance metrics can be obtained from [40]. 

4.14. Discrete optimization 

4.14.1. Discrete variables 

Discrete variables can have only distinct values; for example, the variable can be a plate thickness having 
allowable values 1.0, 2.0, 2.5, and 4.5. 

4.14.2. Discrete optimization 

A very basic method of discrete optimization would be simply evaluating all possible design and selecting 
the best one. This is not feasible for the general case; consider for example that 30 design variables with 
variables having 5 possible values of the design variable will result in 1021 different designs. Evaluating all 
the possible designs is therefore not computationally feasible. Note that 30 design variables describe a 
design space with 109 quadrants, so finding the quadrant containing the optimum design is a hard problem. 
The quadrant containing the optimal design can be found using a gradient based search direction, but 
discrete optimization problems are not convex, which means that gradient based search directions may lead 
to local optima. The LS-OPT discrete optimization methodology using LFOPC therefore use gradient based 
search in conjunction with random search methods. The optimal design found in this manner, cannot be 
shown to be uniquely the global optimum, but is considered the (practical) optimum because it is known that 
it is highly unlikely that a better design will be found. 

 

The cost of the discrete optimization is kept affordable by doing the optimization using the values from a 
response surface approximation. The accuracy of the response surface or metamodel is improved using a 
sequential strategy described in a later section. 

4.14.3. Mixed-discrete optimization 

The discrete variables can be used together with continuous variables. This is called mixed-discrete 
optimization. 

 

The steps followed to compute the mixed-discrete optimum are: 

1. Consider all the discrete variables to be continuous and optimize using the gradient based design 
optimization package. This continuous optimum found is used as the starting design in the next 
phase. 
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2. Discrete optimization is done considering only the discrete variables with the continuous variables 
frozen at the values found in the previous phase. 

3. Continuous optimization is done considering only the continuous variables and with the discrete 
variables frozen at the values found in the previous phase.0. 

4.14.4. Discrete optimization algorithm: genetic algorithm 

A GA (genetic algorithm, Section 4.8) is used to do the discrete optimization. A GA mimics the 
evolutionary process selecting genetic strings. In a GA, the design variable values are coded up into data 
structure similar to genetic strings. New generations of designs are obtained by combining portions of the 
genetic strings of the previous generation of designs. Designs that have relatively better values of the 
objective function have a better chance to contribute a portion of its genetic string to the next generation. 

4.14.5. Objective function for discrete optimization 

The discrete optimization algorithm used can only consider an objective function (no constraints); the 
constraints specified by the user are therefore incorporated into this objective function. The resulting 
objective function has two different behaviors: 

1. A feasible design exists. In this case all infeasible designs (those violating the constraints) are simply 
rejected, and only feasible designs are considered inside the optimization algorithm. The objective 
function used is simply that specified by the user. 

2. A feasible design does not exist. If the search for the best feasible designs fails due to a lack of 
feasible designs, then a search is done for the least infeasible constraint. The objective function is a 

scaled sum of the constraint violations: ∑
−

iBound
Boundconstraint ii

 
with the summation done over all 

the violated constraints.0. 

4.14.6. Sequential strategy 

The discrete and the mixed-discrete optimization are done using the response values from the response 
surfaces or metamodels. The accuracy of the response surface or metamodels is therefore very important. 
The accuracy of the metamodels is improved by a sequential response surface method (SRSM) (see Section 
4.6), in which the size of the subregion over which the designs are evaluated are reduced until convergence. 
Reducing the size of the subregion is the best known method of obtaining accuracy for optimizing using 
metamodels. 

 

Discrete optimization introduces the concern that a discrete variable value may not be on the edge of the 
subregion selected by the SRSM algorithm. The SRSM algorithm was therefore modified to use closest 
discrete values outside the subregion. This implies that the subregion cannot be smaller than the distance 
between two successive discrete values.  

4.15. Summary of the optimization process 

The following tasks may be identified in the process of an optimization cycle using response surfaces. 
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Table 4-1: Summary of optimization process 

Item Input Output 
DOE Location and size of the subregion 

in the design space. The 
experimental design desired. An 
approximation order. An 
affordable number of points. 

Location of the experimental 
points. 

Simulation Location of the experimental 
points. Analysis programs to be 
scheduled. 

Responses at the experimental 
points. 

Build response surface Location of the experimental 
points. Responses at the 
experimental points. Function 
types to be fitted. 
 

The approximate functions 
(response surfaces). The 
goodness-of-fit of the 
approximate functions at the 
construction points. 

Check adequacy The approximate functions 
(response surfaces). The location 
of the check points. The responses 
at the check points. 

The goodness-of-fit of the 
approximate functions at the 
check points. 
 

Optimization The approximate functions 
(response surfaces). Bounds on 
the responses and variables. 

The approximate optimal 
design. The approximate 
responses at the optimal design. 
Pareto optimal curve data. 

 
 

Two approaches may be taken: 

4.15.1. Convergence to an optimal point 

o First-order approximations.  

Because of the absence of curvature, it is likely that perhaps 5 to 10 iterations may be required for 
convergence. The first-order approximation method turns out to be robust thanks to the sequential 
approximation scheme that addresses possible oscillatory behavior. Linear approximations may be rather 
inaccurate to study trade-off, i.e., in general they make poor global approximations, but this is not 
necessarily true and must be assessed using the error parameters. 

o Second-order approximations.  

Due to the consideration of curvature, a sequential quadratic response surface method is likely to be 
more robust, but can be more expensive, depending on the number of design variables. 

o Other approximations. 
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Neural networks (Section 3.1) and Radial Basis Function networks (Section 3.1.3) provide good 
approximations when many design points are used. A suggested approach is to start the optimization 
procedure in the full design space, with the number of points at least of the order of the minimum 
required for a linear approximation. To converge to an optimum, use the iterative scheme with domain 
reduction as with any other approximations, but choose to update the experimental design and response 
surfaces after each iteration (this is the default method for non-polynomial approximations). The 
metamodel will be built using the total number of points.  

 

See Section 4.5 on sequential strategies for optimization and design exploration. 
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5. Applications of Optimization 

5.1. Multicriteria design optimization 

A typical design formulation is somewhat distinct from the standard formulation for mathematical 
optimization (Eq. 2.3). Most design problems present multiple objectives, design targets and design 
constraints. There are two ways of solving multicriteria design optimization problems.  

 

The first method, discussed in Section 4.9, focused on finding multiple trade-offs, known as Pareto optimal 
solutions, using multi-objective genetic algorithms. The advantage of this method is that one can find many 
trade-off designs and the designer does not have to a priori determine the preference structures.  

 

In the second method, the standard mathematical programming problem is defined in terms of a single 
objective and multiple constraints. The standard formulation of Eq. (2.3) has been modified to represent the 
more general approach as applied in LS-OPT. 

 

Minimize the function 

p[f(x)]      (5-1) 

subject to the inequality constraint functions 

.21    ;)( ,...,m,jUgL jjj =≤≤ x         

The preference function p can be formulated to incorporate target values of objectives. 

 

Two methods for achieving this are given: 

5.1.1. Euclidean distance function 

Designs often contain objectives that are in conflict so that they cannot be achieved simultaneously. If one 
objective is improved, the other deteriorates and vice versa. The preference function )]([ xfp  combines 
various objectives fi. The Euclidean distance function allows the designer to find the design with the 
smallest distance to a specified set of target responses or design variables: 
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The symbols Fi represent the target values of the responses. A value Γi is used to normalize each response i. 
Weights Wi are associated with each quantity and can be chosen by the designer to convey the relative 
importance of each normalized response. 

5.1.2. Maximum distance 

Another approach to target responses is by using the maximum distance to a target value 
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This form belongs to the same category of preference functions as the Euclidean distance function [1] and is 
referred to as the Tchebysheff distance function. A general distance function for target values Fi is defined 
as 
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with r = 2 for the Euclidean metric and ∞→r  for the min-max formulation (Tchebysheff metric). 

The approach for dealing with the Tchebysheff formulation differs somewhat from the explicit formulation. 

The alternative formulation becomes: 

Minimize  e       (5-5) 

subject to 
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In the above equation, Γi is a normalization factor, e represents the constraint violation or target discrepancy 
and α represents the strictness factor. If α = 0, the constraint is slack (or soft) and will allow violation. If α 
= 1, the constraint is strict (or hard) and will not allow violation of the constraint. 

 

The effect of distinguishing between strict and soft constraints on the above problem is that the maximum 
violation of the soft constraints is minimized. Because the user is seldom aware of the feasibility status of 
the design problem at the start of the investigation, the solver will automatically solve the above problem 
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first to find a feasible region. If the solution to e is zero (or within a small tolerance) the problem has a 
feasible region and the solver will immediately continue to minimize the design objective using the feasible 
point as a starting point. 

 

A few points are notable: 

1. The variable bounds of both the region of interest and the design space are always hard. This is 
enforced to prevent extrapolation of the response surface and the occurrence of impossible designs. 

2. Soft constraints will always be strictly satisfied if a feasible design is possible. 

3. If a feasible design is not possible, the most feasible design will be computed. 

4. If feasibility must be compromised (there is no feasible design), the solver will automatically use the 
slackness of the soft constraints to try and achieve feasibility of the hard constraints. However, even 
when allowing soft constraints, there is always a possibility that some hard constraints must still be 
violated. In this case, the variable bounds could be violated, which is highly undesirable as the 
solution will lie beyond the region of interest and perhaps beyond the design space. If the design is 
reasonable, the optimizer remains robust and finds such a compromise solution without terminating 
or resorting to any specialized procedure.0. 

 

Soft and strict constraints can also be specified for search methods. If there are feasible designs with respect 
to hard constraints, but none with respect to all the constraints, including soft constraints, the most feasible 
design will be selected. If there are no feasible designs with respect to hard constraints, the problem is ‘hard-
infeasible’ and the optimization terminates with an error message. 

 

In the following cases, the use of the Min-Max formulation can be considered: 

1. Minimize the maximum of several responses, e.g. minimize the maximum knee force in a vehicle 
occupant simulation problem. This is specified by setting both the knee force constraints to have 
zero upper bounds. The violation then becomes the actual knee force. 

2. Minimize the maximum design variable, e.g. minimize the maximum of several radii in a sheet metal 
forming problem. The radii are all incorporated into composite functions, which in turn are 
incorporated into constraints which have zero upper bounds. 

3. Find the most feasible design. For cases in which a feasible design region does not exist, the user 
may be content with allowing the violation of some of the constraints, but is still interested in 
minimizing this violation.0. 

5.2. Multidisciplinary design optimization 

There is increasing interest in the coupling of other disciplines into the optimization process, especially for 
complex engineering systems like aircraft and automobiles [2]. The aerospace industry was the first to 
embrace multidisciplinary design optimization (MDO) [3], because of the complex integration of 
aerodynamics, structures, control and propulsion during the development of air- and spacecraft. The 
automobile industry has followed suit [4]. In [4], the roof crush performance of a vehicle is coupled to its 
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Noise, Vibration and Harshness (NVH) characteristics (modal frequency, static bending and torsion 
displacements) in a mass minimization study. 

 

Different methods have been proposed when dealing with MDO. The conventional or standard approach is 
to evaluate all disciplines simultaneously in one integrated objective and constraint set by applying an 
optimizer to the multidisciplinary analysis (MDA), similar to that followed in single-discipline optimization. 
The standard method has been called multidisciplinary feasible (MDF), as it maintains feasibility with 
respect to the MDA, but as it does not imply feasibility with respect to the disciplinary constraints, is has 
also been called fully integrated optimization (FIO). A number of MDO formulations are aimed at 
decomposing the MDF problem. The choice of MDO formulation depends on the degree of coupling 
between the different disciplines and the ratio of shared to total design variables [5]. It was decided to 
implement the MDF formulation in this version of LS-OPT as it ensures correct coupling between 
disciplines albeit at the cost of seamless integration being required between different disciplines that may 
contain diverse simulation software and different design teams. 

 

In LS-OPT, the user has the capability of assigning different variables, experimental designs and job 
specification information to the different solvers or disciplines. The file locations in Version 2 have been 
altered to accommodate separate Experiments, AnalysisResults and DesignFunctions files in 
each solver’s directory. An example of job-specific information is the ability to control the number of 
processors assigned to each discipline separately. This feature allows allocation of memory and processor 
resources for a more efficient solution process. 

 

Refer to the user’s manual (Section 19.1) for the details of implementing an MDO problem. There is one 
crashworthiness-modal analysis case study in the examples chapter (Section 22.6). 

5.3. System identification using nonlinear regression 

System identification is a general term used to describe the mathematical tools and algorithms that build 
dynamical models such as systems or processes from measured data. The methodology used in LS-OPT 
consists of a nonlinear regression procedure to optimize the parameters of a system or material. This 
procedure minimizes the errors with respect to given experimental results. Two formulations for system 
identification can be used. The first uses the mean squared error (MSE) as the minimization objective, while 
the second, the Min-Max formulation, uses the auxiliary problem formulation to minimize the maximum 
residual. The MSE approach is commonly used for system identification and has been automated using a 
single command. The two formulations are outlined below. 

5.3.1. Ordinate-based Curve Matching 

Figure 5-1 shows a graph containing curve f(x,z) and points Gp(z). The points can be interconnected to form 
a curve G(z). f is a computed response curve (e.g. stress or force history) computed at a point x in the 
parameter space. The variables x represent unknown parameters in the model. System (e.g. automotive 
airbag or dummy model) or material constants are typical of parameters used in constructing finite element 
models. The independent state variable z can represent time, but also any other response type such as strain 
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or deformation. The target curve G is constant with respect to x and typically represents a test result (e.g. 
stress vs. strain or force vs. deformation). f may not be readily available from the analysis code if z does not 
represent time. In this case f must first be constructed using a “crossplot” feature (see Section 14.1.1) and 
the curve z(t)  to obtain a plot that is comparable to G. Each function f(x,zp) is internally represented by a 
response surface so that a typical curve f(x,z) is represented by P internal response surfaces. 

 

In Figure 5-1, seven regression points are shown. The residuals at these points are combined into a Mean 
Squared Error norm:                                                                                                          

∑∑
==

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
=

P

p p

p
p

P

p p

pp
p s

e
W

Ps
Gf

W
P 1

2

1

2
)(1)(1 xx

ε
  

                                      (5-6) 

 

Figure 5-1: Entities in Mean Squared Error formulation                                

The MSE norm is based on a series of P regression points beginning at the start point z1 and terminating at 
the end point zP (see Figure 5-1). The sp, p=1,…,P are residual scale factors and the Wp, p=1,…,P are 
weights applied to the square of the scaled residual (fp - Gp) / sp at point p. 

 

The application of optimization to system identification is demonstrated in Section 22.5. 

5.3.2. Curve Mapping 

A major difficulty with ordinate-based curve matching is that steep parts of the curve are difficult to 
incorporate in the matching. Failure material models typically have the characteristic of a steep decline of 
the stress-strain curve towards the end of the curve while steep curves also feature in models in which part 
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of the behavior (typically the leading part of the curve) is linear. These kinds of problems present a strong 
case for incorporation of the abscissa into the curve-matching metric. 

A related problem with ordinate-based matching is that the ranges of the computed and target curves often 
do not coincide horizontally so that some of the points are ignored. It may even happen that at an interim 
stage of the optimization, the two curves do not share any vertical range overlap (there is not a single 
vertical line which will cross both the computed and the target curves). This type of problem may cause 
instability of the computation because it becomes impossible to quantify the error. 

A third problem is that hysteretic curves (curves with more than one possible y-value for some of the x-
values) cannot be quantified because of the non-uniqueness of the ordinate values of the computed curve 
with respect to the target curve. I.e. a vertical line may cross the same curve more than once. A logical 
approach to comparison of the two curves is to map one of the curves onto the other. Two questions which 
immediately arise are how to scale the curves and how to match two curves of unequal length. Scaling is 
particularly important since scale changes have an effect on the distances between the two curves. In many 
cases (e.g. stress vs. strain) there could be several orders of magnitude difference between the values on the 
abscissa and those of the ordinate. 

The mathematical literature provides some ideas on curve matching approaches. Two commonly used 
metrics for curve matching are the Hausdorff [6] and Fréchet [7] distances. The Hausdorff distance 
measures the mismatch between two point sets so is therefore not suitably general for curve matching as 
there is no continuous point order. For instance it would not be able to handle a hysteretic curve match. The 
Fréchet distance is better suited for curve matching because it takes the continuity of the curves into 
account. The Fréchet distance is formally defined as: 
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where P and Q are polygonal curves, ]1,0[∈t  represents a position on each curve. The parameters α and β 
are used to parameterize the distance whereas we can think of t as “time”. The analogy is that of a dog 
walking along the one curve and the dog’s owner walking along the other connected by a leash. Both walk 
continuously and monotonically along the curve from the start point to the end point and can vary their 
velocities according to α and β. The Fréchet distance is the length of the shortest leash that is sufficient for 
traversing both curves in this manner. 

In LS-OPT we map the points of the one curve onto the second curve and compute the volume (area) 
between the two curves. When both curves are normalized, this typically yields a mismatch error with value 
much less than 1 for two reasonably matching curves. 

A significant problem is that it is not appropriate to map entire curves to one another. A practical reason 
could be that the test curve, which could be the result of digital output from an experiment, is essentially 
unedited and therefore contains superfluous points unrelated to the actual behavior of the model. It may also 
be that the test curve represents only part of the response, perhaps because a full curve could not be obtained 
from the test. In parameter identification this issue becomes particularly critical as curves are typically 
computed at widely distributed points throughout the parameter space during the optimization process. This 
potential disparity of curve length requires partial mapping of the two curves. 
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The steps for computing the curve mismatch are described in full detail below. The reader should refer to 
Figure 20 which shows a test curve (in thick red) mapped on to a computed curve. The prime symbol (′) is 
used to denote the curve on which the test curve is being mapped while the double prime symbol (″) is used 
to denote the finally mapped curve. The test curve is shown inside its smallest bounding box, the boundaries 
of which are used to normalize the curve. Hence the normalized curve a is in the [(0,0),(1,1)] range. 

 

 
 
 

Figure 2:  Partial curve mapping of Curve a (in red) to Curve a′ with offset. The result is Curve a″. The 
solid points represent the original vertices of a′ whereas the open circles represent the mapped points 
representing a″. Curves a and a′ are both normalized to the bounding box of a. 

 
The algorithm for computing the curve mismatch error is as follows: 
 
 
1. Normalize the m point coordinates i of the target curve A to its smallest bounding box to create Curve a. 

See Figure 1. 
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2. Normalize the n point coordinates j of the computed curve A' to the smallest bounding box of A to create 

curve a'. See Figure 1. 

minmax

min'
XX

Xx j
j −

−
=ξ      

minmax

min'
YY

Yy j
j −

−
=η  

 
3. Compute S, the total polygon length of a. Also compute the individual segment lengths iS δ : 
 

2
1

2
1 )()( −− −+−= iiiiiS ηηξξδ ;   mi ,...,3,2=  

 
Here a segment is defined as a part of the curve between two consecutive points, connected by a straight 
line. 

 
4. Scale each segment length to the total curve length S: 
 

SSs
ii / ~ δ= ;    mi ,...,3,2=  

 
5. Compute T, the total polygon length of a'. 
 
6. If S > T, rename a' to a and a to a'. Hence a will always be shorter than a'. 
 
7. Define an offset as a starting point of a curve section of total length S on curve a'. The offset = pλ  will 

be varied over p = 1 to P  in order to “slide” Curve a along Curve a'. ],0[ ST −∈λ . Assume P 

increments in this interval so that each increment has size 
P

ST −
=Δλ  . 

8. Set λλλ Δ+= −1pp to create a new section of the computed curve and create point coordinate pairs by 
mapping each point of curve a to curve a'. A typical curve segment i on a' which corresponds to a 
segment i on a has length ii ST   δδ =  (see Fig. 1). This creates a new set of point pairs a″. The 
assumption that the length of the mapped section of the long curve is equal to the length of the short 
curve is critical to the success of the method. 

 
9. Compute the discrepancy (mismatch error) between the two curves a and a". This is done by summing 

the volumes vi representing the individual segment errors. First compute the distances between the point 
pairs: 

 
22 )"()"( iiiiid ηηξξ −+−=  

 
Then compute the volume component of each segment. (Note for m points, there are m-1 segments.) 
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Then sum the volumes to get the final discrepancy: 
 

∑
=

=
m

i
ip v

1
ε  

10. Set p = p+1 and repeat from point 8. 
 
11. Find the distance pp

εε min= . This is the best match between the curves a and a'. 

 
 

5.3.3. Minimizing the maximum residual (Min-Max) 

In this formulation, the deviations from the respective target values are incorporated as constraint violations, 
so that the optimization problem for parameter identification becomes: 

Minimize     e,       (5-7)  

subject to        

.0

,...,1;
)(

≥

=≤
−

e

Ppe
s

Gf

p

pp x
      

This formulation is automatically activated in LS-OPT when specifying both the lower and upper bounds of 
pp sf /  equal to pp sG / . There is therefore no need to define an objective function. This is due to the fact 

that an auxiliary problem is automatically solved internally whenever an infeasible design is found, ignoring 
the objective function until a feasible design is obtained. When used in parameter identification, the 
constraint set is in general never completely satisfied due to the typically over-determined systems used. 

 

Since sp defaults to 1.0, the user is responsible for the normalization in the maximum violation formulation. 
This can be done by e.g. using the target value to scale the response f(x) so that: 

.0

,...,1;1
)(

≥

=≤−

e

Ppe
G

f

p

p x
 

Omitting the scaling may cause conditioning problems in some cases, especially where constraint values 
differ by several orders of magnitude. This option will also be automated in future versions.   

5.3.4. Nonlinear regression: Confidence intervals 

Assume the nonlinear regression model: 
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( ) ( ) ,, ε+= xtFtG   

where the measured result G is approximated by F and x  is a vector of unknown parameters. The nonlinear 
least squares problem is obtained from the discretization: 

( ) ,)(1
1

2min ∑
=

−
P

p
pp

x
FG

P
x   

is solved to obtain *x . The variance 2σ  is estimated by 

( ) ,1 2*2 xFG
nP

−
−

=σ   

where F is the P-vector of function values predicted by the model and n is the number of parameters. The 
100(1-α )% confidence interval for each *

ix  is: 

,ˆ: 2/* ⎟
⎠
⎞⎜

⎝
⎛ ≤− −

α
nPiiiii tCxxx   

where  

( ) ( )( ) ,)()(ˆ:ˆ 1
**2

−
∇∇= xFxFC Tσ   

and 2/α
nPt −  is the Student t-distribution for α . 

 

F∇ is the P×n matrix obtained from the n derivatives of the P response functions representing P points at 
the optimum x. The optimal solution is therefore calculated first, followed by the confidence interval.  

 

A critical issue is to ensure that F∇ is not based on a gradient obtained from a spurious response surface 
(e.g. occurring due to noise in the response). Monitoring convergence and selected statistical parameters 
such as the RMS error and R2 can help to estimate a converged result. In many cases material identification 
problems involve smooth functions (e.g. tensile tests) so that spurious gradients would normally not be a 
problem.  

5.4. Worst-case design 

Worst-case design involves minimizing an objective with respect to certain variables while maximizing the 
objective with respect to other variables. The solution lies in the so-called saddle point of the objective 
function and represents a worst-case design. This definition of a worst-case design is different to what is 
sometimes referred to as min-max design, where one multi-objective component is minimized while another 
is maximized, both with respect to the same variables. 
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There is an abundance of examples of worst-case scenarios in mechanical design. 

 

One class of problems involves minimizing design variables and maximizing case or condition variables. 
One example in automotive design is the minimization of head injury with respect to the design variables of 
the interior trim while maximizing over a range of head orientation angles. Therefore the worst-case design 
represents the optimal trim design for the worst-case head orientation. Another example is the minimization 
of crashworthiness-related criteria (injury, intrusion, etc.) during a frontal impact while maximizing the 
same criteria for a range of off-set angles in an oblique impact situation. 

Another class of problems involves the introduction of uncontrollable variables nizi ,...,1, =  in addition to 
the controlled variables mjy j ,...,1, = . The controlled variables can be set by the designer and therefore 
optimized by the program. The uncontrollable variables are determined by the random variability of 
manufacturing processes, loadings, materials, etc. Controlled and uncontrollable variables can be 
independent, but can also be associated with one another, i.e. a controlled variable can have an 
uncontrollable component. 

 

The methodology requires three features: 

1. The introduction of a constant range ρ of the region of interest for the uncontrollable variables. This 
constant represents the possible variation of each uncontrollable parameter or variable. In LS-OPT 
this is introduced by specifying a lower limit on the range as being equal to the initial range ρ. The 
lower and upper bounds of the design space are set to ±ρ/2 for the uncontrollable variables. 

2. The controlled and uncontrollable variables must be separated as minimization and maximization 
variables. The objective will therefore be minimized with respect to the controlled variables and 
maximized with respect to the uncontrollable variables. This requires a special flag in the 
optimization algorithm and the formulation of Equation (2.1) becomes: 

( ) qp

zy
zyf ℜ∈ℜ∈

⎭
⎬
⎫

⎩
⎨
⎧ ,;,maxmin zy      (5-8) 

subject to    

.,...,2,1;0),( ljg j =≤zy         

The algorithm remains a minimization algorithm but with modified gradients: 

,:mod y∇=∇ y   

.:mod z−∇=∇ z   

For a maximization problem the min and max are switched. 

3. The dependent set (the subset of y and z that are dependent on each other) x = y + z must be defined 
as input for each simulation, e.g. if the manufacturing tolerance on a thickness is specified as the 
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uncontrollable component, it is defined as a variation added to a mean value, i.e. t = tmean + tdeviation, 
where t is the dependent variable.0. 

5.5. Reliability-based design optimization (RBDO)* 

Reliability-based design optimization (RBDO) is the computation of an optimum design subject to 
probabilistic bounds on the constraints. The probabilistic bound is usually interpreted in the six-sigma 
context; for example, the failure of only one part in a million would be acceptable. 

 

RBDO is currently done using First Order Second Moment (FOSM) method of computing the reliability.  
The requested minimum probability of failure is transformed to a number of standard deviations (sigmas) of 
the response, and the number of standard deviations (sigmas) is subsequently transformed into a safety 
margin used in the optimization process. The standard deviation of a response is computed analytically for 
response surfaces, and for the other metamodels and composites a second order local approximation is 
created to compute the standard deviation. See Section 6.4.4 for more detail regarding the First Order 
Second Moment (FOSM) method. The FOSM methodology is currently the default RBDO method, but 
more sophisticated methods may be available in future versions of LS-OPT. 

 

Discrete variables are allowed in RBDO.  The mixed-discrete optimization will be carried out considering 
the probabilistic bounds on the constraints. 

 

The methods are described in more detail in Section 19.3 with an example in Section 22.2.11 illustrating the 
method. 

 

Care must be taken in interpreting the resulting reliability of the responses. Accuracy can be especially poor 
at the tail ends of the response distribution. What constitutes engineering accuracy at the low probabilities is 
an open question. A definition such as six-sigma may be the best way of specifying the engineering 
requirement; a precise numerical value may not be meaningful. Accuracy at low probabilities requires firstly 
that the input data must be known accurately at these low probabilities, which may be prohibitively 
expensive to estimate. 
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6. Probabilistic Fundamentals 

6.1. Introduction 

No system will be manufactured and operated exactly as designed. Adverse combinations of design and 
loading variation may lead to undesirable behavior or failure; therefore, if significant variation exists, a 
probabilistic evaluation may be desirable. 

 
Sources of variation are:  

1. Variation in structural properties; for example: variation in yield stress. 

2. Variation in the environment; for example: variation in a load. 

3. Variation occurring during the problem modeling and analysis; for example: buckling initiation, 
mesh density, or results output frequency.0. 

  From the probabilistic analysis we want to infer:  

1. Distribution of the response values. 

2. Probability of failure. 

3. Properties of the designs associated with failure. 

o Variable screening - identify important noise factors. 

o Dispersion factors - factors whose settings may increase variability of the responses. 

4. Efficient redesign strategies.0. 

6.2. Probabilistic variables 

The probabilistic component of a parameter is described using a probability distribution; for example, a 
normal distribution. The parameter will therefore have a mean or nominal value as specified by the 
distribution, though in actual use the parameter will have a value randomly chosen according to the 
probability density function of the distribution. 

 

The relationship between the control variables and the variance can be used to adjust the control process 
variables in order to have an optimum process. The variance of the control and noise variables can be used 
to predict the variance of the system, which may then be used for redesign. Knowledge of the interaction 
between the control and noise variables can be valuable; for example, information such as that the 
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dispersion effect of the material variation (a noise variable), may be less at a high process temperature (a 
control variable) can be used to selected control variables for a more robust manufacturing process.  

6.2.1. Variable linking 

A single design parameter can apply to several statistically independent components in a system; for 
example: one joint design may be applicable to several joints in the structure. 

 
The components will then all follow the same distribution but the actual value of each component will 
differ. Each duplicate component is in effect an additional variable and will result in additional 
computational cost (contribute to the curse of dimensionality) for techniques requiring an experimental 
design to build an approximation or requiring the derivative information such as FORM. Direct Monte Carlo 
simulation on the other hand does not suffer from the curse of dimensionality but is expensive when 
evaluating events with a small probability. 

 

Design variables can be linked to have the same expected (nominal) value, but allowed to vary 
independently according to the statistical distribution during a probabilistic analysis. One can therefore have 
one design variable associated with many probabilistic variables. 

 

Three probabilistic associations between variables are possible: 

1. Their nominal values and distributions are the same. 

2. Their nominal values differ but they refer to the same distribution. 

3. Their nominal values are the same but their distributions differ.0. 

6.3. Basic computations 

6.3.1. Mean, variance, standard deviation, and coefficient of variation 

The mean of a set of responses is 
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∑
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The variance is 
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The standard deviation is simply the square root of the variance 

.2ss =  
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The coefficient of variation, the standard deviation as a proportion of the mean, is computed as 

.... ysvoc =  

6.3.2. Correlation of responses 

Whether a variation in displacements in one location causes a variation in a response value elsewhere is not 
always clear. 

 

The covariance of two responses indicates whether a change in the one is associated with a change in the 
other. 

( ) ( )( )[ ],, 221121 μμ −−= YYEYYCov   

( ) [ ] ( ) ( )., 212121 YEYEYYEYYCov −=  

The covariance can be difficult to use because it is unscaled. The standard deviation of the responses can be 
used for scaling. The coefficient of correlation is accordingly 

.),(

21

21

σσ
ρ

YYCov
=  

The confidence interval on the coefficient of correlation is described in the next section. 

6.3.3. Confidence intervals 

The confidence interval on the mean assuming a normal distribution and using s2 as an estimate to the 
variance is 

,1,2/1,2/ n
sty

n
sty nn −− +<<− αα μ  

with μ  the mean, y  the estimate to the mean, and 1,2/ −ntα  the relevant critical value of the t-distribution. 

 

The confidence interval on the variance assuming a normal distribution and using s2 as an estimate to the 
variance is 
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with 2σ  the variance and 2
1,2/ −nαχ , 2

1,2/1 −− nαχ  the relevant critical values of the 2χ distribution. 
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The confidence interval on the probability of an event is 

,)ˆ1(ˆˆ)ˆ1(ˆˆ 2/2/ n
ppzpp
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with p the probability, p̂  the estimate to the probability, and 1,2/ −nzα  the relevant critical value of the normal 
distribution. 

 

The coefficient of correlation has a confidence interval of 
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6.4. Probabilistic methods 

The reliability − the probability of not exceeding a constraint value − can be computed using probabilistic 
methods. 

The accuracy can be limited by the accuracy of the data used in the computations as well as the accuracy of 
the simulations. The choice of methods depends on the desired accuracy and intended use of the reliability 
information. 

More details on probabilistic methods can be found in, for example, the recent text by Haldar and 
Mahadevan [1]. 

6.4.1. Monte Carlo simulation 

A Monte Carlo simulation aims to compute results with the same scatter as what will occur in practice. 

 

Multiple analyses are conducted using values of the input variables selected considering their probability 
density function. The results from these analyses should have the scatter expected in practice. Under the law 
of large numbers the output results will eventually converge. 

Applications of a Monte Carlo investigation are: 

1. Compute the distribution of the responses, in particular the mean and standard deviation. 

2. Compute reliability. 

3. Investigate design space – search for outliers.0. 

The approximation to the nominal value is: 

( )[ ] ( ).1 ∑= iXf
N

XfE  
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If the Xi are independent, the laws of large numbers allow us any degree of accuracy by increasing N. The 
error of estimating the nominal value is a random variable with standard deviation 

.
N

σσ θ =  

with σ  the standard deviation of f(x) and N the number of sampling points. The error is therefore unrelated 
to the number of design variables. 

 

The error of estimating p, the probability of an event, is a random value with the following variance 

( ) ,12

N
pp −

=θσ  

which can be manipulated to provide a minimum sampling. A suggestion for the minimum sampling size 
provided by Tu and Choi [2] is: 
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The above indicates that for a 10% estimated probability of failure; about 100 structural evaluations are 
required with some confidence on the first digit of failure prediction. To verify an event having a 1% 
probability; about a 1000 structural analyses are required, which usually would be too expensive. 

 

A general procedure of obtaining the minimum number of sampling points for a given accuracy is illustrated 
using an example at the end of this section. For more information, a statistics text (for example, reference 
[3]) should be consulted. A collection of statistical tables and formulae such as the CRC reference [4] will 
also be useful. 

 

The variance of the probability estimation must be taken into consideration when comparing two different 
designs. The error of estimating the difference of the mean values is a random variable with a variance of 
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with the subscripts 1 and 2 referring to the different design evaluations. The error of estimating the 
difference of sample proportions is a random variable with a variance of  
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The Monte Carlo method can therefore become prohibitively expensive for computing events with small 
probabilities; more so if you need to compare different designs. 
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The procedure can be sped up using Latin Hypercube sampling, which is available in LS-OPT. These 
sampling techniques are described elsewhere in the LS-OPT manual. The experimental design will first be 
computed in a normalized, uniformly distributed design space and then transformed to the distributions 
specified for the design variables. 

Example: 

The reliability of a structure is being evaluated. The probability of failure is estimated to be 0.1 and must be 
computed to an accuracy of 0.01 with a 95% confidence. The minimum number of function evaluations 
must be computed. 

 

For an accuracy of 0.01, we use a confidence interval having a probability of containing the correct value of 
0.95. The accuracy of 0.01 is taken as 4.5 standard deviations large using the Tchebysheff’s theorem, which 
gives a standard deviation of 0.0022. The minimum number of sampling points is therefore: 

.18595
)0022.0(
)1.0)(9.0(
22 ===

σ
pqN  

Tchebysheff’s theorem is quite conservative. If we consider the response to be normally distributed then for 
an accuracy of 0.01 and a corresponding confidence interval having a probability of containing the correct 
value of 0.95, a confidence interval 1.96 standard deviations wide is required. The resulting standard 
deviation is 0.051 and the minimum number of sampling points is accordingly:  

.3457
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)1.0)(9.0(
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σ
pqN  

6.4.2. Monte Carlo analysis using metamodels 

Performing the Monte Carlo analysis using approximations to the functions instead of FE function 
evaluations allows a significant reduction in the cost of the procedure. 

 

A very large number of function evaluations (millions) are possible considering that function evaluations 
using the metamodels are very cheap. Accordingly, given an exact approximation to the responses, the exact 
probability of an event can be computed. 

 

The choice of the point about which the approximation is constructed has an influence on accuracy. 
Accuracy may suffer if the metamodel is not accurate close to the failure initiation hyperplane, 0)( =xG . A 
metamodel accurate at the failure initiation hyperplane (more specifically the Most Probable Point of 
failure) is desirable in the cases of nonlinear responses. The results should however be exact for linear 
responses or quadratic responses approximated using a quadratic response surface. 
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Using approximations to search for improved designs can be very cost-efficient. Even in cases where 
absolute accuracy is not good, the technique can still indicate whether a new design is comparatively better. 

 

The number of FE evaluations required to build the approximations increases linearly with the number of 
variables for linear approximations (the default being 1.5n points) and quadratically for quadratic 
approximations (the default being 0.75(n+2)(n+1) points). 

6.4.3. Correlated variables 

Considering the correlation ( )( )[ ] ijjjiiji YYEYYCov ∑=−−= μμ),(  between variables, we construct the 
covariance matrix 
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from which we compute the eigenvalues and eigenvectors as EE 2λ=∑  with E and 2λ  respectively the 
eigenvectors and the eigenvalues of the covariance matrix. 

 

The correlated variables are created by firstly generating independent variables and transforming them back 
to being correlated variables using the eigenvalues and eigenvectors of the covariance matrix  

nnn iidEiidE λλ ++= K111X  with X the correlated variables and iid the independent variables. This method 
is only valid for normally distributed variables. 
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6.4.4. First-Order Second-Moment Method (FOSM) 

For these computations we assume a linear expansion of the response. The reliability index of a response 
( ) 0<XG  is computed as: 
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with E and D the expected value and standard deviation operators respectively. A normally distributed 
response is assumed for the estimation of the probability of failure giving the probability of failure as: 

),(1)( ββ Φ−−Φ= orPf  

with )(xΦ  the cumulative distribution function of the normal distribution. 

 

The method therefore (i) computes a safety margin, (ii) scale the safety margin using the standard deviations 
of the response, and (iii) then convert the safety margin to a probability of failure by assuming that the 
response is normally distributed. 

 

The method is completely accurate when the responses are linear functions of normally distributed design 
variables. Otherwise the underlying assumption is less valid at the tail regions of the response distribution. 
Caution is advised in the following cases:  

1. Nonlinear responses: Say we have a normally distributed stress responses - this implies that fatigue 
failure is not normally distributed and that computations based on a normal distribution will not be 
accurate. 

2. The variables are not normally distributed; for example, one is uniformly distributed. In which case 
the following can have an effect:0. 

o A small number of variables may not sum up to a normally distributed response, even for a linear 
response. 

o The response may be strongly dependent on the behavior of a single variable. The distribution 
associated with this variable may then dominate the variation of the response. This is only of 
concern if the variable is not normally distributed. 

Considering the accuracy of the input data, this method can be reasonable. For example, it should be 
common that the distribution of the input data can only be estimated using a mean and a standard deviation 
with a 20% error bound, in which case the results should be understood to have at the least a matching 
certainty. Interpreting the results in terms of a number of standard deviations can be a reasonable 
engineering approximation under these circumstances. 

6.4.5. Design for six-sigma methods 

See the section for FOSM keeping in mind that the reliability index β is the number of standard deviations. 

6.4.6. The most probable point  

Probabilistic methods based on the most probable point of failure focus on finding the design perturbation 
most likely to cause failure. 
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To understand how these methods works, consider the limit state function G(x) dividing the responses into 
two design regions: one consisting of acceptable responses and the other of unacceptable responses. The two 
regions are separated by the hyperplane described by G(x)=0.  

 

 

Figure 6-1 Finding the most probable point of failure. The most probable point is the point on the line 
G(x)=0 closest to the design in the probabilistic sense. 

 

We want to find the design perturbation most likely to cause the design to fail. This is difficult in the 
problem as shown in Figure 6-1, because all variables will not have an equal influence of the probability of 
failure due to differences in their distributions. In order to efficiently find this design perturbation, we 
transform the variables to a space of independent and standardized normal variables, the u-space. 
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Figure 6-2 Most probable point in the transformed space. In the transformed space the most probable 
point is the point on the line G(X)=0 the closest to the origin. 

The transformed space is shown in Figure 6-2. The point on the limit state function with the maximum joint 
probability is the point the closest to the origin. It is found by solving the following optimization problem: 

Minimize: ∑
=

n

i
iu

1

2  

Subject to: .0)( =uG  

This point is referred to as the most probable point (MPP) and the distance from the origin in the u-space is 
referred to as the first-order probability index βFORM.  

 

The advantages of the most probable point are: 

1. The MPP gives an indication of the design most likely to fail. 

2. Highly accurate reliability methods utilizing an approximation around the MPP are possible.0. 

6.4.7. FORM (First Order Reliability Method) 

The Hasofer-Lind transformation is used to normalize the variables: 

.
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The minimization problem is accordingly solved in the u-space to find the first-order probability index 
βFORM. Approximations to the responses are used to solve the optimization problem. 

 

The probability of failure is found assuming a normally distributed response as 

( ),FORMfP β−Φ=  

with Φ the cumulative density function of the normal distribution. 

 

The error component of the procedure is due to (i) curvature of the constraint,  (ii) the error component of 
the approximating function used in the computations, and (iii) the assumption of a normal distribution for 
the computation of failure. 

 

The method is considered conservative considering that disregarding the curvature of the constraint results 
in an overestimation of the probability of failure. 

6.4.8. Design sensitivity of the most probable point 

For a probabilistic variable we use the partial derivative as: 
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with β∂∂P  the derivative of the CDF function of the normal distribution. 

 

For deterministic variables, which do not have a probabilistic component and therefore no associated u 
variables: 
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with f∂∂β  taken as ( ).minint alnoconstra ff −β  

For the pathological case of being at the MPP, the vector associated with β vanishes and we use: 
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with 0.4 the relevant value derivative of the CDF function of the normal distribution. 
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6.5. Required number of simulations 

6.5.1. Overview 

A single analysis of a noisy structural event yields only a single value drawn from an unexplored 
population. The whole population can be explored and quantified using a probabilistic investigation if the 
computational cost is reasonable. The cost of this probabilistic analysis is of quite some concern for FEA 
results and is therefore expounded in the following subsections. 

 

Rough rules of thumb: 

o 20 FE evaluation, a maximum of 10 design variables, and a metamodel-based probabilistic analysis 
for design purposes 

o 50 FE evaluations, about 5 design variables, and a metamodel-based probabilistic analysis for a 
detailed analysis of the scatter in the results and the role of the design variables 

o 100 FE evaluations and a Monte Carlo analysis for very noisy behavior or a very large number of 
potentially significant variables. These would be cases where it is very difficult to associate the 
variation in results with the design variables and accordingly only quantifying the result is feasible. 

6.5.2. Background 

The required number of the simulation depends on: 

1. Cost of creating an accurate metamodel 

2. Cost of estimating the noise variation 

3. Cost of observing low-probability events.0. 

 

If the variation in the responses is mainly due to the variation of the design variables, then the cost of 
creating an accurate metamodel dominates. The region of interest for a robustness analysis will not be as 
large as to contain significant curvature; therefore a linear or preferably a quadratic response surface should 
suffice. In past design optimization work, the number of experiments was successfully taken to be 1.5 times 
the number of terms (unknowns) in the metamodel to be estimated. For a robustness analysis, being 
conservative at this point in time, a value of twice the number of terms is recommended. The number of 
terms for a linear model is k+1 with k the number of design parameters. The number of terms for a quadratic 
response surface is (k+1)(k+2)/2. 

 

The variation in the responses may not be mainly due to the variation of the design variables. In this case, 
enough experiments much be conducted to estimate this noise variation with sufficient accuracy. This cost is 
additional to the cost of creating the metamodel. The number of experiments required will differ considering 
the criteria for accuracy used. For example, we can require the error of estimating the noise variation to be 
less than 10%; however, this requires about 150 experiments, which may be too expensive. Considering the 
practical constraints for vehicle crash analysis, useful results can be obtained with 25 or more degrees of 
freedom of estimating the noise variation. This gives a situation where the error bound on the standard 
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deviation is about 20% indicating that it is becoming possible to distinguish the six sigma events from five 
sigma events. 

 

For design purposes, the variation of the responses and the role of the design variables are of interest. High 
accuracy may be impossible due to lack of information or unreasonable computational costs. A metamodel-
based investigation and 20 FE evaluations can achieve: 

1. Investigate up to 10 variable 

2. Quantify the contribution of each variable 

3. Estimate if the scatter in results is admissible.0. 

If the scatter in FE results is large, then the FE model must be improved, the product redesigned, or a more 
comprehensive probabilistic investigation performed. The study should indicate which is required. 

 

A study can be augmented to re-use the existing FE evaluations in a larger study. 

 

If higher accuracy is required, then for approximately 50 simulations one can compute: 

o Better quantification of the role of the design variables: Investigate the effect of about five variables 
if a quadratic or neural network approximation is used or about 10 variables using linear 
approximations. 

o Higher accuracy and better understanding of the scatter in the results. Predict effect of frequently 
occurring variation with a rare chance of being in error. Outliers may occur during the study and will 
be identified as such for investigation by the analyst. Structural events with a small (5% to 10%) 
probability of occurring might however not be observed. 

 

The accuracy of these computations must be contrasted to the accuracy to which the variation of the design 
parameters is known. These limits on the accuracy, though important for the analyst to understand, should 
not prohibit useful conclusions regarding the probabilistic behavior of the structure. 

6.5.3. Competing role of variance and bias 

In an investigation the important design variables are varied while other sources are kept at a constant value 
in order to minimize their influence. In practice the other sources will have an influence. Distinguishing 
whether a difference in a response value is due to a deterministic effect or other variation is difficult, 
because both always have a joint effect in the computer experiments being considered. 

 

In general [4] the relationship between the responses y and the variables x is: 

( ) ( ) ,εδ ++= xxfy  
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with f(x) the metamodel; ( ) ( ) ( )xxx f−= ηδ , the bias, the difference between the chosen metamodel and the 
true functional response ( )xη ; and ε  the random deviation. 

 

The bias (fitting error) and variance component both contribute to the residuals. If we compute the variance 
of the random deviation using the residuals then the bias component is included in our estimate of the 
variance. The estimate of the variance is usually too large in the case of a bias error. 

 

The bias error is minimized by: 

1. Choosing the metamodel to be the same as the functional response. The functional response is 
however unknown. A reliable approach in the presence of noise is difficult to establish. In particular, 
metamodels that can fit exactly to any set of points will fit to the noise thus erroneously stating that 
the random deviation is zero; inflexible metamodels will ascribe deterministic effects to noise. 

2. Reducing the region of interest to such a size that the difference between metamodel and true 
functional response is not significant. 

3. Large number of experimental points. This strategy should be used together with the correct 
metamodel or a sufficiently small region of interest.0. 

The recommended approach is therefore to use a linear or quadratic response over a subregion small enough 
that the bias error should be negligible. 

6.5.4. Confidence interval on the mean 

For multiple regression, the 100(1-α)% confidence limits on the mean value at 0X  are obtained from 

,)( 0
1'

0,2/0 XXXX −
−−± pnpn stY α  

with 2
pns −  an estimate to 2σ . At the center of the region of interest for the coded variables the confidence 

interval is 

,11,2/0 CstY pnpn −−± α  

with 11C  the first diagonal element of 1' )( −XX . The confidence bound therefore depends on the variance of 
the response and the quality of the experimental design. 

 

More details can be found in, for example, the text by Myers and Montgomery [6]. 

6.5.5. Confidence interval on a new evaluation 

For multiple regression, the 100(1-α)% confidence limits on a new evaluation at 0X  are obtained from 
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.)(1 0
1'

0,2/0 XXXX −
−− +± pnpn stY α  

The confidence interval for new observations of the mean is  

,1 11,2/0 CstY pnpn +± −−α  

In the following table we monitor the bounds for a new evaluation of the mean for a linear approximation 
using five design variables using a 95% confidence interval. The value of C11 is computed from D-optimal 
experimental designs generated using LS-OPT. The error bounds are close to 2σ for more than 25 existing 
runs (20 degrees of freedom). 

 

n 
 

p n-p C11 Bounds (σ=10% α=5%) 

10 6 4 0.104 ±29% 
15 6 9 0.070 ±23% 
20 6 14 0.051 ±22% 
25 6 19 0.041 ±21% 
30 6 24 0.034 ±21% 
50 6 44 0.020 ±20% 
100 6 94 0.010 ±20% 

 

6.5.6. Confidence interval on the noise (stochastic process) variance 

The noise (stochastic process) variance can be estimated by considering the residuals of the reponse surface 
fit. Events such as a different buckling mode or order of contact events will appear in the residuals because 
they cannot be attributed to the variables in the response surface fit. These residuals can also be due to a bias 
(lack-of-fit) error, which complicates matters. 

 

The error of estimating the noise variance (σ2) is minimized by: 

1. Large number of points 

2. Minimizing the bias error. Ideally one wants to observe many occurrences of the same design.0. 

 

The residual mean square  

( ) ,11
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estimates 2σ with n - p degrees of freedom where n is the number of observations and p is the number of 
parameters including the mean.  
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We want to find an interval [b1, b2] such that [ ] 95.02
2

1 =≤≤ bsbP . We rewrite as 
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by reading of the values for 0.975 and 0.025. Having [a1, a2] we can compute for [b1, b2] as 
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In the table below we monitor the error bounds on the variance for a problem with six parameters (including 
the mean). 

 
Noise Variance Confidence Interval 

Lower Bound Upper Bound n n-p 

α=5% α=10% α=20%

Value (s) 

α=20% α=10% α=5%

10  4 5.99 6.49 7.17 10 19.39 23.72 28.74 
15  9 6.88 7.29 7.83 10 14.69 16.45 18.25 
20  14 7.32 7.69 8.15 10 13.41 14.60 15.77 
25  19 7.605 7.94 8.36 10 12.77 13.70 14.6 
30  24 7.81 8.12 8.50 10 12.38 13.16 13.91 
50  46 8.31 8.56 8.86 10 11.59 12.10 12.56 
106  100 8.78 8.97 9.19 10 11.02 11.33 11.61 
206  200 9.11 9.24 9.41 10 10.69 10.92 11.09 

 
 

In the above it was assumed that the metamodel is a sufficiently accurate approximation to the mechanistic 
model (the bias error sufficiently small) and that the errors are normally distributed. In general the estimate 
of 2σ will be depend on the approximation model. For a model-independent estimate, replicate runs 
(multiple observations for the same design) are required. If the bias error is significant then the estimate of 

2σ  will usually be too large [7]. 

6.5.7. Probability of observing a specific failure mode 

A large number of runs may be required to be sure that an event with a specific probability is observed. 

1. Probability that the event will be observed at least once (one or more times): 

2. P[observing 0 events] = (1-P[event])n 

3. P[observing 1 or more events] = 1.0 - (1-P[event])n0. 
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Probability of event Required number of runs for observing 1 or more 
occurrences at 95% probability 

0.45 5 
0.26 10 
0.14 20 
0.095 30 
0.06 50 
0.03 100 

 

6.6. Outlier analysis 

Outliers are values in poor agreement with the values expected or predicted for a specific combination of 
design variable values. Unexpected values may occur due to different buckling modes or modeling 
problems. Understanding the cause of the outliers can therefore lead to an improved structure or structural 
model. 

 

To be considered an outlier, the change in response value computed must not be completely explained by 
the change in design variable value. An expected value of the response value associated with a certain 
design is therefore required to judge whether a response is an outlier or not; the value predicted by the 
metamodel is used as the expected value. 
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Figure 6-3 Outliers are identified after a metamodel has been fitted. Values in poor agreement of what is 
predicted by the design variables are considered outliers. 

 

Metamodels are therefore useful to separate the effect of design variable changes from the other types of 
variation. The design variable cause-effect relationship is contained by the metamodel. The residuals of the 
fitting procedure are the variation not explained by changes in the design variables. The outliers therefore 
contain amongst others the bifurcation (buckling) effects. 

 

The outliers are best investigated visually in LS-PrePost by considering the deformation of the structure. A 
useful metric is computing the outliers for the displacement of every node in the structure and to fringe plot 
the standard deviation of these outliers. Fringe plots of the index of the run associated with the maximum or 
minimum displacement outlier can be used to identify different buckling modes. 

6.7. Stochastic contribution analysis 

The variation of the response can be broken down in contributions from each design variable. 

6.7.1. Linear estimation 

The contribution can be estimated as: 

,,, ixig xG σσ ∂∂=  
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with ix,σ  the standard deviation of the variable i and ig ,σ  the standard deviation of the variation of function 
g due to the variation of variable i. 

 

The variance for all the variables is found as the sum of the variance: 

∑= 22
iT σσ  

where 2
Tσ  is the variation of the response due to the variation of all the variables and 2

iσ  is the variation of 
response due to the variation of variable i. In the above it is assumed that the response is a linear response of 
the design variables and independent variables. If correlation between variables exists, then it is taken into 
account as documented in section 6.4.3. 

6.7.2. Second and higher order estimation 

For higher order effects, one must consider the interaction between different design variables as well as 
curvature. If a variation is due to the interaction of two variables, then the effect of one variable on the 
variation depends on the current value of the other. This is in contrast with problems described by first order 
effects, for which the effect of variables can be investigated independently; if interactions exist, this is no 
longer true. 

 

The effect of a variable can be described in terms of its main or total effect. The main effect of a variable is 
computed as if it were the only variable in the system, while the total effect considers the interaction with 
other variables as well. The advantage of using the total effect is that the interaction terms, which can be 
significant, are included. For linear systems, the main and total effects are therefore the same. The second 
order effects must be computed, which increases computational costs considerably. 

 

The variance of the response, assuming independent variables, can be written using the Sobol’s indices 
approach [8] [9]. Firstly the function is decomposed as: 
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From which partial variances are computed as: 
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with the variance of the response summed from the partial variances as: 
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The sensitivity indices are given as: 
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with the useful property that all of the sensitivity indices sum to 1: 
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Using Monte Carlo, the main effect can be computed as  
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with ix~ is the subset of variables not containing ix . 

The total effect of a variable can also be computed as: 

.1 ~iTi SS −=  

Using Monte Carlo, the total effect can be computed by considering the effects not containing ix  
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For second order response surfaces this can be computed analytically [10] as 
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with mi,j the jth moment about the mean of the distribution i and U the set of variables under consideration. 

 

The stochastic contribution is computed analytically only for responses surfaces. For neural networks, 
Kriging models, and composite functions, two options are currently available: 

o Approximate using second order response surface. The response surface is built using three times 
the number of terms in the response surface using a central points Latin hypercube experimental 
design over a range of plus/minus two standard deviations around the mean. 

o Using a Monte Carlo analysis. Many points (10,000 or more) are required. This option is used to 
compute the variance when there is correlation between variables. Note that a small number of 
points can results in negative values of the variance; these negative values should be small relative to 
the maximum variances obtained though. 
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Correlations between variables are not considered in the computation of the main and total effects of the 
variables. 

6.8. Robust parameter design 

Robust parameter design selects designs insensitive to changes in given parameters. 

 

The field of robust design relies heavily on the work of Taguchi. Taguchi’s insight was that it costs more to 
control the sources of variation than to make the process insensitive to these variations [11]. An alternate 
view of Taguchi [12] is that building quality into a product is preferable to inspecting for quality. Also, in 
simulation, the actual results of a robust system are more likely to conform to the anticipated results [11]. 

 

The robust design problem definition requires considering two sets of variables: (i) the noise variables 
causing the variation of the response and (ii) the control variables which are adjusted to minimize the effect 
of the noise variables. The method adjusts the control variables to find a location in design space with 
reduced gradients so that variation of the noise variable causes the minimum variation of the responses. 

6.8.1. Fundamentals 

The robustness of a structure depends on the gradient of the response function as shown in Figure 6-4. A flat 
gradient will transmit little of the variability of the variable to the response, while a steep gradient will 
amplify the variability of the variable. Robust design is therefore a search for reduced gradients resulting in 
less variability of the response. 

 

Figure 6-4 Robustness considering a single variable.  Larger mean values of the area result in a smaller 
dispersion of the stress values. Note that the dispersion of the stress depends on the gradient of the stress-
area relationship. 

 

The variation of the response is caused by a number of variables, some which are not under the control of 
the designer. The variables are split in two sets of variables: 
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1. Control variables. The variables (design parameters) under the control of the designer are called 
control variables, 

2. Noise variables. The parameter not under the control of the designer are called noise variables.0.  

The relationship between the noise and control variables as shown in Figure 6-5 is considered in the 
selecting of a robust design. The control variables are adjusted to find a design with a low derivative with 
respect to the noise variable. 

 

 

Figure 6-5 Robustness of a problem with both control and noise variables.  The effect of the noise 
variable z on the response variation can be constrained using the control variable x. For robustness, the 
important property is the gradient of the response with respect to the noise variable. This gradient 
prescribes the noise in the response and can be controlled using the control variables. The gradient, as 
shown in the figure, is large for large values of the control variable. Smaller values of the control 
variable will therefore result in a more robust design, because of the lower gradient and accordingly less 
scatter in the response. 

6.8.2. Methodology 

The dual response surface method as proposed by Myers and Montgomery [6] using separate models for 
process mean and variance is considered. Consider the control variables x and noise variables z with 

zrz IVar 2)( σ=z . The response surface for the mean is [ ] xxxzxyEz βββ ''),( ++=  considering that the noise 
variables have a constant mean. Response surface for variance considering only the variance of the noise 
variables is 2'2 )()()],([ σσ += xlxlzxyVar zz  with 

zrz IVar 2)( σ=z , 2σ  the model error variance, and l  the 
vector of partial derivatives zzxyxl ∂∂= ),()( . 

The search direction required to find a more robust design is requires the investigation of the interaction 
terms xizj. For finding an improved design, the interaction terms are therefore required. Finding the optimum 
in a large design space or a design space with a lot of curvature requires either an iterative strategy or higher 
order terms in the response surface. 
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For robust design, it is required to minimize the variance, but the process mean cannot be ignored. Doing 
this using the dual response surface approach is much simpler than using the Taguchi approach because 
multicriteria optimization can be used. Taguchi identified three targets: smaller is better, larger is better, and 
target is best. Under the Taguchi approach, the process variance and mean is combined into a single 
objective using a signal-to-noise ratio (SNR). The dual response surface method as used in LS-OPT does 
not require the use of a SNR objective. Fortunately so, because there is wealth of literature in which SNRs 
are criticized [6]. With the dual response surface approach both the variance and mean can be used, together 
or separately, as objective or constraints. Multicriteria optimization can be used to resolve a conflict 
between process variance and mean as for any other optimization problem. 

 

Visualization is an important part of investigating and increasing robustness. As Myers and Montgomery 
state : “The more emphasis that is placed on learning about the process, the less important absolute 
optimization becomes.” 

6.8.3. Experimental design 

One extra consideration is required to select an experimental design for robust analysis: provision must be 
made to study the interaction between the noise and control variables. Finding a more robust design requires 
that the experimental design considers the xizj cross-terms, while the xi

2 and zj
2 terms can be included for a 

more accurate computation of the variance. 

 

The crossed arrays of the Taguchi approach are not required in this response surface approach where both 
the mean value and variance are computed using a single model. Instead combined arrays are used which 
use a single array considering x and z combined. 
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7. Design Optimization Process 

7.1. A modus operandi for design using response surfaces 

7.1.1. Preparation for design 

Since the design optimization process is expensive, the designer should avoid discovering major flaws in the 
model or process at an advanced stage of the design. Therefore the procedure must be carefully planned and 
the designer needs to be familiar with the model, procedure and design tools well in advance. The following 
points are considered important: 

1. The user should be familiar with and have confidence in the accuracy of the model (e.g., finite 
element model) used for the design. Without a reliable model, the design would make little or no 
sense. 

2. Select suitable criteria to formulate the design. The responses represented in the criteria must be 
produced by the analyses and be accessible to LS-OPT. 

3. Request the necessary output from the analysis program and set appropriate time intervals for time-
dependent output. Avoid unnecessary output as a high rate of output will rapidly deplete the 
available storage space. 

4. Run at least one simulation using LS-OPT (baseline design). To save time, the termination time of 
the simulation can be reduced substantially. This exercise will test the response extraction 
commands and various other features. Automated response checking is available, but manual 
checking is still recommended. 

5. Just as in the case of traditional simulation it is advisable to dump restart files for long simulations. 
LS-OPT will automatically restart a design simulation if a restart file is available. For this purpose, 
the runrsf file is required when using LS-DYNA as solver. 

6. Determine suitable design parameters. In the beginning, it is important to select many rather than 
few design variables. If more than one discipline is involved in the design, some interdisciplinary 
discussion is required with regard to the choice of design variables. 

7. Determine suitable starting values for the design parameters. The starting values are an estimate of 
the optimum design. These values can be acquired from a present design if it exists. The starting 
design will form the center point of the first region of interest. 

8. Choose a design space. This is represented by absolute bounds on the variables that you have 
chosen. The responses may also be bounded if previous information of the functional responses is 
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available. Even a simple approximation of the design response can be useful to determine 
approximate function bounds for conducting an analysis. 

9. Choose a suitable starting design range for the design variables. The range should be neither too 
small, nor too large. A small design region is conservative but may require many iterations to 
converge or may not allow convergence of the design at all. It may be too small to capture the 
variability of the response because of the dominance of noise. It may also be too large, such that a 
large modeling error is introduced. This is usually less serious as the region of interest is gradually 
reduced during the optimization process.  

10. If the user has trouble deciding the size of the starting range, it should be omitted. In this case the 
full design space is chosen. 

11. Choose a suitable order for the design approximations when using polynomial response surfaces (the 
default). A good starting approximation is linear because it requires the least number of analyses to 
construct. However, it is also the least accurate. The choice therefore also depends on the available 
resources. However, linear experimental designs can be easily augmented to incorporate higher order 
terms.0. 

Before choosing a metamodel, please also consult Sections 3.3 and 4.5. 

 

After suitable preparation, the optimization process may now be commenced. At this point, the user has to 
decide whether to use an automated iterative procedure (Section 3.3) or whether to firstly perform variable 
screening (through ANOVA) based on one or a few iterations. Variable screening is important for reducing 
the number of design variables, and therefore the overall computational time. Variable screening is 
illustrated in two examples (see Sections 22.6 and 22.7). 

 

An automated iterative procedure can be conducted with any choice of approximating function. It 
automatically adjusts the size of the subregion and automatically terminates whenever the stopping criterion 
is satisfied. The feature that reduces the size of the subregion can also be overridden by the user so that 
points are sequentially added to the full design space. This becomes necessary if the user wants to explore 
the design space such as constructing a Pareto Optimal front. If a single optimal point is desired, it is 
probably the best to use a sequential linear approximation method with domain reduction, especially if there 
is a large number of design variables. See also Section 4.5. 

 

A step-by-step semi-automated procedure can be just as useful, since it allows the designer to proceed more 
resourcefully. Computer time can be wasted with iterative methods, especially if handled carelessly. It 
mostly pays to pause after the first iteration to allow verification of the data and design formulation and 
inspection of the results, including ANOVA data. In many cases, it takes only 2 to 3 iterations to achieve a 
reasonably optimal design. An improvement of the design can usually be achieved within one iteration. 

 

A suggested step-by-step semi-automated procedure is outlined as follows: 
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7.1.2. A step-by-step design optimization procedure 

1. Evaluate as many points as required to construct a linear approximation. Assess the accuracy of the 
linear approximation using any of the error parameters. Inspect the main effects by looking at the 
ANOVA results. This will highlight insignificant variables that may be removed from the problem. 
An ANOVA is simply a single iteration run, typically using a linear response surface to investigate 
main and/or interaction effects. The ANOVA results can be viewed in the post-processor (see 
Section 18.3.4). 

2. If the linear approximation is not accurate enough, add enough points to enable the construction of a 
quadratic approximation. Assess the accuracy of the quadratic approximation. Intermediate steps can 
be added to assess the accuracy of the interaction and/or elliptic approximations. Radial Basis 
Functions (Section 3.1.3) can also be used as more flexible higher order functions (They do not 
require a minimum number of points). 

3. If the higher order approximation is not accurate enough, the problem may be twofold: 

o There is significant noise in the design response. 

o There is a modeling error, i.e. the function is too nonlinear and the subregion is too large to 
enable an accurate quadratic approximation. 

In case (3a), different approaches can be taken. Firstly, the user should try to identify the source of 
the noise, e.g. when considering acceleration-related responses, was filtering performed?  Are 
sufficient significant digits available for the response in the extraction database (not a problem when 
using LS-DYNA since data is extracted from a binary database)? Is mesh adaptivity used correctly? 
Secondly, if the noise cannot be attributed to a specific numerical source, the process being modeled 
may be chaotic or random, leading to a noisy response. In this case, the user could implement 
reliability-based design optimization techniques as described in Section 5.5. Thirdly, other less 
noisy, but still relevant, design responses could be considered as alternative objective or constraint 
functions in the formulation of the optimization problem.  

 

In case (3b), the subregion can be made smaller. 

 

In most cases the source of discrepancy cannot be identified, so in either case a further iteration 
would be required to determine whether the design can be improved. 

 

4. Optimize the approximate subproblem. The solution will be either in the interior or on the boundary 
of the subregion.0. 

 

If the approximate solution is in the interior, the solution may be good enough, especially if it is close to 
the starting point. It is recommended to analyze the optimum design to verify its accuracy. If the 
accuracy of any of the functions in the current subproblem is poor, another iteration is required with a 
reduced subregion size. 
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If the solution is on the boundary of the subregion the desired solution is probably beyond the region. 
Therefore, if the user wants to explore the design space more fully, a new approximation has to be built. 
The accuracy of the current response surfaces can be used as an indication of whether to reduce the size 
of the new region. 

 

The whole procedure can then be repeated for the new subregion and is repeated automatically when 
selecting a larger number of iterations initially. 

7.2. Recommended test procedure 

A full optimization run can be very costly. It is therefore recommended to proceed with care. Check that the 
LS-OPT optimization run is set up correctly before commencing to the full run. By far the most of the time 
should be spent in checking that the optimization runs will yield useful results. A common problem is to not 
check the robustness of the design so that some of the solver runs are aborted due to unreasonable 
parameters which may cause distortion of the mesh, interference of parts or undefinable geometry. 

 

The following general procedure is therefore recommended: 

1. Test the robustness of the analysis model by running a few (perhaps two or three) designs in the 
extreme corners of the chosen design space. Run these designs to their full term (in the case of time-
dependent analysis). Two important designs are those with all the design variables set at their 
minimum and maximum values. The starting design can be run by selecting ‘0’ as the number of 
iterations in the Run panel.  

2. Modify the input to define the experimental design for a full analysis.  

3. For a time dependent analysis or non-linear analysis, reduce the termination time or load 
significantly to test the logistics and features of the problem and solution procedure. 

4. Execute LS-OPT with the full problem specified and monitor the process.0. 

 

Also refer to Section 7.1. 

7.3. Pitfalls in design optimization 

A number of pitfalls or potential difficulties with optimization are highlighted here. The perils of using 
numerical sensitivity analysis have already been discussed and will not be repeated in detail. 

7.3.1. Global optimality 

The Karush-Kuhn-Tucker conditions govern the local optimality of a point. However, there may be more 
than one optimum in the design space. This is typical of most designs, and even the simplest design problem 
(such as the well known 10-bar truss sizing problem with 10 design variables), may have more than one 
optimum. The objective is, of course, to find the global optimum. Many gradient-based as well as discrete 
optimal design methods have been devised to address global optimality rigorously, but as there is no 
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mathematical criterion available for global optimality, nothing short of an exhaustive search method can 
determine whether a design is optimal or not. Most global optimization methods require large numbers of 
function evaluations (simulations). In LS-OPT, global optimality is treated on the level of the approximate 
subproblem through a multi-start method originating at all the experimental design points. If the user can 
afford to run a direct optimization procedure, a Genetic Algorithm (Section 4.8) can be used. 

7.3.2. Noise 

Although noise may evince the same problems as global optimality, the term refers more to a high 
frequency, randomly jagged response than an undulating one. This may be largely due to numerical round-
off and/or chaotic behavior. Even though the application of analytical or semi-analytical design sensitivities 
for ‘noisy’ problems is currently an active research subject, suitable gradient-based optimization methods 
which can be applied to impact and metal-forming problems are not likely to be forthcoming. This is largely 
because of the continuity requirements of optimization algorithms and the increased expense of the 
sensitivity analysis. Although fewer function evaluations are required, analytical sensitivity analysis is 
costly to implement and probably even more costly to parallelize. 

7.3.3. Non-robust designs 

Because RSM is a global approximation method, the experimental design may contain designs in the remote 
corners of the region of interest which are prone to failure during simulation (aside from the fact that the 
designer may not be remotely interested in these designs). An example is the identification of the parameters 
of a monotonic load curve which in some of the parameter sets proposed by the experimental design may be 
non-monotonic. This may cause unexpected behavior and possible failure of the simulation process. This is 
almost always an indication that the design formulation is non-robust. In most cases poor design 
formulations can be eliminated by providing suitable constraints to the problem and using these to limit 
future experimental designs to a ‘reasonable’ design space (see Section 2.2.8). 

7.3.4. Impossible designs 

The set of impossible designs represents a ‘hole’ in the design space. A simple example is a two-bar truss 
structure with each of the truss members being assigned a length parameter. An impossible design occurs 
when the design variables are such that the sum of the lengths becomes smaller than the base measurement, 
and the truss becomes unassemblable. It can also occur if the design space is violated resulting in 
unreasonable variables such as non-positive sizes of members or angles outside the range of operability. In 
complex structures it may be difficult to formulate explicit bounds of impossible regions or ‘holes’. 

7.3.5. Non-unique designs 

In some cases multiple solutions will give the same or similar values for the objective function. The 
phenomenon often appears in under-defined parameter identification problems. The underlying problem is 
that of a singular system of equations having more than one solution. The symptoms of non-uniqueness are: 

o Different solutions are found having the same objective function values 

o The confidence interval for a non-linear regression problem is very large, signaling a singular system 
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For nonlinear regression problems, the user should ensure that the test/target results are sufficient. It could 
be that the data set is large but that some of the parameters are insensitive to the functions corresponding to 
the data. An example is the determination of the Young’s modulus (E) of a material, but having test points 
only in the plastic range of deformation (see example Section 22.5). In this case the response functions are 
insensitive to E and will show a very high confidence interval for E (Section 22.5.4). 

 

The difference between a non-robust design and an impossible one is that the non-robust design may show 
unexpected behavior, causing the run to be aborted, while the impossible design cannot be synthesized at 
all. 

 

Impossible designs are common in mechanism design. 
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8. Graphical User Interface and 
Command Language 

This chapter introduces the graphical user interface, the command language and describes syntax rules for 
names of variables, strings and expressions. 

8.1. LS-OPT user interface (LS-OPTui) 

LS-OPT can be operated in one of two modes. The first is through a graphical user interface, LS-OPTui, and 
the second through the command line using the Design Command Language (DCL). 

 

The user interface is launched with the command 
 
lsoptui [command_file] 
 

The layout of the menu structure (Figure 8-1) mimics the optimization setup process, starting from the 
problem description, through the selection of design variables and experimental design, the definition and 
responses, and finally the formulation of the optimization problem (objectives and constraints). The run 
information (number of processors, monitoring and termination criteria) is also controlled via LS-OPTui. 
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Figure 8-1: Information panel in LS-OPTui 

8.2. Problem description and author name 

In LS-OPTui, the Info (main) panel has fields for the entering of the problem description and author 
information. 

 

Command file syntax 

problem_description 
author author_name 

 

A description of the problem can be given in double quotes. This description is echoed in the lsopt_ 
input and lsopt_output files and in the plot file titles. 

 

Example: 
"Frontal Impact" 
author "Jim Brown" 

 

The number of variables and constraints are echoed from the graphical user input. These can be modified by 
the user in the command file. 

Command file syntax: 
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solvers number_of_solvers < 1 > 
constants number_of_constants < 0 > 
variables number_of_variables 
dependents number_of_dependent_variables < 0 > 
histories number_of_response_histories < 0 > 
responses number_of_responses 
composites number_of_composites < 0 > 
objectives number_of_objectives < 0 > 
constraints number_of_constraints < 0 > 
distributions number_of_distributions < 0 > 

 

Example: 
variable 2 
constraint 1 
responses 2 
objectives 2 
 

The most important data commands are the definitions. These serve to define the various entities which 
constitute the design problem namely solvers, variables, results, matrices, responses, objectives, constraints 
and composites. The definition commands are: 

 

solver package_name 
constant name value 
variable name value 
dependent name value 
result name string 
history name string 
matrix name string 
response name string 
composite name type type 
composite name string  
objective name entity weight 
constraint name entity name 

 

Each definition identifies the entity with a name. “Results” and “matrices” do not require a count. Other 
entities will be phased out in future. 

8.3. Command language 

The command input file is a sequence of text commands describing the design optimization process. It is 
also written automatically by LS-OPTui. 
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The Design Command Language (DCL) is used as a medium for defining the input to the design process. 
This language is based on approximately 200 command phrases drawing on a vocabulary of about 200 
words. Names can be used to describe the various design entities. The command input file combines a 
sequence of text commands describing the design optimization process. The command syntax is not case 
sensitive. 

8.3.1. Names 

Entities such as variables, responses, etc. are identified by their names. The following entities must be given 
unique names: 
solver 
constant 
variable 
dependent 
result 
history 
matrix 
response 
composite 
objective 
constraint 
 

A name is specified in single quotes, e.g. 
 
solver dyna ’DYNA_side_impact’ 
constant ’Young_modulus’ 50000.0 
variable ’Delta’ 1.5 
dependent ’new_modulus’ {Young_modulus + Delta} 
result ’x_acc’ "BinoutResponse –res_type rcforc –cmp z_force –id 1  
                –side SLAVE –select TIME –end_time 0.002" 
Matrix ’strain’ {Matrix3x3Init(0.001,0.002,0.0035, a,b,c, d,e,f)} 
History ’y_vel’ "DynaASCII nodout Y_VEL 187705 TIMESTEP 0 SAE 30" 
Response ’x_acc’ "DynaASCII rbdout X_ACC 21 AVE" 
composite ’deformation’ type targeted 
composite ’sqdef’ {sqrt(deformation)} 
objective ’deformation’ composite ’deformation’ 1.0 
constraint ’Mass’ response ’Mass’ 
 

In addition to numbers 0-9, upper or lower case letters, a name can contain any of the following characters: 

_. The leading character must be alphabetical. Spaces are not allowed. A name length is limited to 61 
characters. 

 

Note: 

Because mathematical expressions can be constructed using various entities in the same formula, 
duplication of names is not allowed. 
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8.3.2. Command lines 

Preprocessor commands, solver commands or response extraction commands are enclosed in double quotes, 
e.g., 
 
$ SPECIFICATION OF PREPROCESSOR AND SOLVER 
preprocessor command "/usr/ls-dyna/ingrid" 
solver command "/alpha6_2/usr/ls-dyna/bin/ls-dyna_9402_dec_40" 
$ IDENTIFICATION OF THE RESPONSE 
response ’displacement’ "DynaRelativeDisp 0.2" 
response ’Force’ "Myforce" 
 

In addition to numbers 0-9, upper or lower case letters and spaces, a command line can contain any of the 
following characters: 
_=-.’/<>;‘ 

In the command input file, a line starting with the character $ is ignored. A command must be specified on 
a single line. 

8.3.3. File names 

Input file names for the solver and preprocessor must be specified in double quotes. 
prepro input file "p11i" 
solver input file "side_impact" 

8.3.4. Command file structure 

The commands are arranged in two categories: 

problem data 

solution tasks 

There are several commands for specifying the available tasks. The remaining commands are for the 
specification of problem data. A solution task command serves to execute a solver or processor while the 
other commands store the design data in memory. 

 

In the following chapters, the command descriptions can be easily found by looking for the large typescript 
bounded by horizontal lines. Otherwise the reader may refer to the quick reference manual that also serves 
as an index. The default values are given in angular brackets, e.g. < 1 >. 

8.3.5. Environments 

Environments have been defined to represent all dependent entities that follow. The only environments in 
LS-OPT are for 

o solver identifier_name 

All responses, response histories, solver variables, solver experiments and solver-related job information 
defined within this environment are associated with the particular solver. 
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o strict, slack/soft Pertains to the strictness of constraints. See Sections 16.5. 

move, stay Pertains to whether constraints should be used to define a reasonable design space or not for 
the experimental design. See Section 13.8. 

8.3.6. Expressions 

Each entity can be defined as a standard formula, a mathematical expression or can be computed with a 
user-supplied program that reads the values of known entities. The bullets below indicate which options 
apply to the various entities. Variables are initialized as specified numbers.  

Table 8-1: Expression options of optimization entities 

Entity Standard Expression User-defined 
Variable 
Dependent 
Result 
Matrix 
History 
Response 
Composite 

 
 
● 
 
● 
● 
● 

 
● 
● 
● 
● 
● 
● 

 
 
● 
 
● 
● 

 

A list of mathematical and special function expressions that may be used is given in Appendix D : 
Mathematical Expressions. 
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9. Program Execution 

This chapter describes the directory structure, output and status files, and logistical handling of a simulation-
based optimization run. 

9.1. Work directory 

Create a work directory to keep the main command file, input files and other command files as well as the 
LS-OPT program output. 

9.2. Execution commands 

 
lsoptui command_file_name Execute the graphical user interface 
lsopt command_file_name LS-OPT batch execution 
lsopt info Create a log file for licensing 
lsopt env Check the LS-OPT environment setting
viewer command_file_name Execute the graphical postprocessor 

 

The LS-OPT environment is automatically set to the location of the lsopt executable. 

9.3. Directory structure 

When conducting an analysis in which response evaluations are done for each of the design points, a sub-
directory will automatically be created for each analysis. 
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Figure 9-1 : Directory structure in LS-OPT 

These sub-directories are named solver_ name/mmm.nnnn, where mmm represents the iteration number and 
nnnn is a number starting from 1. solver_ name represents the solver interface specified with the command, 
e.g. 

 
solver dyna ’side_impact’ 

 

In this case dyna is a reserved package name and side_impact is the name of an analysis case chosen 
by the user. The work directory needs to contain at least the command file and the template input files. 
Various other files may be required such as a command file for a preprocessor. An example of a sub-
directory name, defined by LS-OPT, is side_impact/3.11, where 3.11 represents the design point 
number of iteration 3. The creation of subdirectories is automated and the user only needs to deal with the 
working directory. 

 

In the case of simulation runs being conducted on remote nodes, a replica of the run directory is 
automatically created on the remote machine. The response.n and history.n files will automatically 
be transferred back to the local run directory at the end of the simulation run. These are the only files 
required by LS-OPT for further processing.  

9.4. Job monitoring 

The job status is automatically reported at a regular interval. The user can also specify the interval. The 
interface, LS-OPTui reports the progress of the jobs in the Run panel (see Section 17.8). The text screen 
output while running both the batch and the graphical version also reports the status as follows: 

 
JobID Status     PID   Remaining 
----- ------     -----  --------- 
1 N o r m a l termination! 
2 Running     8427  00:01:38 (91% complete) 
3 Running     8428  00:01:16 (93% complete) 
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4 Running     8429  00:00:21 (97% complete) 
5 Running     8430  00:01:13 (93% complete) 
6 Running     8452  00:21:59 (0% complete) 
7 Waiting ... 
8 Waiting ... 

 

In the batch version, the user may also type control-C to get the following response: 
 
Jobs started 
Got control C. Trying to pause scheduler ... 
Enter the type of sense switch: 
sw1: Terminate all running jobs 
sw2: Get a current job status report for all jobs 
t: Set the report interval 
v: Toggle the reporting status level to verbose 
stop: Suspend all jobs 
cont: Continue all jobs 
c: Continue the program without taking any action 
Program will resume in 15 seconds if you do not enter a choice switch: 

If v is selected, more detailed information of the jobs is provided, namely event time, time step, internal 
energy, ratio of total to internal energy, kinetic energy and total velocity. 

9.5. Result extraction 

Each simulation run is immediately followed by a result extraction to create the history.n and 
response.n files for that particular design point. For distributed simulation runs, this extraction process is 
executed on the remote machine. The history.n and  response.n files are subsequently transferred to 
the local run directory. 

9.6. Restarting 

Restarting is conducted by giving the command: 

 

lsopt command_file_name, or by selecting the Run button in the Run panel of LS-OPTui. 

 

Completed simulation runs will be ignored, while half completed runs will be restarted automatically. 
However, the user must ensure that an appropriate restart file is dumped by the solver by specifying its 
name and dump frequency. 

 

The following procedure must be followed when restarting a design run: 

1. As a general rule, the run directory structure should not be erased. The reason is that on restart, LS-
OPT will determine the status of progress made during a previous run from status and output files in 
the directories. Important data such as response values (response.n files), response histories 
(history.n files) are kept only in the run directories and is not available elsewhere. 
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2. In most cases, after a failed run, the optimization run can be restarted as if starting from the 
beginning. There are a few notable exceptions: 

o A single iteration has been carried out but the design formulation is incorrect and must be 
changed. 

o Incorrect data was extracted, e.g., for the wrong node or in the wrong direction. 

o The user wants to change the response surface type, but keep the original experimental design. 

In the above cases, all the history.n and response.n files must be deleted. After restarting, the data 
will then be newly extracted and the subsequent phases will be executed. A restart will only be able 
to retain the data of the first iteration if more than one iteration was completed. The directories of the 
other higher iterations must be deleted in their entirety. Unless the database was deleted (by, e.g., 
using the clean file, see Section 9.9), no simulations will be unnecessarily repeated, and the 
simulation run should continue normally. 

3. A restart can be made from any particular iteration by selecting the ‘Specify Starting Iteration’ 
button on the Run panel, and entering the iteration number. The subdirectories representing this 
iteration and all higher-numbered iterations will be deleted after selecting the Run button and 
confirming the selection. 

4. The number of points can be changed for a restart (see Section 13.14). 0. 

9.7. Output files 

The following files are intermediate database files containing ASCII data. 

Table 9-1: Intermediate ASCII database files 

Database file Description Directory 

Experiments_n.csv 
Trial designs computed as a result of the 
experimental design Case 

AnalysisResults_n.lsox 
.xml file containing all the extracted 
results including responses, matrices and 
histories. 

Case 

AnalysisResults_n.csv 
The same trial designs and the responses 
extracted from the solver database Case 

DesignFunctions Parameters of the approximate functions Case 

VirtualHistoryFunction Approximation functions data for histories Main 

OptimizationHistory 
Variable, response and error history of the 
successive approximation process Main 

OptimizerHistory Detailed history of the optimizer Main 

ExtendedResults 
All variables, responses and extended 
results at each trial design point Case 
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Net.funcname 
Parameters of the metamodel of function 
with name funcname Case 

Variables.n 
The variable values, confidence intervals 
and bounds  Main 

 

A more detailed description of the database is available in Appendix C. 

 

The output files are as follows: 

Table 9-2: Output files 

Database file Description Directory View 
option 

lsopt_input Input in a formatted style Work Input 

lsopt_output 
Results and some logging 
information. Usually a very large 
file. 

Work Output 

lsopt_report 

A final report of the analysis 
results. Available for some of the 
main tasks and most of the Repair 
tasks 

Work Summary 

lsopt_db 

This file communicates the current 
status of the LSOPT databases to 
other LSTC programs. The content 
of this file is subject to change 
between versions of LS-OPT. 

Work File 

lsopt_results_n.binout* 

All variable, responses and 
extended results of the non-
dominated solutions at each 
iteration 

Work  

*This binary file is equivalent to the TradeOff.* files in the older versions. 

 

The following files are in a .csv (comma separated variables) format: 

 

Table 9-3: Result files in .csv format 

Database file Description Directory Remarks 

Experiments_n.csv 
Experiments (n = iteration 
number) Case  
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AnalysisResults_n.csv Analysis Results Case  

ExtendedResultsMaster_n.csv 

Extended Results (variables, 
dependents, responses, composites, 
objectives, constraints, 
multiobjective) 

Case 

 

ExtendedResultsMETAMaster_n.
csv 

Extended Results file for user-
defined Experiments file Case See Section 0

PRESS_predictions_n.csv 

PRESS (Section 2.3.4) predicted 
results and PRESS residuals 
(Polynomials and Radial Basis 
Function networks (Section 3.1.2) 
only. PRESS residuals are not 
computed for Feedforward Neural 
Networks) 

Case 

Use check 
box to select 
PRESS in 
Viewer→ 
Accuracy→ 

OptimizerHistory_n.csv 
Detailed history of the optimizer 
for iteration n Work  

 

9.8. Log files and status files 

Status files prepro, replace, started, finished, history.n, response.n and EXIT_STATUS are placed in the 
run directories to indicate the status of the solution progress. The directories can be cleaned to free disk 
space but selected status files must remain intact to ensure that a restart can be executed if necessary. 

 

A brief explanation is given below. 

 
 

Table 9-4: Status files generated by LS-OPT 

prepro The preprocessing has been done. 
replace The variables have been replaced in the input files. 
started The run has been started. 
finished The run has been completed. The completion status is given in the file.
response.n Response number n has been extracted. 
history.n History number n has been extracted. 
EXIT_STATUS Error message after termination. 

 

o The user interface LS-OPTui uses the message in the EXIT_STATUS file as a pop-up message. 

o The lfop.log file contains a log of the core optimization solver solution. 
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o The simulation run/extraction log is saved in a file called lognnnnnn in the local run directory, 
where nnnnnn represents the process ID number of the run. An example of a logfile name is 
log234771. 

Please refer to Section 9.6 for restarting an optimization run. 

9.9. Managing disk space during run time 

During a successive approximation procedure, superfluous data can be erased after each run while keeping 
all the necessary data and status files (see above and example below). For this purpose the user can provide 
a file named clean containing the required erase statements such as: 
 
rm -rf d3* 
rm -rf elout 
rm -rf nodout 
rm -rf rcforc 
 

The clean file will be executed immediately after each simulation and will clean all the run directories 
except the baseline (first or 1.1) and the optimum (last) runs. Care should be taken not to delete the lowest 
level directories or the log files prepro, started, replace, finished, response.n or 
history.n (which must remain in the lowest level directories). These directories and log files indicate 
different levels of completion status which are essential for effective restarting. Each file 
response.response_number contains the extracted value for the response: response_number. E.g., the 
file response.2 contains the extracted value of response 2. The essential data is thus preserved even if 
all solver data files are deleted. The response_number starts from 0. 

 

Complete histories are similarly kept in history.history_number. 

 

The minimal list to ensure proper restarting is: 

 
prepro 
XPoint 
replace 
started 
finished 
response.0 
response.1 
. 
. 
history.0 
history.1 
. 
. 
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Remarks: 

1. The clean file must be created in the work directory. 

2. If the clean file is absent, all data will be kept for all the iterations.  

3. For remote simulations, the clean file will be executed on the remote machine.0. 

9.10. Error termination of a solver run 

The job scheduler will mark an error-terminated job to avoid termination of LS-OPT. Results of abnormally 
terminated jobs are ignored. If there are not enough results to construct the approximate design surfaces, 
LS-OPT will terminate with an appropriate error message. 

9.11. Parallel processing 

Runs can be executed simultaneously. The user has to specify how many processors are available. 

Command file syntax: 

solver concurrent jobs number_of_jobs 

 

If a parallel solver is used, the number of concurrent jobs used for the solution will be number_of_jobs times 
the number of cpu’s specified for the solver. 

Example: 

solver concurrent jobs 16 
 

If the number of concurrent jobs is specified as 0, all the jobs will be run simultaneously. This can be used 
to transfer all the jobs to a queuing system (see Section 9.12) at once. 

9.12. Remote job scheduling 

The solver jobs do not have to be executed on the same machine as where LS-OPT is running. There are 
several ways of distributing the solver jobs. An example of remote job distribution is when the user is 
running LS-OPT on a laptop or desktop computer but prefers to run multiple solver jobs in parallel on a 
computer cluster.  

There are five common scenarios that we try to address using various LS-OPT job scheduling options. 

1. runqueuer/wrapper option 

a. You have a queueing system and you want to submit some or all LS-OPT solver jobs to that 
queueing system. 

b. You can allow remote solver jobs to initiate TCP/IP connections back to the machine where 
LS-OPT runs. 
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2. blackbox option 

a.  You have a queueing system and you want to submit some or all LS-OPT solver jobs to that 
queueing system. 

b. You prefer not to allow remote solver jobs to initiate TCP/IP connections back to the 
machine where LS-OPT runs. 

3. lstcvm option 

a. You do not have a queueing system. You would like to run LS-OPT on one machine, but you 
would like to run all solver jobs on a single, dedicated cluster. 

b. You can share a file system between LS-OPT and the cluster where the solver jobs are run. 

4. lstcvm/runqueuer/wrapper option 

a. You do not have a queueing system. You would like to run LS-OPT on one machine, but you 
would like to run all solver jobs on a single, dedicated cluster. 

b. You prefer not to share a file system between LS-OPT and the cluster where the solver jobs 
are run. 

c. You do allow remote solver jobs on the dedicated cluster to connect via TCP/IP back to the 
machine where LS-OPT is running. 

5. lstcvm/blackbox option 

a. You have a queueing system that you would like to use for job submission, but the machine 
where you would like to run LS-OPT does not have a command line submit utility for the 
queueing system. 

b. There is a machine on your system where 

i. You can install the lstcvm job proxy server; 

ii. You can submit jobs using a command line utility; 

iii. You can share a file system with the machine where LS-OPT will run; 0. 

 

9.13. Using an external queuing or job scheduling system 

9.13.1. Introduction 

The LS-OPT Queuing Interface interfaces with load sharing facilities (e.g. LSF1
 or LoadLeveler2) to enable 

running simulation jobs across a network. LS-OPT will automatically copy the simulation input files to each 
remote node, extract the results on the remote directory and transfer the extracted results to the local 
directory. The interface allows the progress of each simulation run to be monitored via LS-OPTui. The 
README.queue file should be consulted for the most up to date information about the queuing interface. 

 

                                                 
1 Registered Trademark of Platform Computing Inc. 
2 Registered Trademark of International Business Machines Corporation 
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Command file syntax: 

Solver queue [queue_name] 

 

Table 9-5: Queuing options 

queuer_ name Description 
lsf LSF 
loadleveler LoadLeveler 
pbs PBS3 
nqe NQE4 
nqs NQS5 
aqs AQS 
slurm SLURM 
user User Defined 
blackbox Black box 
msccp MS Windows Compute 

Cluster Server 
honda dedicated queuer 

 

9.13.2. Installation 

To run LS-OPT with a queuing (load-sharing) facility the following binary files are provided in the 
LSOPT_EXE directory which un-tars (or unzips) from the distribution during installation of LS-OPT: 

 
 LSOPT_EXE/wrapper 
 LSOPT_EXE/runqueuer 
 

The runqueuer executes the command line for the purpose of queuing and must remain in the LS-OPT 
environment (the same directory as the lsopt executable). 

 

The following instructions should then be followed: 

 

Installation for all remote machines running LS-DYNA 
1. Create a directory on the remote machine for keeping all the executables including lsdyna. Copy 

the appropriate executable wrapper program to the new directory. e.g. if you are running LS-

                                                 
3 Portable Batch System. Registered Trademark of Veridian Systems 
4 Network Queuing Environment. Registered Trademark of Cray Inc. 
5 Network Queuing System 
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DYNA on a Linux machine, place the wrapper appropriate for the architecture and operating 
system on this machine.  

    

 Installation on the local machine 
2. Select the queuer option in LS-OPTui or add a statement in the LS-OPT command file to identify the 

queuing system, e.g. 
             solver queuer loadleveler 
 

    for each solver. 0. 

 

To pass all the jobs to the queuing system at once, select zero concurrent jobs in the GUI or command 
file, e.g.   

solver concurrent jobs 0 
 
    Example: 
 
   solver command "rundyna.hp DynaOpt.inp single 980" 
   solver input file "car6_crash.k" 
   solver queuer loadleveler 

 

In this example, the arguments to the rundyna.hp script are optional and can be hard-coded in the script. 

 

1. Change the script you use to run the solver via the queuing facility by prepending "wrapper" to the 
solver execution command. Use full path names for both the wrapper and executable or make sure 
the path on the remote machine includes the directory where the executables are kept.0. 

The argument for the input deck specified in the script must always be the LS-OPT reserved name for 
the chosen solver, e.g. for LS-DYNA use DynaOpt.inp. 

9.13.3. Examples 

Example 1: This example uses a two-level script. The outer script (submit_pbs) sets the values of 
environment variables in dynscr (the inner script), spawns it and submits it through the queuing system. The 
script dynscr then sets the environment variables and schedules the solver on the remote machine. 

The LS-OPT command file part relating to the queue is: 

     
solver dyna960 'Case1' 
$ ---- PBS Script  
  solver command "/nec00a/mike/project/submit_pbs" 
$ ---- Input file with variable substitution 
  solver input file "input.k" 
$ ---- Queuing specification 
  solver queue pbs 
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The "submit_pbs" file is: 
 
#!/bin/csh -f 
# 
# Run jobs on a remote processor, remote disk 
set newdir=`pwd | sed -n 's/.*\/\(.*\)\/\(.*\)/\1\/\2/p'` 
# Run jobs on a remote processor, local disk (no transmission) 
# set newdir=`pwd` 
echo $newdir 
cat > dynscr << EOF 
# 
# dynscr script 
# ======================================================================= 
#!/bin/csh -f 
# 
#PBS -l nodes=1:ncpus=1 
# 
setenv LSOPT /nec00a/mike/codes/LSOPT_EXE 
setenv LSOPT_HOST $LSOPT_HOST 
setenv LSOPT_PORT $LSOPT_PORT 
# Run jobs on a remote processor, remote disk 
mkdir -p lsopt/$newdir 
cd lsopt/$newdir 
# The input file name is required for LS-OPT 
/nec00a/mike/codes/wrapper /nec00a/mike/codes/ls980.single i=DynaOpt.inp 
EOF 
# ============== E N D   O F   S C R I P T ============================== 
qsub dynscr 
 

Example 2: 

This example demonstrates how to specify the queuer command directly on the command line. It shows 
how the required environment variables LSOPT_PORT and LSOPT_HOST set by the runqueuer program 
are specified on the solver command line whereas the two user variables LSDYNA971_MPP and 
LSOPT_WRAPPER are defined and stored as special input entities (see Section 9.15). These can also be set 
on the command line using the Linux "setenv" command as specified in for instance the .cshrc script. 
qsub is a PBS queue submit command and the –v directive defines the names of environment variables to 
be exported to the job.  

The qsub manual pages should be consulted for more details. Please also consult Sections 9.13.5 
(Environment Variables) and 9.15 (Passing Environment Variables through LS-OPT). 
 
 solver dyna960 '1' 
  solver command "qsub -v LSOPT_PORT,LSOPT_HOST ../../dynscr2" 
   solver envvar 'LSDYNA971_MPP' "/florida_1/john/bin/mpp_ls971_single" 
   solver envvar 'LSOPT_WRAPPER' "/florida_1/john/LSOPT_EXE/wrapper" 
  solver input file "main.k" 
 

The dynscr2 file in this case is: 

 
# This is the dynscr2 file 
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#========================== 
#!/bin/csh -f 
# 
#$ -cwd -pe mpi 2 
# 
setenv NP 2 
setenv ROUNDROBIN 0 
# 
# Define LSDYNA971_MPP environment variables in lsopt input 
# or shell command ("setenv"). 
# $1 represents i=DynaOpt.inp and is automatically 
# tagged on as the last argument of the lsopt "solver command". 
# 
setenv EXE "$LSDYNA971_MPP $1" 
# 
rm -f mpd.hostfile mpp.appfile 
filter_hostfile < $PE_HOSTFILE > mpd.hostfile 
# 
# This python script builds an HPMPI specific "appfile" telling it 
# exactly what to run on each node. 
# 
gen_appfile.hpmpi mpd.hostfile $SGE_O_WORKDIR $NP $ROUNDROBIN $EXE > mpp.appfile 
# 
# This actually executes the job 
# 
$LSOPT_WRAPPER /opt/hpmpi/bin/mpirun -f mpp.appfile 
# 
 

The solver command data and environment variable input are displayed below.  
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9.13.4. Mechanics of the queuing process 

Understanding the mechanics of the queuing process should help to debug the installation: 

 

1. LS-OPT automatically prepends runqueuer to the solver command and executes runqueuer which 
runs the submit_pbs script.  

o The runqueuer sets the variables LSOPT_HOST and LSOPT_PORT locally. 

o In the first example, the submit_pbs script spawns the dynscr script. 

2. In Example 1, the queuing system then submits dynscr (see qsub command at  the end of the 
submit_pbs script above) on the remote node which now has fixed values substituted for 
LSOPT_HOST and LSOPT_PORT. 

In Example 2, LS-OPT schedules the qsub command directly with LSOPT_HOST and 
LSOPT_PORT as arguments and i=DynaOpt.inp appended at the end of the command. 
i=DynaOpt.inp therefore serves as an argument ($1) to dynscr2. 

3. The wrapper executes on the same machine as LS-DYNA, opens a socket and connects back to the 
local host using the host/port information.  The standard output is then relayed to the local machine. 
This output is also written to the logxxxx file (where xxxx is the process number) on the local 
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host. To view the log of any particular run, the user can select a button on the Run page under the 
View Log heading. The progress dialog is shown below, followed by the selected popup log.  

 

 
 

 
 

An example of an error message resulting from a mistype of “wrapper” in the submit script is given 
in another example log file as follows: 

          STARTING command /home/jim/bin/runqueuer 
          PORT=56984 
          JOB=LoadLeveler 
          llsubmit: The job "1/1.1" has been submitted. 
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          /home/jim/LSOPT_EXE/Xrapper: Command not found. 
          Finished with directory 
          /home/jim/LSOPT/4.1/optQA/QUEUE/EX4a_remote/remote/1/1.1 

4. The wrapper will also extract the data immediately upon completion on the remote node. Extracted 
data (the history.n and response.n files) are automatically transferred back to the local sub-
subdirectory. If other parts of the database (e.g. d3plot files) are required (e.g. for post-processing 
with LS-PREPOST), the user has to specify these in the command file using appropriate LS-OPT 
commands (see Section 9.13.9). A log of the database extraction is also provided in the logxxxx 
file.0. 

9.13.5. Environment variables   

Users typically do not set these. These variables are set on the local side by the runqueuer program and 
their values must be carried to the remote side by the queuing software.  

LSOPT_HOST : the machine where LS-OPT (and therefore the runqueuer) is running. Set this if the 
wrapper has trouble connecting back to runqueuer. 

LSOPT_PORT : TCP/IP port runqueuer listens on for remote connections 

The runqueuer program does not set LSOPT_HOST if it is already set, but always sets LSOPT_PORT. The 
examples in Section 9.13.3 illustrate two methods by which setting of environment variables can be 
accomplished. Environment variables specified by "solver envvar" settings (see Section 9.15) are set by the 
scheduler. The scheduler runs runqueuer, and runqueuer would be the one to run 

 qsub -v LSOPT_PORT,LSOPT_HOST script_name 

So, the LSOPT_PORT value passed to the remote side will always be the one set by runqueuer. However, 
the LSOPT_HOST value may be set through "solver envvar" or though ".cshrc" instead. 

In most cases the queuing system will transmit the environment variables to the remote side, so the setting 
of the variables may not be necessary. The only reason to set LSOPT_HOST would be to compensate for a 
wrong setting. For example, the machine where LS-OPT is running may be known by several different host 
names or by different IP addresses. In such as case it might be required to specify which interface should be 
used for remote connections. It is not permissible for LSOPT_PORT to be changed because only the 
runqueuer knows the right setting. 

  

9.13.6. Abnormal termination and retrying the job submission 

User-defined abnormal termination 
It may be prudent to retry job submissions for certain types of abnormal termination. For this purpose, 
the user can specify an A b n o r m a l signal for terminations which are neither normal nor 
error termination. A job that has terminated in this way can then be retried by the LS-OPT job scheduler. 
The      A b n o r m a l signal should be sent to standard output from the simulation script. The 
following two parameters can be used to set the number of retries allowed and timeout for each retry. 
The defaults are shown in square brackets 
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Command file syntax: 

Solver job retry [number_of_retries_allowed[9]] 
Solver job timeout [timeout for retry in seconds[60]] 

Queuer timout 
A special case exists in which the LS-OPT job scheduler automatically generates an A b n o r m 
a l signal. This is whenever the wrapper has not been executed for a specified timeout period. For this 
case a queuer timeout can be specified. 

 
Command file syntax: 

Solver queue timeout [number_of_minutes[720]] 

 

The queuer timeout is the time it will wait for the wrapper to connect, otherwise it sets an abnormal 
termination status and writes an A b n o r m a l signal to standard output. In this case the job 
will be resubmitted for the number of retries specified and using the queuing timeout for each retry. 

9.13.7. Troubleshooting 

1. Diagnostics for a failed run usually appear in the logxxxx file in the run directory. If there is almost 
no information in this file, the wrapper path may be wrong or the submission script may have the 
wrong path or permission. For any job, this file can be viewed from the progress dialog on the Run 
page. 

Please attach the log file (lsopt_output) when emailing support@lstc.com. 

2. Make sure that the permissions are set for the executables and submission script. 

3. Check all paths to executables e.g. "wrapper", etc. No diagnostic can detect this problem. 

4. Make sure that the result database is produced in the same directory as where the wrapper is started, 
otherwise the data cannot be extracted. (E.g. the front end program such as mpirun may have a 
specification to change the working directory (-wd dir)). 

5. Running on a remote disk. Make sure that the file "HostDirectory" is not copied by a user script 
to the remote disk if the simulation run is done on a remote disk. The "HostDirectory" file is a 
marker file which is present only on the local disk. Its purpose is to inform the wrapper that it is 
running on the local disk and, if found on a remote disk, will prevent the wrapper from automatically 
transferring extracted results back to the local disk. In general the user is not required to do any file 
copying since input files (including LS-DYNA include files) are copied to the remote disk 
automatically. The response.* and history.* files are recovered from the remote disk automatically. 
Other files can be recovered using the feature in Section 9.14 . 

6. Termination of user-defined programs: LS-DYNA always displays a  'N o r m a l' at the end of 
its output. When running a user-defined program which does not have this command displayed for a 
normal termination, the program has to be executed from a script followed by a command to write  

mailto:support@lstc.com�
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'N o r m a l'  to standard output. The example file runscript shown below first runs the user-
defined solver and then signals a normal termination. 0. 

 
        mpiexec –n 2 /home/john/bin/myprogram –i UserOpt.inp 
        # print normal termination signal to screen 
        echo 'N o r m a l' 

 

which is submitted by the wrapper command in submit_pbs as: 
         /home/john/bin/wrapper /home/john/bin/runscript 

 

Note: Adding "echo N o r m a l" at the end of the wrapper command (after a semicolon) does not 
work which is why it should be part of the script run by the wrapper. 

9.13.8. User-defined queuing systems 

To ensure that the LS-OPT job scheduler can terminate queued jobs, two requirements must be satisfied: 

1. The queuer must echo a string 
      Job ”Stringa Stringb Stringc …” has been submitted 

             or 
      Job Stringa has been submitted 

              e.g. 
      Job ”Opteron Aqs4832” has been submitted 
      Job aqs4832 has been submitted 

The string will be parsed as separate arguments in the former example or as a single argument in the 
latter example. The string length is limited to 1024 characters. The syntax of the phrases “Job ” and “ 
has been submitted” must be exactly as specified. If more than one argument is specified without 
the double quotes, the string will not be recognized and the termination feature will fail. 

2. A termination script (or program) LsoptJobDel must be placed either in the main working 
directory (first default location) or in the directory containing the LS-OPT binaries (second default). 
This script will be run with the arguments stringA, stringB, etc. and must contain the command for 
terminating the queue. An example of a Unix C shell termination script that uses two arguments is:0. 

#!/bin/csh -f 
aadmin –c $1 –j $2 stop 

9.13.9. Blackbox queueing system 

The Blackbox queueing system is another flavor of the User-defined queueing system. It can be used when 
the computers running the jobs are separated from the computer running LS-OPT by means of a firewall. 
The key differences between User-defined and Blackbox are: 

1. It is the responsibility of the queueing system or the user provided scripts to transfer input and output 
files for the solver between the queueing system and the workstation running LS-OPT. LS-OPT will 
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not attempt to open any communications channel between the compute node and the LS-OPT 
workstation. 

2. Extraction of responses and histories takes place on the local workstation instead of on the computer 
running the job. 

3. LS-OPT will not run local placeholder processes (i.e. extractor/runqueuer) for every submitted job. 
This makes Blackbox use less system resources, especially when many jobs are run in each iteration.
0. 

When using the Blackbox queueing system, a LsoptJobDel script is required, just as in the User-defined 
case. Furthermore, another script named LsoptJobCheck must also be provided. This script takes one 
parameter, the job ID, as returned by the submission script. The script should return the status of the given 
job as a string to standard output.  

 

The Blackbox queuer option requires the user to specify a command that will queue the job.  For example, 

 
solver ls971_single '1' 
solver command "../../submit_script" 
... 
solver queue blackbox 
 

The Blackbox option can also be specified in the "Run" panel of the LS-OPT user interface. 

In this case, the solver is named ls971_single and the case subdirectory is named '1'.  The command to 
queue the job (in this case "submit_script") must return a job identifier that has one of the following 
two forms: 

 
Job "Any Quoted String" has been submitted 
Job AnyUnquotedStringWithoutSpaces has been submitted 
 

The Word "Job" must be the first non-white space on the line, and must appear exactly as shown.  Any 
amount of white space may appear between "Job" and the job identifier, as well as after the job identifier 
and before "has been submitted". 

 

The Blackbox queuer requires the presence of two executable scripts LsoptJobCheck and 
LsoptJobDel.  These scripts must be located in either in the current LS-OPT project directory or in the 
directory where the running LS-OPT program is located. (For Windows, the scripts must have an added 
extension .exe, .vbs, .cmd or .bat).  If the Blackbox queuer option is invoked for some solver, then 
LS-OPT checks for the existence of executable scripts in one of these locations, and refuses to run if the 
LsoptJobCheck and/or LsoptJobDel scripts cannot be found or are not executable. The project 
directory is searched first. 
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LsoptJobCheck script 

The user-supplied LsoptJobCheck script is run each time LS-OPT tries to update the current status of a 
job. The LsoptJobCheck script is run with a single commandline argument: 

 
LsoptJobCheck job_identifier 
 

The working directory of the LsoptJobCheck script is set to the job directory associated with 
job_identifier. 

The script is expected to print a status statement that LS-OPT can use to update its status information.  The 
only valid status statements are: 

 
String Description 
WAITING The job has been submitted and is waiting to start 
RUNNING The job is running.  
RUNNING N/M After RUNNING, the script may also report the progress as a 

fraction. RUNNING 75/100 means that the job has ¼ to go. The 
progress information will be relayed to the user, but not used in 
any other way by LS-OPT. 

FAILED The job failed. This is only to be used when the underlying 
queueing system reports some kind of problem. Hence, a solver 
that has terminated in error does not have to be detected by the 
LsoptJobCheck script. 

FINISHED The job has completed and any output files needed for extraction 
has been copied back to the run directory. 

ABORTED If a job reports ABORTED, then the status bar on the Run page of 
LSOPTui turns yellow, and the number of retries is shown. 

 
 

Any amount of white space may appear at the beginning of a status statement, and anything may appear 
after these statements.  The optional N/M argument for RUNNING is interpreted as an estimate of the 
progress; in this case N and M are integers and N/M is the fractional progress.  N must be not be larger than 
M. 

If LsoptJobCheck terminates without printing a valid status statement, then it is assumed that 
LsoptJobCheck does not function properly, and LS-OPT terminates the job using the LsoptJobDel 
script.  All output from the LsoptJobCheck script is logged to the job log file (logxxxx) in the run 
directory for debugging purposes. 

Note: The LsoptJobCheck script may print more than one status statement, but only the first one will be 
used to update the status. 
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LsoptJobDel script 

The user-supplied LsoptJobDel script is run whenever the user chooses to terminate a job, or whenever 
LS-OPT determines that a job should be killed (for example, if LsoptJobCheck fails). The 
LsoptJobDel script is run with a single commandline argument: 

 
LsoptJobDel job_identifier . 

 

The working directory of the LsoptJobDel script is set to the job directory associated with job_identifier. 

9.13.10. Honda queuing system 

The Honda queuing system interface is based on the Blackbox queuing system, but is dedicated to the 
particular needs of this system. 

Mechanics of the Honda queuing process 

The queuing system generates a status file for which an environment variable has been defined in LS-OPT 
as: 

 
$HONDA_STATUSFILE 
 

The status file is the output of the PBS queue check command.  During the initialization phase, LS-OPT 
checks whether this variable setting points to a valid file.  If it does not, LS-OPT terminates before starting 
the scheduler, and prints a standard LSOPT-style error message. 

 

The line which marks the fields in the status file is used to determine how to parse the file; this line has the 
form "-----  -----------  -  ----- ---- ....". Fields are extracted based on this line which consists solely of space 
and dash characters.  The following fields are used: 

 
4 name 
6 status: 'R' for running or 'Q' for queued 
10 total wall clock time allowed 
11 total wall clock time consumed. 

 

Fields 10 and 11 are used to set the progress indicator.  If the indicator ever reaches 100%, then it will 
terminate due to total wall clock time restrictions. 

 

If a job cannot be found in the status file, then it is assumed to be dead.  The job status entry is not looked 
for until a minimum of 3 seconds after the job has been started. A status file is searched for a particular job 
status entry only if the status file has a modification time that is later than the start time of the job. 
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Since there is no way to determine the exit status of a job by looking only at this status file, the 
determination of the final exit status depends on whether or not the job is an LS-DYNA job. If the job is an 
LS-DYNA job, then the messag file is parsed for the status statements "N o r m a l" and "E r r o r" 
termination. If no messag file is found 10 seconds after the job is no longer listed in the status file, then we 
assume an error termination. 

     

If the job is a non-LS-DYNA job, then LsoptJobCheck (see Section 9.13.9) is executed just once after the 
job no longer appears in the status file. LsoptJobCheck should print either (a) FINISHED or (b) ERROR in 
order to communicate the final exit status.  If LsoptJobCheck cannot be found or cannot be executed, then 
ERROR is assumed. The job log file will contain a message indicating any problem that may exist which 
prevents LsoptJobCheck from being run. 

 

The HONDA queued jobs do not use LsoptJobDel as defined in the Blackbox queuing selection. Jobs are 
deleted using the standard PBSPro qdel command. 

 

Various statements concerning how status information is gathered are logged to the job log files. These are: 

 

1. Job status for LSDYNA jobs found in 'messag' file: 
     [HONDA] Termination status found in 'messag' file 
     [HONDA] exact termination statement 

2. The job status line for the current job found in $HONDA_STATUSFILE is saved: 
     [HONDA] status line 

3. The job is assumed finished if there is no status line found: 
     [HONDA] Job 23551 not found in STATUS file - assuming job is finished. 

4. Indication that LsoptJobCheck is run at the end of a non-LS-DYNA job: 
     [HONDA] Non LS-DYNA job. Running LsoptJobCheck to determine exit status. 

5. Status returned from LsoptJobCheck. 
     [HONDA] Job finished - LsoptJobCheck reports normal termination 
  [HONDA] Job finished - LsoptJobCheck reports error termination 

Any errors while gathering status information are logged to the job log files such as log12345. 

6. Missing messag file after LSDYNA terminates: 
   [HONDA] Failed to find 'messag' file while FINISHING. 
   [HONDA] Assuming ERROR termination for LSDYNA job. 

7. Found no termination status statement in messag file 
   [HONDA] Found no termination status in 'messag' file 
   [HONDA] Assuming ERROR termination for LSDYNA job. 

8. HONDA_STATUSFILE variable not set 
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   [HONDA] *** Error $HONDA_STATUSFILE not set. 

9. Could not open $HONDA_STATUSFILE 
   [HONDA] *** Error Failed to open $HONDA_STATUSFILE=pbsq_status 

10. LsoptJobCheck script not found for non-LSDYNA job 
   [HONDA] *** Error LsoptJobCheck cannot be found. 
   [HONDA]     Assuming error termination for non-LSDYNA job. 

11. LsoptJobCheck script did not print either (a) FINISHED or (b) FAILED.0. 
   [HONDA] *** Error LsoptJobCheck did not return a valid status. 
   [HONDA]          Assuming error termination for non-LSDYNA job. 

If  $HONDA_STATUSFILE is not updated in a timely fashion, then the scheduler can hang forever, never 
moving forward.  A message is passed to lsopt through the communication socket if this happens: 
 *** Warning HONDA_STATUSFILE out of date by more than 5 minutes 
 *** Job progress monitoring suspended until next update 
 

Even though the status file is checked before starting the scheduler, it is still possible for file errors to occur. 
These are also sent directly to LS-OPT. 
 *** Error $HONDA_STATUSFILE not set 
 *** Error Failed to open $HONDA_STATUSFILE=pbsq_status 

9.13.11. Microsoft Windows Compute Cluster server 

LS-OPT supports submission of jobs to the Microsoft Compute Cluster Pack Scheduler. Two scripts called 
submit.cmd and submit.vbs, that work together, are available to interface LS-OPT with CCP. The 
script can be downloaded from ftp://ftp.lstc.com/ls-opt/QUEUING/MSCCS. Before using the 
scripts the variables in the beginning of the file submit.cmd needs to be changed to fit your local 
environment. Most users do not need to change the submit.vbs file. 

The example shows how the queue-related parts of an LS-OPT command file look when using the CCP 
scripts, when they are placed in the same directory as the command file: 

 

Example: 

solver dyna960 '1' 
 solver command "..\..\submit.cmd \\fileserver\bin\ls971.exe" 
 solver input file "key.k" 
 solver queue msccp 
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9.14. Enabling LSTCVM job proxy support 

9.14.1. LSTCVM options 

There are two ways that LS-OPT can work with the LSTCVM job proxy. 

1. LSTCVM and LS-OPT share a common file system. If LSTCVM and LS-OPT share a common file 
system, then you may run LS-OPT jobs from within the shared file system by using the solver 
command 

            lstcvm_run remote_solver_command 

 For example 

         solver command "lstcvm_run ls971_single" 

 would be the appropriate solver command in LS-OPT if you want to run the "ls971_single" 
 command on the remote LSTCVM server. 

2. LSTCVM and LS-OPT do not share a common file system. In this case, you may still execute remote 
commands on the LSTCVM server, but you must select the following option in the Advanced GUI 
tab for the Solver: Use LSTCVM proxy. LS-OPT will take care of prepending the lstcvm_run 
command. So, in this case, if you want to execute "ls971_single" on the remote LSTCVM 
server, then your solver command should simply be 

         solver command "ls971_single"  

 All necessary input files will be transferred to the remote LSTCVM server using LS-OPT 
 runqueuer/wrapper commands. Extraction results are automatically brought back to the local 
 side once the job has finished.  

 Note: In order for this option to work, you must install the LS-OPT "wrapper" on the LSTCVM 
 proxy server, and you must add the following entry to the executable map file 
 "lstcvm.exemap" 

         wrapper -> full_path_to_wrapper 

 The "wrapper" command is architecture specific. So be sure to obtain the correct program for the 
 LSTCVM architecture. 

 

 REMOTE FILES: We do not currently delete files on the LSTCVM server after the job has 
 completed. This must be done by the LSTCVM proxy server administrator. 0. 

9.14.2. LSTCVM server installation 

The LSTCVM server is distributed separately from LS-OPT and, in addition to the executables, contains 
detailed information and installation instructions. This server installation is usually handled by a systems 
administrator. 
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9.14.3. Environment Variables 

All solver environment variables defined in the LS-OPT EnvVar tab of the Solver are automatically passed 
to the remote job on the LSTCVM server. (PATH is not passed for security reasons). This provides a 
convenient way to define licensing variables for LS-DYNA. For example, you can pass the following 
variables to the remote proxy server job: 

            LSTC_LICENSE=network 

     LSTC_LICENSE_SERVER=license_server_name 

9.14.4. Configuring the  lstcvm_run client 

The lstcvm_run client should be supplied with the LS-OPT distribution. If you do not have such a 
command in the LS-OPT installation directory, then your version of LS-OPT is probably not LSTCVM 
ready. We suggest obtaining a later version of LS-OPT in that case. 

In order to configure the "lstcvm_run" client, you should execute 

        lstcvm_run -s lstcvm_server_name 

The information will be saved so that this step never needs to be repeated. If you are running on a Microsoft 
Windows platform, then you should execute this command from within a command prompt; the server 
information will be saved in the Windows registry. If you are running on a Linux/UNIX platform, then the 
server information is stored in $HOME/.lstcvm . If, for some reason, a port other than the default is used, 
then you must specify the port number N with the command 

        lstcvm_run -s N@lstcvm_server_name 

After setting the server name, then you can test for connectivity using 

        lstcvm_run -info 

You should see information about the current configuration of the LSTCVM server. 

To test the installation, 'cd' to a directory where you are allowed to run the lstcvm_run client, and issue 
the command 

        lstcvm_run ls -al 

It is possible that this command will fail if the LSTCVM administrator does not allow the "ls" command to 
be run. If that is the case, then check with the administrator about which commands are available. 

Once you know that the lstcvm_run command is properly configured and able to execute commands 
remotely, then you are ready to use lstcvm_run with LS-OPT. Only commands which are allowed and 
enabled by the LSTCVM administrator will function properly. For example, ls971_single is not 
available unless the remote administrator has enabled this command. 

9.14.5. Database recovery  

When distributing the simulation runs, the data can be recovered to the local machine. There are two 
commands: a LS-DYNA specific command and a general command. 
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LS-DYNA: 

Command file syntax: 

Solver recover dyna [d3plot|d3hsp|binout|d3eigv|eigout] 

 

The LS-DYNA database can be recovered by using the above command. The requested database file will 
appear in the local directory. Each name is a prefix, so that e.g. d3plot01, d3plot02, … will be 
recovered when specifying d3plot. The details of the recovery procedure is logged in a local directory 
file. 

 
Example: 
 
Solver recover dyna d3plot 
Solver recover dyna binout 
 

The recovery of the LS-DYNA database is only required if the user wants to do local post-processing (e.g. 
using LS-PREPOST). Otherwise the results are automatically extracted and transferred to the local node in 
the form of files response.n and/or history.n. 

User-defined : 

Command file syntax: 

Solver recover file "[file_wildcard]" 

 

Any database can be recovered by using the above command. The requested database file will appear in the 
local directory. Each name is a wildcard. 

Example: 
 
   Solver recover file "d3plot*" 
 Solver recover file "*" 
 

o The first command will recover the full d3plot database. 

o The last command will recover all the files from the run directory on the remote node to the run 
directory on the local node, hence the local directory will mirror the remote directory. 

o A log of the database recovery is available in the logxxxx file in the run directory on the local 
machine. 

9.14.6. Simple manual setup for running LS-OPT and solvers on different machines 

A convenient setup is one in which LS-OPT runs on e.g. a Windows machine and the solvers are running on 
a cluster (typically Linux). Such a setup can be created as follows: 
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1. Install LS-OPT on a Windows (or any desired) machine for preparing the input. Create the problem 
setup using LS-OPTui. The solver command should be created for running jobs on a cluster. This 
can be done by selecting any of the queuing systems supported by LS-OPT or, if all the jobs will be 
running on the same cluster where LS-OPT resides, simply by specifying the solver executable name 
as a solver command. The number of concurrent jobs should be set for each case on the Run page. 
Save the input to a file using e.g. the name com. 

2. Open the com file with LS-OPTui and create a second command file e.g. com.pack by selecting 
Tools→Gather LS-OPT database + histories/responses and saving as com.pack. There are now 
two command files: com for running the optimization task and com.pack for packing the output 
data after the run. 

3. Install LS-OPT and the solver executables on a cluster node for running LS-OPT in batch mode. 
Copy the recently created problem setup with the two command files from the Windows machine 
onto a cluster node. This setup should allow the user to run an LS-OPT job in batch mode.  

4. Run LS-OPT by executing the command: lsopt com on the cluster. This is done from the 
command line. 

5. After completion of the LS-OPT run, execute lsopt com.pack to create a file 
lso_pack_h.tar.gz containing the entire run database. 

6. Unzip lso_pack_h.tar.gz on the Windows machine to do the post-processing.0. 

9.15. Passing environment variables through LS-OPT 

LSOPT provides a way to define environment variables that will be set before executing a solver command. 
The desired environment variable settings can be specified directly in the com file with solver commands: 

 

Command file syntax: 

Solver envvar 'varname' "varvalue" 

 

Or they can be specified in the GUI within the Env Vars tab under Solvers.  
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Passing environment variables to solver commands can be a convenient way to control the behavior of a 
solver command. For example, the solver command might be a script which queues a job on a remote 
machine; the environment variable settings might be used by the script to select various queuing options. Or, 
the environment variable settings might be passed along through the queuing system to set options for the 
remotely executed job, such as license server locations, input file names, whether to run the MPP version of 
LS-DYNA, whether to run a single or double precision solver, etc.  

9.15.1. Adding a new environment variable definition 

Select the button Add manually to define a single environment variable. After selecting this option, a 
dialog will appear where you can enter the variable name and an arbitrary value. We do not allow the names 
of variables to contain anything other than upper- or lower-case letters, numbers, and underscore ( _ ) 
characters. This guarantees that all environment variable definitions can be used on all platforms. Variable 
values are not so limited. 
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9.15.2. Editing an existing environment variable definition 

Select the Edit button. Before selecting this option, you must first highlight one of the environment variables 
in the Env Vars List as follows: 

 
 
After selecting the Edit option, a Dialog will appear with the current values already set, ready for editing. 

9.15.3. Set by browsing 

The "Set by Browsing" option in the solver Env Vars tab is used to set variables in bulk. This is done by 
running a user-supplied program or importing a user-supplied file located in 

       $HOME/LSOPT_SCRIPTS 

Activate the “Set by browsing” button within the EnvVars tab in order to select from the available 
executables and or files. Executables, *.env files and *.lstcsh files are currently the only valid file 
types. You can redefine the search location for scripts by setting an environment variable LSOPT_SCRIPTS 
to the desired directory location. 

NOTE: Windows does not set a HOME environment variable, even though there is a home directory for 
each user. A command prompt, for example, opens in the home directory of the user. 
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.env files 
The simplest way to import a group of environment variables into LSOPT is through the use of an 
environment variable file. For example, create a file “test.env” in $HOME/LSOPT_SCRIPTS with 
these five lines in it 

 
# This is a comment line 
LSTC_LICENSE=network 
LSTC_LICENSE_SERVER='server1 server2 server3' 
LSTC_LICENSE_PORT=31020 
LSTC_EXE=ls971_R4 
 

Save the file. When you invoke the “Set by Browsing” feature, a window will appear where you can select 
the “test.env” file as shown: 

                                                  

 
 

Selecting this file imports all four of the variables shown above. There are a few formatting rules that should 
be observed for a “.env” file: 

1. Any line which begins with #  !  @  $  %  &  ;  : is treated as a comment line. 

2. NAME=VALUE lines should not contain white space between NAME and =, or between = and 
VALUE. 

3. White space may appear before NAME, at the beginning of a line 

4. If VALUE contains white space, then use NAME='VALUE' as shown above. (This is an acceptable 
form, whether or not spaces appear in VALUE.)0. 

 

Executables 
You can import a group of environment variables by creating an executable that prints a space-separated list 
of NAME=VALUE pairs, all on one line. This list must appear in a single line of output, the last line of 
output from the program; previous lines of output are ignored. There should be no space between NAME 
and =, or between = and VALUE. If VALUE must contain spaces, then use NAME='VALUE'. 

For example, the single output line shown below is valid (it has been broken for display purposes only): 
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exe=/home/trent/LSTC/PERL/lsdyna-caec01_pbs_sub.pl menu=batch time=1:00 
host=abcdefgh07 procs=1 jobname=’My Job’ project=isd email=No delay=No 
preemptable=No version=’LS-DYNA 970 MPP SP 6763’ ioloc=/home/trent 
inpfile=DynaOpt.inp mem1=auto mem2=auto pfile=Generic dumpbdb=No dynamore=No 
clean=No tail=No copycont=No optimization=LsOpt 

 

The main reason to use a program to set variables in bulk, instead of a “.env” file, is that an interactive 
program can take advantage of the “Edit browse list” feature, which is described a little later in this section. 

 

.lstcsh files 
These types of files are specialized script files which requires the interpreter “lstcsh” (or 
“lstcsh.exe” on the PC). This interpreter is included in the LSOPT distribution, and it is designed to 
generate the output format described for “Executables” above. It is also designed to allow interaction with 
the “Edit browse list” feature. These scripts define graphical programs with standard user-interface 
components for selecting, modifying, or specifying environment variables. For example, if you have 
complex and specialized queuing options, then “.lstcsh” script files could be useful for you. Please contact 
LSTC for more information. 

 

Set by Browsing 

After selecting the Set by browsing option, a dialog of buttons will appear, one for each executable, .env 
file, or .lstcsh file in the LSOPT_SCRIPTS environment. For example, suppose this is the directory listing 
for $HOME/LSOPT_SCRIPTS                            : 
 
-rwxr-xr-x 1 joe staff 13597 2009-12-01 18:09 lsdyna_submit.autounion* 
-rw-r--r-- 1 joe staff 13597 2009-12-01 17:46 stdin.save 
-rwxr-xr-x 1 joe staff     9 2009-08-10 14:23 test* 
-rwxr-xr-x 1 nielen staff  9 2009-08-10 14:26 testb*  
 
Then, when you select the Set by browsing option, the following dialog appears: 

 

 
 
A valid browse command must print environment variable definitions to standard output in the form 
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name='value'; the single quotes are optional if value does not contain spaces. A valid sample output is 
shown below (the line is wrapped because of its length). 
 
exe=/home/trent/LSTC/PERL/lsdyna-caec01_pbs_sub.pl menu=batch time=1:00 
host=abcdefgh07 procs=1 jobname=’My Job’ project=isd email=No delay=No 
preemptable=No version=’LS-DYNA 970 MPP SP 6763’ ioloc=/home/trent 
inpfile=DynaOpt.inp mem1=auto mem2=auto pfile=Generic dumpbdb=No dynamore=No 
clean=No tail=No copycont=No optimization=LsOpt 
 
All of the name='value' strings are directly imported into the Env Vars tab in bulk. In addition to these 
Browse List variables, a special browse variable is created that should not be edited. This variable records 
the program name used to create the Browse List. 
 
NOTE: All variables must be printed on one line, which must be the last line of output from the program. 
Lines before the last line are ignored. 
 
WARNING: The user-supplied browse program should never define the browse variable in its output. The 
name browse should be treated as a reserved name. 
 
A simple Linux browse command could be a shell script: 
 
#!/bin/bash 
echo This line is ignored. Only the last line survives 
echo A=B C=D 

 
Running the browse command shown above will import two variables, A and C, into the browse list. 
 
 
 

 
 
NOTE: Strings in the Env Vars List appearing above the browse= line are all part of the Browse List. 
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Strings in the Env Vars tab that appear below browse= are never part of the Browse List. User-defined 
environment variables will always follow after the browse variable definition (e.g., last=first in the figure 
above was not defined by the browse command.)  

9.15.4. Edit browse list 

Select the Edit Browse list button. Choosing this option does nothing unless a Browse List has been 
previously created. If a valid Browse List is present in the Env Vars tab, then selecting this option will run 
the original program that created the Browse List, together with all of the current Browse List options 
passed as command line arguments, one per existing environment variable. Each command-line argument 
has the form name=value. However ‘value’ is not single-quoted because each name=value argument is a 
separate command-line argument. The customer-supplied browse command should offer the user an 
opportunity to edit the existing variables, and the browse command should return the newly edited list on 
one line, in the same format as described above.  This would normally be done through some sort of 
graphical user interface. The returned list will be used to replace all of the previous Browse List. 

The next example script returns an initial Browse List consisting of two variables, A and C.  Invoking the 
editing feature appends a new variable (tN=N) to the list. 

 
#!/bin/bash 
echo This line will be ignored. Only the last line survives. 
if [ “$1” == “” ]; then 
  echo A=B C=D; 
else 
  echo $* “t”$$”=”$$; 
fi 
 

When this script is invoked using the “Create by Browse” feature, there are no command-line arguments, 
and the script prints “A=B C=D” to standard output. However, when the script is invoked using the edit 
feature for the first time, two command-line arguments “A=B” and “C=D” are passed to the script. This 
time the return line consists of the original command-line arguments (printed using $*) and tN=N, where N 
is the PID of the shell process. If the editing feature is invoked a second time, then three command-line 
arguments are passed to the script (“A=B”, “C=D”, and “tN=N”). Another new variable tN is appended, 
where N is the newest PID of the script process. This sample script has little practical value, except to 
illustrate how existing variable settings are passed by command-line to the previous browse command, and 
to illustrate how one can use the editing feature to modify or add new variables. 

Executing the 'Edit Browse List' will cause the original '.env' file to be reread, which is convenient for 
testing purposes.  

Note: The browse command can ABORT the replacement operation by printing a blank line to the standard 
output and immediately terminating. Otherwise the current Browse List may be deleted. If the browse 
command abnormally terminates, then an error box will appear with a title bar indicating that the command 
failed. 

9.15.5. How the browse list is used by LSOPT 

The Browse List (indeed, the complete Env Vars List) is used to set environment variables before running 
the solver command specified by LSOPT. However, if the first variable returned by the browse command is 
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exe, then a pre-processing command is run before running the actual solver command. The pre-processing 
command is the value of the exe variable. The pre-processing command has a command line  
$exe var1=$var1, var2=$var2, ... varN=$varN 

That is, the command executed is the value of the exe variable; additional command line arguments consist 
of all Browse List strings with a comma delimiter appended to each intermediate one. (The final argument 
is not followed by a comma.) 

Note: Such a pre-processing command is always run from within the current LSOPT Job Directory. 
Therefore, any file that the pre-processing command references must be specified by a fully-qualified path 
or must be interpreted relative to the current LSOPT Job Directory. So, the LSOPT Case Directory will 
be ".." and the LSOPT Project Directory will be "../..". 

 

9.16. Killing jobs 

9.16.1. Overview of How Jobs are Killed 

There are only a few methods which are used to kill a job, regardless of how the job is run, and regardless of 
the type of job. 

o A D3KIL file is created to kill LS-DYNA jobs. LS-DYNA will save its data, update restart files, and 
exit cleanly. Unfortunately, depending on the type of job, LS-DYNA may not be able to check for 
the presence of a D3KIL file in any short period of time. This is especially true of large implicit jobs 
where large matrix solves are not interrupted for efficiency reasons. 

o SIGINT signal (Ctrl+C under Windows). Many programs are designed to trap such signals and to 
exit gracefully. Others may deliberately ignore such signals. This signal cannot be used to kill LS-
DYNA jobs, because LS-DYNA traps this signal to activate a sense switch. 

o SIGTERM signal (Ctrl+Break under Windows). This is a little more forceful than SIGINT or 
Ctrl+C option for killing programs. Programs which ignore the SIGINT or Ctrl+C may exit upon 
receiving this signal, either voluntarily or involuntarily. Programs are allowed to catch or to ignore 
such signals. 

o SIGKILL signal (TerminateProcess() process under Windows). This is the most reliable method 
for killing a job, but it may result in lost resources because programs cannot generally catch or 
ignore such kill requests. Linux processes killed in this way will not be able to flush unwritten data, 
or to close files. Linux jobs killed in this way may result in <defunct> processes. Windows processes 
killed in this may be unable to properly release DLL resources. This Windows kill option is the same 
mechanism used by the Windows Task Manager to 'force' kill a job, and the same warnings apply. 

o A queuing system job deletion command may be issued. This is generally results in a sure kill of a 
remote running job, but there is no opportunity to save files or other data. This is a remote queuer-
specific version of the SIGKILL option. 

The biggest determining factor in how a job is killed is the manner in which the job is scheduled: 

1. Locally; 
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2. Indirectly through a runqueuer/wrapper solution; 

3. Indirectly using the HONDA queuing option; 

4. Indirectly using the BLACK BOX queuing option. 0. 

There are LS-DYNA and non LS-DYNA jobs. How a job is killed depends on how it is run and queued. 
Queued jobs can be stuck in strange states that require special handling. LS-DYNA jobs are handled 
differently in order to preserve data that might be useful. 
 

Case 1 (Killing Local Jobs): Local jobs are killed using D3KIL files and/or signals. 

o The first attempt to kill an LS-DYNA jobs is done by creating a D3KIL file. The SIGTERM method 
is used if LS-DYNA does not respond within 10 minutes. The SIGKILL method is used if LS-
DYNA does not respond to SIGTERM within 15 seconds. If LS-DYNA does not respond shortly 
afterwards, then the job is abandoned. 

o Non LS-DYNA jobs are killed using signals, starting with SIGINT (or SIGTERM). If that fails after 
about 10 minutes, then SIGTERM is used. If that also fails, then a SIGKILL signal is delivered. If 
that fails, then the job is abandoned. 

 

Case 2 (Killing Jobs run using runqeuer/wrapper): This option is used to monitor/control jobs which are 
run remotely using a queuing system. A local runqueuer process communicates with a remote wrapper 
process in order to relay terminal I/O, to transfer files, and to deliver signals. 
 
If you try to kill a job started using runqueuer/wrapper before these programs have been able to negotiate a 
connection, then runqueuer will exit, and the remote job will be unable to start. 
 
If you try to kill a job after runqueuer and wrapper have negotiated a connection, then the method of killing 
the job is much like that for a locally-run job. 

o If the remote job is an LS-DYNA job, then a D3KIL file is created on the remote side. If LS-DYNA 
fails to exit after about 10 minutes, then the SIGTERM is used to kill LS-DYNA. If that also fails, 
then the SIGKILL method is used to kill LS-DYNA. If that fails, then the runqueuer/wrapper 
programs exit, and a queuing system job delete command is issued. The job is then abandoned. 

o If the remote job is a non-LS-DYNA job, then the SIGINT (or SIGTERM) is first used. This is done 
approximately every 15 seconds. If that fails, then the SIGTERM method is used. If that also fails, 
then the SIGKILL method is used. If that fails, then the runqueuer/wrapper programs exit, and a 
queuing system job delete command is used. The job is then abandoned. 

 
Case 3 (Jobs are run using the HONDA queuing option): This queuing option was created to work in 
environments where TCP/IP connetions from compute clusters back to LS-OPT were either impractical, 
undesirable, or not allowed. Commands are executed using user-supplied queuing scripts to run the jobs on 
remote nodes. 
 
If you try to kill a job managed using this option, then a job id/name must be known, because the only way 
to kill the job is using the queuing system job delete command. Queuing scripts can hang for a time before 
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finishing. Therefore, we wait for 2 minutes to find the job name/id in the script output. After that we 
abandon the job. 
 
NOTE: There are times when an LsoptJobCheck script may be run. If this script is busy when the job is 
killed, then we wait indefinitely for the script to complete. That way we prevent <defunct> processes. 
 
 
Case 4 (Jobs are run using the BLACK BOX queuing option): This option was created to deal with an 
unknown queuing system, and to provide a general mechanism for progress monitoring using scripts created 
by the user. Jobs are submitted using a user-supplied submit script to run jobs on remote nodes.  
 
If you try to kill a job managed using this option, then a job id/name must be known, because the only way 
to kill the job is using a user-supplied LsoptJobDel script. Queuing scripts can hang for a time before finish. 
Therefore, we wait for 2 minutes to find the job name/id in the script output. After that we abandon the job. 
 
A script named LsoptJobCheck runs periodically for each job. A job for which this script is running is not 
killed or abandoned until this script completes. This is done to avoid <defunct> processes. 
 

9.16.2. Killing Jobs using LS-OPT, LS-OPTui, and LSKILLJOB. 

This is a program supplied with LS-OPT for the purpose of killing jobs managed by the lscheduler process. 
Jobs may be killed in bulk or killed individually using this program. The lskilljob program resides in the 
LS-OPT installation directory, along with the other executables.  
 
Killing All Jobs in Bulk 
 
Jobs can be killed in bulk from 

o LS-OPT using the sense switch sw1.  

o LS-OPTui Run Panel.  

o Using the LSKILLJOB command line utility. 

The LSKILLJOB program is a separate executable located in the main directory of the LS-OPT distribution. 
The syntax to invoke the bulk kill option using LSKILLJOB is: 

 
lskilljob -kill 

 

All three programs contact the LSCHEDULER job scheduling process in order to kill jobs. The 
LSKILLJOB program must be able to contact the LSCHEDULER process in order to kill jobs; so it 
imperative that LSKILLJOB is run in the main project directory for the currently running LS-OPT process. 
LSKILLJOB consults a file named “lsopt.control” for information about how to connect to the 
LSCHEDULER process. If “lsopt.control” cannot be found, or if LSCHEDULER is not currently running, 
then LSKILLJOB prints the following error message and then terminates: 

Kill request status:Failed to open lscheduler 
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Kill One Job 

A single job may be killed using LS-OPTui, or using the standalone LSKILLJOB program. The basic kill 
job option requires a job number and no other command line options. As described above, the LSKILLJOB 
program must be run from the main LSOPT project directory 

lskilljob job_number 

There are several errors which can occur during such a request, and by are diagnosed by the following 
LSKILLJOB error messages 

Kill request status:Job not running 

Kill request status:Invalid parameter 

Kill request status:Target job cannot be killed, 

        or job id out of range 

Kill request status:Failed to open lscheduler 

If the command succeeds (which does not mean that the job is immediately killed,) then you should see a 
success message 

Kill request status:Success 

This indicates the that the job number is a valid, running job, and that the kill operation has been initiated. 

 

Kill Level 
Whenever a job is killed using the bulk kill option, or the LSKILLJOB kill described above, the kill 
operation proceeds in levels or stages. For LS-DYNA there are three stages. For somes jobs, there are only 
two. 

LS-DYNA Jobs (non-queued) 
1. A D3KIL file is created in the working directory of the LS-DYNA job. 

2. A SIGTERM signal is sent under Linux, or a Ctrl+Break under Windows. 

3. A SIGKILL signal (kill -9) is sent under Linux, or is forcibly terminated under Windows, using the 
same force-kill mechanism as the Windows Task Manager. 0. 

LS-DYNA Jobs (queued with runqueuer/wrapper) 
1. If the user-defined script failed to return a job name or job id, then a request is made to the 

runqueuer program to exit. The job is then abandoned. 

2. If the user-defined script has returned a job name or job id, but the remote side has not yet connected 
back to the local side, then the queuer-specific job delete command is issued, and the runqueuer is 
instructed to exit. The job is then abandoned. 

3. If the remote wrapper program has connected back to the local runqueuer, then a D3KIL is created 
by the remote wrapper, and we wait for LS-DYNA to exit. 
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4. This level pertains only to the case where the remote wrapper has connected, but the D3KIL file has 
failed. The wrapper program is now instructed to send a SIGTERM signal to LS-DYNA. 

5. This level pertains only to the case where the remote wrapper has connected, but the D3KIL and/or 
the SIGTERM signal have failed. The wrapper program is now instructed to send a SIGKILL signal 
to LS-DYNA. 0. 

Other Jobs (non-queued) 
1. A SIGINT (or SIGTERM) signal is sent under Linux, or a Ctrl+C (or a Ctrl+Break) is delivered 

under Windows. 

2. A SIGTERM signal is sent under Linux, or a Ctrl+Break under Wndows. 

3. A SIGKILL signal (kill -9) is sent under Linux, or is foricbly terminated under Windows, using the 
same force-kill mechanism as the Windows Task Manager. 0. 

Other Jobs (queued with runqueuer/wrapper) 
1. If the user-defined script failed to return a job name or job id, then a request is made to the 

runqueuer program to exit. The job is then abandoned. 

2. If the user-defined script has returned a job name or job id, but the remote side has not yet connected 
back to the local side, then the queuer-specific job delete command is issued, and the runqueuer is 
instructed to exit. The job is then abandoned. 

3. If the remote wrapper program has connected back to the local runqueuer, then the wrapper is 
instructed to deliver a SIGINT (or SIGTERM) signal to the process. 

4. This level pertains only to the case where the remote wrapper has connected, but the signal has failed 
to kill the process. The wrapper program is now instructed to send a SIGTERM signal to the process. 

5. This level pertains only to the case where the remote wrapper has connected, but the SIGINT and/or 
SIGTERM signals have failed to kill the process. The wrapper program is now instructed to send a 
SIGKILL signal to LS-DYNA. 0. 0. 

All BLACKBOX Queued Jobs 
1. If the BLACKBOX queuing script has been executed, but no valid job id or job name has yet been 

detected, then we queue a kill event until the job id or job name can be found, and any running 
queuing script or LsoptJobCheck script has finished. We then execute LsoptJobDel to kill the job. If 
this condition has persisted for 120 seconds since starting the queuing script, then the job is 
abandoned. 

2. If the BLACKBOX queuing script has returned a valid job id or job name, but the queuing script or 
LsoptJobCheck is currently running, then we queue a kill event until the script in question has 
finished. We then execute LsoptJobDel to kill the job. 

3. If the BLACKBOX queuing script has returned a valid job id or job name and has completed, and if 
there is no queuing script or LsoptJobCheck in progress, then we kill the job using the user-supplied 
LsoptJobDel script. The job is then abandoned. 

4. If a queuing script has not yet reported a valid job id or job name, then the job is abandoned. 

5. If an LsoptJobCheck script is stalled, we send a SIGKILL to the script, and the job is abandoned. 

6. The job has been abandoned by this point. 0. 
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All HONDA Queued Jobs 
1. If the HONDA queuing script has been executed, but no valid job id or job name has yet been 

detected, then we queue a kill event until the job id or job name can be found. 

2. If the HONDA queuing script has failed to return a valid job id or job name for 120 seconds, then 
the job is abandoned. 

3. If an LsoptJobCheck script is in the process of determining a final exit status for the job, then we 
ignore the kill in favor of waiting for the job check script to finish. 

4. If the HONDA queuing script has returned a valid job id or job name, then the queuing delete 
command is executed, and the job is abandoned. 

5. If the HONDA queuing script has been executed, but still has not returned a valid job id or job name, 
then the job is abandoned. 

6. The job has been abandoned by this point. 0. 

 

Increasing the Kill Level 
The bulk kill may spend up to 10 minutes in the first stage (level 0) before proceeding to level 1. It then 
executes level 1 kill operations, and waits only 15 seconds before proceeding to the final “sure-kill” level 2 
kill operations. The kill will remain in the final stage only for a short time before abandoning the job 
entirely, possibly leaving behind a job that refuses to exit. Some jobs are abandoned at level 1, depending on 
the type of job and the queuing options. Jobs abandoned at level 1 do not usually result in lost resources. 

 

It not generally advisable to elevate the kill level for a particular job, but this is an option which can be 
reasonably invoked by the user. For example, 

lskilljob job_number 1 

will cause the kill routines to spend only 15 seconds waiting for level 0 kill operations to succeed before 
moving to level 1 kill operations. LSHEDULER will then try one level 1 kill operations, and wait 15 
seconds before trying the final 'sure-kill' level 2 kill operations. Executing 

lskilljob job_number 2 

will cause the kill routines to spend only 15 seconds waiting for level 0 kill operations to succeed before 
moving to the final level kill operations (may be level 2 or, in some cases, may be level 1.) 

 

If you execute LSKILLJOB using level 1, and execute it again immediately afterwards, then the wait period 
for the level 0 kill is eliminated, and level 1 kill operations are executed immediately. Executing 
LSKILLJOB immediately again then aborts the 15-second wait period for level 1 kill operations, and level 2 
kill operations are immediately executed. This will make the impatient user happy, but may surprise other 
users. This is by design in order to create a responsive command. 

 

Once the kill level is elevated, then all subsequent LSKILLJOB commands work at the same or higher level 
according to kill level escalation rules, making it unnecessary to add the kill level argument again. The kill 
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level cannot be lowered by using the option kill level command line option. And a kill operation cannot be 
aborted. 

Warnings: 
o Once a job kill operation is started, it cannot be canceled. 

o The kill level 2 can result in lost kernel resources and incorrectly closed files. Linux systems may 
leave behind a <defunct> job, and files may be incompletely written. Windows systems may lose 
resources because DLLs are not properly detached, and may even destabilize the system; files may 
also be corrupted or incompletely written. 

o LS-DYNA may be unable to check for the presence of a D3KIL file for a considerable period of 
time. This usually occurs with implicit jobs where long matrix calculations are not interrupted for 
reasons of efficiency. 10 minutes should be sufficient for nearly all explicit LS-DYNA runs. 

 

Termination Status for Killed Jobs 
This is a tricky issue, where the defaults are usually appropriate, but not always. For that reason, you may 
wish to set the final job status to ERROR, ABORTED, or KILLED using the lskilljob command. 

You can specify the final exit ERROR, ABORTED or KILLED as follows: 
lskilljob job_number [level] error 

lskilljob job_number [level] aborted 

lskilljob job_number [level] killed 

 

Commands marked with ERROR will not be restarted using LS-OPT, and results from these commands are 
ignored. The finished file will contain the string 

E r r o r   t e r m i n a t i o n 

 

Commands marked with ABORTED will be restarted according to the retry rules defined in LS-OPT. If the 
process has reached its maximum number of allowed retries (which may be 0,) then the process is flagged 
with a final status of ERROR. Otherwise, the command is retried after a suitable wait period. A finished file 
is created only in the latter ERROR case and, in that case, will contain 

E r r o r   t e r m i n a t i o n 

 

The KILLED option is used by the bulk kill option so that LS-OPT will retry the job upon restart; however, 
this job may not restart if LS-OPT has beyond the point where the results of this job are needed. The 
finished file will contain the string 

F o r c e d   t e r m i n a t i o n 

 

If a bulk kill is in effect when you kill the job using LSKILLJOB, then the default final job status is 
KILLED, which is the same as all other jobs killed during the bulk kill. However, if a bulk kill is not in 
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effect when you kill the job using LSKILLJOB, then the default final job status is ERROR. The assumption 
is that any job killed during a bulk kill should be flagged the same as all other jobs; the intent of the user is 
interpreted only as an action to speed along the bulk kill by targeting certain jobs which are slow to exit. 
However, if just one job is killed outside of a bulk kill, then the assumption is that the job has failed in some 
way, and should be flagged with ERROR; that way the job will not be restarted. 

 

9.16.3. Flagging a Job for Restart 

If you kill a job using LSKILLJOB, then you can also flag the job for restart 
lskilljob job_id [kill_level] restart [wait_time_seconds] 

If you do no specify a wait time, then a default value of 0 is used, thereby instructing the LSCHEDULER 
process to reschedule the job as soon as there are resources to do so. The status returned by this command is 
the same as for the corresponding kill command without the restart option. 

 

This option is designed for cases where a temporary problem has caused a job to hang or misbehave, and 
you want to kill and restart the job after waiting long enough to correct the problem For example, a queuing 
system may have failed, and the job was lost; so the submit script failed to return a job id/name. Or perhaps 
the queuing system discarded the job for some reason, and LS-OPT has no way of knowing that the job 
cannot complete. 

 

Another designed use of this command is in situations where a job has ERROR terminated because of some 
resource problem, and you want to schedule the job to restart before LSCHEDULER terminates, so that 
LSOPT can use the corrected results. To flag a completed job for restart, issue the LSKILLJOB command 
with the -restart option 

lskilljob job_id -restart [wait_time_seconds] 

The LSCHEDULER process will restart the process as soon after the specified time wait as resources are 
available to start the job. 

 

You may cancel any pending restart option up until the time the job actually starts. This is done using the 
cancel option for the LSKILLJOB command 

lskilljob job_id -restart job_to_restart cancel 

This cancels any pending restart operation initiated with the LSKILLJOB command. This command does 
not cancel other types of pending restart events caused by an “A b o r t e d” termination status. 

 

You may modify a pending restart wait time before the job has restarted by issuing the command 
lskilljob job_id -restart wait_time_seconds 
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This command does not function for running jobs, unless a kill is already scheduled, in which case the 
restart option and restart time field are updated. If a kill has not yet been scheduled for the job, then 
LSKILLJOB will report an error 

Restart status:Job is running, use kill with restart option 

Other possible returns are 
Restart status:Success 

Restart status:Cannot restart, job never started 

Restart status:Job id out of range 

Restart status:Already flagged for retry (no action taken) 

Restart status:Invalid argument 

Restart status:Failed to open lscheduler 

Restart status:I/O error while negotating with lscheduler 

 

Remarks on Restarting Jobs:  
o Restart events should be considered transient, persisting only during the time that LSCHEDULER is 

running. If you issue a bulk kill of all jobs, then any pending restart events are discarded. The 
affected jobs are not automatically restarted at a later time. 

o In future versions, the user will be able to schedule a restart for a job, even if the LSCHEDULER is 
not running. Such restart events will be persistent. 

o A job which has never been started cannot be flagged for restart. 

o Jobs which are running cannot be flagged for restart without also issuing a kill operation. 
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10. Interfacing to a Solver, 
Preprocessor or Postprocessor 

This chapter describes how to interface LS-OPT with a simulation package and/or a parametric 
preprocessor. Standard interfaces as well as interfaces for user-defined executables are discussed.  

10.1. Parsing, copying and transmitting of LS-DYNA input and include files 

The handling (parsing, copying and transmitting) of input and include files by LS-OPT is automated. The 
following rules apply: 

1. LS-OPT handles four main types of solver input files, namely the (i) main input file, (ii) include 
files, (iii) extra files and (iv) an append file. Input files are parsed to substitute parameter values (see 
Sections 10.2 and 10.3) and then copied to the run directories or transmitted onto a computer cluster 
for a remote run. 

2. The main input file is copied to the run directory, parsed to substitute the new parameter values and 
then renamed. For LS-DYNA, the file is renamed to DynaOpt.inp. Each solver types has its own 
input file. 

3. Include files may also contain parameters and are also parsed and copied (or transmitted) if the 
include file is specified in the keyword file without a path, for example: 

 *INCLUDE 

 input.k  

 

 If a path is specified for an include file, e.g. 

  *INCLUDE 

 C:\path\myinputfiles\input.k 

  the file will not be copied, parsed or transmitted. 

4. If the main input file is placed in a subdirectory of the main working directory and is specified with a 
relative path, e.g. myinputfiles/input.k, the directory (in this case myinputfiles) 
becomes a file environment for any include files which may also be placed in this directory. 
Therefore all include files specified without a path will automatically be copied (or transmitted) from 
this sub-directory (myinputfiles) to the run directories. 
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5. Extra files can be specified individually and are always parsed to substitute parameter values and 
copied (or transmitted). This feature can therefore be used to force file copying. See also Section 
10.6 for more detail. 

6. An Append file is simply a file which is appended to the main input file. The append file is also 
parsed for parameter value substitution. After appending, the main input file with its appendage is 
renamed e.g to DynaOpt.inp. It is suggested that an include file be used instead of an appended file 
since this is a more natural operating mode when managing LS-DYNA input. 0. 

10.2. Labeling design variables in a solver and preprocessor 

Parameters specified in input files are automatically identified for the following packages: 

 
 

Package 
Native parameters 

recognized in 
input file 

 

LS-OPT Parameter 
Format recognized 
(see Section 10.2.1) 

include files 
recognized 
in input file 

LS-DYNA® Yes Yes Yes 
LS-PREPOST® Yes Yes Yes 
MSC-NASTRAN6 Yes Yes No 
ANSA Yes Yes Yes 
HyperMorph7 Yes Yes No 
TrueGrid8 No Yes Yes 
LS-INGRID No Yes Yes 
User-defined N/A Yes No 

 

LS-OPTui will automatically recognize the native and LS-OPT parameters for the formats indicated in the 
table and display them as ‘Constants’ in the ‘Variables’ panel. The user can then change these constants to 
variables or dependents. The parameter names cannot be changed in the GUI so, if desired, must be changed 
in the original solver input file. A lock icon adjacent to the variable name indicates that the parameter names 
were imported from the input or include files.  

The ‘include’ files are also scanned wherever this feature is available making it nonessential to append any 
files or define extra files. Include files which are specified with a path, e.g. “../../car5.k” or 
“/home/jim/ex4a/car6.k” are not copied to the run directories and no parameter substitutions will be 
made in these files. This is solely to prevent unnecessary file proliferation. The user must however ensure 
that files, which are to be distributed to remote nodes through a queuing system (see Section 9.12), do not 
contain any path specifications. These files are automatically transmitted to the relevant nodes where the 
solver will be executed. See also Section 10.1. 

Extra files can be added for copying to run directories and substituting variables. If parameters are specified 
in include files with path specifications, these files should be specified as extra files. See Section 10.6. 

The LS-OPT parameter format described next is recognized in all types of input files.  
                                                 
6 Registered Trademark of MSC Software, Inc. 
7 Registered Trademark of Altair Engineering, Inc. 
8 Registered Trademark of XYZ Scientific Applications, Inc. 
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10.2.1. The LS-OPT parameter format 

LS-OPT provides a generic format that allows the user to substitute parameters in any type of input file. The 
parameters or expressions containing parameters must be labeled using the double bracketed format 
<<expression:[i]field-width>> in the input file.  

 

The expression field is for a FORTRAN or C type mathematical expression that can incorporate constants, 
design variables or dependents. The optional i character indicates the integer data type. The field width 
specification ensures that the number of significant digits is maximized within the field width limit. The 
default field width is 10 (commonly used in e.g. LS-DYNA input files). E.g. a number of 12.3456789123 
will be represented as 12.3456789 and 12345678912345 will be represented as 1.23457e13 for a 
field-width of 10.  

 

A field width of zero implies that the number will be represented in the “%g” format for real numbers or 
“%ld” format for integers (C language). For real numbers, trailing zeros and a trailing decimal point will 
not be printed. This format is not suitable for LS-DYNA as the field width is always limited. Real numbers 
will be truncated if specified as integers, so if rounding is desired the “nearest integer” expression should be 
used, e.g. <<nint(expression)>>. 

 

A record of the specified input files and parameters can also be checked in the lsopt_input file. 
---------------------------------------------------------------------- 
 L I S T   O F   I N P U T   F I L E S   U S E D   B Y   L S - O P T   
---------------------------------------------------------------------- 
 SOLVER: 1 
-------------------------------|----------|--------|----------------| 
File name                          Type     Utility  Parameter Occur.   
                                                    ------------------  
                                                     Native   LS-OPT   
-------------------------------|----------|---------|--------|--------| 
      main.k                    LS-DYNA 960 Rootfile  2        0        
      ../../car5.k              LS-DYNA 960 Include   0        0        
-------------------------------|----------|---------|-----------------| 
----------------------------------------------------------------------- 
L I S T   O F   I N C L U D E   F I L E S   A N D   P A R A M E T E R S  
----------------------------------------------------------------------- 
======================================================================= 
File Name        Include Parameters Status     Time Stamp 
                 Files                                    
======================================================================= 
main.k           1       2          OLD        Thu Apr 1 14:39:11 2004 
======================================================================= 
       
                     List of Include Files for "main.k" 
                     ----------------- 
                     Include File Name 
                     ----------------- 
                     ../../car5.k     
                     ----------------- 
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                     List of Parameters found in "main.k" 
                     ---------------------------------------- 
                     Parameter Name   Value      Type        
                     ---------------------------------------- 
                     tbumper          1          *PARAMETER  
                     thood            3          *PARAMETER  
                     ---------------------------------------- 

Inserting the relevant design variable or expression into the preprocessor command file requires that a 
preprocessor command such as 
 
create fillet radius=5.0 line 77 line 89 
 

be replaced with 
 
create fillet radius=<<Radius*25.4:0>> line 77 line 89 
 

where the design variable named Radius is the radius of the fillet and no trailing or leading spaces are 
desired. In this case, the radius multiplied by the constant 25.4 is replaced. Any expression can be specified. 

 

An alternative option would be to specify: 
 
create fillet radius=<<Radius_scaled:0>> line 77 line 89 
 

while specifying the dependent Radius_scaled as a function of independent variable Radius, such that 
Radius_scaled = Radius * 25.4 . This specification is done in the ‘Variables’ panel or command file.  

Similarly if the design variables are to be specified using a Finite Element (LS-DYNA) input deck then data 
lines such as 
*SECTION_SHELL 
1, 10, , 3.000 
0.002, 0.002, 0.002, 0.002 
 

can be replaced with 
 
*SECTION_SHELL 
1, 10, , 3.000 
<<Thickness_3>>,<<Thickness_3>>,<<Thickness_3>>,<<Thickness_3>> 
 

to make the shell thickness a design variable. 

 

An example of an input line in a LS-DYNA structured input file is: 
 
* shfact z-integr printout quadrule 
.0 5.0 1.0 .0 
* thickn1 thickn2 thickn3 thickn4 ref.surf 
<<Thick_1:10>><<Thick_1:10>><<Thick_1:10>><<Thick_1:10>> 0.0 
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The field-width specification used above is not required since the default is 10. Consult the relevant User’s 
manual for rules regarding specific input field-width limits. 

10.3. Interfacing to a Solver 

In LS-OPTui, solvers are specified in the Solver panel (Figure 10-1): 

 

Both the preprocessor and solver input and append files are specified in this panel. Multiple solvers (as used 
in multi-case or multi-disciplinary applications) are defined by selecting ’Add solver’. The ’Replace’ button 
must be used after the modification of current data. 

The name of the analysis case is used as the name for the subdirectory. 

 

Figure 10-1: Solver panel in LS-OPTui 

Execution command. The command to execute the solver must be specified. The command depends on the 
solver type and could be a script, but typically excludes the solver input file name argument as this is 
specified using a separate command. The execution command may include any number of additional 
arguments. 

 

Input template files. LS-OPT converts the input template to an input deck for the preprocessor or solver by 
replacing the original parameter values (or labels) with new values determined by the sampling procedure. 
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During run-time, LS-OPT appends a standard input deck name to the end of the execution command. In the 
case of the standard solvers, the appropriate syntax is used (e.g. i=DynaOpt.inp for LS-DYNA). For a 
user-defined solver, the name UserOpt.inp is appended. The specification of an input file is not 
required for a user-defined solver. 

 

Appended file. Additional solver data can be appended to the input deck using the 
solver_append_file_name file. This file can contain variables to be substituted. 

 

Include files. These do not have to be specified as they are automatically and recursively searched by LS-
OPT when given the name of the main input file (root file).  

 

Command file syntax: 

solver software_package_identifier name_of_analysis_case 
solver input file "solver_input_file_name" 
solver command "solver_program_name" 
solver append file "solver_append_file_name" 
interval Time_interval_between_progress_reports < 15 > (not 
available in LS-OPTui) 

 

The following software package identifiers are available: 
own   user-defined solver 
dyna   LS-DYNA Versions prior to 960 
dyna960  LS-DYNA Version 960/970 
nastran  MSC-NASTRAN SOL 103 

10.3.1. Interfacing with LS-DYNA 

The first command demarcates the beginning of the solver environment. 
 
Example: 
$ Define the solver software to be used. 
solver dyna960 ’SIDE_IMPACT’ 
$ the data deck to be read by the solver. 
  solver input file "ingrido" 
$ the command to execute the solver. 
  solver command "/alpha6_2/usr/ls-dyna/bin/ls970.single" 
$ Extra commands to the solver. 
  solver append file "ShellSetList" 
 

More than one analysis case may be run using the same solver. If a new solver is specified, the data items 
not specified will assume previous data as default. All commands assume the current solver. 
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Remarks: 

1. The name of the solver will be used as the name of the sub-directory to the working directory. 

2. The command solver package_identifier name initializes a new solver environment. All 
subsequent commands up to the next “solver name” command will apply to that particular 
solver. This is particularly important when specifying response name commandline 
commands as each response is assigned to a specific solver and is recovered from the directory 
bearing the name of the solver. (See Section 14). 

3. Do not specify the command nohup before the solver command and do not specify the UNIX 
background mode symbol &. These are automatically taken into account. 

4. The solver command name must not be an alias. The full path name (or the full path name of a 
script which contains the full solver path name) must be specified.0. 

 

The LS-DYNA restart command will use the same command line arguments as the starting command line, 
replacing the i=input file with r=runrsf. 

 

The *PARAMETER format 

The parameters specified under the LS-DYNA *PARAMETER keyword are recognized by LS-OPT and will 
be substituted with a new value for each of the multiple runs. These parameters should automatically appear 
in the Variable list of the GUI upon specification of the solver input file name. LS-OPT recognizes the “i”  
and “r” formats for integers and real numbers respectively and will replace the number in the appropriate 
format. Note that LS-OPT will ignore the *PARAMETER_EXPRESSION keyword so it may be used to 
change internal LS-DYNA parameters without interference by LS-OPT. 

For details of the *PARAMETER format please refer to LS-DYNA User’s Manual. 

 

Check of the *DATABASE cards 

LS-OPT can perform some basic checks of the *DATABASE cards in the LS-DYNA input deck. The 
checks will be done using the input deck of the first run of the first iteration. The items checked are: 

1. Whether the required binout data types are requested in the LS-DYNA input deck. For example, if 
LS_OPT uses airbag data, then the LS-DYNA deck should contain a *DATABASE_ABSTAT card 
requesting binout output. 

2. Whether the required nodes and/or elements are requested in the LS-DYNA output. For example, if 
the LS-OPT output request refers to a specific beam, then a *DATABASE_HISTORY_BEAM or a 
*DATABASE_HISTORY_BEAM_SET card must exist and refer to the beam in question. Note 
that *SET_option_GENERAL or *SET_option_COLUMN card will not be interpreted and that an 
output entity specified using *SET_option_GENERAL or *SET_option_COLUMN may be be 
flagged incorrectly as missing; switch off the checking in this case.0. 
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The GUI allows this to be set as an advanced solver option. 

 
Command file syntax: 

solver check output on/off 

Altering the d3plot databases 

The following options are available: 

1. Compress the d3plot database. All results except displacements, velocities, and accelerations will be 
deleted. 

2. Transforming the results to a local coordinate system specified by three nodes. The first node is the 
origin and the other two nodes are used to define the coordinate systems. The coordinate system 
moves with the nodes. A file specified the three nodes is required. An example of the possible 
contents of the file: 1001 1002 1003. The file therefore consists of a single line. 

3. Write the results for a user selected set of parts. A file specifying the list of parts to be 
included/excluded is required. The file consists of multiple lines with a single entry per line. The 
syntax of the file is:0. 

o id includes the part with id, 

o id1-id2 includes the parts from id1 to id2, 

o –id excludes the part with id. Only parts included with id or id1-id2 can be excluded. 

For example:  5 
        7-20 
        -9. 

 

The GUI allows this to be set as an advanced solver option. 

 

This capability does not work with adaptivity.  

 

The *DATABASE_EXTENT_BINARY option in LS-DYNA also allows control over the size of the d3plot 
databases.  

 
Command file syntax: 

solver compress d3plot on/off 
solver compress d3plot nodes nodrel_filename 
solver compress d3plot extract parts_filename 

 

Example: 
$ set d3plot compress options  
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solver compress d3plot on 
solver compress d3plot nodes “nodrel_nodes.txt” 
solver compress d3plot extract “part_list.txt” 

10.3.2. Interfacing with LS-DYNA/MPP 

The LS-DYNA MPP (Message Passing Parallel) version can be run using the LS-DYNA option in the 
”Solver” window of LS-OPTui (same as the dyna option for the solver in the command file). However, 
the run commands must be specified in a script, e.g. the UNIX script runmpp: 
 
mpirun -np 2 lsdynampp i=DynaOpt.inp 
cat dbout.* > dbout 
dumpbdb dbout 
 

The solver specification in the command file is as follows: 

 solver dyna960 ’crash’ 
 solver command "../../runmpp" 
 solver input file "car5.k" 
 solver append file "rigid2" 

 

Remarks: 

1. DynaOpt.inp is the reserved name for the LS-DYNA MPP input file name. This file is normally 
created in the run directory by LS-OPT after substitution of the variables or creation by a 
preprocessor. The original template file can have a different name and is specified as the input file in 
the solver input file command. 

2. lsdynampp is the name of the MPP executable. 

3. The file dumpbdb for creating the ASCII database must be executable. 

4. The script must be specified in one of the following formats:0. 

o path relative to the run directory: two levels above the run directory (see example above). 

o absolute path, e.g. "/origin/users/john/crash/runmpp" 

o in a directory which is in the path. In this case the command is: 

solver command "runmpp". 

10.3.3. Interfacing with the MSC-NASTRAN® solver (SOL 103) 

The user can interface with the NASTRAN implicit solver (sol 103) for modal analysis using the solver 
nastran solvername command, or by selecting the MSC-NASTRAN option in the LS-OPTui. The 
solver command " " can either execute a command, or a script. The substituted input file 
NastranOpt.inp will automatically be appended to the command or script. Variable substitution will be 
performed in the solver input file (which will be renamed NastranOpt.inp) and the solver 
append file. The nastran solver is required to generate a ‘N o r m a l’ termination command to 
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standard output at the end of simulation. This can be done by executing NASTRAN using a script with its 
last statement being the command (see remark 2):  
      echo ’N o r m a l’. 
 
Example: 
solver nastran 'MODAL' 
solver command "/home/bin/myNastran" 
solver input file "modal_analysis.dat" 
 
Remarks: 

1. The NASTRAN solver must not be run in the batch mode. This can be done by specifying the 
'batch=no' option with the nastran command.  

2. A ’N o r m a l  T e r m i n a t i o n’ statement must be issued after finishing the 
NASTRAN job. This can be easily done by using the following script as the solver command: 

     #============================================= 
     /home/bin/nastran ’batch=no’ $1 
     echo ’N o r m a l  T e r m i n a t i o n’ 
     #============================================= 

3. Design Parameters: The design parameters can be specified using one of the following two options: 

o defrepsym: The design variables can be specified using the 
           defrepsym varname default  

statement. The design variable value is accessed using %varname%. The user must be careful to use 
the appropriate fieldwidth permitted by NASTRAN. This is the preferred option. 

o The LS-OPT parameter format discussed in Section 10.2.1. 

4. Creating the Database: In order to facilitate the creation of appropriate LS-OPT readable database, 
the user must include the following DMAP code at the beginning of the input deck. 

    ============================================================ 
    $ open the binary file  
    ASSIGN OUTPUT4=’nastEigout.op4’ UNIT=39 UNFORMATTED DELETE $ binary  
    $ 
    $ solver 
    SOL 103 
    DIAG 5, 6, 8, 56 
    $ 
    $ Matrix manipulation 
    MALTER ’call modefsrs’ $ after modes are calculated 
    LAMX,,LAMA/LMAT/-1/0 $ convert eigenvalue table to matrix 
    MPYAD, MAA, PHA,/MTP/1 $ matrix multiplication 
    OUTPUT4 PHA, LMAT, MTP,,//-1/39///16 $ output desired matrices 
    $ 
    CEND 
    ============================================================ 

The name of the output file (nastEigout.op4)and matrices (PHA, MAA, LMAT, MTP,…) 
must not be changed for successful reading of the binary file.  

5. Extracting data: To extract NASTRAN modal analysis results, the users must use Nastran-
Frequency type on the response panel instead of FREQUENCY type that is used for LS-DYNA.0.  
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10.3.4. Interfacing with a user-defined solver 

An own solver can be specified using the solver own solvername command, or selecting User-defined in 
LS-OPTui. The solver command " " can either execute a command, or a script. The substituted input 
file UserOpt.inp will automatically be appended to the command or script. Variable substitution will be 
performed in the solver input file (which will be renamed UserOpt.inp) and the solver 
append file. If the own solver does not generate a ‘Normal’ termination command to standard output, 
the solver command must execute a script that has as its last statement the command:  
   echo ‘N o r m a l’. 
 
Example: 
solver own 'Analyzer' 
  solver command "../../run_this_script" 
  solver input file "setup.jou" 

10.3.5. How to run LS-DYNA from LS-OPT using the license server (Windows) 

In case you want to use the license server for LS-DYNA, you need to do the following: 

1. Go to the "start" menu of the Windows Operating System and follow the steps: 

2. Right click on "My Computer"0. 

o Choose "Properties" 

o Click "Advanced" tab 

o Click "Environment Variables" button 

o Add the following "User variables": 

 

LSTC_LICENSE              network 

LSTC_LICENSE_SERVER      <name of the license server host machine> 

 

The first column above has the variable names and the second column, the variable values, to be filled into 
the boxes. 

 

You can also start by right-clicking on the "My Computer" icon on your desktop and going through the 
steps as explained above. 

 

It may be necessary to restart the operating system to initialize the environment variables. 
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10.4. Preprocessors 

The preprocessor must be identified as well as the command used for the execution. The command file 
executed by the preprocessor to generate the input deck must also be specified. The preprocessor 
specification is valid for the current solver environment. 

 

Command file syntax: 

prepro software_package_identifier 
prepro command "prepro_program_name" 
prepro input file "pre_file_name" 

 

The interfacing of a preprocessor involves the specification of the design variables, input files and the 
preprocessor run command. Interfacing with LS-INGRID, LS-PREPOST, TrueGrid9, AutoDV and 
HyperMorph10

 and the ANSA Morpher11 is detailed in this section. The identification of the design variables 
in the input file is detailed in Section 10.2. 

10.4.1. LS-PREPOST 

The identifier in the prepro section for the use of LS-PREPOST is lsprepost. The file 
LsPrepostOpt.inp is created from the LS-PREPOST input template file. 

 

Example: 
solver dyna960 'a' 
  solver command "ls971_single" 
  solver input file "lsppout" 
  solver check output on  
  solver compress d3plot off  
$ ------ Pre-processor -------- 
  prepro lsprepost 
  prepro command "lspp3" 
  prepro input file "test01.cfile" 
 
 
test01.cfile: 
 
$# LS-PrePost command file created by LS-PREPOST 3.0(Beta) - 31Mar2010(17:08) 
$# Created on Apr-06-2010 (13:42:14) 
cemptymodel 
openc command "para01.cfile" 
genselect target node 
occfilter clear 
genselect clear 
genselect target node 

                                                 
9Registered Trademark of XYZ Scientific Applications, Inc. 
10 Registered Trademark of Altair Engineering, Inc. 
11 Registered Trademark of Detroit Engineering Products 
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occfilter clear 
genselect clear 
meshing boxshell create 0.000000 0.000000 0.000000 &size &size &size &num &num &num 
ac 
meshing boxshell accept 1 1 1 boxshell 
genselect target node 
occfilter clear 
refcheck modelclean 9 
ac 
mesh 
save keyword "lsppout" 
exit 
 
para01.cfile 
 
parameter size 1.0 
parameter num 2 
 
 

The input allow the execution of LS-PREPOST using the command “lspp3 c=LsPrepostOpt.inp 2> 
/dev/null > /dev/null”. The file LsPrepostOpt.inp is created by replacing the parameter 
values of the variables ‘size’ and ‘num’ in para01.cfile with the relevant values of the design variables. 

10.4.2. LS-INGRID 

The identifier in the prepro section for the use of LS-INGRID is ingrid. The file ingridopt.inp 
is created from the LS-INGRID input template file. 

 

Example: 
$ the preprocessor software to be used. 
prepro ingrid 
$ the command to execute the preprocessor 
  prepro command "ingrid" 
$ the input file to be used by the preprocessor 
  prepro input file "p9i" 

This will allow the execution of LS-INGRID using the command “ingrid i=ingridopt.inp –d 
TTY”. The file ingridopt.inp is created by replacing the << name >> keywords in the p9i file with 
the relevant values of the design variables. 

10.4.3. TrueGrid 

The identifier in the prepro section for the use of TrueGrid is truegrid. This will allow the execution 
of TrueGrid using the command “prepro program_name i=TruOpt.inp". The file TruOpt.inp 
is created by replacing the << name >> keywords in the TrueGrid input template file with the relevant 
values of the design variables. 

 

Example: 
$ the preprocessor software to be used. 
prepro truegrid 
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$ the command to execute the preprocessor 
  prepro command "tgx" 
$ the input file to be used by the preprocessor 
  prepro input file "cyl" 
 

These lines will execute TrueGrid using the command “tgx i=cyl” having replaced all the keyword 
names << name >> in cyl with the relevant values of the design variables. 

 

The TrueGrid input file requires the line: 
 
write end 
 

at the very end. 

10.4.4. ANSA (BETA CAE Systems SA) 

The ANSA preprocessor can be interfaced with LS-OPT allowing for shape changes to be specified. The 
identifier in the prepro section for ANSA is ANSA. Several files must be specified: 

1. ANSA executable, typically named ansa.sh. Do not use an alias.  

2. ANSA Design parameter file, typically with the extension .txt or .dat. This file is generated using 
ANSA and LS-OPT will read the ANSA design parameter names and values from this file. 
Parameters defined in the parameter file will become constants with the same name and value in LS-
OPT. The user can change them to be design variables instead of constants in the variable panel of 
the GUI. If LS-OPT already has a design variable with the same name then this variable will be used 
to drive the value of the ANSA parameter. 

3. ANSA binary database, typically with the extension .ansa.   

4. LS-DYNA executable. 

5. LS-DYNA input file. ANSA automatically produces a LS-DYNA keyword file called ansaout . 
This file will therefore automatically appear as the LS-DYNA input file in the GUI. However this 
file can also be used as an appended file or include file (specified under *INCLUDE). In this case an 
input file name has to be specified for LS-DYNA.0. 

Example: 
$ 
$ DEFINITION OF SOLVER "1" 
$ Solver “1” uses ANSA 
solver dyna ’1’ 
$ 
prepro ANSA 
prepro command "/home/jane/bin/ansa.sh" 
prepro input file "model.txt” 
propro database file “model.ansa” 
$ 
solver command "lsdyna" 
solver input file "ansaout" 
$ 
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10.4.5. AutoDV 

The geometric preprocessor AutoDV can be interfaced with LS-OPT which allows shape variables to be 
specified. The identifier in the prepro section for the use of AutoDV is templex (the name of an 
auxiliary product: Templex12). The use of AutoDV requires several input files to be available. 

1. Input deck: At the top, the variables are defined as DVAR1, DVAR2, etc. along with their current 
values. The default name is input.tpl. This file is specified as the prepro input file. 

2. Control nodes file: This is a nodal template file used by Templex to produce the nodal output file 
using the current values of the variables. This file is specified using the prepro controlnodes 
command. The default name is nodes.tpl. 

3. A coefficient file that contains original coordinates and motion vectors specified in two columns 
must be available. The command used is prepro coefficient file and the default file 
name is nodes.shp. 

4. Templex produces a nodal output file that is specified under the solver append file 
command. The default name is nodes.include.0. 

 

Example: 
$ 
$ DEFINITION OF SOLVER "1" 
$ 
solver dyna ’1’ 
  solver command "lsdyna" 
  solver append file "nodes.include" 
  solver input file "dyna.k" 
  prepro templex 
  prepro command "/origin_2/user/mytemplex/templex" 
  prepro input file "a.tpl" 
  prepro coefficient file "a.dynakey.node.tpl" 
  prepro controlnodes file "a.shp" 
 

In the example, several files can be defaulted. 

Table 10-1: Templex solver and prepro files and defaults 

Command Description Default 
prepro input file Templex input file input.tpl 

prepro coefficient file Coefficient file nodes.shp 

prepro controlnodes file Control Nodes file nodes.tpl 

solver append file Append file (same as templex output file) nodes.include

 

The prepro command will enable LS-OPT to execute the following command in the default case: 
                                                 
12 Registered Trademark of Altair Engineering, Inc. 
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/origin 2/john/mytemplex/templex input.tpl > nodes.include 
 

or if the input file is specified as in the example: 
 
/origin 2/user/mytemplex/templex a.tpl > nodes.include 
 
Remarks: 

1. LS-OPT uses the name of the variable on the DVARi line of the input file:0. 
 
      {DVAR1=23.77} 
      {DVAR2=49.05} 
 

to replace the variables and bounds at the end of each line by the current values. The name DVAR1 
(or DVAR2) is recognized by LS-OPT and displayed in the ‘Variables’ panel. 

10.4.6. HyperMorph 

To allow the specification of shape variables, the geometric preprocessor HyperMorph13 has been interfaced 
with LS-OPT. The identifier in the prepro section for the use of HyperMorph is hypermorph.  

1. Input deck: At the top, the variables are defined as: 
  
     {parameter(DVAR1,"Radius_1",1,0.5,3.0)} 
 

This file is specified as the prepro input file. 

2. Templex produces a nodal output file that is specified under the prepro output file 
command.0. 

 
Example: 
$ 
$ DEFINITION OF SOLVER "1" 
$ 
solver dyna ’1’ 
  solver command "ls970.single" 
  solver append file "nodes.include" 
  solver input file "dyna.k" 
  prepro hypermorph 
   prepro command "/origin_2/user/mytemplex/templex" 
   prepro input file "a.tpl" 
   prepro output file "h.output" 
   

Table 10-2: HyperMorph preprocessor input files and defaults 

Command Description 

                                                 
13 Registered Trademark of Altair Engineering, Inc. 
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prepro input file Templex input file 

prepro output file Output file produced by Templex (can e.g. 
be used as an include file in the analysis) 

 
 

The prepro command will enable LS-OPT to execute the following command in the default case: 
 
/origin 2/john/mytemplex/templex input.tpl > nodes.include 
 

or if the input file is specified as in the example: 
 
/origin 2/user/mytemplex/templex a.tpl > h.output 
 
Remarks: 

1. LS-OPT uses the name of the variable on the DVARi line of the input file:0. 
 
     {parameter(DVAR1,"Radius_1",1,0.5,3.0)} 
     {parameter(DVAR2,"Radius_2",1,0.5,3.0)} 
 

to replace the variables and bounds at the end of each line by the current values. This name, e.g. 
Radius_1 is recognized by LS-OPT and automatically displayed in the ‘Variables’ panel. The lower 
and upper bounds (in this case: [0.5,3.0]) are also automatically displayed. The DVARi designation 
is not changed in any way, so, in general there is no relationship between the number or rank of the 
variable specified in LS-OPT and the number or rank of the variable as represented by i in DVARi. 

10.4.7. User-defined preprocessor 

In its simplest form, the prepro own preprocessor can be used in combination with the design point file: 
XPoint to read the design variables from the run directory. Only the prepro command statement will 
therefore be used, and no input file (prepro input file) will be specified. 

 

The user-defined prepro command will be executed with the standard preprocessor input file 
UserPreproOpt.inp appended to the command. The UserPreproOpt.inp file is generated after 
performing the substitutions in the prepro input file specified by the user. 

 
Example: 
  prepro own 
  prepro command "gambit -r1.3 -id ../../casefile -in " 
  prepro input file "setup.jou" 
  

The executed command is: 
gambit -r1.3 -id ../../casefile –in setup.jou 
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Alternatively, a script can be executed with the prepro command to perform any number of command 
line commands that result in the generation of a file called: UserOpt.inp for use by an own solver, or 
DynaOpt.inp for use by LS-DYNA. 

10.5. Postprocessors 

A postprocessor can be scheduled to run immediately after the completion of simulations, but before 
extracting the data. The postprocessor allows extraction of data from any database it supports, so makes LS-
OPT accessible to interface with any such supported solvers. LS-OPT launches the post-processor in each 
run directory, e.g. Case_A/1.1. This allows the postprocessor to read results from the solver database and 
place them in a simple text file or files for individual extraction of results. The types of processors supported 
are (1) μETA14. The post-processor commands are as follows. 

 
Command file syntax: 

postpro <postprocessor_package> 
postpro command "run_command" 
postpro database file "database_file_name" 
postpro input file "input_file_name" 
postpro output file "output_file_name" 

 

Example: 
  postpro metapost 
   postpro command "../../metap" 
   postpro input file "../../sessionfile.txt" 
   postpro output file "./Results.txt" 
   postpro database file "./" 

  Remarks: 

1. The run command launches the postprocessor. 

2. The input file name contains information about which results to extract. For commercial 
postprocessors, this is typically a session file which was created interactively. 

3. The database file name is the name of the solver database to be parsed or read for results. Because 
the database information may have been specified in the session file, some post-processors (e.g. 
μETA) may only require a path for finding the database. 

4. The output file (result file) is the name of a file containing those results requested in the input 
(session) file. This is usually a text file so it can be easily parsed. For those postprocessors supported 
by LS-OPT, this file has a predetermined format so that LS-OPT can automatically extract the 
individual results. The specified path + name is not used during the optimization run, but only during 
the setup phase while the user is preparing the LS-OPT input data. During this phase, the responses 
are parsed from a baseline result file and automatically displayed in the "Histories" and "Responses" 
pages of the GUI. 

                                                 
14 BETA CAE Systems S.A. 
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5. In the case of user-defined post-processor, the full command needs to be provided. In this case, LS-
OPT does not internally construct the command using the input, database and result files. 0. 

 

The supported post-processors are discussed in more detail as follows: 

10.5.1. μETA (BETA CAE Systems SA) 

The full μETA run command executed by LS-OPT is: 
<metapost_executable> -b -s -foregr <path/sessionfile> "<database_path>" 
"<path/result_file>" 
 

where the arguments to be specified as LS-OPT input have the following meanings: 

1. metapost_executable. The μETA executable specified in the postprocessor command. 

2. path/sessionfile. This is the session file name. 

3. path/result_file. This specification is only used for parsing the history and response names (to be 
automatically displayed in the GUI) during the LS-OPT setup phase (see below). 

4. database_path. This is the path for finding the solver database. The default "./" means that μETA will 
look for the database locally. This specification has no effect during the optimization run as LS-OPT 
will always force μETA to look for the solver database locally, e.g. in the run directory Case_A/1.1 .
0. 

Setting up an LS-OPT problem: 

1. Run μETA and use the session file thus created to create the result file. This is done manually, 
separately from the LS-OPT data preparation (an integrated feature might be provided in the future).  

2. Open the LS-OPT GUI on the Solvers page and select METAPost as the Postprocessor package 
name. 

3. Specify the μETA settings in the LS-OPT GUI (see Figure 10-2). The user can browse for the μETA 
executable, session file and result file. The result file is the one that was created in the manual step 
(Step 1. above). The database path need not be changed. 

4. When exiting the "Solvers" page in the GUI, the result file is parsed for history and response names 
to display in the relevant GUI pages. These can then be used to complete the optimization problem 
setup: define composites, objectives and constraints, etc. 

5. After completion of the optimization setup, run LS-OPT.0. 
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Figure 10-2: Solvers panel showing Post-processor feature  

10.5.2. User-defined post-processor 

This feature enables one to execute any type of post-processor by providing the full post-processor 
command. The output file needs to be written in the same format as for the μETA package. The format is as 
follows: 
# 
RESPONSES 
0, Weight, 0.591949043101576 
1, StressL, 3.74281176328897 
2, StressR, 1.99975762786926 
END 
# 
HISTORY 99 : his1 
0,0 
0.0795849328001081,0.23516125192977 
0.159169865600216,0.274354793918065 
0.238754798400324,0.31354833590636 
0.318339731200433,0.352741877894655 
0.397924664000541,0.39193541988295 
# 
END 
# 
RESPONSES 
END 
# 
HISTORY 100 : his2 
0,0 
0.0795849328001081,0.627096671812721 
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0.159169865600216,0.666290213801015 
0.238754798400324,0.705483755789311 
0.318339731200433,0.744677297777606 
0.397924664000541,0.783870839765901 
# 
END 

Setting up an LS-OPT problem is similar to μETA, except that User-defined is selected as the post-
processor package on the “Solvers” page, and the session file and database path need not be provided as the 
related information is available in the command file. 

 

Example : 
   postpro userpost 
   postpro command "../../fullcommandscript" 
   postpro output file "./Results.txt" 
 

It is also possible to run μETA as a user-defined post-processor. In this case, the command provided in 
“fullcommandscript” is: 
<metapost_executable> -b -s -foregr <path/sessionfile> "<database_path>" 
"<path/result_file>" 
 

Unlike in the case of μETA, the full command is not constructed internally by LS-OPT. Therefore, 
metapost_executable, path/sessionfile, database_path, and path/result_file need to be provided in 
fullcommandscript. Because all the information is available in the command, it is not necessary to 
provide the input and database files separately in this case.  

The output file name must however be specified for the following reason. When exiting the "Solvers" page 
in the GUI, the output file is parsed for history and response names to import and display in the relevant 
GUI pages. These can then be used to complete the optimization problem setup: define composites, 
objectives and constraints, etc. 

10.6. Extra input files 

A list of extra input files can be provided for the preprocessor or solver. A different set can be specified for 
each analysis case. The files can be placed in any directory and are copied to the run directories before the 
start of the preprocessing. Parameters can be specified in the extra files using the native format (e.g. 
*PARAMETER for LS-DYNA) or the generic LS-OPT format (<<parameter>>) (see Section 10.2.1).  

Note that LS-DYNA include files do not have to be specified as extra files, since these are automatically 
processed. However, if the user has parameters in include files with a relative (e.g. 
MyFiles/geometry.inc) or absolute path (\home\jo\LSOPT\MyFiles\Material59.inc), 
these include files must be specified as extra input files in order to force copying to the run directory.  

The *INCLUDE specification pertaining to extra files should not include the path specification since the 
files have been copied to the run directory where the main file is residing. Files copied to the run directory 
are also processed by the wrapper for running on a remote machine. 

LS-OPT will automatically parse the extra input files for variable names and list them on the Variables 
page as constants. The user can then change them to variables.  
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The files are specified in the GUI under the “Solvers” tab (“Extra files” sub-tab). 

Command file syntax: 

Solver extra file "extra_file_name" 

 

Example: 
solver extra file "inputfile1.txt" 
solver extra file "inputfile2.txt" 
solver extra file "inputfile3.txt" 
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11. Design Variables, Constants, 
and Dependents 

This chapter describes the definition of the input variables, constants and dependents, design space and the 
initial subregion. 

 

All the items in this chapter are specified in the Variables panel in LS-OPTui (Figure 11-1). Shown is a 
multidisciplinary design optimization (MDO) case where not all the variables are shared, e.g., 
shotgun_outer in Figure 11-1 is only associated with the solver CRASH. 

 

 

Figure 11-1: Variables panel in LS-OPTui 
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11.1. Selection of design variables 

The variable command is the identification command for each variable. 

 

Command file syntax:  

variable variable_name value 

 

Example: 
$ DEFINE THE VARIABLE: ’Area’ 
Variable ’Area’ 0.8 
 

The value assigned is the initial value of the variable. 

11.2. Definition of upper and lower bounds of the design space 

Command file syntax: 

Lower bound variable variable_name value <–10+30> 
Upper bound variable variable_name value <+10+30> 

 

Example: 
Lower bound variable ’Area’ 0.1 
Upper bound variable ’Area’ 2.0 
 

Both the lower and upper bounds must be specified, as they are used for scaling. 

11.3. Size and location of region of interest (range) 

Command file syntax: 

range variable_name subregion_size 

 

Example: 
$ RANGE OF ’Area’ 
range ’Area’ 0.4 
 

This will allow ’Area’ to vary from 0.6 to 1.0. 

Remarks: 

1. A value of 25-50% of the design space can be chosen if the user is unsure of a suitable value. 

2. The full design space is used if the range is omitted. 
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3. The region of interest is centered on a given design and is used as a sub-space of the design space to 
define the experimental design. If the region of interest protrudes beyond the design space, it is 
moved without contraction to a location flush with the design space boundary.0. 

11.4. Local variables 

For multidisciplinary design optimization (MDO) certain variables are assigned to some but not all solvers 
(disciplines). In the command file the following syntax defines the variable as local: 

 

Command file syntax: 

local variable_name 

 

See Section 22.6 for an example. 

11.5. Discrete variables  

Discrete variables are defined using (i) a name, (ii) a starting value, (iii) a list of allowable values, and (iv) 
the choice to sample the variable as discrete or continuous. Specifying an initial range for the construction 
of a response surface is optional; the allowable values will be used to compute a default range. By default, 
the discrete variables are treated as continuous variables for generating experimental designs. The following 
commands are therefore required to define a discrete variable: 

 

Command file syntax: 

variable variable_name value 
variable variable_name discrete {discrete_value_1 … 
discrete_value_n} 

 

Example: 
variable ’Area’ 3.1 
variable ’Area’ discrete {2.0 3.1 4.0 5} 
 

The following command is used to sample the variable as discrete:  
 
variable ’Area’ use discrete  

11.6. Assigning variable to solver 

If a variable has been flagged as local, it needs to be assigned to a solver. The command file syntax is: 
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Command file syntax: 

Solver variable variable_name 

 

See Section 22.6 for an example. 

11.7. Constants 

Each variable above can be modified to be a constant. See Figure 11-1 where a user defined value of the 
constant pi is provided. 

Constants are used: 

1. to define constant values in the input file such as π, e or any other constant that may relate to the 
optimization problem, e.g. initial velocity, event time, integration limits, etc. 

2. to convert a variable to a constant. This requires only changing the designation variable to constant 
in the command file without having to modify the input template. The number of optimization 
variables is thus reduced without interfering with the template files.0. 

 

Command file syntax: 

constant constant_name value 

 

Example: 
constant ’Youngs_modulus’ 2.07e8 
constant ’Poisson_ratio’ 0.3 
dependent ’Shear_modulus’ {Youngs_modulus/(2*(1 + Poisson_ratio))} 
 

In this case, the dependent is of course not a variable, but a constant as well. 

11.8. Dependent variables 

Dependent variables (see Figure 11-1 for example of definition in Variables panel) are functions of the basic 
variables and are required to define quantities that have to be replaced in the input template files, but which 
are dependent on the optimization variables. They do therefore not contribute to the size of the optimization 
problem. Dependents can be functions of dependents. 

 

Dependent variables are specified using mathematical expressions (see Appendix D). 

Command file syntax: 

dependent variable_name expression 
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The string must conform to the rules for expressions and be placed in curly brackets. The dependent 
variables can be specified in an input template and will therefore be replaced by their actual values. 

 

Example: 
variable ’Youngs_modulus’ 2.0e08 
variable ’Poisson_ratio’ 0.3 
dependent ’Shear_modulus’ {Youngs_modulus/(2*(1 + Poisson_ratio))} 

11.9. System variables 

System variables are internal LS-OPT variables. There are two system variables, namely iterid and 
runid. iterid represents the iteration number while runid represents the run number within an 
iteration. Hence the name of a run directory can be represented by: iterid.runid. System variables are 
useful for using files such as postprocessing files that were already created in an earlier case, but which are 
re-used in the current case. An LS-DYNA example of using system variables is as follows: 
 
*INCLUDE 
../../Case1/<<iterid:i0>>.<<runid:i0>>/frontrail.k 
 

After substitution the second line might become: 
 
../../Case1/1.13/frontrail.k 
 

so that the current case will always include the file in the corresponding directory in Case1.  

 

The i0 format forces an integer specification (see Section 10.2.1 for a more detailed description). 
Unfortunately the feature cannot be used with LS-DYNA *PARAMETER parameters. 

11.10. Worst-case design 

Worst-case or saddle-point design is where the objective function is minimized (or maximized) with respect 
to some variables, while it is maximized (or minimized) with respect to the remaining variables in the 
variable set. The maximization variables are set using the Maximize option in the Saddle Direction field of 
the Variables panel. The default selection is Minimize. 

Command file syntax: 

Variable variable_name max 

 
Example: 
variable ’head_orientation’ max 
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12. Probabilistic Modeling and 
Monte Carlo Simulation 

Probabilistic evaluations investigate the effects of variations of the system parameters on the system 
responses. 

 

The variation of the system parameters is described using variables and probabilistic distributions describing 
their variation. Accordingly, the variation of the system responses, including information such as the 
nominal value of the response, reliability, and extreme values, can be computed. The source of the variation 
can be the variation of the design variables (control variables) as well as the variation of noise variables, 
whose value is not under the control of the analyst such as the variation in a load. 

 

More background on the probabilistic methods is given in Chapter 6 (the theoretical manual), while example 
problems can be found in Chapter 22. 

12.1. Probabilistic problem modeling 

Introducing the probabilistic effects into analysis requires the specification of: 

1. Statistical distributions 

2. Assigning the statistical distributions to design variables 

3. Specification of the experimental design. For a Monte Carlo analysis, a suitable strategy for selecting 
the experimental points must be specified; for example, a Latin Hypercube experimental design can 
be used to minimize the number of runs required to approximate the mean and standard deviation. 
However, if the Monte Carlo analysis is done using a metamodel, then the experimental design 
pertains to the construction of the metamodel 

4. The probabilistic analysis to be executed; for example, a Monte Carlo reliability analysis.0. 
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12.2. Probabilistic distributions 

The probabilistic component of a design variable is described using a probabilistic distribution. The 
distributions are created without referring to a variable. Many design variables can refer to a single 
distribution. 

12.2.1. Beta distribution 

The beta distribution is quite versatile as well as bounded by two limits: a and b. The shape of the 
distribution is described by two parameters: q and r.  Swapping the values of q and r produces a mirror 
image of the distribution. 

 

Figure 12-1 Beta distribution 

 
Command file syntax: 
distribution ‘name’ BETA a b q r 
 
 

Item Description 
name Distribution name 
a Lower Bound 
b Upper Bound 
q Shape parameter q 
r Shape parameter r 

 
Example: 
 
distribution 'distBeta' BETA 2.0 5.0 1.0 1.0 
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12.2.2. Binomial distribution 

The binomial distribution is a discrete distribution describing the expected number of events for an event 
with probability p evaluated over n trails. For n=1, it is the Bernoulli distribution (experiments with two 
possible outcomes ― success or failure) with probability of success p. 

 

 

Figure 12-2 Binomial distribution 

 
Command file syntax: 
distribution ‘name’ BINOMIAL p n 
 
 

Item Description 
name Distribution name 
p Probability of event (Success) 
n Number of trials 

 
Example: 
 
distribution 'distBin' BINOMIAL 0.1 3 

12.2.3. Lognormal distribution 

If X is a lognormal random variable with parameters μ and σ, the random variable Y = ln X has a normal 
distribution with mean μ and variance σ2. 
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Figure 12-3 Lognormal distribution 

 

Command file syntax: 
distribution ‘name’ LOGNORMAL mu sigma 
 
 

Item Description 
name Distribution name 
mu Mean value in logarithmic domain 
sigma Standard deviation in logarithmic domain 

 
 
Example: 
 
distribution 'logDist' LOGNORMAL 12.3 1.1 

12.2.4. Normal distribution 

The normal distribution is symmetric and centered about the mean μ with a standard deviation of σ. 
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Figure 12-4 Normal Distribution 

 

Command file syntax: 
distribution ‘name’ NORMAL mu sigma 
 
 

Item Description 
name Distribution name 
mu Mean value 
sigma Standard deviation 

 
 
Example: 
 
distribution 'normalDist' NORMAL 12.2 1.1 

12.2.5. Truncated normal distribution 

The truncated normal distribution is a normal distribution with the values constrained to be within a lower 
and an upper bound. This distribution occurs when the tails of the distribution are censored through, for 
example, quality control. 
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Figure 12-5 Truncated Normal Distribution 

 

Command file syntax: 
distribution ‘name’ TRUNCATED_NORMAL mu sigma low upper 
 
 

Item Description 
name Distribution name 
mu Mean value 
sigma Standard deviation 
low Lower bound on values 
upper Upper bound on values 

 
 
Example: 
 
distribution 'truncNormalDist' TRUNCATED_NORMAL 12.2 1.1 10.0 12.0 

12.2.6. Uniform distribution 

The uniform distribution has a constant value over a given range. 
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Figure 12-6 Uniform Distribution 

 
Command file syntax: 
distribution ‘name’ UNIFORM lower upper 
 
 

Item Description 
name Distribution name 
lower Lower bound 
upper Upper bound 

 
 
Example: 
 
distribution 'rangeX' UNIFORM 1.2 3.4 

12.2.7. User defined distribution 

A user-defined distribution is specified by referring to the file containing the distribution data. 

 

The probability density is to be assumed piecewise uniform and the cumulative distribution to be piecewise 
linear. Either the PDF or the CDF data can be given:  

o PDF distribution: The value of the distribution and the probability at this value must be provided 
for a given number of points along the distribution. The probability density is assumed to be 
piecewise uniform at this value to halfway to the next value; both the first and last probability must 
be zero. 
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o CDF distribution: The value of the distribution and the cumulative probability at this value must be 
provided for a given number of points along the distribution. It is assumed to vary piecewise 
linearly. The first and last value in the file must be 0.0 and 1.0 respectively. 

 

Figure 12-7 User defined distribution 

 

Lines in the data file starting with the character ‘$’ will be ignored. 

 
Command file syntax: 
distribution ‘name’ USER_DEFINED_PDF ”fileName” 
distribution ‘name’ USER_DEFINED_CDF ”fileName” 
 
 

Item Description 
name Distribution name 
filename Name of file containing the distribution data 

 
 
Example: 
 
distribution 'bendDist' USER_DEFINED_PDF "bendingTest.pdf" 
distribution 'testDat' USER_DEFINED_CDF "threePointTest.dat" 
 
 
The file “bendingTest.pdf” contains: 
$ Demonstration of user defined distribution with 
$ piecewise uniform PDF values 
$ x PDF 
$ First PDF value must be 0 
-5              0.00000 
-2.5            0.11594 
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 0              0.14493 
 2.5            0.11594 
$ Last PDF value must be 0 
 5              0.00000 
 
The file “threePointTest.dat” contains: 
$ Demonstration of user defined distribution with 
$ piecewise linear CDF values 
$ x CDF 
$ First CDF value must be 0 
-5               0.00000 
-4.5            0.02174 
-3.5            0.09420 
-2.5            0.20290 
-1.5            0.32609 
-0.5            0.46377 
0.5             0.60870 
1.5             0.73913 
2.5             0.85507 
3.5             0.94928 
$ Last CDF value must be 1 
4.5 1.00000 

12.2.8. Weibull distribution 

The Weibull distribution is quite versatile – it has the ability to take on various shapes. The probability 
density function is skewed to the right, especially for low values of the shape parameter. 

 

 

Figure 12-8 Weibull distribution 

 
 
Command file syntax: 
distribution ‘name’ WEIBULL scale shape 
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Item Description 
name Distribution name 
scale Scale parameter 
shape Shape parameter 

 
Example: 
 
distribution 'wDist' WEIBULL 2.3 3.1 

12.3. Probabilistic variables 

A probabilistic variable is completely described using a statistical distribution. The statistical distribution 
defines the mean or nominal value as well as the variation around this nominal value. Note that some special 
rules apply to control variables, the mean of which can be adjusted by the optimization algorithm. 

 

Figure 12-9 Probabilistic variables. The nominal value of a control variable can be adjusted by the 
optimization algorithm between the lower and upper bound; the probabilistic variation of a design 
variable is around this nominal value. A noise variable is described completely by the statistical 
distribution. A discrete variable, like design variable has a nominal value selected by the optimization 
algorithm; the probabilistic variation of the discrete variable is around this nominal value. 

 

A distinction is made between control and noise variables:  

o Control variables:  Variables that can be controlled in the design, analysis, and production level; for 
example: a shell thickness. It can therefore be assigned a nominal value and will have a variation 
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around this nominal value. The nominal value can be adjusted during the design phase in order to 
have a more suitable design. A discrete variable is a special case of a control variable. 

o Noise variables: Variables that are difficult or impossible to control at the design and production 
level, but can be controlled at the analysis level; for example: loads and material variation. A noise 
variable will have the nominal value as specified by the distribution, that is follow the distribution 
exactly.  

 

A variable is declared probabilistic by: 

1. Creating it as a noise variable or  

2. Assigning a distribution to a control variable or 

3. Creating it as linked to an existing probabilistic variable.0. 

 

Three associations between probabilistic variables are possible: 

1. Their nominal values are the same but their distributions differ 

2. Their nominal values and distributions are the same 

3. Their nominal values differ, but they refer to the same distribution.0. 

 
Command file syntax: 
  
noise variable ‘variableName’ distribution ‘distributionName’ 
variable ‘variableName’ distribution ‘distributionName’ 
variable ‘variableName’ link variable ‘variableName’ 
 
 

Item Description 
variableName Variable identifier 
distributionName Distribution identifier 

 
 
Example: 
 
$ Create a noise variable 
Noise Variable ‘windLoadScatter’ distribution ‘windLoadData’ 
$ Assigning a distribution to an existing control variable 
Variable 'Var-D-1' Distribution 'dist-1' 
$ Creating a variable by linking it to another.  
Variable 'Var-D-2' Link variable 'Var-D-1'   

12.3.1. Setting the nominal value of a probabilistic variable 

If no nominal value is specified for a control variable, then the nominal value of the distribution is used.  
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If the nominal value of a control variable is specified, then this value is used; the associated distribution will 
be used to describe the variation around this nominal value. For example: a variable with a nominal value of 
7 is assigned a normal distribution with μ=0 and σ=2; the results values of the variable will be normally 
distributed around a nominal value of 7 with a standard deviation of 2. 

 

This behavior is only applicable to control variables; noise variables will always follow the specified 
distribution exactly. 

12.3.2. Bounds on probabilistic variable values 

Assigning a distribution to a control value may result in designs exceeding the bounds on the control 
variables. The default is not to enforce the bounds. The user can control this behavior. 

 

A noise variable is bounded by the distribution specified and does not have upper and lower bounds similar 
to control variables. However, bounds are required for the construction of the approximating functions and 
are chosen as described in the next subsection. 

 
Command file syntax: 
  
set variable distribution bound state 
 
 

Item Description 
state Whether the bounds must be enforced for the probabilistic 

component of the variable. 
 
Example: 
 
$ ignore bounds on control variables 
set variable distribution bound 0  
$ Respect bounds on control variables 
set variable distribution bound 1 

12.3.3. Noise variable subregion size 

Bounds are required for noise variables to construct the metamodels. The bounds are taken to a number of 
standard deviations away from the mean; the default being two standard deviations of the distribution. The 
number of standard deviations can be set by the user. In general, a noise variable is bounded by the 
distribution specified and does not have upper and lower bounds similar to control variables. 

 
Command file syntax: 
  
set noise variable range standardDeviations 
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Item Description 
standardDeviations The subregion size in standard deviations for the noise variable. 

Example: 
 
$ Set noise var bounds to 1.5 standard deviations 
$ for defining subregion for creating approximation 
set noise variable range 1.5 

12.3.4. Correlated variables 

The correlation between variables can be specified. This correlation will be considered in Monte Carlo 
simulation (including metamodel based simulations) as well as in reliability based design optimization. Only 
correlation between normally distributed variables is allowed. 

 

Command file syntax: 
  
variable ‘vname1’ correlated variable ‘vname2’ corr_value 
 
 

Item Description 
corr_value Value of the correlation between the variables. 

Example: 
 
$ Set the correlation between x1 and x2 as -0.5 
Variable ‘x1’ correlation ‘x2’ -0.5 

12.4. Probabilistic simulation 

The following simulation methods are provided:  

o Monte Carlo 

o Monte Carlo using metamodels. 

The upper and lower bounds on constraints will be used as failure values for the reliability computations. 

12.4.1. Monte Carlo analysis 

The Monte Carlo evaluation will: 

o Select the random sample points according to a user specified strategy and the statistical 
distributions assigned to the variables. 

o Evaluate the structural behavior at each point. 

o Collect the statistics of the responses.  
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The user must specify the experimental design strategy (sampling strategy) to be used in the Monte Carlo 
evaluation. The Monte Carlo, Latin Hypercube and space-filling experimental designs are available. The 
experimental design will first be computed in a normalized, uniformly distributed design space and then 
transformed to the distributions specified for the design variables.  

 

Only variables with a statistical distribution will be perturbed; all other variables will be considered at their 
nominal value. 

 

The following will be computed for all responses: 

o Statistics such as the mean and standard deviation for all responses and constraints 

o Reliability information regarding all constraints: 

o The number of times a specific constraint was violated during the simulation 

o The probability of violating the bounds and the confidence region of the probability 

o A reliability analysis for each constraint assuming a normal distribution of the response. 

  

The exact value at each point will be used. Sampling schemes must be duplicated across disciplines if 
composite functions must be computed for each point, because if the experimental designs differ across 
disciplines, then composite functions referring to responses in more than one discipline can not be 
computed.  

Command file syntax: 
  
analyze Monte Carlo 
 
 
Example: 
 
analyze Monte Carlo 

12.4.2. Monte Carlo analysis using a metamodel 

The Monte Carlo analysis will be done using the metamodels − response surfaces, neural networks, or 
Kriging − as prescribed by the user. 



CHAPTER 12: 11BPROBABILISTIC MODELING AND MONTE CARLO SIMULATION 

LS-OPT Version 4.3  241 

 

Figure 12-10 Metamodel-based Monte Carlo analysis. The method proceed in two steps: firstly a 
metamodel is created, and then the Monte Carlo simulation is done using the metamodel and the 
statistical distribution of the variable. Note that the metamodel for a design/control variable is 
constructed considering the upper and lower bound on the variable and not considering the statistical 
distribution. For a noise variable the upper and lower bounds for the creation of the metamodel are 
selected considering the statistical distribution. 

 

The number of function evaluations can be set by the user. The default value is 106. The function 
evaluations are done using designs chosen randomly respecting the distributions of the design variables and 
are evaluated using the metamodels. 

 

The following data will be collected: 

o Statistics such as the mean and standard deviation for all responses, constraints, and variables 

o The reliability information for each constraint: 

o The number of times a specific constraint was violated during the simulation 

o The probability of violating the bounds and the confidence region of the probability. 

 
Command file syntax: 
  
analyze metamodel monte carlo 
 
 
Example: 
 
analyze metamodel monte carlo 

12.4.3. Accuracy of metamodel based Monte Carlo 

The number of function evaluations to be analyzed can be set by the user. The default value is 106. 
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Command file syntax: 
  
set reliability resolution m 
 
 

Item Description 
m Number of sample values 

 
 
Example: 
 
set reliability resolution 1000 

12.4.4. Adding the noise component to metamodel Monte Carlo computations 

If noise was found when the metamodel was created, then this noise may be reproduced whenever the 
metamodel is used for reliability computations. This is possible only for the response surfaces and neural 
nets. The noise is normally distributed with a zero mean and a standard deviation computed from the 
residuals of the least square fit. The default is not to add the noise to the computations. 

 
Command file syntax: 
  
set metamodel noise true_false 
 
 

Item Description 
true_false 0 for not adding noise; 1 otherwise 

 
 
Example: 
 
set metamodel noise 0 $ default: noise not added in computation 
set metamodel noise 1 $ noise included in computation 

12.4.5. FORM (First Order Reliability Method) analysis 

A FORM evaluation will: 

o Construct the metamodels − response surfaces, neural networks, or Kriging − as prescribed by the 
user. If the metamodels already exists, then they won’t be recreated. 

o Conduct a FORM analysis for every constraint using the metamodels. 

The following are computed in a FORM analysis: 

o The most probable point (see Section 6.4.6) 

o The probabilities of exceeding the bounds on the constraint 
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o The derivatives of the probability of exceeding the bound on the constraint with respect to the design 
variables 

The method requires very little information additionally to what is required for deterministic optimization. 
Specify the following: 

1. Statistical distributions associated with the design variables 

2. Probabilistic bounds on the constraints.0. 

 

Theoretical concerns are discussed in Section 6.4.7. See also Section 19.3 for more information about 
Reliability Based Design Optimization (RBDO). 

 

Command file syntax: 
  
analyze metamodel FORM 
 
 
Example: 
 
analyze metamodel FORM 

12.5. Stochastic contribution analysis (DSA) 

It can be useful to know how the variation of each design variable contributes to the variation of a response. 
These computations are also known as Stochastic Sensitivity Analysis or Sobol’s analysis. 

 

The stochastic contribution will be printed for all the responses in a metamodel-based procedure. If no 
metamodel is available the covariance of the responses with the variables can be investigated. The stochastic 
contributions of the variables can also be examined in the Viewer component of the GUI. 

 

The amount of variation due to noise or the residuals from the fitting procedure will be indicated. This term 
is taken as zero for composite functions. 

 

The stochastic contribution is computed analytically for response surfaces. For neural networks, Kriging 
models, and composite functions, two options are available: 

1. Approximate using second order response surface. The response surface is built using three times the 
number of terms in the response surface using a central point Latin hypercube experimental design 
over a range of plus/minus two standard deviations around the mean. 

2. Use Monte Carlo. The number of points used will be the same as used for a metamodel based Monte 
Carlo analysis. A large number of points (10,000 or more) is required. The default of 10,000 points 
should give the 1 digit of accuracy needed to compare the effects of variables. This option, using 
10,000 points, is the default method.0. 
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Theoretical concerns are discussed in Section 6.7.  

 

Note that negative values of the variance can occur if computed using the Monte Carlo approach, especially 
if a small number of Monte Carlo Points is used. In general the analysis should compare the effects of the 
variables and not the variance. The default of 10,000 points should give the 1 digit of accuracy which means 
that if the maximum variance is 3e12 then negative values of -3e10 can be ignored as zero being two orders 
of magnitudes smaller. Inspecting the values printed for the effects of the variables should clarify the 
situation, because the effects are scaled values. 

 
Command file syntax: 
  
set dsa method monte carlo 
set dsa method  meta model 
set dsa resolution m 
 
 

Item Description 
M Number of sample values 

 
 
Example: 
 
set dsa method  meta model 
$ Use Monte Carlo simulation 
set dsa method monte carlo 
$ use 1000 points in the Monte Carlo simulation 
set dsa resolution 1000 

12.6. Covariance  

The covariance and coefficient of correlation of the responses will be printed for a Monte Carlo analysis and 
can also be examined in the Viewer part of the GUI. Theoretical concerns are discussed in Section 6.3.2. 

12.7. Robust design 

The implementation of robust design in LS-OPT only required that the variation of a response be available 
as a composite. The standard deviation of a response is therefore available for use in a constraint or 
objective, or in another composite.  

 

The LS-OPT command defining the standard deviation of another response or composite to be a composite 
is: 
composite 'var x11' noise 'x11' 
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The variation of response approximated using response surfaces is computed analytically as documented for 
the LS-OPT stochastic contribution analysis.  For neural nets and composites a quadratic response surface 
approximation is created locally around the design, and this response surface is used to compute the 
robustness. Note that the recursion of composites (the standard deviation of a composite of a composite) 
may result in long computational times especially when combined with the use of neural networks. If the 
computational times are excessive, then the problem formulation must be changed to consider the standard 
deviations of response surfaces. 

 

One extra consideration is required to select an experimental design for robust analysis: provision must be 
made to study the interaction between the noise and control variables. Finding a more robust design requires 
that the experimental design considers the ji zx cross-terms, while the 2

ix  and 2
iz  terms can be included for a 

more accurate computation of the variance. 
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13. Metamodels and Point 
Selection  

This chapter describes the specification of the metamodel types and point selection schemes (design of 
experiments or DOE). The terms point selection and experimental design, are used interchangeably. 

13.1. Metamodel definition 

The user can select one of the metamodel types shown in Figure 13-1.  

 

Figure 13-1: Sampling panel in LS-OPT 

The default selection depends on the choice of optimization strategy. For the sequential response surface 
method (SRSM) strategy, the default choice is the polynomial response surface method (RSM) where 
response surfaces are fitted to results at data points using polynomials. For global approximations fitted in 
the single-stage and sequential strategies, the radial basis function networks are set as the default 
approximation models. For all strategies, the feed-forward neural network, Kriging, and user-defined 
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approximation models are also available. Sensitivity data (analytical or numerical) can also be used for 
optimization. This method is more suitable for linear analysis solvers. 

 

Command file syntax: 

Solver order [linear| interaction| elliptic| quadratic| FF| 
RBF| kriging| user] 

 

The linear, interaction (linear with interaction effects), elliptic and quadratic options are for polynomials. FF 
represents the Feedforward Neural network and RBF represents the radial basis function network. 

13.1.1. Response surface methodology 

When polynomial response surfaces are constructed, the user can select from different approximation 
orders. The available options are linear, linear with interaction, elliptic and quadratic. Increasing the order of 
the polynomial results in more terms in the polynomial, and therefore more coefficients. In LSOPTui, the 
approximation order is set in the Order field. See Figure 13-2. 

 

The polynomial terms can be used during the variable screening process (see Section 2.4) to determine the 
significance of certain variables (main effects) and the cross-influence (interaction effects) between 
variables when determining responses. These results can be viewed graphically (Section 18.3.4). 

 

The recommended point selection scheme for polynomial response surfaces is the D-optimal scheme 
(Section 13.3.2). 

13.1.2. Neural networks and radial basis function networks 

To apply neural network or radial basis functions approximations, select the appropriate option in the 
Metamodel field in LS-OPTui. See Figure 13-3. The recommended Point Selection Scheme for neural 
networks and radial basis functions is the space filling method. The user can select either a sub-region 
(local) approach, or update the set of points for each iteration to form a global approximation. An updated 
network is fitted to all the points. See Section 13.9 for more detail on updating. 

13.1.3. Variability of neural networks* 

Because of the natural variability of neural networks (see Section 3.1.2), the user is allowed to select the 
number of members in a neural net committee and the centering (averaging) procedure to be used. To ensure 
distinct members, the regression procedure uses new randomly selected starting weights for generating each 
committee member. The syntax is shown below. 

  

Command file syntax: 

solver FF_committee size [number_of_members] 
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solver FF_committee discard [number_of_members] 
solver FF_committee use [MEAN|MEDIAN] 
solver FF_committee seed [integer_value] 

 

The selected attributes apply to the current solver. A seed can be provided to the random number generator 
(see Section 2.2.7) to ensure a repeatable (but different) committee. 

 

The discard option allows the user to discard number_of_members committee members with the lowest 
mean squared fitting error and the number_of_members  committee members with the highest MSE. This 
option is intended to exclude neural nets which are either under- or over-fitted. The total number of nets 
excluded in the MEAN or MEDIAN calculation is therefore 2* number_of_members.  

 

The discard feature is activated during the regression procedure whereas the averaging function 
(mean/median) is only used during the evaluation procedure.The use of the MEDIAN option simply finds 
the median value of all the member values obtained at a point, so different points in the parameter space 
may not be represented by the same member and the neural net surface plot may be discontinuous. If a 
single median neural net is desired, the user must generate an uneven committee size n and then discard the 
truncated integer value of n/2 members, e.g. size=5 and discarded=2, 9 and 4, 17 and 8, etc. Size=1 and 
discarded=0 is the least expensive. 

 

The seed feature allows the generation of a unique set of neural networks. This feature can be used for 
sensitivity studies. In this case the user must provide a different seed for each new set of networks for the 
specific solver. 

 

The default attributes of committees are given in Table 13-1. This selection creates a committee of 5 nets 
and finds the mean value during evaluation. The data for all 5 nets appears in the database file for each 
specific net, e.g. Net.<variable_name>.<iteration_number> in the solver 
subdirectory. 

 

The variance of the predicted result is reported. 

Table 13-1: Default values for Neural Net committees 

Option Default 
Size 9 
Discard (int) (Size + 3/2)/4 
Averaging type MEAN 
Seed 0 

Please refer to Sections 3.3 and 4.5 for recommendations on how to use metamodels. 
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13.1.4. Basis functions and optimization criterion for RBF 

The performance of the RBFs can significantly vary with the choice of basis function and the optimization 
criterion. Two basis functions available for selection are Hardy’s multi-quadrics, and Gaussian RBF. The 
user is also allowed to select the optimization criterion to be generalized cross-validation error or the 
pointwise ratio of the generalized cross validation error. The syntax is shown below. 

  

Command file syntax: 

solver RBF transfer [HMQ|GAUSS] 
solver RBF optimize [GCV|GCV Ratio|RMSERROR] 

13.1.5. Efficiency of neural networks* 

Neural Network construction calculation may be time-consuming because of the following reasons: 

1. The committee size is large 

2. The ensemble size is large.0. 

Committee size. The default committee size as specified above is largely required because the default 
number of points when conducting an iterative optimization process is quite small. Because of the tendency 
of NN’s to have larger variability when supplied with fewer points, committees are relied on to stabilize the 
approximation. When a large number of points have been simulated however, the committee size can be 
reduced to a single neural net using 
 
solver FF_committee size 1 
 

Ensemble size. The ensemble size can be reduced in two ways: (i) by exactly specifying the architecture of 
the ensemble and (ii) by providing a threshold to the RMS training error. The architecture is specified as 
follows: 

 
Command file syntax: 

Solver FF_committee ensemble add number_of_hidden_nodes 

 

Example 
Solver FF_committee ensemble add 0 
Solver FF_committee ensemble add 1 
Solver FF_committee ensemble add 2 

represents an ensemble of 0 (linear), 1 and 2 hidden nodes or 0-1-2 from which one will be selected 
according to the minimum Generalized Cross Validation (GCV) value across the ensemble. The default is 
Lin-1-2-3-4-5. Higher order neural nets are more expensive to compute. 

The threshold for the RMS error is specified as: 
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Command file syntax: 

Solver FF_committee rmserror threshold 

 

The sorting algorithm will pick the first neural net which falls below the specified threshold starting with 0 
hidden nodes (linear). That means that, for a truly linear function, the sorting process will be terminated 
after 0, resulting in a dramatic saving of computational effort. 

 

Example: 
Solver FF_committee rmserror 0.1 
 

for a 10% threshold. See Figure 13-3 for how to specify efficiency options in the GUI. 

13.1.6. Kriging parameters 

The kriging fit depends on the choice of appropriate correlation function and the trend model. Two 
correlation functions available for selection are Gaussian and exponential. The user can also select either a 
constant, linear, or quadratic trend model. The syntax is shown below. 

  

Command file syntax: 

solver kriging correlation [GAUSS|EXPONENTIAL] 
solver kriging use [constant|linear|quadratic] 

Remark:  

1. The linear trend model requires atleast (N+2) design points, and quadratic trend model requires 
atleast 0.5(N+1)(N+2) + 1 design points, where N is the number of variables. 

2. By default, a single set of theta values is fit to all responses, however the user can also fit individual 
set of correlation function parameters (theta) for each response by using the following command.0. 

 

solver kriging select one 

 

All selections can also be made through the GUI using the ‘Advanced Options’. 

13.1.7. User-defined metamodel 

The user-defined metamodel distribution is available at http://ftp.lstc.com/user/ls-opt. 
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Building the example 

Under Linux, issue the command "make" while in this directory. Your resulting metamodel is called 
umm_avgdistance_linux_i386.so (or umm_avgdistance_linux_x86_64.so if running 
under 64-bit OS). 

 

Under Windows, open usermetamodel.sln in Visual Studio. Open the Build menu, select "Build 
solution". Your resulting metamodel is called umm_avgdistance_win32.dll 

 

Along with the metamodel binary you also get an executable called "testmodel". This program can be used 
for simple verification of your metamodel. Just give the name of your metamodel as a parameter, i.e.: 
   testmodel avgdistance 

Note that you are not supposed to supply the full .dll/.so filename as a parameter. 

Using the example as a template 

If you wish to use the example as a template for your own metamodel, do the following steps (in this 
example, your metamodel is called mymetamodel): 

Copy avgdistance.* to mymetamodel.* 

Replace any occurrence of the string "avgdistance" with "mymetamodel" in the following files: 
Makefile, mymetamodel.def, mymetamodel.vcproj, Makefile, usermetamodel.sln 

Distributable metamodel 

When compiled, your metamodel binary will be called something like: 
    umm_mymetamodel_win32.dll 

or 
    umm_mymetamodel_linux_i386.dll 

This is the only file that is needed in order to use the metamodel from LS-OPT.  It can be placed either in a 
central repository (which needs to be pointed out by the "solver user metamodel path" command 
(see below), or in the same directory as the command file that refers to it. 

Referring to user-defined metamodels in LS-OPT command files 

In order to use a user-defined metamodel for a certain solver, add the command "solver order user" to the 
command file, under the appropriate solver. 

 

The following commands apply for user defined metamodels: 
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Command file syntax: 

Solver order user 

 

The command enables the use of a user-defined metamodel for the current solver. 

 

Solver user metamodel ’name’ 

   

Example: 
Solver user metamodel ’mymetamodel’ 
 

Gives the name of the user-defined metamodel (e.g. umm_mymetamodel_linux_i386.so). Note this 
should not include the "umm_" prefix or the platform dependent suffix. LS-OPT will look for the correct file 
based upon the current platform.  This allows for cross platform operation. 

 

Solver user metamodel path "path" 

 

Example: 
  solver user metamodel path "/home/joe/metamodels" 
 

specifies where the user defined metamodel may be found.  If it is not found in the given directory (or that 
directory does not exist), LS-OPT will look in the same directory as the current command file. This 
parameter is optional. 

 

Solver user metamodel command "string"  

 

Example: 
    Solver user metamodel command "do it right" 
 

Allows the user to send one string parameter to the user-defined metamodel, that may be used in any way by 
the metamodel. This parameter is optional. 

 

Solver user metamodel param value 

    Example: 
   solver user metamodel param 1.3 
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Allows the user to send a numeric parameter to the user defined metamodel. This statement may be given 
multiple times for one solver in order to pass many parameters to the metamodel. It is up to the metamodel 
to specify which, if any, parameters it requires for operation. 

13.2. Global sensitivity analysis 

While the ANOVA is a very popular method to assess the contribution of different regression terms, Sobol’s 
method (based on ANOVA) is widely used to study the importance of different variables for higher order 
models. In this method, a function is decomposed in the sub-functions of different variables such that the 
mean of each sub-function is zero and each variable combination appears only once. Then, the variance of 
each sub-function represents the variance of the function with respect of that variable combination. The 
theory of the Sobol’s method is described in Section 6.7.2. The global sensitivity analysis is carried by 
selecting the appropriate flag (Compute global sensitivities) in the sampling panel as shown in Figure 13-1. 
The selection requires the user to specify the number of Monte-Carlo integration points required to compute 
sensitivities as suggested by Sobol. The sensitivity indices are stored in the Sobol_GSA.* XML database 
file in the work directory. 

Command file syntax: 

Use GSA 
Set GSA resolution integer 

 

Example 
Use GSA 
Set GSA resolution 15000 
 
Remarks: 

1. The analytical equations are used to compute sensitivities for polynomials and Gaussian radial basis 
function metamodels. 

2. The composite expressions are always evaluated using the Monte-Carlo integration. 

3. The default number of sampling points for Monte-Carlo integration is 10000. This number should be 
increased for better accuracy of sensitivity coefficients. 

4. The sensitivity analysis flag is global i.e., it does not depend on the choice of the solver.0. 

13.3. Point selection schemes 

13.3.1. Overview 

Table 13-2 shows the available point selection schemes (experimental design methods). 

Table 13-2: Point selection schemes 

Experiment Description Identifier Remark 
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Linear Koshal lin_koshal For polynomials 

Quadratic Koshal quad_koshal  

Central Composite composite  
 
 

D-optimal designs 

D-optimal dopt Polynomials 

Factorial Designs 

2n 2toK  

3n 3toK  

M  M  M  

11n 11toK  
 
 

Random designs 

Latin Hypercube latin_hypercube For probabilistic analysis 

Monte Carlo monte_carlo  

Space Filling designs 

Space Filling 5 (recommended) space_filling Algorithm 5 (Section 2.2.6) 

Space Filling 0 monte_carlo - 

Space Filling 1 lhd_centralpoint - 

Space Filling 2 lhd_generalized - 

Space Filling 3 maximin_permute - 
Space Filling 4 maximin_subinterval - 

 
User defined designs 

User-defined user  

Plan plan  
Command file syntax: 

Solver order [linear| interaction| elliptic| quadratic| FF| 
RBF| kriging| user] 
Solver experimental design point_selection_scheme 
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Solver basis experiment basis_experiment 
Solver number experiment number_experimental_points 
Solver number basis experiments 
number_basis_experimental_points 

 

Example 1: 
Solver order quadratic 
Solver experimental design dopt 
Solver basis experiment 5toK 
 
Example 2: 
Solver order linear 
Solver experimental design dopt 
Solver number experiments 40 
Solver basis experiment latin_hypercube 
Solver number basis experiments 1000 
 

In Example 1, the default number of experiments will be selected depending on the number of design 
variables. In Example 2, 40 points are selected from a total number of 1000. 

 

In LS-OPTui, the point selection scheme is selected using the Point Selection panel (Figure 13-2). 

 

The default options are preset and are based on the number of variables, e.g., the D-optimal point selection 
scheme (basis type: Full Factorial, 11 points per variable (for 2=n )) is the default for linear polynomials 
(Figure 13-2), and the space-filling scheme is the default for the Neural Net and Kriging methods (Figure 
13-3). 
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Figure 13-2: Metamodel and Point Selection panel in LS-OPTui (Advanced options (basis experimental 
design) displayed) 

13.3.2. D-Optimal point selection 

The D-optimal design criterion can be used to select the best (optimal) set of points for a response surface 
from a given set of points. The basis set can be determined using any of the other point selection schemes 
and is referred to here as the basis experiment. The order of the functions used has an influence on the 
distribution of the optimal experimental design. 

 

The following must be defined to select D-optimal points. 
Order The order of the functions that will be used. Linear, linear 

with interaction, elliptic or quadratic. 
Number experiments The number of experimental points that must be selected. 
Basis experiment The set of points from which the D-optimal design points 

must be chosen, e.g. 3tok 
Number basis experiments The number of basis experimental points (only random, 

latin hypercube and space filling). 
 

The default number of points selected for the D-optimal design is int(1.5(n + 1)) + 1 for linear, 
int(1.5(2n + 1)) + 1 for elliptic, int(0.75(n2 + n + 2)) + 1 for interaction, and 
int(0.75(n + 1)(n + 2)) + 1 for quadratic. As a result, about 50% more points than the minimum required 
are generated. If the user wants to override this number of experiments, the command “solver number 
experiments” is required.  
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The default basis experiment for the D-optimal design is based on the number of variables. For small values 
of n, the full factorial design is used, whereas larger n employs a space filling method for the basis 
experiment. The basis experiment attributes can be overridden using the commands: solver basis 
experiment and solver number basis experiments. 

13.3.3. Latin Hypercube Sampling 

The Latin Hypercube point selection scheme is typically used for probabilistic analysis. 

 

The Latin Hypercube design is also useful to construct a basis experimental design for the D-optimal design 
for a large number of variables where the cost of using a full factorial design is excessive. E.g. for 15 design 
variables, the number of basis points for a 3n design is more than 14 million. 

 

The Monte Carlo, Latin Hypercube and Space-Filling point selection schemes require a user-specified 
number of experiments. 

 

Even if the Latin Hypercube design has enough points to fit a response surface, there is a likelihood of 
obtaining poor predictive qualities or near singularity (when fitting polynomials) during the regression 
procedure. It is therefore better to use the D–optimal experimental design for RSM. 

 

Latin Hypercube sampling uses the Space Filling 2 algorithm default. 

 

Example: 
Solver order linear 
Solver experimental design lhd_generalized 
Solver number experiment 20 

13.3.4. Space Filling 

When selecting Space Filling in LS-OPTui, Algorithm 5 (see Section 2.2.6) will be used by default. This 
algorithm maximizes the minimum distance between experimental design points. The only data required is 
the number of sampling points. Space Filling is suitable for the Radial Basis Function and Neural Networks, 
as well as Kriging methods (see Section 13.1.2). 
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Figure 13-3: Selecting the Feedforward neural network approximation method in the Point Selection 
panel (Efficiency options displayed). 

13.3.5. Space Filling of Pareto Optimal Frontier 

By selecting to create the Pareto Optimal Frontier (POF) as a strategy, a Space Filling algorithm which 
applies discrete Space Filling sampling of the POF is available. This sampling method uses the POF created 
in the previous iteration as a basis design point set. The distance between the points is maximized and can 
also be maximized with respect to previous simulation points by selecting to augment the design points. The 
user can specify the number of points required. 

 

How to use the Pareto Optimal Frontier as a basis set for sampling 
The following procedure can be followed to conduct simulations based on the POF. It is assumed that the 
user has conducted one or more metamodel-based iterations and that the POF has been created based on the 
metamodel. 

1. Strategy:  

a. If not selected already, select any Sequential strategy. 

b. As an Advanced setting, choose to restart and set the iteration number at which you want to 
restart. For example, if one iteration is already available, set the starting iteration to 2. This 
setting is only required if the number of simulations required differs from the current setting. 
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2. Sampling: 

 For each case:  

a. Choose to conduct Space Filling of Pareto Frontier as a Sampling option. 

b. Choose whether previous simulation points are to be considered in the Space Filling 
algorithm (check the box “Include pts of Previous Iterations”). 

c. Choose the number of simulation points required. The simulation will stop automatically if 
the POF basis set is too small. 

3. Constraints: The constraint values can be adjusted to filter POF points. Set the “Move” option for 
those constraints which are to be applied as sampling filters.  

o The constraints can be added or changed immediately before the final run, so do not have to be 
precise from the very beginning. 

4. Run: Increase the iteration limit by 1 assuming only 1 more iteration is to be done. 0. 

o To delete any existing runs which may exist in Iteration 2 (such as a previous verification run), 
choose “Clean Start” from Iteration 2.o  

13.3.6. User-defined point selection 

Comma separated variables 
A user-defined experimental design can be specified in a text file using the .csv (comma separated 
variables) format. The user option (“User .csv” in the GUI) allows the user to import a table from a text 
file with the following keyword-based format: 
 
"Point","tbumper","thood", 
"sk","dv","dv", 
1,3.0000000000000000e+00,1.0000000000000000e+00, 
2,5.0000000000000000e+00,1.0000000000000000e+00, 
3,1.0000000000000000e+00,1.0000000000000000e+00, 
4,1.0000000000000000e+00,5.0000000000000000e+00, 
5,5.0000000000000000e+00,5.0000000000000000e+00, 
 

The two header lines are required. The variable types are design variables (dv) or noise variables (nv) 
respectively. The variable names assure that each column is tied to a specific name and will be displayed as 
variables in the “Variables” panel. The variable types defined in the user file will take precedence over other 
type definitions of the same variable (e.g. from the input files) if the user switches to the “Variables” panel 
only after firstly selecting the file to be imported in the “Sampling” panel. 

The sk variable type can be used to screen out variables. Therefore variables of the sk type will not appear 
on the Variables page when importing the file. 

 

This format is convenient for use with Microsoft Excel which allows the export of a .csv text file. The 
browser for specifying an input file has a filter for .csv files. This feature is also ideal for setting up an LS-
OPT run with using an exported file of Pareto Optimal points. Such as file can be produced using the 
Viewer. 
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Free format 
A user-defined experimental design can also be specified in a text file using a free format. The user option 
(“User-defined” in the GUI) allows the user to import a table from a text file with the following keyword-
based format: 
 
lso_numvar 2 
lso_numpoints 3 
lso_varname      t_bumper  t_hood 
lso_vartype      dv   nv 
This is a comment  lso_point        1.0   2.0 
                      lso_point        2.0   1.0 
                      lso_point        1.0   1.0 
 

The keywords (e.g. lso_numvar) except lso_vartype are required but can be preceded or followed by 
any other text or comments. The variable types are design variables (dv) or noise variables (nv) 
respectively. The variable names assure that each column is tied to a specific name and will be displayed as 
variables in the “Variables” panel. The variable types defined in the user file will take precedence over other 
type definitions of the same variable (e.g. from the input files) if the user switches to the “Variables” panel 
only after firstly selecting the file to be imported in the “Sampling” panel. 

This format is convenient for use with Microsoft Excel which allows the export of a .txt text file. The 
browser for specifying an input file has a filter for .txt files. 

13.4. Sampling at discrete points 

A flag is provided to select the sampling points at specified discrete values of the variables. Discrete 
sampling will also handle discrete-continuous problems correctly. In the GUI, a check box is located as a D-
Optimal advanced option for each case (See Figure 13-2). Discrete sampling is based on selecting a discrete 
basis set for D-Optimality and is therefore not available for other point selection schemes. Discrete sampling 
is only available if discrete variables are specified.  

 

See Section 11.5 for how to specify a discrete variable. 

 

Command file syntax: 

Solver basis experiment discrete 

13.5. Duplicating an experimental design 

When executing a search method (see e.g. Section 4.6) for a multi-case or multidisciplinary optimization 
problem, the design points of the various disciplines must be duplicated so that all the responses and 
composites can be evaluated for any particular design point. The command must appear in the environment 
of the solver requiring the duplicate points. An experimental design can therefore be duplicated as follows: 
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Command file syntax: 

solver experiment duplicate string  

 

where string is the name of the master solver in single quotes, e.g. 
 
Solver experiment duplicate ’CRASH’ 
 

‘CRASH’ is the master experimental design that must be copied exactly. 

 

Multi-case composites not accompanied by case duplication cannot be visualized in 2-D or 3-D point plots. 
This is a mandatory step for using ‘Direct GA’ solver with multiple cases. See also the example in Section 
22.5. 

 

13.6. Replicate experimental points 

When using stochastic fields, any particular design point can be (re-)analyzed using different stochastic 
fields. These are then replicate evaluations of the same design. The stochastic field is controlled using the 
LS-DYNA® *PERTURBATION and *PARAMETER cards. Note that the RND (random number seed) 
field of the card can be set to 0 to allow the field to vary freely, or set to a positive number to get a specific 
stochastic field. 

 

Command file syntax: 

solver number replicate experiment number  

 

Example: 
Solver number replicate experiment 5 
 

So, in the above, if the original experimental design had 9 point, then 45 FEA evaluations will be done. See 
also the example in Section 22.5. 

 

13.7. Augmentation of an existing design 

To retain existing (expensive) simulation data in the optimization process, it is advantageous to be able to 
augment an existing metamodel with additional sampling points and simulations. In this manner, can new 
simulations be added to old simulations to obtain a more accurate metamodel. This is performed by 
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increasing the number of sampling points in the Sampling tab of the GUI and restarting the metamodel-
based optimization.  

When running the optimization, the experimental design table will be augmented, the additional simulations 
will be executed, a new metamodel will be constructed and a new predicted optimum will be computed. 
Note that if a verification run was previously calculated (Simulation 2.1), the restart should be a clean start 
for Iteration 2 in order to replace the verification run in 2.1. It is no longer required to use the Repair 
function to conduct metamodel augmentation. 

13.8. Specifying an irregular design space 

An irregular (reasonable) design space refers to a region of interest that, in addition to having specified 
bounds on the variables, is also bounded by arbitrary constraints. This may result in an irregular shape of the 
design space. This region of interest is thus defined by constraint bounds and by variable bounds. The 
purpose of an irregular design space is to avoid designs which may prove to be impossible to analyze. 

The move/stay commands can be used to define an environment in which the constraint bound 
commands (Section 16.4) can be used to double as bounds for the reasonable design space. 

Only explicit constraints, i.e. constraints that do not require simulations, can be specified for the reasonable 
design space. A typical explicit constraint could be a simple inequality relationship between the design 
variables. 

 

Command file syntax: 

move 
stay 
move start 

 

Example 1: 
Variable ’Radius_1’ 20.0 
Variable ’Radius_2’ 20.0 
. 
. 
Composite ’TotalR’ {Radius_1 + Radius_2} 
move 
Constraint ’TotalR’ 
Upper bound constraint ’TotalR’ 50 

 

This specification of the move command ensures that the points are selected such that the sum of the two 
variables does not exceed 50. 

Remarks: 

1. A reasonable design space can be created using the D-optimal experimental design as well as the 
Space Filling experimental design. These are the most commonly used options that accompany the 
choice of polynomials, Radial Basis Function Networks, Neural Networks or Kriging as 
metamodels. 0. 
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13.9. Automatic updating of an experimental design 

Updating the experimental design involves augmenting an existing design with new points. Updating only 
makes sense if the response surface can be successfully adapted to the augmented points such as for neural 
nets, Radial Basis Function networks or Kriging surfaces in combination with a space filling scheme. The 
choice of any of these metamodels always implies automatic updating. 

 

Command file syntax: 

solver update doe 

The new points have the following properties: 

o They are located within the current region of interest. 

o The minimum distance between the new points and between the new and existing points, is 
maximized (space filling only). 

13.10. Using design sensitivities for optimization 

Both analytical and numerical sensitivities can be used for optimization. The syntax for the solver 
experimental design command is as follows: 

 
Experiment Description Identifier 
Numerical Sensitivity numerical_DSA 
Analytical Sensitivity analytical_DSA 

13.10.1. Analytical sensitivities 

If analytical sensitivities are available, they must be provided for each response in its own file named 
Gradient. The values (one value for each variable) in Gradient should be placed on a single line, 
separated by spaces. 

 

In LS-OPTui, the Metamodel (Point Selection panel) must be set to Sensitivity Type  Analytical. See 
Figure 13-4. 

 

Example: 
Solver experimental design analytical_DSA 
 

A complete example is given in Section 22.8. 
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13.10.2. Numerical sensitivities 

To use numerical sensitivities, select Numerical Sensitivities in the Metamodel field in LS-OPTui and 
assign the perturbation as a fraction of the design space. 

 

Numerical sensitivities are computed by perturbing n points relative to the current design point x0, where the 
j-th perturbed point is: 

)(0
iLiUiji

j
i xxxx −+= εδ  

0=ijδ  if ji ≠  and 1.0 if ji = . The perturbation constant ε  is relative to the design space size. The same 
value applies to all the variables and is specified as: 

Command file syntax: 

Solver perturb perturbation_value 

 
Example: 
Solver experimental design numerical_DSA 
Solver perturb 0.01 
 

 

Figure 13-4: Selecting Sensitivities in the Point Selection panel 
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13.11. Checkpoints 

The error measures of any number of designs (checkpoints) can be evaluated using an existing metamodel. 
There are two simple steps to obtaining a table with error data. 

1. Browse for the file with the checkpoint information using the Checkpoints tab in the Solvers panel. 
The file must be in .csv format although spaces, commas or tabs are allowed as delimiters. The file 
must contain two header lines. The first header line contains the variable and response names. The 
second header line contains the variable and response types; in this case "dv" and "rs". The variable 
coordinates are then specified as one row for each design point. See example below.  

2. Use the Evaluate Metamodels option in the Repair task menu and run the task (see Section 17.10). 
0. 

Cases without checkpoint files will be ignored. 

Command file syntax: 

solver check file file_name 

 
Example: 
 
solver check file ″checkpoints2″ 
solver check file ″/user/bob/lsopt/checkpoints2• 
 
checkpoints2  file: 
 
x1, x2, x3, Disp, Acc 
dv, dv, dv, rs, rs 
1.0, 1.3, 1.2, 123.6, 1278654.7 
2.1, 2.2, 639.2, 2444588.1 

13.12. Metamodel Evaluation using a set of design points 

The response values of any number of points can be computed using an existing metamodel and written to a 
.csv file (file with comma-separated variables that can be read with most spreadsheet programs). The input 
data is case independent. 

 

There are two simple steps to obtain a table with response data. 

1. Browse for the file with the sampling point information using the Evaluate Metamodel tab on the 
Solvers page and Replace. The file must be in .csv format although spaces, commas or tabs are 
allowed as delimiters. The file must contain two header lines. The first header line contains the 
variable names. The second header line contains the variable types; in this case "dv" (design 
variable) suffices. The variable coordinates are specified as one row for each design point. See 
example below. 

2. Use the Analyze Metamodels option in the Repair task menu and run the task (Section 17.7). This is 
the same repair option as for the "checkpoints" in Section 13.11 above.0. 
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o Input: Each sampling point file must represent all the variables. LS-OPT checks whether all the 
variables defined in the file are represented in the LS-OPT input. Variable order is not important. 

o Output: The ExtendedResults output can be found as a META file in the main working 
directory, e.g. ExtendedResultsMETAMaster_3.csv. The ExtendedResults file has 
variable, dependent, response, composite, objective, constraint, multi-objective and constraint 
violation values. 

o If sampling points are defined before the start of an optimization run, the META file will be 
automatically computed for each iteration. 

 

Command file syntax: 

solver evaluate file file_name 

 
As the input file is case independent, only one command is specified for the first case. 
 
 
Example: 
 
solver evaluate file •UserPoints• 
solver evaluate file ″/user/bob/lsopt/UserPoints2″ 
solver evaluate file ″C:\lsopt\UserPoints2″ 
solver evaluate file ″my_user_files/UserPoints3• 
 
UserPoints file: 
 
x1 x2 x3 
dv dv dv 
1.0 2.0 3.0 
2.0 3.0 4.0 
4.1 6.2 3.3 

13.13. Alternative point selection 

Alternative point selection schemes can be specified to replace the main scheme in the first iteration. The 
main purpose is to provide an option to use linear D-optimality in the first iteration because: 

1. D-optimality minimizes the size of the confidence intervals to ensure the most accurate variable 
screening, usually done in the first iteration. 

2. It addresses the variability encountered with neural networks due to possible sparsity (or poor 
placement) of points early in the iterative process, especially in iteration 1, which has the lowest 
point density.0. 

 
Command file syntax: 

solver alternate experiment 1 
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 solver alternate order linear 
 solver alternate experimental design point_selection_scheme 
 solver alternate number experiment number_experimental_points 
 solver alternate basis experiment basis_experiment 
 solver alternate number basis experiments  
                      number_basis_experimental_points  

 

The defaults are as follows: 

Attribute Default 
Order Linear (only option available) 
Experimental design D-Optimal 
Number of experiments Number of experiments of main experimental design 
Basis experimental design type depends on number of variables (only D-optimal) 
Number of basis experiments depends on basis experiment type and number of 

experiments (only D-optimal)  
 
Example: 
Solver order FF 
Solver experimental design space filling 
Solver number experiments 5 
Solver update doe 
Solver alternate experiment 1 

 

In the above example a linear surface based on D-optimal point selection will be used in the first iteration 
instead of a neural network based on Space Filling. The number of points is 5, the same as for the main 
experimental design. In the second iteration all the points created in the first and second iterations will be 
used to fit a neural network (because of update doe). The single additional line is typically all that is needed 
when using neural networks. 

 

Example: 
Solver order FF 
Solver experimental design space filling 
Solver number experiments 5 
Solver alternate experiment 1 
 Solver alternate experimental design dopt 
 Solver alternate order linear 
 Solver alternate basis experiments space_filling 
 Solver alternate number basis experiments 100 

13.14. Changing the number of points on restart* 

The number of points to be analyzed can be changed starting with any iteration. This feature is useful when 
the user wants to restart the process with a different (often larger) number of points. This option avoids 
adding points in iterations prior to the specified iteration. The feature is case-specific, so must be added to 
all the case definitions. 
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Command file syntax: 

Solver experiment augment iteration iteration_number 

Example 1: 

In the first analysis, the following sampling scheme was specified:  
Solver experiment design dopt 
Solver number experiment 5 
Solver basis experiment 3toK 
. 
. 
. 
Iterate 1 

By default, a single verification run is done in iteration 2. 

 

After the first analysis, the user wants to restart, using a larger number of points 
Solver experiment design dopt 
Solver number experiment 10 
Solver basis experiment 5toK 
Solver experiment augment iteration 2 
. 
. 
. 
Iterate 3 

 

Iterations 2 and 3 will then be conducted with 10 points each while iteration one will be left intact. 

 

Example 2: 

Starting with: 
Solver experiment design dopt 
Solver number experiment 5 
. 
. 
. 
Iterate 1 

 

and restarting with: 

 
Solver experiment design dopt 
Solver number experiment 10 
Solver experiment augment iteration 1 
. 
. 
. 
Iterate 3 
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iteration 1 of the restart will be augmented with 5 points (to make a total of 10), before continuing with 10 
points in further iterations.  

 

Note: The user will have to delete the single verification point generated in the first analysis before 
restarting the run. For this example, this can be done by entering “2” in the box for “Specifying Starting 
Iteration” in the Run panel. The restart will then generate a new starting point for iteration 2 and conduct 10 
simulations altogether. 

13.15. Repeatability of point selection 

All point selection schemes are repeatable, but a seed can be provided to create different sets of random 
points. The feature is particularly useful for Monte Carlo or Latin Hypercube point selections which both 
directly use random numbers. Because D-Optimal and Space Filling designs also use random numbers, 
albeit less directly, they may only show small differences due to the occurrence of local minima in the 
respective optimization procedures. The seed is of the type “unsigned long”, so the value typically has 
to be between 0 and 4,294,967,295 (depending on the machine architecture).  The syntax is as follows: 

 

Command file syntax: 

Solver experiment seed integer_value 

 

The default value is 0 (zero). 

 
Solver experimental design lhd_generalized 
Solver number experiments 30 
Solver experiment seed 349177 

13.16. Remarks: Point selection 

1. The files Experiments and AnalysisResults are synchronous, i.e. they will always have the same 
experiments after extraction of results. Both these files also mirror the result directories for a specific 
iteration. 

2. Design points that replicate the starting point are omitted during the sampling phase.0. 



CHAPTER 14:  13BHISTORY AND RESPONSE RESULTS 

LS-OPT Version 4.3  270 

14. History and Response 
Results 

This chapter describes the specification of the history or response results to be extracted from the solver 
database. The chapter focuses on the standard response interfaces for LS-DYNA. 

14.1. Defining a response history (vector) 

A response history can be defined by using the history command with an extraction, a mathematical 
expression or file import. The extraction of the result can be done using a standard LS-DYNA interface (see 
Section 14.4) or with a user-defined program. 

 
Command file syntax: 

history history_name string 
history history_name case-id string 
history history_name expression math_expression 
history history_name file string 

The string is an interface definition (in double quotes), while the math_expression is a mathematical 
expression (in curly brackets).  The case-id field is the integer CASE ID associated with the *CASE 
parameter in LS-DYNA. This field is mandatory for disciplines that use *CASE parameter in LS-DYNA 
input files but is not required for other cases.  

 
Example 1: 
 
history ’displacement_1’ "BinoutHistory –res_type nodout -cmp x_displacement –
id 12789 –filter SAE -filter_freq 60" 
history ’displacement_2’ "BinoutHistory –res_type nodout -cmp x_displacement –
id 26993 –filter SAE –filter_freq 60" 
history ‘v_y_150’ 30 "BinoutHistory –res_type nodout –cmp y_velocity –id 250" 
history ’deformation’ expression {displacement_2 - displacement_1} 
response ’final_deform’ expression {deformation(200)} 
 
Example 2: 
 
constant ’v0’ 15.65 
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history ’bumper_velocity’  "BinoutHistory –res_type nodout -cmp x_velocity –id 
73579 –filter SAE –filter_freq 30" 
history ’Apillar_velocity_1’ "BinoutHistory –res_type nodout -cmp 
x_velocity –id 41195 –filter SAE –filter_freq 30" 
history ’Apillar_velocity_2’ "BinoutHistory –res_type nodout -cmp 
x_velocity -id 17251 –filter SAE –filter_freq 30" 
history ’global_velocity’  "BinoutHistory –res_type glstat -cmp X_VEL " 
history ’Apillar_velocity_average’ expression { 
                              (Apillar_velocity_1 + Apillar_velocity_2)/2} 
$ 
response ’time_to_bumper_zero’ expression {Lookup("bumper_velocity(t)",0)} 
response ’vel_A_bumper_zero’ expression {Apillar_velocity_average 
(time_to_bumper_zero)} 
response ’PULSE_1’ expression {Integral 
  ("Apillar_velocity_average(t)", 
  0, 
  time_to_bumper_zero) 
  /time_to_bumper_zero} 
response ’time_to_zero_velocity’expression {Lookup("global_velocity(t)",0)} 
response ’velocity_final’ expression 
{Apillar_velocity_average(time_to_zero_velocity)} 
response ’PULSE_2’ expression  {Integral 
  ("Apillar_velocity_average(t)" 
  time_to_bumper_zero, 
  time_to_zero_velocity) 
 /(time_to_zero_velocity - time_to_bumper_zero)} 
 
Example 3: 
 
constant ’Event_time’ 200 
$ Results from a physical experiment 
history ’experiment_vel’ file "expdata" 
$ LS-DYNA results 
history ’velocity’ "BinoutHistory -res_type nodout -cmp x_velocity –id 12667" 
response ’RMS_error’ expression {Integral("(experiment_vel-
velocity)**2",0,Event_time} 
 
Example 4: 
 

In this example a user-defined program (the post-processor LS-PREPOST) is used to produce a history file 
from the LS-DYNA database. The LS-PREPOST command file get_force: 

 
open d3plot d3plot 
ascii rcforc open rcforc 0 
ascii rcforc plot 4 Ma-1 
xyplot 1 savefile xypair LsoptHistory 1 
deletewin 1 
quit 
 

produces the LsoptHistory file. 

 
history ’Force’ "lsprepost c=../../get_force" 
response ’Force1’ expression {Force(.002)} 
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response ’Force2’ expression {Force(.004)} 
response ’Force3’ expression {Force(.006)} 
response ’Force4’ expression {Force(.008)} 
 

Note : The rcforc history in Example 4 can be obtained more easily by direct extraction (see Section 14.5.1 
and Appendix B) 

 

Remarks: 

1. Histories are used by response definitions (see Section 14.1.1) to define a response surface. They are 
therefore intermediate entities and cannot be used directly to define a response surface. Only 
response can define a response surface. 

2. For LS-DYNA history definition and syntax, please refer to Section 14.4.0. 

 

In LS-OPTui, histories are defined in the Histories panel (Figure 14-1): 

 

Figure 14-1: Histories panel in LS-OPTui 

 

14.1.1. Crossplot history 

A special history function Crossplot is provided to construct a curve g(f) given f(t) and g(t). 
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Expression syntax: 

History ’curvename’ {Crossplot (abscissa_history, 
ordinate_history, [numpoints, begin, end])} 

Table 14-1: Description of Crossplot arguments 

Argument name Description Symbol LS-OPT Type Default 
abscissa history History of 

abscissa 
f(t) Expression - 

ordinate history History of 
ordinate 

g(t) Expression - 

numpoints Number of 
points 
created in 
crossplot 

P Int Smallest of the numbers of points  
defining f and g  

begin Begin t-
value 

t1 Float Largest t0-value of f and g 

end End t- value tP Float Smallest tP-value of f and g 
 
Examples: 
 
$ ------ CROSSPLOT CURVES -------------------------------------------------- 
history 'Force_Disp_Dflt'   expression {Crossplot("-Disp2", "Force2") } 
history 'Force_Disp_to_Num' expression {Crossplot("-Disp2", "Force2", 2) } 
history 'Force_Disp_to_Beg' expression {Crossplot("-Disp2", "Force2", 4, 0.002) } 
history 'Force_Disp_to_End' expression {Crossplot("-Disp2", "Force2", 4, 0.002, End) } 
 

14.1.2. Derivative history 

A special history function DerivativeHistory is provided to construct a curve 
dt

tdf )( given f(t). 

Expression syntax: 

History ’curvename’ {DerivativeHistory (history, [order])} 

Table 14-2: Description of DerivativeHistory arguments 

Argument name Description Symbol LS-OPT Type Default 
history Pre-defined history f(t) History - 
order Number of points in the 

numerical derivative stencil 
 Integer 5  

 
 
Remarks: 
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1. The derivatives assume a linear, positive abscissa with equal intervals (typically time history). 

2. Only orders 3 and 5 are available. The default is 5. 

3. Since the derivative approximation is based on a multipoint scheme, it is recommended to avoid 
having too few points. 

4. For the 5-point scheme, the derivatives of the first three and last three points are the same as the third 
and third last points respectively. For the 3-point scheme, the same is valid for the first and last two 
points. 0. 

 

h
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Examples: 
 
$ ------ DERIVATIVE CURVES -------------------------------------------------- 
history 'Deriv1' expression {DerivativeHistory("Disp", 3) } 
history 'Deriv2' expression {DerivativeHistory("Disp") } 

14.1.3. Filtered history 

A special history function FilterHistory is provided to construct a filtered curve. 

Expression syntax: 

History ’curvename’ {FilterHistory (history, [filter_type, 
filter_frequency, timeunits, num_average_points])} 

Table 14-3: Description of FilterHistory arguments 

Argument name Description Symbol LS-OPT 
Type 

Default 

history Pre-defined history f(t) History - 
filter_type Filtering type (FILTER_SAE, 

FILTER_BUTTERWORTH, 
FILTER_AVERAGE) 

 Integer FILTER_SAE  

filter_frequency Filtering frequency in Hz  Float 60 Hz 

time_units Units of time (TIME_S or 
TIME_MS) 

 Integer TIME_S 

num_average_points Number of averaging points  Integer 5 

 
 
Examples: 
 
history 'a' "BinoutHistory -res_type nodout  -cmp x_acceleration -id 167" 
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history 'a_FILTER_SAE_60' "BinoutHistory -res_type nodout  -cmp x_acceleration -id 167 -filter 
SAE -filter_freq 60.0000" 
$ 
$----- FILTERED HISTORIES -------------------------------------------------------------------- 
$ 
history 'h_FILTER_SAE_60_time_s' expression {FilterHistory( "a(t)", FILTER_SAE, 60.0, TIME_S ) } 
history 'h_FILTER_SAE_60_time_ms' expression {FilterHistory("a(t)",FILTER_SAE,60.0, TIME_MS ) } 
history 'h_FILTER_SAE_60_time_ms_2' expression {FilterHistory ( "a", FILTER_SAE, 60.0,TIME_MS) } 
history 'h_FILTER_SAE_60' expression {FilterHistory ( "a(t)", FILTER_SAE, 60.0 ) } 
history 'h_FILTER_SAE' expression {FilterHistory ( "a(t)", FILTER_SAE ) } 
history 'h_FILTER' expression {FilterHistory ( "a(t)" ) } 
history 'h_FILTER_BUTTERWORTH_60_time_s' expression {FilterHistory ( "a(t)", FILTER_BUTTERWORTH, 
60.0, TIME_S ) } 
history 'h_FILTER_BUTTERWORTH_60' expression {FilterHistory ( "a(t)",FILTER_BUTTERWORTH,60.0 ) } 
history 'h_FILTER_BUTTERWORTH' expression {FilterHistory ( "a(t)", FILTER_BUTTERWORTH ) } 
history 'h_FILTER_AVERAGE_5' expression {FilterHistory ( "a(t)", FILTER_AVERAGE, _, _, 5 ) } 
history 'h_FILTER_AVERAGE' expression {FilterHistory ( "a(t)", FILTER_AVERAGE ) } 
history 'h_FILTER_SAE_10' expression {FilterHistory ( "a(t)", FILTER_SAE, 10 ) } 
history 'h_FILTER_SAE_100' expression {FilterHistory ( "a(t)", FILTER_SAE, 100 ) } 
history 'h_FILTER_SAE_150' expression {FilterHistory ( "a(t)", FILTER_SAE, 150 ) } 
history 'h_FILTER_SAE_200' expression {FilterHistory ( "a(t)", FILTER_SAE, 200 ) } 
history 'h_FILTER_AVERAGE_50' expression {FilterHistory ( "a(t)", FILTER_AVERAGE, _, _, 50 ) } 
history 'DerivativeHistory_a' expression {DerivativeHistory ( "a(t)" )} 
history 'Filter_DerivativeHistory_a' expression {FilterHistory ( "DerivativeHistory_a(t)" ) } 
history 'DerivativeHistory_a_FILTER_SAE_60' expression {DerivativeHistory("a_FILTER_SAE_60(t)" 
)} 

14.1.4. History files 

A history can be provided in a text file with arbitrary format. Coordinate pairs are found by assuming that 
any pair of numbers in a row is a legitimate coordinate pair. History files are typically used to import test 
data for parameter identification problems. 

 
Command file syntax: 

history name file filename 

 
Example: 
 
History •Test1’ file •Test1.txt• 
 
where Test1.txt contains: 
 
 
Time   Displacement 
1.2,   143.97 
1.4,   156.1 
1.7,   923.77 

14.2. Defining a response (scalar) 

The extraction of responses consists of a definition for each response and a single extraction command or 
mathematical expression. A response is often the result of a mathematical operation of a response history, 
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but can be extracted directly using the standard LS-DYNA interface (see Section 14.4) or a user-defined 
interface. 

 

Each extracted response is identified by a name and the command line for the program that extracts the 
results. The command line must be enclosed in double quotes. If scaling and/or offsetting of the response is 
required, the final response is computed as (the extracted response × scale factor ) + offset. This operation 
can also be achieved with a simple mathematical expression. A mathematical expression for a response is 
defined in curly brackets after the response name. If a discipline generates multiple cases (using LSDYNA 
*CASE parameter), the user must also specify the corresponding CASE ID. 

 
Command file syntax: 

response response_name {scale_factor offset} string 
response response_name {scale_factor offset case-id} string 
response response_name expression math_expression 

 
Example: 
 
response ’Displacement_x’ 25.4 0.0 "DynaASCII nodout ’r disp’ 63 TIMESTEP 0.1" 
response ’Displacement_y’ 1 0 30 "BinoutResponse –res_type Nodout –cmp 
y_displacement –id 150 –select TIME " 
response ’Force’ "$HOME/ownbin/calculate force" 
response ’Displacement_y’ "calc constraint2" 
response ’Disp’ expression {Displacement_x + Displacement_y} 
 
Remarks: 

1. The first command will use a standard interface for the specified solver package. The standard 
interfaces for LS-DYNA are described in Section 14.4. 

2. The middle two commands are used for a user-supplied interface program (see Section 14.11). The 
interface name must either be in the path or the full path name must be specified. Aliases are not 
allowed. 

3. The case-id field is mandatory for disciplines with input files that use *CASE parameter. For all 
other cases, first/last commands should be used. 

4. For the last command, the second argument expression is a reserved name.0. 

14.3. Specifying the metamodel type  

The metamodel type can be specified for an individual response. 

 
Command file syntax: 

response response_name 
[linear|interaction|elliptic|quadratic|FF|kriging] 
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The default is the metamodel specified in Section 13.1. FF refers to the feedforward neural network 
approximation method (see Section 3.1). 

 
Example: 
 
response ’Displacement’ kriging 
 

In LS-OPTui, responses are defined in the Responses panel (Figure 14-2): 

 

Figure 14-2: Reponses panel in LS-OPTui 

14.4. Extracting history and response quantities: LS-DYNA 

In LS-OPT the general functionality for reading histories and responses from the simulation output is 
achieved through the history and response definitions (see Section 14.1 and Section 14.1.1 
respectively). The syntax for the extraction commands for LS-DYNA responses and histories is identical, 
except for the selection attribute. The history function is included so that operations (such as subtracting two 
histories) can first be performed, after which a scalar (such as maximum over time) can be extracted from 
the resulting history. 

 

There are two types of interfaces: 

1. Standard LS-DYNA result interfaces. This interface provides access to the LS-DYNA binary 
databases (d3plot or Binout). The interface is an integral part of LS-OPT.  
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2. User specified interface programs. These can reside anywhere. The user specifies the full path.0. 

 

Aside of the standard interfaces that are used to extract any particular data item from the database, 
specialized responses for metal-forming are also available. The computation and extraction of these 
secondary responses are discussed in Section 14.9.  

 

The user must ensure that the LS-DYNA program will provide the output files required by LS-OPT. 

 

As multiple result output sets are generated during a parallel run, the user must be careful not to generate 
unnecessary output. The following rules should be considered: 

o To save space, only those output files that are absolutely necessary should be requested. 

o A significant amount of disk space can be saved by judiciously specifying the time interval between 
outputs (DT) e.g., in many cases, only the output at the final event time may be required. In this case 
the value of DT can be set slightly smaller than the termination time. 

o The result extraction is done immediately after completion of each simulation run. Database files can 
be deleted immediately after extraction if requested by the user (clean file (see also Section 9.9)). 

o If the simulation runs are executed on remote nodes, the responses of each simulation are extracted 
on the remote node and transferred to the local run directory. 

 

For more specialized responses the Perl programs provided can be used as templates for the development of 
own routines. 

 

All the utilities can be specified through the command: 
response response_name {scale_factor offset } command_line. 

or 
history history_name command_line. 

14.5. LS-DYNA Binout results  

From Version 970 of LS-DYNA the ASCII output can be written to a binary file: the Binout file.  

 

The LS-PREPOST Binout capability can be used for the graphical exploration and troubleshooting of the 
data. 

 

The response options are an extension of the history options – a history will be extracted as part of the 
response extraction. 
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14.5.1. Binout histories 

Results can be extracted for the whole model or a finite element entity such as a node or element. For shell 
and beam elements the through-thickness position can be specified as well. 

 
Command file syntax: 

BinoutHistory –res_type res_type {-sub sub} –cmp component {-
invariant invariant –frame frame –id id (-name name) (-idi id) 
(-namei name) –localid id1 id2 id3 (-localname name1 name2 
name3) –pos position –side side} 

 
Item Description Default Remarks 
res_type Result type name - 1 
sub Result subdirectory - 1 
cmp Component of result - 2 
invariant Invariant of results. Only MAGNITUDE is currently 

available. 
- 3 

id ID number of entity -  
name Description (heading) of entity used as label - 4 
pos Through thickness shell position at which results are 

computed. 
1 5 

side Interface side for RCFORC data. MASTER or SLAVE. SLAVE   
frame GLOBAL|GLOBAL_IN_REF|LOCAL GLOBAL 6 
localid 3 Nodal ID’s to define local coordinate axes - 7 
localname 3 Nodal names (headings) to define local coordinate axes - 7 
id i Multiple ID’s i = 1,2,3, … n - 8 
name i Multiple headings as labels i = 1,2,3, … n - 8 

 
Example: 
history 'ELOUT1' "BinoutHistory -res_type Elout -sub shell -cmp sig_xx  
-id 1 -pos 1" 
history 'invarHis' "BinoutHistory -res_type nodout -cmp displacement  
-invariant MAGNITUDE –name RAIL15" 
 
Remarks: 

1. The result types and subdirectories are as documented for the *DATABASE_OPTION LS-DYNA 
keyword. 

2. The component names are as listed in Appendix  A: LS-DYNA Binout Result Components. 

3. The individual components required to compute the invariant will be extracted automatically; for 
example, “-cmp displacement –invariant MAGNITUDE” will result in the automatic 
extraction of the x, y and z components of the displacement. 
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4. The option “-name” that allows using the description/heading/name of the entity is valid only with 
nodout and Elout result types. 

5. For the shell and thickshell strain results the upper and lower surface results are written to the 
database using the component names such as lower_eps_xx and upper_eps_xx. 

6. Distances and deformations can be computed in global coordinates, local coordinates or global 
coordinates in reference frame (t = 0), e.g. –frame GLOBAL_IN_REF. See Section 14.10. 

7. The definition of a local coordinate system requires three reference nodes to define the system. 
These can be defined as integer ID’s or as names labels (headings) for example –localid 231 
556 722 or –localname Thirdnode xBegin xEnd. The second and third nodes define the 
direction of the local x-axis. 

8. Some entities such as deformations or distances require multiple node definitions (two in the case of 
deformation or distance), e.g. –id1 529 –id2 718 or –name1 Measured_node –name2 
Reference_node. 0. 

Averaging, filtering, and slicing Binout histories 

These operations will be applied in the following order: averaging, filtering, and slicing. 

 
Command file syntax: 

BinoutHistory {history_options} {–filter filter_type  
–filter_freq filter_freq –units units –ave_points ave_points  
–start_time start_time –end_time end_time } 

 
Item Description Default 
history_options All available history options - 
filter_type Type of filter to use: SAE or BUTT - 
filter_freq Filter frequency 60 cycles / time unit 
units S=seconds MS=milliseconds S 
ave_points Number of points to average - 
start_time Start time of history interval to extract using slicing 0 
end_time End time of history interval to extract using slicing tmax 

 
 
Example: 
history 'ELOUT12' "BinoutHistory -res_type Elout -sub shell -cmp sig_xx  
-name RAIL15 -pos 2 -filter SAE –start_time 0.02 –end_time 0.04" 
history 'nodHist432acc_AVE' "BinoutHistory -res_type nodout  
-cmp x_acceleration -id 432 -ave_points 5" 

14.5.2. Binout responses 

A response is extracted from a history – all the history options are therefore applicable and options required 
for histories are required for responses as well. 
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Command file syntax: 

BinoutResponse {history_options} –select selection 

 
Item Description Default Remarks 

history_options  All available history options including 
averaging, filtering, and slicing. -  

selection MAX|MIN|AVE|TIME TIME 1 
 
Example: 
response 'eTime'  "BinoutResponse -res_type glstat -cmp kinetic_energy  
-select TIME -end_time 0.015" 
$ 
response ‘nodeMax’ "BinoutResponse -res_type nodout -cmp x_acceleration -id 432 
-select MAX -filter SAE -filter_freq 10" 
 
Remarks: 

1. The maximum, minimum, average, or value at a specific time must be selected. If selection is TIME, 
the end_time history value will be used. If end_time is not specified, the last value (end of analysis) 
will be used.0. 

Binout injury criteria 

Injury criteria such as HIC can be specified as the result component. The acceleration components will be 
extracted, the magnitude computed, and the injury criteria computed from the acceleration magnitude 
history. 

 
Command file syntax: 

BinoutResponse {history_options}  –cmp cmp { –units units  
–lengthunits lengthunits} 

 
Item Description Default 
history_options All available history options including filtering and slicing. - 
cmp HIC15, HIC36, or CSI - 
lengthunits METER=meter MM=millimeter METER 
units S=seconds MS=milliseconds S 

 
Note: 

1. The length and time units are used to compute the gravity value based on 9.81 m/s20. 

 
 
Example: 
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response 'HIC_ms' 1 0 "BinoutResponse -res_type Nodout -cmp HIC15 –lengthunits 
MM -units MS -name RAIL15" 

14.6. LS-DYNA D3Plot results  

The D3Plot interface is related to the Binout interface. The D3Plot commands differ from the Binout 
commands in that a response or history can be collected over a whole part. For example, the maximum 
stress in a part or over the whole model. 

 

The available results types and components are listed in Appendix A. 

 

The LS-PREPOST fringe plot capability can be used for the graphical exploration and troubleshooting of 
the data. 

 

The response options are an extension of the history options – a history will be extracted as part of the 
response extraction. 

14.6.1. D3Plot histories 

Results can be extracted for the whole model or a finite element entity such as a node or element. For shell 
and beam elements the through-thickness position can be specified as well. 

 
Command file syntax: 

D3PlotHistory –res_type res_type {-sub sub} –cmp component {–
id id –pos position –pids part_ids –loc ELEMENT|NODE –
select_in_region selection –coord x y z –setid setid –tref 
ref_state} 

 
Item Description Default Remarks
res_type Result type name - 1 
cmp Component of result - 1 
id ID number of entity - 2 
pos Through thickness shell position 1  
pids One or more part ids. - 3 
loc Locations in model. ELEMENT or NODE. - 4 
select_in_region MAX|MIN|AVE -select 5 
coord Coordinate of a point for finding nearest element - 6 
tref Time of reference state for finding nearest element 0.0 6 
setid ID of *SET_SOLID_GENERAL in LS-DYNA keyword file - 6 

 
 
Example: 
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history 'ELOUT1' "D3PlotHistory -res_type Elout -sub shell -cmp sig_xx  
-id 1 -pos 1" 
history 'invarHis' "D3PlotHistory -res_type nodout -cmp displacement  
-invariant MAGNITUDE –id 432" 
history 'd3ploth4' "D3PlotHistory -res_type ndv –cmp x_displacement –pids 2 3 –
select_in_region MAX" 
 
Remarks: 

1. The result types and components are similar to what is used in LS-PREPOST. The result types and 
component names are listed in Appendix A:LS-DYNA D3Plot Result Components. 

2. For histories, the -id option is mutually exclusive with the –select_in_region option. 

3. If part ids are specified, the extraction will be done over these parts only. If no part ids and no 
element or node id are specified, then the extraction will be done considering the whole model. 

4. Element results such as stresses will be averaged in order to create the NODE results. Nodal results 
such as displacements cannot be requested as ELEMENT results. 

5. The maximum, minimum, or average over a part can be selected. The –select_in_region option is 
mutually exclusive with the –id option. The default value is that of the d3plot response -select 
argument which in turn defaults to MAX. 

6. An x,y,z coordinate can be selected. The quantity will be extracted from the element nearest to x,y,z 
at time tref. Only elements included in the *SET_SOLID_GENERAL element set are considered 
(only the PART and ELEMENT options).0. 

Slicing D3Plot histories 

Slicing of D3Plot histories is possible. Averaging and filtering are not available for D3Plot results. 

 
Command file syntax: 

D3PlotHistory {history_options} {–start_time start_time –
end_time end_time } 

 
Item Description Default 
history_options All available history options - 
start_time Start time of history interval to extract using slicing 0 
end_time End time of history interval to extract using slicing tmax 

 
Example: 
history 'ELOUT12' "D3PlotHistory -res_type stress -cmp xx_stress  
-id 1 -pos 2 –start_time 0.02 –end_time 0.04" 

D3Plot FLD results 

If FLD results are requested then the FLD curve can be specified using (i) the t and n coefficients or (ii) a 
curve in the LS-DYNA input deck. The interpretation of the t and n coefficients is the same as in LS-
PREPOST. 
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Command file syntax: 

D3PlotHistory {history_options} {–fld_t fld_t –fld_n fld_n –
fld_curve fld_curve} 

 
Item Description Default 
history_options All available history options - 
fld_t Fld curve t coefficient - 
fld_n Fld curve t coefficient - 
fld_curve ID of curve in the LS-DYNA input deck - 

 
Example: 
history 'ELOUT12' "D3PlotHistory -res_type stress -cmp xx_stress  
-id 1 -pos 2 –start_time 0.02 –end_time 0.04" 

14.6.2. D3Plot responses 

A response is extracted from a history – all the history options are therefore applicable and options required 
for histories are required for responses as well. 

 
Command file syntax: 

D3PlotResponse {history_options} –select selection 

 
Item Description Default Remarks 
history_options  All available history options -  
select MAX|MIN|AVE|TIME TIME 1 

 
Example: 
Response •nodeMax• "D3PlotResponse -res_type ndv -cmp x_displacement -id 432 -
select MAX" 
 
Remarks: 

o The maximum, minimum, average, or value at a specific time must be selected. If select is TIME 
then the end_time history value will be used. If end_time is not specified, the last value (end of 
analysis) will be used.  If the selection must be done over parts as well, then this option is used 
together with the –select_in_region argument as documented for d3plot histories; firstly the 
maximum, minimum, or average value will be selected for the part as specified by the –
select_in_region argument, followed by the selection of the maximum, minimum, or average over 
time as specified by the –select argument.  



CHAPTER 14:  13BHISTORY AND RESPONSE RESULTS 

LS-OPT Version 4.3  285 

14.7. Mass 

Command file syntax: 

DynaMass p1 p2 p3 ... pn mass_attribute 

 

Table 14-4: Mass item description 

Item Description 
p1 ... pn Part numbers of the model. Omission implies the entire model. 
Mass_attribute Type of mass quantity (see table below). 

 

Table 14-5: Mass attribute description 

Attribute Description 
MASS Mass 
I11 Principal inertias 
I22  
I33  
IXX Components of inertia tensor 
IXY  
IXZ  
IYX  
IYY  
IYZ  
IZX  
IZY  
IZZ  
X_COORD x-coordinate of mass center 
Y_COORD y-coordinate of mass center 
Z_COORD z-coordinate of mass center 

 
Example: 
 
$ Specify the mass of material number 13, 14 and 16 as 
$ the response ’Component_mass’. 
response ’Component_mass’ "DynaMass 3 13 14 16 Mass" 
$ Specify the total principal inertial moment about the x-axis. 
response ’Inertia’ "DynaMass Ixx" 
 
Remarks: 

1. The output file d3hsp must be produced by LS-DYNA. 
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2. Values are summed if more than one part is specified (so only the mass value will be correct). 
However for the full model (part specification omitted) the correct values are given for all the 
quantities.0.  

14.8. Frequency and mode tracking 

Command file syntax: 

DynaFreq mode_original modal_attribute tracking_option 

Table 14-6: Frequency item description 

Item Description 
mode_original The number (sequence) of the baseline modal shape to be tracked. 
modal_attribute Type of modal quantity. (See table below). 
tracking_option Disable mode tracking using –notrack, otherwise leave blank 

Table 14-7: Frequency attribute description 

Attribute Description 

FREQ Frequency of current mode corresponding in modal shape to 
baseline mode specified. 

NUMBER 
Number of current mode corresponding in modal shape to 
baseline mode specified. 

GENMASS 

Modal assurance criterion. 

max
j

{φ0}
H {φ j }{φ j}

H {φ0}
{φ0}H {φ0}{φ j}H {φ j}

=max
j

MAC j  

 

Theory: Mode tracking is required during optimization using modal analyses as mode switching (a change 
in the sequence of modes) can occur as the optimizer modifies the design variables. In order to extract the 
frequency of a specified mode, LS-OPT calculates the modal assurance criterion (MAC). The scalar MAC 
value provides the degree of consistency between baseline modal shape and each mode shape of the current 
design. The maximum MAC value indicates the mode most similar in shape to the original mode selected. 
LS-OPT reads the eigenvectors from the d3eigv files, for calculating the MAC values. The MAC value for 
the reference modal vector 0ϕ  and the thj  modal vector of the current design jϕ  is calculated as: 

 
MAC j=

{φ0}
H {φ j}{φ j}

H {φ0 }
{φ0}H {φ0}{φ j }H {φ j}     (14-9) 

where H is the Hermitian operator. The MAC value corresponding to the most similar mode can be 
extracted with the GENMASS attribute (see Table 14-7).  
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Example: 
$ Obtain the frequency of the current mode corresponding to the 
$ baseline mode shape number 15 as the response ’Frequency’. 
response ’Frequency’ "DynaFreq 15 FREQ" 
$ Obtain the number (sequence) of the current mode corresponding to 
$ the baseline mode shape number 15 as the response ’Number of mode’. 
response ’Modal number’ "DynaFreq 15 NUMBER" 
 
In certain cases, the user may be interested in the frequency corresponding to a specific mode number. To 
enable this option, the ability to turn mode tracking off is provided in the “Responses” panel of the GUI. By 
default this feature is on, but turning it off enables one to extract the responses corresponding to a specific 
mode number, irrespective of the mode shape. 
 
Example: 
$ Obtain the frequency of the mode number 15 as the response ’Frequency’. 
response ’Frequency’ "DynaFreq 15 FREQ -notrack" 
 
Remarks: 

1. All LS-DYNA versions are supported.  

2. The user must identify which baseline mode is of interest by viewing the baseline d3eigv file in 
LS-PrePost. The baseline mode number should be noted. 

3. The optimization run can now be started with the correct DynaFreq command (or select the 
Baseline Mode Number in the GUI). 

4. mode_original cannot exceed 999. 0.  

14.9. Extracting metal forming response quantities: LS-DYNA 

Responses directly related to sheet-metal forming can be extracted, namely the final sheet thickness (or 
thickness reduction), Forming Limit criterion and principal stress. All the quantities can be specified on a 
part basis as defined in the input deck for LS-DYNA. Mesh adaptivity can be incorporated into the 
simulation run. 

 

The user must ensure that the d3plot files are produced by the LS-DYNA simulation. Note that the 
D3plotResponse commands are an alternative.  

14.9.1. Thickness and thickness reduction 

Either thickness or thickness reduction can be specified as follows. 

 
Command file syntax: 

DynaThick [THICKNESS|REDUCTION] p1 p2 ... pm [MIN|MAX|AVE] 

 

Table 14-8: DynaThick item description 
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Item Description 
THICKNESS Final thickness of part 
REDUCTION A percentage thickness reduction of the part 
p1…pn The parts as defined in LS-DYNA. If they are omitted, all the parts 

are used. 
MIN|MAX|AVE Minimum, maximum or average computed over all the elements of 

the selected parts 
Example: 
 
Response ’Thickness 1’ "DynaThick THICK 1 2 MAXIMUM" 
Response ’Thickness 1’ "DynaThick REDU 1 2 MINIMUM" 

14.9.2. FLD constraint 

The FLD constraint is shown in Figure 14-3. Two cases are distinguished for the FLD constraint. 

o The values of some strain points are located above the FLD curve. In this case the constraint is 
computed as: 

g = dmax 

with dmax the maximum smallest distance of any strain point above the FLD curve to the FLD curve. 

o All the values of the strain points are located below the FLD curve. In this case the constraint is 
computed as: 

g = –dmin 

with dmin the minimum smallest distance of any strain value to the FLD curve (Figure 14-3). 

Constraint Active 
 
 g = dmax 

 ε1

 ε2

 d1 

 d2

 d3

 
a) FLD Constraint active 
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Constraint Inactive 
 
 g = –dmin 

 ε1

 ε2 

 d1 

 d2

 d3

 

b) FLD Constraint inactive 

Figure 14-3: FLD curve – constraint definition 

It follows that for a feasible design the constraint should be set so that g(x) < 0. 

Bilinear FLD constraint 

The values of both the principle upper and lower surface in-plane strains are used for the FLD constraint. 

 
Command file syntax: 

DynaFLD p1 p2 ... pn intercept negative_slope positive_slope 

 

The following must be defined for the model and FLD curve: 

Table 14-9: DynaFLD item description 

Item Description 
p1…pn Part numbers of the model. Omission implies the entire model. 
intercept The FLD curve value at ε2 = 0 
negative_slope The absolute value of the slope of the FLD curve value at ε2 < 0 
positive_slope The absolute value of the slope of the FLD curve value at ε2 > 0 

 
Example: 
 
$ Specify the FLD Constraint to be used 
Response ’FLD’ "DynaFLD 1 2 3 0.25 1.833 0.5" 
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General FLD constraint 

A more general FLD criterion is available if the forming limit is represented by a general curve. Any of the 
upper, lower or middle shell surfaces can be considered. 

Remarks: 

1. A piece-wise linear curve is defined by specifying a list of interconnected points. The abscissae (�2) 
of consecutive points must increase (or an error termination will occur). Duplicated points are 
therefore not allowed. 

2. The curve is extrapolated infinitely in both the negative and positive directions of �2. The first and 
last segments are used for this purpose. 

3. The computation of the constraint value is the same as shown in (Figure 14-3).0. 0. 

 
Command file syntax: 

DynaFLDg [LOWER|CENTER|UPPER] p1 p2 ... pn load_curve_id 

 

The following must be defined for the model and FLD curve: 

 

Table 14-10: DynaFLDg item description 

Item Description 
LOWER Lower surface of the sheet 
UPPER Upper surface of the sheet 
CENTER Middle surface of the sheet 
p1…pn Part numbers of the model. Omission implies the entire model. 
load_curve_id Identification number of a load curve in the LS-DYNA input file. 

The *DEFINE_CURVE keyword must be used. Refer to the 
LS-DYNA User’s Manual for an explanation of this keyword. 

 
 
Example: 
 
$ Specify the general FLD Constraint to be used 
Response ’FLDL’ "DynaFLDg LOWER 1 2 3 23" 
Response ’FLDU’ "DynaFLDg UPPER 1 2 3 23" 
Response ’FLDC’ "DynaFLDg CENTER 23" 
 

For all three specifications load curve 23 is used. In the first two specifications, only parts 1, 2 and 3 are 
considered. 
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Remarks: 

1. The interface program produces an output file FLD_curve which contains the ε1 and ε2 values in 
the first and second columns respectively. Since the program first looks for this file, it can be 
specified in lieu of the keyword specification. The user should take care to remove an old version of 
the FLD_curve if the curve specification is changed in the keyword input file. If a structured input 
file is used for LS-DYNA input data, FLD_curve must be created by the user. 

2. The scale factor and offset values feature of the *DEFINE_CURVE keyword are not utilized.0. 

14.9.3. Principal stress 

Any of the principal stresses or the mean can be computed. The values are nodal stresses. 

 
Command file syntax: 

DynaPStress [S1|S2|S3|MEAN] p1 p2 ... pn [MIN|MAX|AVE] 

 

Table 14-11: DynaPStress item description 

Item Description 
S1, S2, S3 σ1, σ 2, σ 3 
MEAN (σ1 + σ 2 + σ 3)/3 
p1 ... pn Part numbers of the model. Omission implies the entire model. 

MIN|MAX|AVE 
Minimum, maximum or average computed over all the elements of 
the selected parts 

 
Example: 
 
Response ’Stress 1’ "DynaPStress MEAN 14 17 MAX" 
 

14.10. Kinematics 

Additional kinematics such as distances and deformations can be computed directly using NODOUT results 
by defining two nodes on the finite element mesh. Kinematics consist of two main quantities: 

1. The distance vector q computed using the differences between the coordinates of the two nodes.  

2. The deformation derived using the difference between the distance vector computed at time t and the 
original distance vector (t = 0). 0. 

These quantities can be computed in  

1. the global coordinate system,  

2. a local coordinate system or  

3. local coordinates referred to the global reference frame (t = 0). 0.  
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1. The local axes are computed using the convention defined in Section 14.14.2 to define the rotation 
matrix A where A is a function of time. The quantities are therefore defined as follows. 0. 

 

Table 14-12: Definitions of the kinematics of a displaced rigid body 

 

Frame Distance Deformation 

Global  qd =  )0(qqu −=  

Local )()(' tt qAd =  )0()0()()(' qAqAu −= tt  

Local in reference )()()0(" tt qAAd T= )0()()()0(" qqAAu T −= tt  

 

The orthogonal matrix A(t) is defined by a local coordinate system (x’y’z’ in Figure 14-4) which in turn is 
defined by three nodes on the finite element mesh as it displaces over time. Nodes 2 and 3 represent the 
local x-axis direction (see Figure 14-4) while Node 1 represents the third node. This is the same convention 
as defined in Section 14.14.2.  

The second and third kinematic categories are both denoted “local” since deformation should be totally 
absent for pure rigid body systems. 

If the triangles 1-2-3 and 1′-2′-3′ are congruent (i.e. they represent a rigid body), the quantity defined as 
Local in reference frame is invariant with respect to the node numbering. E.g. the triplets (1, 2, 3), (2, 3, 1) 
or (1, 3, 2) should yield the same value. 

To monitor congruence, A Congruence ratio for each history or response is displayed in the lognnnn (run 
directory) or lsopt_output files. The ratio for a node is defined as the ratio of the side length opposite the 
node i at time tfinal divided by the same quantity applied to the undeformed structure (see equation below). 
Three values are therefore printed. The ideal ratio is unity, signifying a perfectly rigid body. 
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Kinematic quantities are available as both histories and responses. 
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Figure 14-4: Local and global coordinate systems 

 

Example: 
 
response 'def_X' "BinoutResponse -res_type Nodout -cmp x_deformation -frame global  
 -id1 432 -id2 167 -select TIME " 
response 'def_x' "BinoutResponse -res_type Nodout -cmp x_deformation -frame local  
 -id1 432 -id2 167 -localid 330 329 500 -select TIME" 
response 'def_Xx' "BinoutResponse -res_type Nodout  -cmp x_deformation -frame 
global_in_ref -id1 432 -id2 167 -localid 330 329 500 -select TIME -end_time 0.0300" 
 
history 'dist_X' "BinoutHistory -res_type nodout  -cmp x_distance -frame global  
 -id1   432 -id2 167" 
history 'dist_x' "BinoutHistory -res_type nodout  -cmp x_distance -frame local  
 -id1 432 -id2 167 -localid 330 329 500" 
history 'dist_Xx' "BinoutHistory -res_type nodout  -cmp x_distance -frame  
 global_in_ref -id1 432 -id2 167 -localid 330 329 500" 
 
history 'dist_resultant' "BinoutHistory -res_type nodout -cmp distance -invariant  
 MAGNITUDE -frame global -id1 432 -id2 167" 
history 'def_resultant' "BinoutHistory -res_type nodout  -cmp deformation –invariant 
 MAGNITUDE -frame global -id1 432 -id2 167" 
history 'distance_globalref_x4' "BinoutHistory -res_type nodout -cmp x_distance   
 -frame global_in_ref -id1 432 -id2 167 -localid 500 329 330" 
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14.11. The GenEx application for extracting entities from a text file 

GenEx (Generic Extractor) is a tool to create the .g6 file used by LS-OPT to extract responses and 
histories. It is included in the LS-OPT distribution as the executable file genex. 

14.11.1. The main window 

GenEx can be started from the command line by typing genex <filename> or by selecting the Create/Edit 
button after selecting GenEx on the Responses or Histories page. 

 
 

When first starting GenEx, there will be two predefined anchors in the tree on the left, Start of File and 
End of File. It is not possible to change or remove these two anchors. 

The middle part of the window displays the data file, with symbols for anchors and entities. The current 
entity/anchor will be highlighted or have a thin black border around it. 

On the right is the dialog box for specifying/selecting options for the currently selected anchor/entity. 

Anchors 

Anchors describe how to find a certain position in the data file. This can be done with searching for 
keywords or with an absolute position.  
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Entities 

An entity is a quantity we want to extract from LS-OPT. Entities describe both what the number should look 
like as well as where, relative to the parent, to find it. There are three types of entities, scalar, column and 
repeated anchor vectors (see “Options specific for entities” for the difference between them).  
 
Options 
When an anchor or an entity is selected, it is possible to change the options shown in the dialog box. A new 
search will be performed whenever an option is changed that requires it. The only exception is the Text to 
search for, this requires the user to hit Enter (on the keyboard) to start the new search.  

Origin  

This is the parent anchor of the anchor/entity. 

Column separator 

If columns are selected in Relative positions it is possible to change what separates the columns in the input 
file. 

Options specific for anchors 

Type 
There are for types of searches. Three of them are keyword-based (search-phrase based). 

1. Plain text: This is the most basic search. It looks for the given text in the file and positions the 
anchor in front of the match. 

2. Glob search: The glob search main goal is to be able to match strings with the aid of the wild cards, 
'*' and '?'. The asterisk matches any character any number of times and the question mark matches 
any character one time. 

Example: 

*abc  

will match any word ending with abc (xxxabc, yyyabc, etc.) and the anchor will be placed 
where the match begins ((A)xxxabc, (A)yyyabc). 

a?c 

will match all three letter words starting with 'a' and ending with 'c' (axc, a5c, etc.) and the 
anchor will be placed before the match begins ((A)axc, (A)a5c). 

3. Regular expression search: The asterisk * matches the preceding element zero or more times and 
the dot . matches any character one time. If letters are put inside brackets this matches any single 
character inside the brackets. If a '^' is put inside the brackets this means that we should match any 
character not inside the brackets. 

Examples: 

ab*c 
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matches "ac", "abc", "abbbc", etc. 

a.c 

matches all three letter strings starting with 'a' and ending with'c' (ahc, a8c, aHc, etc.) 

[csad]bc 

matches all strings starting with c, s, a or d followed by 'bc' (cbc, sbc, abc, and dbc). 

[^csad]bc 

matches all strings not starting with c, s, a or d followed by 'bc' (xbc, 5bc,  kbc, etc.). 

These can all be combined into a larger regular expression,"[skjfrdzh]*esp[ohjd]n.e" will 
match "response" (but also "espdn1e" for example). 

4. Absolute search: In this search the user positions the anchor simply by telling on which row and in 
which column the anchor is located in the file. 0. 

 

Plain text, glob and regular expression search searches for a specific text string. The absolute search 
positions the anchor relative to the parent.  The glob and regular expression searches are very similar to the 
search capabilities in the Perl language or the Unix/Linux scripting language. 

Text to search for  
This is the text/regular expression/glob to search for. 

Direction  
Starting from the origin, this is the direction to search in.  

Match  
This is where on the line the search text will have to match.  

Relative Location 
When Absolute search is selected, this section will be enabled. Here it is possible to enter the absolute 
position of the anchor if known. 

Skip over  
Since the input file can contain several instances of the search term it is possible to skip some of them to 
find the desired position.  

Move to start of line  
When this is checked the anchor will be positioned at the start of the line, even if it is found somewhere 
else. 

Options specific for entities 

Relative Location  
This is the position of the entity, relative to the parent anchor.  

Type of entity 
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Here there are three options, scalar, column vector and repeated anchor vector. 

Scalar 

The scalar entity is used for extracting responses and it extracts one result. 

Column vector 

A column vector extracts a column of data. 

Repeated anchor vector 

A repeated anchor vector repeats the search of the selected anchor to extract several entities found in 
different places in the input file.  

Number format  
Here it is possible to specify what a number looks like.  

Maximum length  
The default behavior is that an entity starts at the specified position and ends with a white space. Here it is 
possible to specify the length of the entity if this is not the case. 

Maximum number of components 
When using GenEx to extract histories the default behavior is to keep extracting until a match is not found, 
this option limits the number of extracted results. 

Anchor to repeat 
If the entity type is “repeated anchor vector” this will show a menu with valid anchors. Start of file and End 
of file will not be available since they can’t be repeated. 

14.11.2. Creating a .g6 file for LS-OPT 

First we have to select the input file in which to search. This is done from the File menu: Select input file. 
The file will be displayed in the middle window of the application. 

Creating an anchor or entity 

There are three ways to create anchors or entities. The first is to select the anchor used as parent and then 
click on the anchor or entity button in the menu depending on what is needed. This will create a new 
uninitiated child. By selecting the new anchor or entity in the tree view on the left side, the options will be 
visible on the right side panel. 

The second way is to simply make a selection in the text file, right click and select Create Anchor Here or 
Create Entity Here. This will create a new child at that position with the currently selected anchor as the 
parent anchor. It’s possible to select a column of numbers to create a column vector. 

The third option is to make a selection in the text and drag that selection to the anchor we want to use as 
parent in the tree. 
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Creating an.g6 file without an input file 

It is possible to create a .g6 file without access to the input file we want to extract from. However, this 
requires some knowledge of the file format and syntax. 

Editing a .g6 file 

From the “File” menu, select “Open GenEx file”. 

14.11.3. How to use GenEx from LS-OPT for extracting responses 

 
 

From the Responses panel select GENEX as a response. This will show a few options related to GenEx . 

The first selection to be made is which .g6 file to use. The full path has to be specified. This option 
provides a list of available entities to choose from. The entities need to be of the “Scalar” type. It is also 
possible to edit a file by clicking the Create/Edit button. If no file name is given the default action is to 
create a new .g6 file.  

Secondly, enter the name of the input data file. LS-OPT looks for the file in the run directory. 

14.11.4. An example using GenEx to extract responses 

This example explains how to extract a number of responses from the LS-DYNA d3hsp file. Different 
search options are employed to demonstrate the various options. 
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1. Open the GenEx GUI by selecting Create/Edit. Then select d3hsp as the input file by using 
File→Select input file. The d3hsp file is displayed in the middle. We are interested in 3 responses at 
various cycles and a fourth response to be the last one in the file. 

Defining an anchor:  

2. Define an anchor with the name Cycle4800_Plain by clicking on the anchor icon or using the 
Edit option.  

3. Use a plain search to search for the string "dt of cycle    4800". If you want to change the 
string in the text box, remember to hit the "Enter" key on the keyboard. The anchor is displayed as a 
small anchor icon in the leftmost column of the line that matches the search string. The next step 
would be to find the desired field relative to this anchor. 

 

 
 

Defining an entity:  

4. Define a new entity SWEner by using the leftmost x-icon or the Edit option.  

5. Choose the previously defined anchor as the Origin.  

6. Find the desired field by searching 6 lines below the anchor, 2 columns across. The desired field is 
displayed as highlighted in yellow with a black border. See figure below. 
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7. Now define a new entity referred to the same anchor Cycle4800_Plain. This entity is 18 lines 

below the anchor and 3 columns across as shown in the Relative location dialog below: 

 
 

8. Define a second anchor using a global search for the string "4700 is controlled". The origin 
of this anchor is also the start of the file and the search is forward from that point. Note the anchor 
placement on the figure below just before the string "4700 is controlled".  
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9. Now define an anchor InternalEnergy_Absolute relative to the previous anchor by setting 
the origin as Cycle4700_Glob, then searching 5 lines down and one column across. Note the 
anchor icon just before the yellow-highlighted number in the figure below. 
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10. Define a new entity InternalEnergy using the InternalEnergy_Absolute anchor as 
reference point. The desired field is immediately found since the anchor is already at the desired 
location. 
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11. The next desired entity is the final total energy ratio (i.e. the one in the last cycle in the file). In this 
case we will set the reference anchor called LastCycle to be the end of the file (Origin) and 
search backwards (Direction).  

12. The search string is "total energy" and the regular expression search type is used. The settings 
to find the anchor are shown below. 

 

 
 

13. The entity is found by using LastCycle as the anchor and searching in the sixth column. See 
relative location dialog box below. 
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14. This completes the GenEx setup. Save the file. 

15. Now open the LS-OPT GUI on the Responses page and select the GENEX response type on the 
left. Open the Input GenEx file. A browse option is available. Importing the file will display the 
selected entities in the Entities box.  

16. Select the input data file, namely d3hsp. This file must be available in the run directory during the 
LS-OPT run. 

17. Select an entity, define a response name at the bottom of the page and Add the response. It will 
appear in the tree on the right associated with the selected case.  

18. Repeat the procedure for the remaining three response entities. Note the last four entity definitions 
SWEner,  Yvelocity, InternalEnergy and Energy4900 listed under Case 1 below. 0. 
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LS-OPT can now be run and the response entities will be extracted for each simulation run. 
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14.11.5. An example using "Repeated anchor vector" to extract histories 

In this example we will use GenEx to extract histories of the value for "kinetic energy" in the "glstat" file 
created by LS-DYNA. We first start by creating the anchor dt_of_cycles. This anchor will be the base 
for further anchors. With this anchor as parent we now create the KE_anchor to search for the string we 
are looking for, in this case "kinetic energy".  

 

 
 

As seen in the screenshot above, this entity is of the Scalar type and needs to be changed to Repeated 
anchor vector. When creating a repeated anchor vector the default value for Anchor to repeat is the parent 
of the entity. Since "kinetic energy" appears twice between every dt_of_cycle the result is not 
what we want yet. In order to skip "eroded kinetic entity", we pick the grandparent dt_of_cycle anchor 
as the one to repeat. 

The result of this setup will be that the extractor will find "dt_of_cycle", then search forward for 
"kinetic energy" and extract the first element of the vector. Then, it will find the next occurrence of  
"dt_of_cycle" and repeat, extracting the other elements of the vector. 
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After we have changed the Anchor to repeat to dt_of_cycle, we will have the correct result. The color 
of the other vector elements will be in light yellow with a dotted border. 
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We are now finished with the GenEx part and the file can be saved. 

14.11.6. An example using "Column vector" to extract histories 

Column vectors are useful for extracting vectors in tables. In this example we extract a position vector 
generated by a fictitious solver. Just as in the previous example we start with the creation of the entity we 
want to be the first. We then change the type to Column vector. 

It’s possible to create the vector by selecting a column in GenEx and right click to choose New Entity. 
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14.11.7. How to extract the histories from LS-OPT 

Using GenEx for extracting histories is very similar to using it for responses. The main difference is that 
you have to select two entities in the Histories page, one for the x-axis and one for the y-axis. It’s possible 
to use "Auto increment" for the x-axis, in which case the x-axis values will simply be 0,1,2,3… 



CHAPTER 14:  13BHISTORY AND RESPONSE RESULTS 

LS-OPT Version 4.3  310 

 
When creating the entities in GenEx they need to be either Column vector or Repeated anchor vector to 
be used for history extraction. 

14.12. User-defined interface for extracting results 

The user may provide an own extraction routine to output a single floating-point number to standard output. 

 

Examples of the output statement in such a program are: 

 

o The C language: 

printf ("%lf\n", output_value); 

or 

fprintf (stdout, "%lf\n", output_value); 

o The FORTRAN language: 

write (6,*) output_value 

o The Perl script language: 

print "$output_value\n"; 

o The string “N o r m a l” must be written to the standard error file identifier (stderr in C) to 
signify a normal termination. (See Section 22.1 for an example). 

o The command to use a user-defined program to extract a response is: 
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Command file syntax: 

response response_name { scale_factor offset } command_line 
 
Examples: 

1. The user has an own executable program ”ExtractForce” which is kept in the directory 
$HOME/own/bin. The executable extracts a value from a result output file.  

2. The relevant response definition command must therefore be as follows: 

response ’Force’ "$HOME/own/bin/ExtractForce" 

3. If Perl is to be used to execute the user script DynaFLD2, the command may be:0. 

response ’Acc’ "$LSOPT/perl $LSOPT/DynaFLD2 0.5 0.25 1.833" 

 
Remark: 

1. An alias must not be used for an interface program.0. 

14.13. Responses without metamodels 

In some cases it may be beneficial to create intermediate responses without associated metamodels, but still 
part of a metamodel-based analysis. For example omitting intermediate neural networks will improve 
efficiency. The selection is simply made in a check box in the “Responses” panel (labeled “Not metamodel-
linked”). Except for the metamodel linking, “Results” are identical to “Responses” and can be defined using 
a standard LS-DYNA interface, a mathematical expression or a command for a user-defined program. 

 
Command file syntax: 

result name  string 
result name math_expression 
result name command_line 

 
Remark: 

1. “Results” cannot be included directly in composites, since a composite relies on interpolation from a 
metamodel.0. 

14.14. Matrix operations 

Matrix operations can be performed by initializing a matrix, performing multiple matrix operations, and 
extracting components of the matrix as response functions or results.  
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There are two functions available to initialize a matrix, namely Matrix3x3Init and Rotate. Both 
functions create 3×3 matrices.  

 

The component of a matrix is extracted using the format A.aij (or the 0-based A[i-1][j-1]) e.g. 
Strain.a23 (or Strain[1][2]) where i and j are limited to 1,2 or 3.  

 

The matrix operation A – I (where I is the unit matrix) is coded as A-1. 

 
Command file syntax: 

matrix name math_expression 

 
Examples: 
 

In the following example the user constructs a matrix from scalar results, performs matrix operations and 
uses the final matrix components in an optimization run: 

 
Constant 'X2' 0.0  
Constant 'Y2'  0.0 
Constant 'Z2' -1.0 
Constant 'X3'  0.0 
Constant 'Y3'  0.0 
Constant 'Z3'  8.0 
$ 
$                      Extract results 
$ 
  result 'Fd11_2' "D3PlotResponse -setid 10 -tref 0.04 -coord 0 -1.858 1.858  
-res_type misc -cmp history_var#11 -select TIME -end_time 0.04" 
  result 'Fd12_2' "D3PlotResponse -setid 10 -tref 0.04 -coord 0 -1.858 1.858  
-res_type misc -cmp history_var#14 -select TIME -end_time 0.04" 
  result 'Fd13_2' "D3PlotResponse -setid 10 -tref 0.04 -coord 0 -1.858 1.858  
-res_type misc -cmp history_var#17 -select TIME -end_time 0.04" 
  result 'Fd21_2' "D3PlotResponse -setid 10 -tref 0.04 -coord 0 -1.858 1.858  
-res_type misc -cmp history_var#12 -select TIME -end_time 0.04" 
  result 'Fd22_2' "D3PlotResponse -setid 10 -tref 0.04 -coord 0 -1.858 1.858  
-res_type misc -cmp history_var#15 -select TIME -end_time 0.04" 
  result 'Fd23_2' "D3PlotResponse -setid 10 -tref 0.04 -coord 0 -1.858 1.858  
-res_type misc -cmp history_var#18 -select TIME -end_time 0.04" 
  result 'Fd31_2' "D3PlotResponse -setid 10 -tref 0.04 -coord 0 -1.858 1.858  
-res_type misc -cmp history_var#13 -select TIME -end_time 0.04" 
  result 'Fd32_2' "D3PlotResponse -setid 10 -tref 0.04 -coord 0 -1.858 1.858  
-res_type misc -cmp history_var#16 -select TIME -end_time 0.04" 
  result 'Fd33_2' "D3PlotResponse -setid 10 -tref 0.04 -coord 0 -1.858 1.858  
-res_type misc -cmp history_var#19 -select TIME -end_time 0.04" 
$ 
$                      Matrix expressions 
$ 
$           1. Initialization 
$ 
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  matrix 'Fd_2' 
   
{Matrix3x3Init(Fd11_2,Fd12_2,Fd13_2,Fd21_2,Fd22_2,Fd23_2,Fd31_2,Fd32_2,Fd33_2)} 
  matrix 'Fs_2' 
   
{Matrix3x3Init(Fs11_2,Fs12_2,Fs13_2,Fs21_2,Fs22_2,Fs23_2,Fs31_2,Fs32_2,Fs33_2)} 
  matrix 'R_2' {Rotate(0, -1.858, 1.858,  X2,Y2,Z2,  X3,Y3,Z3)} 
$ 
$           2. Matrix operations 
$ 
$              Updated deformation gradient Fs 
  matrix 'FSD_2' {Fs_2 * inv (Fd_2)} 
$              Updated Lagrange strain using Fs and Fd 
  matrix 'epsGlobal_2' {.5 * ( tr ( FSD_2 ) * FSD_2  -  1  )} 
$              Tensor transformation to local coordinates 
  matrix 'epsCyl_2' {tr(R_2) * epsGlobal_2 * R_2} 
$ 
$           3. Extract matrix components as response surfaces 
$ 
  response 'Ell_2' expression {epsCyl_2.a11} 
  response 'Ecc_2' expression {epsCyl_2.a33} 
  response 'Elc_2' expression {epsCyl_2.a13} 
  response 'Elr_2' expression {epsCyl_2.a12} 
  response 'Ecr_2' expression {epsCyl_2.a32} 

14.14.1. Initializing a matrix 

The command to initialize the matrix: 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣
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333231

232221

131211

aaa
aaa
aaa

 

is: 

 
Matrix3x3Init(a11,a12,a13,  a21,a22,a23,  a31,a32,a33) 
 

where aij is any previously defined variable (typically a response or result).  

14.14.2. Creating a rotation matrix using 3 specified points 

The command is: 

 
Rotate(x1,y1,z1,  x2,y2,z2,  x3,y3,z3) 
 

where the three triplets represent points 1, 2 and 3 in 3-dimensional space respectively.  

o The vector v23 connecting points 2 and 3 forms the local X direction.  

o Z = v23 × v21  
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o Y = Z × X  

The vectors X, Y and  Z are normalized to x , y  and z  which are used to form an orthogonal matrix: 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=
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321

321

zzz
yyy
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T

 

where .ITT T =  

14.15. Injury criteria 

All of the injury criteria were developed according to the specification in [33].  

Injury criteria must be defined as responses.  

The shaded rows in the tables below indicate obligatory arguments. 

For the Head Injury Criteria (HIC) and Chest Severity Index see Section 14.21.  

14.16. Head Injury Criteria 

14.16.1. HIC 

See Section 14.21. 

14.17. Neck Criteria 

14.17.1. MOC 

MOC is the abbreviation for total Moment about Occipital Condyle. The criterion for the Total Moment 
calculates the total moment in relation to the moment measurement point. 
 
The Total Moment MOC value for the Upper-Load-Cell is calculated as follows 

)( FDMMOC ⋅−=  
 

with MOC   Total moment [Nm] 
 F   Neck axial force resultant [N] 
 M   Neck s-moment resultant [Nm] 
 D   Distance between the force sensor axis and the Condyle axis, 

depends on the dummy type. 
 
Expression syntax: 
 
MOC (force, moment [, dummy_type, length_units, force_units, distance]) 
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Table 14-13: Options for MOC arguments 

Argument name Description Symbol LS-OPT type Default 
force Neck axial force 

resultant 
F History  

moment Neck s-moment 
resultant 

M History  

dummy_type Dummy type - See Table 14-14 HYBRID3M50
length_units Length units - LENG_M, 

LENG_MM 
LENG_MM 

force_units Force units - FORCE_N, 
FORCE_KN 

FORCE_N 

distance Distance D Float See Table 
14-14 

 

Table 14-14: Input constants for various dummy types 

Dummy type Description D[m] 
HYBRID3M95 Hybrid III, male 95% 0.01778 
HYBRID3M50 Hybrid III, male 50% 0.01778 
HYBRID3F05 Hybrid III, female 5% 0.01778 
HYBRID310Y Hybrid III, 10-year 0.01778 
HYBRID306Y Hybrid III, 6-year 0.01778 
HYBRID303Y Hybrid III, 3-year 0 
CRABI1218M Crabi 12, 18 month 0.00584 
TNOP1 TNO P1,5 0.0247 
CRABI6M Crabi 6 month 0.0102 
TNOP3 TNO P 3/4, P3 0 
ES2 ES-2 0 
TNOQ TNO Q series 0 
SID2S SID-IIs 0.01778 
BIORID BioRID 0.01778 
WORLDSID WORLDSID 0.0195 

 
Example: 
 
response 'MOC_HYBRID3M50' expression {MOC ("axial(t)", "moment_S(t)", 
HYBRID3M50, LENG_MM, FORCE_N)} 
response 'MOC_HYBRID3M50_D' expression {MOC ("axial(t)", "moment_S(t)", 
HYBRID3M50, LENG_MM, FORCE_N, 0.01778)} 
response 'MOC_HYBRID3M95' expression {MOC ("axial(t)", "moment_S(t)", 
HYBRID3M95, LENG_MM, FORCE_N)} 
response 'MOC_HYBRID3F05' expression {MOC ("axial(t)", "moment_S(t)", 
HYBRID3F05, LENG_MM, FORCE_N)} 
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14.17.2. NIC (rear impact) 

NIC is the abbreviation for Neck Injury Criterion. 
LS-OPT calculates the NIC value specified for rear impact. 
The NIC value is calculated with the following formula: 

22.0 relativerelative vaNIC +⋅=  
with TI Head

relative x xa a a= −  relative x-acceleration 

 ∫= relativerelative av   
 
Expression syntax: 
 
NIC (accel_t, accel_h [, time_units, length_units] ) 
 

Table 14-15: Options for NIC arguments 

Argument name Description Symbol LS-OPT type Default 
accel_t x-acceleration of 

first thorax spine 
TI
xa  History  

accel_h x-acceleration at 
the height of the 
c.o.g. of the head 

Head
xa  History  

time_units Time units - TIME_S 
TIME_MS 

TIME_S 
 

length_units Length units - LENG_M 
LENG_MM 

LENG_MM 

 
Example: 
response 'NIC' expression {NIC ("x_accel_t(t)","x_accel_h(t)",TIME_S,LENG_MM)} 
 

14.17.3. Nij (Nce, Ncf, Nte, Ntf) 

Nij is the abbreviation for Normalized Neck Injury Criterion and is the four neck criterion Nte (tension-
expression), Ntf (tension-flexion), Nce (compression-extension) and Ncf (compression-flexion).  
The Nij value is the maximal value of Nte, Ntf, Nce, Ncf. 
The Nij value is calculated with the following formula 

cc M
MOC

F
FNIJ +=  

with F  Force at the point of transition from head to neck (t-shear resultant) 
 cF   Critical force (depending on dummy type) 
 MOC  Total Moment (see MOC, section 14.17.1) 
 cM  Critical moment (depending on dummy type) 
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Expression syntax: 
Nij (force,moment,shear [,dummy_type, length_units, force_units, 
c_force_tension, c_force_compression, c_moment_flexion, 
c_moment_extension, distance]) 
 

Table 14-16: Options for Nij arguments 

Argument name Description Symbol LS-OPT 
type 

Default 

force Neck axial force 
resultant 

See MOC History  

moment Neck s-moment 
resultant 

See MOC History  

shear Force at the point of 
transition from head 
to neck 

F History  

dummy_type Dummy type - See Table 
14-17 

HYBRID3M50 

length_units Length units - LENG_M, 
LENG_MM 

LENG_MM 

force_units Force units - FORCE_N, 
FORCE_KN 

FORCE_N 

c_force_tension Critical force 
tension 

cF  Float See Table 14-17 

c_force_compression Critical force 
compression 

cF  Float See Table 14-17 

c_moment_flexion Critical moment 
flexion 

cM  Float See Table 14-17 

c_moment_extension Critical moment 
extension 

cM  Float See Table 14-17 

distance Distance D (See 
MOC) 

Float See Table 14-17 

 
 
 
 
 
 
 

Table 14-17: Input constants for various dummy types 

Dummy type Description Test FC [N] 
Tension 

FC [N] 
Compression 

MC 
[Nm] 
Flexion 

MC [Nm] 
Extension 

HYBRID3M50 Hybrid III; In 6806 -6160 310 -135 
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male 50% position 
HYBRID3F05 Hybrid III; 

female 5% 
In 
position 

4287 -3880 155 -67 

HYBRID3F05 Hybrid III; 
female 5% 

Out of 
position 

3880 -3880 155 -61 

HYBRID310Y Hybrid III;  
6-year 

Out of 
position 

2800 -2800 93 -37 

HYBRID306Y Hybrid III; 
3-year 

Out of 
position 

2120 -2120 68 -27 

HYBRID303Y Hybrid III; 
12 month 

Out of 
position 

1460 -1460 43 -17 

 
Example: 
response 'Nij_HYBRID3M50' expression {Nij 
("axial(t)","moment_S(t)","shear_T(t)",HYBRID3M50,LENG_MM,FORCE_N)} 
 response 'Nij_HYBRID3M50_const' expression {Nij 
("axial(t)","moment_S(t)","shear_T(t)",,LENG_MM,FORCE_N,6806,6160,310,135,0.01778)} 
 response 'Nij_HYBRID3F05' expression {Nij 
("axial(t)","moment_S(t)","shear_T(t)",HYBRID3F05,LENG_MM,FORCE_N)} 
 response 'Nij_HYBRID3F05_const' expression {Nij 
("axial(t)","moment_S(t)","shear_T(t)",,LENG_MM,FORCE_N,4287,3880,155,67,0.01778)} 
 response 'Nij_HYBRID3F05_oop' expression {Nij 
("axial(t)","moment_S(t)","shear_T(t)",HYBRID3F05_OOP,LENG_MM,FORCE_N)} 
 response 'Nij_HYBRID3_6Y' expression {Nij 
("axial(t)","moment_S(t)","shear_T(t)",HYBRID306Y,LENG_MM,FORCE_N)} 
 response 'Nij_HYBRID3_3Y' expression {Nij 
("axial(t)","moment_S(t)","shear_T(t)",HYBRID303Y,LENG_MM,FORCE_N)} 
 

14.17.4. Nkm (Nfa, Nea, Nfp, Nep) 

Nkm corresponds to the four neck criteria Nfa (flexion-anterior), Nea (extension-anterior), Nfp (flexion-
posterior) and Nep (extension-posterior). 
The Nkm value is calculated with the following formula, [34]: 

intint

)()()(
M

tMOC
F

tFtNkm +=  

with F  Force at the point of transition from head to neck (axial force resultant) 
 intF  Critical force 
 MOC  Total Moment (see MOC, section 14.17.1) 
 intM  Critical moment 
 
 
Expression syntax: 
Nkm (force, moment [, dummy_type, length_units, force_units, criteria_type, distance, 
critical_force, critical_moment]) 
 

Table 14-18: Options for Nkm arguments 
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Argument 
name 

Description Symbol LS-OPT type Default 

force Neck axial 
force 
resultant 

F History  

moment Neck s-
moment 
resultant 

See 
MOC 

History  

dummy_type Dummy 
type 

- See Table 14-13 (MOC) HYBRID3M50 

length_units Length 
units 

- LENG_M, LENG_MM LENG_MM 

force_units Force units - FORCE_N, FORCE_KN FORCE_N 
criteria_type Nfa, Nea, 

Nfp, Nep 
- FLEXION_ANTERIOR 

EXTENSION_ANTERIOR 
FLEXION_POSTERIOR 
EXTENSION_POSTERIOR

FLEXION_ANTERIOR 
 

distance Distance D (See 
MOC) 

Float See Table 14-13 (MOC) 

critical_force Critical 
force 

intF  Float See Table 14-13 

critical_moment Critical 
moment 

intM  Float See Table 14-13 

Table 14-19: Input constants 

Criteria Description Value 
*_ANTERIOR Positive Shear Fint  845 N 
*_POSTERIOR Negative Shear Fint -845 N 
FLEXION_* Flexion Mint 88.1 Nm 
EXTENSION_* Extension Mint -47.5 Nm 

 
Example: 
 
response 'Nea_HYBRID3M50' expression {Nkm 
("axial(t)","moment_S(t)",HYBRID3M50,LENG_MM,FORCE_N,EXTENSION_ANTERIOR)} 
 response 'Nep_User' expression {Max ("Nep_curve_User(t)",,)} 
 response 'Nep_HYBRID3M50' expression {Nkm 
("axial(t)","moment_S(t)",HYBRID3M50,LENG_MM,FORCE_N,EXTENSION_POSTERIOR)} 
 response 'Nfa_User' expression {Max ("Nfa_curve_User(t)",,)} 
 response 'Nfa_HYBRID3M50' expression {Nkm 
("axial(t)","moment_S(t)",HYBRID3M50,LENG_MM,FORCE_N,FLEXION_ANTERIOR)} 
 response 'Nfp_User' expression {Max ("Nfp_curve_User(t)",,)} 
 response 'Nfp_HYBRID3M50' expression {Nkm 
("axial(t)","moment_S(t)",HYBRID3M50,LENG_MM,FORCE_N,FLEXION_POSTERIOR)} 
 response 'Nfp_HYBRID3M50_const_D' expression {Nkm 
("axial(t)","moment_S(t)",HYBRID3M50,LENG_MM,FORCE_N,FLEXION_POSTERIOR,0.01778)} 
 response 'Nfp_HYBRID3M50_const_F_M' expression {Nkm 
("axial(t)","moment_S(t)",HYBRID3M50,LENG_MM,FORCE_N,FLEXION_POSTERIOR,,-845,88.1)} 
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14.17.5. LNL 

LNL is the abbreviation for the Lower Neck Load Index. 
The LNL value is calculated with the following formula: 

tension

z

shear

xy

moment

xy

C
offF

C
FF

C
MM

LNL +
+

+
+

+
=

2222

 

with yM  s-Moment resultant 
 xM  Torsional resultant 
 momentC  Critical moment 
 xF  s-Shear resultant 
 yF  Axial force resultant 
 shearC  Critical force 
 zF  t-Shear resultant 
 tensionC  Critical force 
 off  offset to include pre-load, depends on dummy position 
 
Expression syntax: 
LNL (axial_force, s_shear, t_shear, s_moment, torsion [, length_units, 
force_units, critical_moment, critical_shear, critical_tension]) 

Table 14-20: Options for LNL arguments 

Argument name Description Symbol LS-OPT 
type 

Default 

axial_force Axial force 
resultant 

yF  History  

s_shear s-Shear resultant xF  History  
t_shear t-Shear resultant zF  History  
s_moment s-Moment resultant yM  History  
torsion Torsional resultant xM  History  
length_units Length units - LENG_M, 

LENG_MM 
LENG_MM 

force_units Force units - FORCE_N, 
FORCE_KN 

FORCE_N 

critical_moment Critical moment momentC  Float 
See  

 

Table 14-21 
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critical_shear Critical force shearC  Float 
See  

 

Table 14-21 
critical_tension Critical force tensionC  Float 

See  

 

Table 14-21 

 

 

Table 14-21: Input constants 

Force/Moment Description Value 
Cmoment Critical moment 15 [Nm] 
Cshear Critical force 250 [N] 
Ctension Critical force 900 [N] 

 
Example: 
response 'LNL_BIORID2' expression {LNL 
("axial(t)","s_Shear(t)","t_Shear_180(t)","moment_S(t)","Torsion(t)",BIORID2,LENG_MM,F
ORCE_N)} 
 response 'LNL_const_BIORID2' expression {LNL 
("axial(t)","s_Shear(t)","t_Shear_180(t)","moment_S(t)","Torsion(t)", 
,LENG_MM,FORCE_N,15,250,900)} 

14.18. Chest Criteria 

14.18.1. Chest compression 

Maximum relative rotation multiplied by a constant: 

)]([max1 tC
t

Θ  

Expression syntax: 

ChestCompression ( relative_rotation, dummy_type, user_constant ) 

Table 14-22: Options for Chest Compression arguments 

Argument name Description Symbol LS-OPT type Default 
relative_rotation relative rotation history )(tΘ  History  
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dummy_type dummy type - HYBRID3M95 
HYBRID3M50 
HYBRID3F05 

HYBRID3M50 
 

constant Multiplier C1 Float See Table 
14-23 

 
 
 
 
 

Table 14-23: Input constants for various dummy types 

Dummy type Description Scaling factor C1 
HYBRID3M95 Hybrid III; male 95% 130.67 
HYBRID3M50 Hybrid III; male 50% -139.0 
HYBRID3F05 Hybrid III; female 5% -87.58 

 
Remarks: 

1. The history relative_rotation )(tΘ must be in double quotes. 

2. The user is responsible for any required filters of the input history.0. 

Examples: 
 
response 'CC_HYBRID3M50_alt' expression {-139 * Max( "a(t)" ) } 
response 'CC_HYBRID3M50_139' expression {ChestCompression ("a(t)", HYBRID3M50, 
-139 )} 
response 'CC_HYBRID3M50' expression {ChestCompression ( "a(t)", HYBRID3M50 )} 
response 'CC_HYBRID3M95' expression {ChestCompression ( "a(t)", HYBRID3M95 )} 

14.18.2. Viscous criterion (VC) 

VC is an injury criterion for the chest area. The VC value [m/s] is the maximum crush of the momentary 
product of the thorax deformation speed and the thorax deformation. Both quantities are determined by 
measuring the rib deflection (side impact) or the chest deflection (frontal impact). The formula is: 

 

dt
tdYCtYC

C
C )()(min 33

2

1−  

Expression syntax: 

ViscousCriterion ( history_name, [dummy_type, time_units, length_units, scaling_factor, 
deformation_constant, user_constant] ) 

Table 14-24: Options for Viscous Criterion arguments 
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Argument name Description Symbol LS-OPT type Default 
history_name Thoracic deformation 

(m) 
Y(t) History  

dummy_type Dummy type  ̶ See Table 2 HYBRID3M50
time_units Time units - TIME_S 

TIME_MS 
TIME_S 
(seconds) 

length_units Length units - LENG_M 
LENG_MM 

LENG_MM 
(mm) 

scaling_factor Scaling factor 
(multiplier) 

C1 Float See  
Table 14-25 

deformation_constant Constant: Depth or 
width of half the rib cage 
(m) 

C2 Float See  
Table 14-25 

user_constant Multiplier of thoracic 
deformation 

C3 Float 1.0 

Table 14-25: Input constants for various dummy types 

Dummy type Description Scaling factor Deformation 
constant (m) 

HYBRID3M95 Hybrid III; male 95% 1.3 0.254 
HYBRID3M50 Hybrid III; male 50% 1.3 0.229 
HYBRID3F05 Hybrid III; female 5% 1.3 0.187 
BIORID2 BioSID 1.0 0.175 
EUROSID1 EuroSID-1 1.0 0.140 
EUROSID2 EuroSID-2 1.0 0.140 
SID2S SID-IIs 1.0 0.138 

 
Remarks: 

1. The history name should be provided in double quotes. 

2. The derivative is computed using the 4th order (template size = 5) finite difference approximation: 

)(
12

88
d
d 42112 hO

h
ffff

t
f iiii +

−+−
= ++−−  

 where h is the time interval between the single measurements. 

3. The user is responsible for any required filters of the input history.0. 

 
Examples: 
 
response 'VC_HYB3M50' expression {ViscousCriterion ( "a(t)" )} 
response 'VC_HYB3M50' expression {ViscousCriterion ( "a(t)", HYBRID3M50, 
TIME_S, LENG_MM )} 
response 'VC_HYB3M50_C2_229' expression {ViscousCriterion ( "a(t)",, TIME_S, 
LENG_MM, 1.3, .229  )} 
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response 'VC_HYB3M50_C3_10' expression {ViscousCriterion ( "a(t)", HYBRID3M50, 
TIME_S,  LENG_MM,,, 10 )} 
response 'VC_HYB3M95' expression {ViscousCriterion ( "a(t)", HYBRID3M95, 
TIME_S, LENG_MM )} 
response 'VC_HYB3M50_C2_254' expression {ViscousCriterion ( "a(t)",, TIME_S, 
LENG_MM, 1.3 , .254  )} 
response 'VC_HYB3F05' expression {ViscousCriterion ( "a(t)", HYBRID3F05, 
TIME_S, LENG_MM )} 
response 'VC_HYB3M50_C2_187' expression {ViscousCriterion ( "a(t)",, TIME_S, 
LENG_MM, 1.3 , .187  )} 
response 'VC_BIORID2' expression {ViscousCriterion ( "a(t)", BIORID2, TIME_S, 
LENG_MM )} 

14.18.3. Thoracic Trauma Index (TTI) 

TTI is the abbreviation for Thoracic Trauma Index (Thorax Trauma Index). 
The TTI value is calculated using the following formula: 

2
).().(max spinelwrAribATTI +

=  

)}.(),.(max{).(max riblwrAribuprAribA =  
 
with ).( ribuprA  Maximum y-acceleration of the upper rib 
 ).( riblwrA  Maximum y-acceleration of the lower rib 
 ).( spinelwrA  Maximum y-acceleration of the lower spine 
The result is divided by the gravitational acceleration g. 
 
Expression syntax: 
TTI (accel_upper_rib, accel_lower_rib, accel_lower_spine, time_units, 
length_units, gravity) 
 

Table 14-26: Options for TTI arguments 

Argument name Description Symbol LS-OPT 
type 

Default 

accel_upper_rib y-acceleration of 
the upper rib 

).( ribuprA  History  

accel_lower_rib y-acceleration of 
the lower rib 

).( riblwrA  History  

accel_lower_spine y-acceleration of 
the lower spine 

).( spinelwrA History  

time_units Time units - TIME_S 
TIME_MS 

TIME_S 
 

length_units Length units - LENG_M, 
LENG_MM 

LENG_MM 

gravity Gravitational 
acceleration 

g Float Depends on 
time_units 
and length_units. 
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9810 
mm/s2 if units 
undefined 

 
Example: 
response 'TTI_' expression {TTI 
("accel_upper_rib(t)","accel_lower_rib(t)","accel_lower_spine(t)",TIME_S,LENG_MM)} 
response 'TTI_gravity' expression {TTI 
("accel_upper_rib(t)","accel_lower_rib(t)","accel_lower_spine(t)",,,9810)} 

14.19. Criteria for the Lower Extremities 

14.19.1. Tibia Index (TI) 

TI is the abbreviation for the Tibia Index. 
The calculation of the TI value in based on the equation 

CC F
F

M
MTI +=  

22 )()( yx MMM +=  

with yxM /  Bending moments [Nm] (torsional resultant, s-moment resultant) 
 CM  Critical bending moment 
 F  Axial compression [kN] (t-shear resultant) 
 CF  Critical compression force 
 
Expression syntax: 
 
TibiaIndex (torsion, s_moment, t_shear, dummy_type, length_units, 
force_units, critical_moment, critical_force) 
 

Table 14-27: Options for TI arguments 

Argument name Description Symbol LS-OPT 
type 

Default 

torsion Bending moment, 
torsional resultant 

xM  History  

s_moment Bending moment, 
s-moment resultant 

yM  History  

t_shear Axial compression, 
t-shear resultant 

F  History  

dummy_type Dummy type - See Table 
14-28  

HYBRID3M50 

length_units Length units - LENG_M, 
LENG_MM 

LENG_MM 
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force_units Force units - FORCE_N, 
FORCE_KN 

FORCE_N 

critical_moment Critical bending 
moment 

CM  Float See Table 14-28 

critical_force Critical 
compression force 

CF  Float See Table 14-28 

Table 14-28: Input constants for various dummy types 

Dummy type Description Critical bending 
moment [Nm] 

Critical compression 
force [kN] 

HYBRID3M95 Hybrid III, male 95% 307.0 44.2 
HYBRID3M50 Hybrid III, male 50% 225.0 35.9 
HYBRID3F05 Hybrid III, female 5% 115.0 22.9 

 
Example: 
response 'TI_HYBRID3M50' expression {TibiaIndex 
("Torsion(t)","moment_S(t)","shear_T(t)",HYBRID3M50,LENG_MM,FORCE_N)} 
response 'TI_HYBRID3M95' expression {TibiaIndex 
("Torsion(t)","moment_S(t)","shear_T(t)",HYBRID3M95,LENG_MM,FORCE_N)} 
response 'TI_HYBRID3F05' expression {TibiaIndex 
("Torsion(t)","moment_S(t)","shear_T(t)",HYBRID3F05,LENG_MM,FORCE_N)} 
 response 'TI_HYBRID3F05_const' expression {TibiaIndex 
("Torsion(t)","moment_S(t)","shear_T(t)",HYBRID3F05,LENG_MM,FORCE_N,115,22.9)} 

14.20. Additional Criteria 

14.20.1. A3ms 

The smallest resultant acceleration level maintained for 3 ms. trΔ is computed as the level of 
222 zyxr &&&&&& ++=  exceeded for the specified time interval tΔ (default = 3ms). The resulting acceleration 

level is divided by the gravitational acceleration, g. 

 

Expression syntax: 

A3ms ( accel_x, [ accel_y, accel_z, time_units, length_units, 
time_interval, gravity ] )  

 

Table 14-29: Options for a3ms arguments 

Argument name Description Symbol LS-OPT type Default 
accel_x x-acceleration history x&&  History  
accel_y y-acceleration history y&&  History no history 
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accel_z z-acceleration history z&&  History no history 
time_units Time units - TIME_S 

TIME_MS 
TIME_S (seconds) 

length_units Length units - LENG_M 
LENG_MM 

LENG_MM 
(mm) 

time_interval Time interval for which the 
acceleration is exceeded  

tΔ  Float 0.003 s 

gravity Gravitational acceleration g Float Depends on time_units 
and length_units. 9810 
mm/s2 if units undefined 

 
Remarks: 

1. Accel_y ( y&& ) and accel_z ( z&& ) are optional. 

2. The user is responsible for any required filters of the input history.0. 

 
Examples: 
 
response 'AMS_3ms_9810' expression {A3ms ( "ax(t)", "ay(t)", "az(t)", 0.003, 
9810. )} 
response 'AMS_default' expression {A3ms ( "ax(t)", "ay(t)", "az(t)" )} 
response 'AMS_default_reorder' expression {A3ms("ay(t)","az(t)", "ax(t)")} 
response 'AMS_3ms' expression {A3ms ( "ax(t)","ay(t)","az(t)",0.003 )} 
response 'AMS_x_y' expression {A3ms ( "ax(t)", "ay(t)" )} 
response 'AMS_x' expression {A3ms ( "ax(t)" )} 
response 'AMS_x_10ms' expression {A3ms ( "ax(t)", _ , _ , .01 )} 
response 'AMS_file' expression {A3ms ( "hfile(t)",,,0.004, 9810. )} 
 

14.21. Binout injury criteria 

Injury criteria such as HIC can be specified as the result component. The acceleration components will be 
extracted, the magnitude computed, and the injury criteria computed from the acceleration magnitude 
history. 

 
 
 
 
Command file syntax: 

BinoutResponse {history_options}  –cmp cmp {–gravity gravity  
–units units} 

 
Item Description Default 
history_options All available history options including filtering and slicing. - 
cmp HIC15, HIC36, CSI,CLIP3M,CLIP3M_3NODE - 
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lengthunits METER=meter MM=millimeter METER 
units S=seconds MS=milliseconds S 

 
Note: 

1. The length and time units are used to compute the gravity value based on 9.81 m/s20. 

 
 
Example: 
response 'HIC_ms' 1 0 "BinoutResponse -res_type Nodout -cmp HIC15 –lengthunits 
MM -units MS -name RAIL15" 

14.22. Virtual history 

Each history curve can be pointwise (at each sampled time-step) approximated using metamodels. These 
approximations of the entire history curves in time-domain are called virtual histories. These history 
approximations are used to study the influence of changes in the variables as well as for parameter 
identification problems. The approximation of histories is enabled by setting the “Approximate Histories” 
flag on the sampling page as shown in Figure 14-5. The user can approximate the data using either linear or 
quadratic polynomials or by radial basis functions. The approximations are carried out on the sampling 
points used for response approximations. While the approximation models for the histories and responses 
can be different, the number and location of sampling points remain the same such that all options for 
history approximation may not be suitable depending on the number of available data points, for example, if 
the response sampling is linear polynomial the number of points sampled would not be sufficient to 
approximate the histories using a quadratic polynomial and that option should be avoided. It is also 
important to note that approximation of histories may take significantly long as approximations at thousands 
of time-steps are carried out. For more information on the metamodeling, we refer the user to Chapter 13. 
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Figure 14-5 Setting flag to create virtual histories. 

Command file syntax: 

solver approximate history {linear|quadratic|RBF} 

 
Example: 
solver approximate history RBF 
 
Remarks: 

1. It is assumed that the each history curve has the same number of time-steps for all points.  

2. For sequential strategies, all points sampled so far would be used for creating RBF approximations, 
whereas only the points sampled in the current iteration are used for polynomial approximations.0. 

14.23. REFERENCES 

[33] Data Processing Vehicle Safety Work Group  ̶  Crash Analysis Criteria Description. Version 2.1.1 
Arbeitskreis Messdatenverarbeitung Fahrzeugsicherheit, May 2008. 

[34] K.-U. Schmitt, M. Muser, How to calculate the Nkm , Working Group on Accident Mechanics, 
Zürich, 2003
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15. Composite Functions 

Composite functions can be used to combine response surfaces and variables as well as other composites. 
The objectives and constraints can then be constructed using the composite functions. 

15.1. Introduction 

15.1.1.  Composite vs. response expressions 

There is an important distinction between response expressions and composites. This distinction can have a 
major impact on the accuracy of the result. Response expressions are converted to response surfaces after 
applying the expression to the results of each sampling point in the design space. Composites, on the other 
hand, are computed by combining response surface results. Therefore the response expression will always 
be of the same order as the chosen response surface order while the composite can assume any complexity 
depending on the formula specified for the composite (which may be arbitrary). 

 

Example: If a response function is defined as f(x, y) = xy and linear response surfaces are used, the response 
expression will be a simple linear approximation ax + by whereas a composite expression specified as xy 
will be exact. 

 

There are three types of composites: 

15.2. Expression composite 

15.2.1. General expressions 

A general expression can be specified for a composite. The composite can therefore consist of constants, 
variables, dependent variables, responses and other composites (see Appendix D). 

15.2.2. Special expressions 

There are two special functions for composites namely MeanSqErr  for ordinate-based curve matching and 
CurveMapSegment3 for curve mapping (see Section 15.6).  
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15.3. Standard composite 

15.3.1. Targeted composite (square root of MSE) 

This is a special composite in which a target is specified for each response or variable. The composite is 
formulated as the ‘distance’ to the target using a Euclidean norm formulation. The components can be 
weighted and normalized. 
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where σ and χ are scale factors and W and ω are weight factors. These are typically used to formulate a 
multi-objective optimization problem in which F is the distance to the target values of design and response 
variables. 

 

A suitable application is parameter identification. In this application, the target values Fj are the 
experimental results that have to be reproduced by a numerical model as accurately as possible. The scale 
factors σj and χi are used to normalize the responses. The second component, which uses the variables can 
be used to regularize the parameter identification problem. Only independent variables can be included. See 
Figure 15-1 for an example of a targeted composite response definition. 

 

In the GUI this type is now selected as the “Root MSE” type. 

15.3.2. Mean squared error composite 

This special composite is the same as the targeted composite, except that the square root operation is 
omitted. This allows for composites to be added to make a larger composite (similar to the vector ordinate-
based MeanSqErr composite in Section 15.6.1). 

15.3.3. Weighted composite 

Weighted response functions and independent variables are summed in this standard composite. Each 
function component or variable is scaled and weighted. 
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      (15-2) 

These are typically used to construct objectives or constraints in which the responses and variables appear in 
linear combination. 

 

The expression composite is a simple alternative to the weighted composite. 
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Remarks: 

1. An expression composite can be a function of any other composite. 

2. An objective definition involving more than one response or variable requires the use of a composite 
function. 

3. In addition to specifying more than one function per objective, multiple objectives can be defined 
(see Section 16.2).0. 

 

Figure 15-1: Definition of targeted (Root MSE) composite response in LS-OPTui 

15.4. Defining the composite function 

This command identifies the composite function. The type of composite is specified as weighted, 
targeted or expression. The expression composite type does not have to be declared and can simply 
be stated as an expression. 

 

Command file syntax: 

composite composite_name type [standardMSE|targeted|weighted] 
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Example: 
composite ’Damage’ type targeted 
composite ’Acceleration’ type weighted 

 

The expression composite is defined as follows: 

Command file syntax: 

composite composite_name math_expression 

 

The math_expression is a mathematical expression given in curly brackets (see Appendix D). 

 

The number of composite functions to be employed must be specified in the problem description. 

15.5. Assigning design variable or response  components to the composite 

Command file syntax: 

composite name response response_name value <1> { scale 
scale_factor <1> } 
composite name variable variable_name value { scale 
scale_factor <1> } 

 

The value is the target value for type: targeted and the weight value for the type: weighted. The 
scale_factor is a divisor. 

 

Example: 
composite ’damage’ type targeted 
composite ’damage’ response ’intrusion_3’ 20. scale 30. 
composite ’damage’ response ’intrusion_4’ -35. scale 25. 

for the composite function .
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The equivalent code using the expression composite is: 

 
composite ’damage’ {sqrt(((intrusion_3 - 20)/30)**2 + 
 ((intrusion_4 + 35)/25)**2)} 

 

Example: 
$----- x10 > x9 --------------------------- 
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composite ’C9’ type weighted 
composite ’C9’ variable ’x_9’ -1. 
composite ’C9’ variable ’x_10’ 1. 
constraint ’C9’ 
Lower bound constraint ’C9’ 0. 

for the composite function which defines the inequality x10 > x9. 

 

The equivalent code using the expression composite is: 
$----- x10 > x9 --------------------------- 
composite ’C9’ {x_10 - x_9} 
constraint ’C9’ 
Lower bound constraint ’C9’ 0. 

 

Needless to say, this is the preferable way to describe this composite. 

 

If weights are required for the targeted function, an additional command may be given. 

 

Command file syntax: 

weight weight value <1> 

 

Example: 
composite ’damage’ type targeted 
composite ’damage’ response ’intrusion_3’ 20. 
weight 1.5 
composite ’damage’ response ’intrusion_4’ -35. 

is used to specify ( ) ( ) .35205.1 2
4

2
3 −+−= ffFdamage  

The weight applies to the last specified composite and response. 

15.6. Curve Matching 

15.6.1.  Ordinate-based Curve Matching  

A special function MeanSqErr is provided to compute the Mean Squared Error for the discrepancy 
between two curves: 
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    (15-3) 

It is constructed  so that Gp , p=1, …, P are the values on the target curve G and fp(x) the corresponding 
components of the computed curve f. fp(x) are represented internally by response surface values. x is the 
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design vector. By using the default values, the user should obtain a dimensionless error ε of the order of 
unity. See Section 5.3.1 for more detail. 

Expression syntax: 

MeanSqErr (target_curve, computed_curve,   
[num_regression_points, start_point, end_point,   
weight_type, scale_type, 
weight_value, scale_value, 
weight_curve, scale_curve])  

Table 15-1: MeanSqErr arguments. Arguments in bold are obligatory. 

Argument name Description Symbol LS-OPT Type Default 
target_curve Target Curve 

name 
G(z) History - 

computed_curve Computed 
curve name 

f(x,z) History - 

num_regression_ 
points 

Number of 
regression 
points 

P Int If P < 2 or not specified: use 
number of points in target 
curve between lower limit 
and upper limit  

lower_limit Lower limit 
on z 

zL Float z-Location of first target point 

upper_limit Upper limit on 
z 

zU Float z-Location of last target point 

weight_ type Weighting 
type 

- Reserved option 
name:           
WEIGHTVALUE 
PROPWEIGHT, 
FILEWEIGHT 

WEIGHTVALUE  
(Value=1.0) 

scale_type Scaling type - Reserved option 
name: 
SCALEVALUE, 
PROPSCALE 
MAXISCALE, 
FILESCALE 

MAXISCALE 

weight_value Weight value W Float 1 
scale_value Scale value s Float 1 
weight_curve Weights as a 

function of z 
W(z) History Weight.compositename

scale_curve Scale factors 
as a function 
of z 

s(z) History Scale.compositename 

 

Table 15-2: Options for MeanSqErr arguments 



CHAPTER 15:  14BCOMPOSITE FUNCTIONS 
 

LS-OPT Version 4.3  336 

Syntax Explanation 
WEIGHTVALUE Wi = value. Default = 1.0 
PROPWEIGHT Use a different weight for each curve point p, proportional to the value of |Gp|. This 

method emphasizes the large absolute values of the response. The weights are normalized 
with respect to max |Gp| 

FILEWEIGHT Interpolate the weight from an x-y file: weight vs. z 
SCALEVALUE si = value. Default = 1.0 
MAXISCALE max |Gp|.  
PROPSCALE Use a different scale factor for each curve point, namely |Gp|. 
FILESCALE Interpolate the scale factor from an x-y file: scale vs. z 
 

 

Figure 15-2: Responses panel showing a MeanSqErr selection 

Note: 

1. The MeanSqErr function can only be used as a composite. 

2. Only points within range of both curves are included in Equation (13-3), so P will be automatically 
reduced during the evaluation if there are missing points. A warning is issued in 
WARNING_MESSAGE. 

3. If num_regression_points is unspecified, P equals the number of target points bounded by 
lower_limit and upper_limit. 
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4. The weight curve and scale curve must be predefined histories (see Section 14.1) if they are selected. 
If a weight or scale curve is selected, the name of the curve defaults to 
‘Weight.compositename’ or ‘Scale.compositename’ respectively where compositename 
is the name of the parent composite being defined. 

5. The MeanSqErr composite makes use of response surfaces to avoid the nonlinearity (quadratic 
nature) of the squared error functional. Thus if the response curve f(x) is linear in terms of the design 
variables x, the composite function will be exactly represented. 

6. Empty or underscore (_) arguments will generate default values. 

7. The option names in Table 15-2 are reserved names and cannot be used as variable names. 

8. MeanSqErr composites can be added together to make a larger MSE composite (e.g. for multiple 
test cases).0. 

 

The simplest case, and probably the one used most frequently, is where the user simply defines only the 
target curve and corresponding computed curve (therefore only the first two arguments). In this case all the 
points in the target curve are taken as regression points (provided they have corresponding computed 
points). The simplest target curve that can be defined has only one point.  

 

Examples: 
$ ------ CONSTANTS ------------------------------------------------------------
------ 
 Constant 'Begin' 0.002 
 Constant 'End' 0.008 
 Constant 'numpoints' 4 
$ ------ HISTORIES FROM BINOUT ------------------------------------------------
------ 
 history 'Force1' "BinoutHistory -res_type rcforc -cmp z_force -id 1 -side 
SLAVE" 
 history 'Force2' "BinoutHistory -res_type rcforc -cmp z_force -id 1 -side 
SLAVE" 
 history 'Disp2'  "BinoutHistory -res_type nodout -cmp z_displacement -id 288" 
$ ------ HISTORIES FROM CROSSPLOTS --------------------------------------------
------ 
 history 'Force_Disp_Dflt' expression { Crossplot ("-Disp2", "Force2") } 
 history 'Force_Disp_to_Num' expression { Crossplot ("-Disp2", "Force2", 2) } 
 history 'Force_Disp_to_Beg' expression { Crossplot ("-Disp2", "Force2", 4, 
0.002) } 
 history 'Force_Disp_to_End' expression { Crossplot ("-Disp2", "Force2", 4, 
0.002, End) } 
$ ------ HISTORIES FROM FILES -------------------------------------------------
------- 
 history 'Test1' file "Test1" 
 history 'Test2' file "Test2" 
 history 'Test3' file "Test3" 
 history 'Weight.Weight_Scale_Curves' file "Weight.Weight_Scale_Curves" 
 history 'Scale.Weight_Scale_Curves' file "Scale.Weight_Scale_Curves" 
 history 'Scale.Wt_Scale_Curves2' file "Scale.Weight_Scale_Curves2" 
 history 'Weight_1' file "Weight_1" 
 history 'Scale_1' file "Scale_1" 
 history 'UnitWeight' file "UnitWeight" 
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$ ------ COMPOSITES -----------------------------------------------------------
------- 
 composite 'Constant_weight' { MeanSqErr ( Test1, Force1,4, Begin, 8./1000, 
WEIGHTVALUE, SCALEVALUE, 2.0, 1.0) } 
 composite 'Unit_weight_curve' { MeanSqErr ( Test1, Force1,4, Begin, .008, 
WEIGHTCURVE, SCALEVALUE, 2.0, 1.0, UnitWeight) } 
 composite 'Weight_Scale_Curves' { MeanSqErr ( Test1, Force1, 4, Begin, .008, 
WEIGHTCURVE, SCALECURVE) } 
 composite 'Wt_Scale_Curves2' { MeanSqErr ( Test1, Force1, 4, Begin, .008, 
WEIGHTCURVE, SCALECURVE, _, _,Weight_1 ) } 
 composite 'Wt_Scale_Curves3' { MeanSqErr ( Test1, Force1, 4, Begin,  End, 
WEIGHTCURVE, SCALECURVE, _, _,Weight_1, Scale_1 ) } 
 composite 'Weight_Propscale' { MeanSqErr ( Test1, Force1, 4, Begin,  End, 
WEIGHTCURVE, PROPSCALE , _, _,Weight_1) } 
 composite 'Dfltwt_Scalecurve' { MeanSqErr ( Test1, Force1, 4, Begin, End, , 
SCALECURVE, _, _,Weight_1, Scale_1 ) } 
 composite 'Dfltwt_Propscale' { MeanSqErr ( Test2, Force2, 4, 0.002, , , 
PROPSCALE) } 
 composite 'Dfltwt_Propscale2' { MeanSqErr ( Test2, Force2, 4, , .008, , 
PROPSCALE) } 
 composite 'Unitwt_Unitscale1' { MeanSqErr ( Test1, Force1, numpoints, Begin, 
.008, WEIGHTVALUE , SCALEVALUE) } 
 composite 'Unitwt_Unitscale2' { MeanSqErr ( Test2, Force2, numpoints, Begin, 
.008, WEIGHTVALUE , SCALEVALUE) } 
 composite 'Unitscale' { MeanSqErr ( Test2, Force2, 4, Begin, .008, _  , 
SCALEVALUE) } 
 composite 'Defaults_to_end' { MeanSqErr ( Test2, Force2, 4, Begin, .008) } 
 composite 'Defaults_to_begin' { MeanSqErr ( Test2, Force2, 4, Begin) } 
 composite 'Defaults_to_num' { MeanSqErr ( Test2, Force2, 4) } 
 composite 'Defaults1' { MeanSqErr ( Test1, Force1 ) } 
 composite 'Defaults2' { MeanSqErr ( Test2, Force2 ) } 
 composite 'Defaults3' { MeanSqErr ( Test3, Force_Disp_Dflt )  
 
 

15.6.2. Curve Mapping 

Please refer to Section 5.3.2 for the theory of Curve Mapping. 

Expression syntax: 

CurveMapSegment3 (target_curve, computed_curve)  

 

Table 15-3: CurveMapSegment3  arguments. Arguments in bold are obligatory. 

Argument name Description Symbol LS-OPT Type Default 
target_curve Target Curve 

name 
G(z) History - 

computed_curve Computed 
curve name 

f(x,z) History - 
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Note: 

1. The CurveMapSegment3 function can only be used as a composite. 

2. It is recommended that both curves be filtered before matching to obtain curves which are as noise-
free as possible. This avoids discrepancies in curve length which will affect the result. A general 
history filtering feature is available (see Section 14.1.3). 

 
 
Example: 
 history 'Disp1' "BinoutHistory -res_type nodout  -cmp z_displacement -id 296 " 
 history 'Force1' "BinoutHistory -res_type RCForc -cmp z_force  -id 1  -side SLAVE" 
 history 'F1_vs_d1' expression {Crossplot("-Disp1","Force1")} 
 history 'Test1' "Test1.txt" 
$ 
 composite 'MSE1' {CurveMapSegment3(Test1,F1_vs_d1)} 
$ 
 objective 'MSE1'
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16. Objectives and Constraints 

This chapter describes the specification of objectives and constraints for the design formulation. 

16.1. Formulation 

Multi-criteria optimal design problems can be formulated. These typically consist of the following: 

3. Multiple objectives (multi-objective formulation) 

4. Multiple constraints.0. 

Mathematically, the problem is defined as follows: 

Minimize ( )NF ΦΦΦ ,,, 21 K   

subject to   

mmm UgL
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where F represents the multi-objective function, ( )nii xxx ,,, 21 KΦ=Φ  represent the various objective 
functions and ( )njj xxxgg ,,, 21 K=  represent the constraint functions. The symbols xi represents n design 
variables. 

 

In order to generate a trade-off design curve involving objective functions, more than one objective iΦ  
must be specified so that the multi-objective 
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     (16-1) 

A component function must be assigned to each objective function where the component function can be 
defined as a composite function F (see Section 15.4) or a response function f . The number of objectives, N, 
must be specified in the problem description (see Section 8.2). 
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16.2. Defining an objective function 

This command identifies each objective function. The name of the objective is the same as the component, 
which can be a response or composite. 

 

Command file syntax: 

objective name { weight <1> } 

 

Examples: 
objective ’Intrusion_1’ 
objective ’Intrusion_2’ 2. 
objective ’Acceleration’ 3. 

 

for 

Multi-objective : 
.32

32

321

321

FFF
F

++=
Φ+Φ+Φ=

 

Remarks: 

1. The distinction between objectives is made solely for the purpose of constructing a Pareto-optimal 
curve involving multiple objectives (see Section 4.9).  

2. The selection to create a Pareto Optimal Frontier is done in the Strategy panel (see Section 4.5). 

3. Objectives can be specified in terms of composite functions and/or response functions. 

4. The weight applies to each objective as represented by ωk in Equation (11.1).0. 

The default is to minimize the objective function. The program can however be set to maximize the 
objective function. In LS-OPTui, maximization is activated in the Objective panel. 

 

Command file syntax: 

Maximize  

Example: 
Response ’Mass’ ”DynaMass 3 13 14 16 MASS” 
Maximize 
Objective ’Mass’ 
Constraint ’Acceleration’ 

 

In LS-OPTui, objectives are defined in the Objective panel (Figure 16-1): 
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Figure 16-1: Objective panel in LS-OPTui with maximization selection.  

16.3. Defining a constraint 

This command identifies each constraint function. The constraint has the same name as its component. A 
component can be a response or composite. 

 
Command file syntax: 

constraint constraint_name 

 

Examples: 
history ’displacement_1’ "DynaASCII nodout ’r_disp’ 12789 TIMESTEP 0.0 SAE 
60" 
history ’displacement_2’ "DynaASCII nodout ’r_disp’ 26993 TIMESTEP 0.0 SAE 
60" 
history ’Intrusion’ {displacement_2 - displacement_1} 
response Intrusion_80 {Intrusion(80)} 
constraint ’Intrusion_80’ 

 

Remark: 

1. Constraints can be specified in terms of response functions or composite functions.0. 



CHAPTER 16: 15BOBJECTIVES AND CONSTRAINTS 

LS-OPT Version 4.3  343 

 

In LS-OPTui, constraints are defined in the Constraints panel (Figure 16-2): 

 
Figure 16-2: Constraints panel in LS-OPTui 

16.4. Bounds on the constraint functions 

Upper and lower bounds may be placed on the constraint functions. Additionally, for Reliability Based 
Design Optimization, the probability of exceeding a bound on a constraint can be set. 

 

Command file syntax: 

lower bound constraint constraint_name value <-10+30>  
upper bound constraint constraint_name value <+10+30> 
probability lower bound constraint constraint_name prob_value 
probability upper bound constraint constraint_name 
prob_value 

Example: 
Lower bound constraint ’Stress’ 1.e-6 
Upper bound constraint ’Stress’ 20.2 
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Remark: 

1. A flag can be set to identify specific constraint bounds to define a reasonable design space. For this 
purpose, the move environment must be specified (See Section 13.8).0. 

16.5. Minimizing the maximum response or violation* 

Refer to Section 5.1 for the theory regarding strict and slack constraints. To specify hard (strict) or soft 
(slack) constraints, the following syntax is used: 

 

Command file syntax: 

strict strictness_factor <1> 
slack 

 

Each command functions as an environment. Therefore all lower bound constraint or upper bound constraint 
commands which appear after a strict/slack command will be classified as strict or slack. 

 

In the following example, the first two constraints are slack while the last three are strict. The purpose of the 
formulation is to compromise only on the knee forces if a feasible design cannot be found. 

 
Example: 
$ This formulation minimizes the average knee force but 
$ constrains the forces to 6500. 
$ If a feasible design is not available, the maximum violation 
$ will be minimized. 
$ 
$ Objective: 
$----------- 
composite ’Knee_Forces’ type weighted 
composite ’Knee_Forces’ response ’Left_Knee_Force’ 0.5 
composite ’Knee_Forces’ response ’Right_Knee_Force’ 0.5 
objective ’Knee_Forces’ 
$ 
$ Constraints: 
$------------- 
SLACK 
Constraint ’Left_Knee_Force’ 
Upper bound constraint ’Left_Knee_Force’ 6500. 
$ 
Constraint ’Right_Knee_Force’ 
Upper bound constraint ’Right_Knee_Force’ 6500. 
$ 
STRICT 
Constraint ’Left_Knee_Displacement’ 
Lower bound constraint ’Left_Knee_Displacement’ -81.33 
$ 
Constraint ’Right_Knee_Displacement’ 
Lower bound constraint ’Right_Knee_Displacement’  -81.33 
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$ 
Constraint ’Kinetic_Energy’ 
Upper bound constraint ’Kinetic_Energy’ 154000. 

 

The composite function is explained in Section 15.3. Note that the same response functions appear both 
in the objective and the constraint definitions. This is to ensure that the violations to the knee forces are 
minimized, but if they are both feasible, their average will be minimized (as defined by the composite). 

 

The constraint bounds of all the soft constraints can also be set to a number that is impossible to comply 
with, e.g. zero. This will force the optimization procedure to always ignore the objective and it will 
minimize the maximum response. 

 

In the following example, the objective is to minimize the maximum of ’Left Knee Force’ or ’Right 
Knee Force’. The displacement and energy constraints are strict. 

 

Example: 
$ This formulation minimizes the maximum knee force 
$ Because the knee forces are always positive, 
$ the objective will be ignored and the knee force 
$ minimized 
$ 
$ Objective: 
$----------- 
composite ’Knee_Forces’ type weighted 
composite ’Knee_Forces’ response ’Left_Knee_Force’ 0.5 
composite ’Knee_Forces’ response ’Right_Knee_Force’ 0.5 
objective ’Knee_Forces’ 
$ 
$ Constraints: 
$------------- 
SLACK 
Constraint ’Left_Knee_Force’ 
Upper bound constraint ’Left_Knee_Force’ 0. 
$ 
Constraint ’Right_Knee_Force’ 
Upper bound constraint ’Right_Knee_Force’ 0. 
$ 
STRICT 
Constraint ’Left_Knee_Displacement’ 
Lower bound constraint ’Left_Knee_Displacement’ -81.33 
$ 
Constraint ’Right_Knee_Displacement’ 
Lower bound constraint ’Right_Knee_Displacement’ -81.33 
$ 
Constraint ’Kinetic_Energy’ 
Upper bound constraint ’Kinetic_Energy’ 154000. 
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Remarks: 

1. The objective function is ignored if the problem is infeasible. 

2. The variable bounds of both the region of interest and the design space are always hard. 

3. Soft constraints will be strictly satisfied if a feasible design is possible. 

4. If a feasible design is not possible, the most feasible design will be computed. 

5. If feasibility must be compromised (there is no feasible design), the solver will automatically use the 
slackness of the soft constraints to try and achieve feasibility of the hard constraints. However, there 
is always a possibility that hard constraints must still be violated (even when allowing soft 
constraints). In this case, the variable bounds may be violated, which is highly undesirable as the 
solution will lie beyond the region of interest and perhaps beyond the design space. This could cause 
extrapolation of the response surface or worse, a future attempt to analyze a design which is not 
analyzable, e.g. a sizing variable might have become zero or negative. 

6. Soft and strict constraints can also be specified for search methods. If there are feasible designs with 
respect to hard constraints, but none with respect to all the constraints, including soft constraints, the 
most feasible design will be selected. If there are no feasible designs with respect to hard constraints, 
the problem is ‘hard-infeasible’ and the optimization terminates with an error message.0. 

16.6. Internal scaling of constraints 

Command file syntax: 

Constraint constraint_name scale lower bound value <1.0> 
Constraint constraint_name scale upper bound value <1.0> 

 

Constraints can be scaled internally to ensure normalized constraint violations. This may be important when 
having several constraints and an infeasible solution so that when the maximum violation over the defined 
constraints is minimized, the comparison is independent of the choice of measuring units of the constraints. 
The scale factor sj is applied internally to constraint j as follows: 
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Example: 
Constraint ’Left_Knee_Displacement’ 
Lower bound constraint ’Left_Knee_Displacement’  -81.33 
Constraint ’Left_Knee_Displacement’ scale lower bound 81.33 
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17. Running the Design Task 

This chapter explains simulation job-related information and how to execute a design task from the 
graphical user interface. 

 

The available tasks are optimization, probabilistic evaluation, and repair of an existing job. 

17.1. Optimization 

The optimization process is triggered by the iterate command in the input file or by the Run command 
in the Run panel in LS-OPTui (Figure 17-1). The optimization history is written to the 
OptimizationHistory file and can be viewed using the Viewer panel. 

17.1.1. Number of optimization iterations 

The number of optimization iterations is specified in the appropriate field in the Run panel. If previous 
results exist, LS-OPT will recognize this (through the presence of results files in the Run directories) and 
not rerun these simulations. If the termination criteria described below are reached first, LS-OPT will 
terminate and not perform the maximum number of iterations. 

 

Command file syntax: 

iterate maximum_ number_of_iterations 

 

17.1.2. Optimization termination criteria 

The user can specify tolerances on the design change (Δxi), the objective function change (Δf) and the 
accuracy of the metamodel. The user can also specify whether termination is reached if any one (or 
condition), or all (and condition) of these criteria are met. The default selection is and, but the user can 
modify this by selecting or. 

The tolerance on the metamodel accuracy is based on the change of the prediction accuracy measure (square 
root of the PRESS error). The measure is divided by the mean of the simulated values used to construct the 
response surface unless this mean is zero. The value of the most critical response is used. 

Refer to Section 20.4.1 for the modification of the stopping type in the Command File. 
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Figure 17-1: Run panel in LS-OPTui 

17.2. Probabilistic evaluation 

Both a Monte Carlo and a metamodel-based Monte Carlo evaluation can be scheduled from the user 
interface. The task must be set to the relevant procedure. 

 

Section 12.4 regarding probabilistic evaluation contains more details on the available options. 

 

The results can be viewed using the View panel. The histogram, tradeoff, and covariance plots are pertinent 
to a pure Monte Carlo analysis. For a metamodel-based Monte Carlo evaluation, the accuracy, ANOVA, 
and stochastic contribution plots are relevant in addition to the histogram, tradeoff, and covariance plots. 

 

The LS-DYNA results can be investigated for possible bifurcations using the tools described in chapter 21. 
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17.3. Restarting 

When a solution is interrupted (through the Stop button) or if a previous optimization run is to be repeated 
from a certain starting iteration, this can be accomplished by using the option “Clean Start” in the Run panel 
(Figure 17-1). This option requires the user to provide iteration number from which the simulations are 
restarted. It is important to note that the clean-start option removes all simulation data as well as 
optimization data from the specified iteration onwards. 

17.4. Baseline run only 

This feature provides the user with an option to run a single design, sampled at the initial values specified in 
the variables panel. The simulations are always carried out in the directory 1.1 for respective disciplines. 
This option facilitates a verification of the design and optimization problem in LSOPT i.e.,  

1. checks for the correct solver command, 

2. communication between the LSOPT and the queuing system, if any, 

3. presence of all relevant control cards, database formats,  

4. data extraction from simulation results, and 

5. validity of responses and histories.0. 

It is recommended to always perform a single simulation using “Baseline run only” option to debug the 
optimization problem in LSOPT.  

17.5. Omit last verification run 

If the user does not want to simulate the predicted optimum at the end of simulation, she can use this option 
to avoid the final verification run. The predicted optimum is reported as the final design.  

17.6. Job concurrency 

When LS-OPT is run on a multi-processor machine, the user can select how many simulations (jobs) can 
run concurrently on different processors (see Figure 17-1). Only the solver process and response extraction 
are parallellized. The preprocessor processes run serially. The number of Concurrent Jobs is ignored for jobs 
that are run by a queuing system. 

17.7. Job distribution 

When a queuing system is available, its operation can be specified in the Run panel (Figure 17-1). 
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17.8. Job and analysis monitoring 

The Run panel allows a graphical indication of the job progress with the green horizontal bars linked to 
estimated completion time. This progress is only available for LS-DYNA jobs. The job monitoring is also 
visible when running remotely through a supported job distribution (queuing) system. 

 

When using LS-DYNA, the user can also view the progress (time history) of the analysis by selecting one of 
the available quantities (Time Step, Kinetic Energy, Internal Energy, etc.). 

17.9. Pause and Resume 

Selecting the Pause button in the Run tab will pause all the simulation jobs. Selecting the Resume button 
will resume these jobs. 

17.10. Repair or modification of an existing job 

Several kinds of repairs and modifications are possible for an existing optimization iteration or a 
probabilistic analysis. The repair depends on the LSOPT database files as described in Section 4. The 
available repair tasks are: 

o Read points. The CASE/Experiments.iteration file is reconstructed from the runs executed. The 
experimental points can be extracted from the database in the job directories and the experimental  
design thereby reconstructed. 

o Augment points of a Metamodel-based analysis. Points are added to the existing experimental 
design. This option is only available for the following experimental designs types: D-Optimal, 
space-filling, random, and Latin Hypercube. The D-Optimal and space-filling experimental designs 
will be computed taking in consideration the previously computed points. Both the random and the 
Latin Hypercube experimental design points will be computed using the number of previously 
computed points as a seed to the random number generator. If an experimental design does not exist, 
new points will be created. 

o Augment Points of a Monte Carlo analysis. Points are added to the existing experimental design. 
This option is only available for the following experimental designs types: random and Latin 
Hypercube. Both the random and the Latin Hypercube experimental design points will be computed 
using the number of previously computed points as a seed to random number generator. 

o Run Jobs. The LS-DYNA jobs will be scheduled. Designs previously analyzed will not be analyzed 
again. 

o Rerun failed jobs. The jobs that failed to run will be resubmitted. The LS-DYNA input file used will 
be regenerated from the files specified in the main directory. The preprocessor, if one is specified, 
will be rerun. 

o Extract Results. The results will be extracted from the runs. This option also allows the user to 
change the responses for an existing iteration or Monte Carlo analysis. 

o Import results (.csv). Import results from a .csv (comma separated variables) file (see Section 17.12). 
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o Build Metamodels.  The metamodels will be built. This option also allows revision of the 
metamodels for an existing iteration or Monte Carlo analysis. The “ExtendedResults” file will be 
updated. Metamodels can for instance be built from imported user results (see section on Read user 
results above). 

o Evaluate Metamodels. Create a table with the error measures of a given set of points (Section 13.11) 
or create a table (.csv file) with response values interpolated from a metamodel (Section 13.12). 

o Optimize. The metamodels are used for metamodel optimization. A new optimum results database is 
created. The “ExtendedResults” file will be updated. The optimization history database is deleted so 
the history will not be displayed in the Viewer. 

Remarks: 

1. All the subsequent operations must be explicitly performed for the iteration. For example, 
augmenting an experimental design will not cause the jobs to be run, the results to be extracted, or 
the metamodels to be recomputed. Each of these tasks must be executed separately. 

2. After repair of iteration n, and if the user is conducting an optimization task, verification runs of the 
optimized result must be done by switching back to the Metamodel-based optimization task and 
specifying the starting iteration as n+1 for a new run.  If n+1 was a full iteration (not just a 
verification run), it also has to be repaired. 

Command file syntax: 

read experiments iteration_number 
design more metamodel iteration_number 
design more monte carlo iteration_number 
run iteration_number 
run failed iteration_number 
extract results iteration_number 
read user results iteration_number 
approximate iteration_number 
check file iteration_number 
optimize iteration_number 



CHAPTER 17: 16BRUNNING THE DESIGN TASK 

LS-OPT Version 4.3  353 

 

Figure 17-2: Repair panel 

17.11. Tools 

A number of tools are available for miscellaneous operations: 

o Clean. The directory structure created by LS-OPT and all files in this directory structure are deleted. 

o Archive LS-OPT database. See Section 17.13. This option collects relevant files and creates a single 
tar-zipped (on *nix operating systems) file or zipped (on windows operating systems) file. Users can 
also add more database files using the following options: 

o Include Histories and Responses. History and response files are required for the DynaStats panel and 
to view the curve matching results (comparison of the test and computed histories). See Section 
17.13. 

o Include Input Deck/Extra Files. Various input files and other files required to run the LSOPT job 
seamlessly are added to the packed database file. 

 
Command file syntax: 

clean 
pack database 
pack database input 
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pack database histories 

17.12. Importing user-defined analysis results 

A table (in text form) of existing analysis results can be used for analysis. The command to import the file is 
given as: 

 

Command file syntax: 

solver response user filename_csv_format 

 

Example: 
solver response user "/home/test/ImportResults/crash2.csv" 
 

An example of a analysis results file (with 2 simulation points) is: 
"var1","var2","var3","Displacement","Intrusion","Acceleration" 
"dv",  "dv",  "nv",  "rs",          "rs",       "rs" 
1.23   2.445  3.456  125.448        897.2       223.0 
0.01,2.44,1.1,133.24,244,89,446.6 
 

Two header lines are required. The first header line contains the variable names. The second header line 
contains the variable types. The following lines contain the variable and response values for each design 
point. The types are defined as: 

 
Symbol Explanation 
dv Design variable 
nv Noise variable 
rs Response 
sk Ignore 

The parsing code looks for double quotes, commas, spaces and/or tabs as delimiters. 

 

The steps for importing user-defined analysis result files using the GUI are as follows: 

3. Solvers panel: Browse for the text file in the "Import User Results" tab. The browser has a 
preference for .csv and .txt files.  

4. Specify a name for the analysis case and "Add" the case. 

5. Variables and Responses panels. To import the variables and responses into the GUI, it is required to 
click on the Variables and Responses tabs. The variables and responses will be displayed and 
automatically associated with the correct analysis case. 
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6. Sampling panel. Check that the number of points defined in the sampling panel is the same as the 
number of points in the user-provided file. If fewer points are available in the file, LS-OPT will 
augment the sampling points and try to run simulations. 

7. Menu bar. Choose the "Repair" task. 

8. Run panel. In "Repair" mode, select "Import results (.csv)" and "Run". This is a critical step to 
convert the .csv format to the LS-OPT database format ready for analysis. 

9. The user can now choose the type of analysis.0. 

o DOE Study: Change to the "Metamodel-based DOE Study" task and "Run". Metamodels will be 
created and the Viewer can be used to study the metamodel results. 

o Optimization:  

Define the Objectives and/or constraints. For RBDO, define the distributions for the input variables as well 
as the probability of failure. 

Change to the "Metamodel-based Optimization" or "Metamodel-based RBDO" task, choose the "Single 
Stage" strategy and "Run". An optimization history is created. 

17.13. Saving/compressing the LS-OPT database after completing a run 

Using the Tools function, the database can be gathered up and compressed in a file called 
lsopack.tar.gz (lsopack.zip in Windows). The packed database is suitable for post-processing 
on any computer platform. The repair selection is: Archive LS-OPT database.  

 

More sophisticated options are available to also gather the history and response files residing in the run 
directories and all input files. The history/response files (e.g. history.0, etc.) are required to view history 
plots in the DynaStats panel and also for viewing curve matching results in the Viewer. The selection is: 
Archive LS-OPT database + histories/responses. The file produced is lsopack_h.tar.gz 
(lsopack_h.zip in Windows). The addition of input decks only results in lsopack_i.tar.gz 
(lsopack_i.zip in Windows) and inclusion of both histories and input decks results in 
lsopack_h_i.tar.gz (lsopack_h_i.zip in Windows). 
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18. Viewing Results 

This chapter describes the post-processing of LS-OPT result data using the Viewer panel in LS-OPTui.  

18.1. Viewer overview 

18.1.1. Plot Selector 

 

Figure 18-1: Plot Selector 

The plots are grouped into five categories, Figure 18-1, 

• Simulations, 
• Metamodel, 
• Optimization, 
• Pareto Optimal Solutions and 
• Stochastic Analysis. 

Depending on the optimization task, the selected options and the database availability, categories are hidden 
or plots are disabled. 
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Figure 18-2: Plot Selector with additional plot information 

Moving the mouse on a plot type gives additional information on the plot, Figure 18-2. 

 

Figure 18-3: Selection for placement of new plot in the plot selector 

If plots already exist, the placement of the new plot may be specified in the plot selector, Figure 18-3. The 
default is to create a new plot. All available options are explained in Table 18-1. For details see Section 
18.1.5. 

 Create a new plot window 
 Replace current plot 

 Split window and place new plot at the highlighted position 

Table 18-1: Plot placement options 

18.1.2. General Plot Options 

General plot options are available on the toolbar at the top of the plot window, Figure 18-1. Table 18-2 
explains the options. 

 

Figure 18-4: General options 
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 New plot Opens Plot Selector with placement selection for the new 
plot, see Section 18.1.1. 

 Delete plot Deletes active plot 
 Save plot setup Saves current plot setup to be reused later, see Section 

18.1.6. 
 Pointer tool [F1] Rectangular selection (rubber-banding) in plot or clicking 

marks points or curves and opens Point selection window, 
see Section 18.1.4. 

 Zoom in tool [F2] Rectangular selection in plot specifies zoom region 
 Zoom out [F3] Clicking on plot zooms out 
 Reset zoom Resets plot to initial range 
 Split vertical Splits plot window vertical, see Section 18.1.5.  
 Split horizontal Splits plot window horizontal, see Section 18.1.5. 
 Print Prints the current plot, options see Figure 18-5. 
 Save image Saves the current plot, options see Figure 18-5. 
 Visualize relations 

between controls and plots 
If several plots are displayed in the same plot window, this 
option helps to find each plot’s control panel. 

 Point selection window Shows or hides a window that shows the values of all 
entities for the selected points in a table. This window 
shows up automatically if the point selection changes, see 
section 18.1.4. 

Table 18-2: General plot options 

 

Figure 18-5: Options for printing (right) and saving (left) images 

18.1.3. Plot Rotation 

For all 3D plots, image rotation is performed by holding down the Ctrl key while moving the mouse (same 
as LS-PREPOST). 
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18.1.4. Point Selection 

The points on Scatter, TradeOff, Surface, Accuracy, Optimization History and HRV plots, and lines on 
PCP, History plots  may be selected by clicking on a single point or by selecting several points within a 
rectangular box. The selected points are highlighted in the plot and the computed and predicted values of all 
entities for the selected points are displayed in a spreadsheet in a separate plot selection window, Figure 
18-6. Options for point selection are explained in Table 18-3. Points may also be selected from the list of all 
points available in the current plots on the left in the Point selection window. 

 

Figure 18-6: Point selection window for single (front) and multi (background) point selection 

 Open selected run in LS-PREPOST This option is only available for LS-DYNA simulations, 
if the d3plot or d3eigv database is available 

 Display histories involved in a curve 
matching composite 

This option is only available if MeanSqErr composites 
are defined. It is recommended to use the history plot 
feature (Section 18.2.4) for comparing histories 
(including file-based histories typically used with curve 
matching). 

 Add to set of selected points 
 Subtract from set of selected points 
 Replace set of selected points 
 Toggle set of selected points (within 

rectangle) 

Options for new point selection 

 Export as text file (.csv) The exported file has the format of a user defined 
sampling 
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Table 18-3: Point selection options 

The SOM plot also supports selection. If a cell is selected, all points that are mapped to the selected cell are 
displayed in the point selection window. 

Point selection is integrated, hence selected points are highlighted in all plots within the same plot window.  

 

 

 

Figure 18-7: Cross-display of selected points 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



CHAPTER 18: 17BVIEWING RESULTS 
 

LS-OPT Version 4.3  361 

18.1.5. Split Window 

To display several plots side by side, there are two basic selections available to split the plot window. (i) 
options to split the window horizontally or vertically in the toolbar at the top of the plot window or (ii) 
select the new plot together with a placement option for the new plot in the Plot Selector.  

If the split window options are used, the same plot is repeated with the same settings which is useful for e.g., 
displaying 3D surface plots for different responses side by side, Figure 18-8. 

 

 

Figure 18-8: Example for split option 

If split window options are used several times, the plots may become too small, and as much as possible 
space on the screen is needed to get a good view. Hence all control panels are detachable or may even be 
hidden by pushing the respective button in the toolbar at the top of the plot window, Figure 18-9. 
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Figure 18-9: Detachable panels  

18.1.6. Save Plot Setup 

Window splitting and placement selection of new plots allows complex plot setups. To reuse a plot setup 
several times, even across problems, it may be saved. Later you can bring this plot state back by clicking on 
the preview in the plot selector, Figure 18-10. 

The plot setup is stored in XML format in ~/.LS-OPT Viewer/plotname.plot on Linux machines. On 
Windows, the plot setup is stored in Application Data\LS-OPT Viewer in the user’s home directory. The full 
path depends on the Windows version and setup, e.g. C:\Documents and Settings\user\Application Data\LS-
OPT Viewer. 

The command line option “-l” makes the viewer load a plot setup from a file immediately, without showing 
the plot selector. That makes it possible to write a script that generates the plot state XML file and then calls 
upon the viewer to display the plots. For more details on command line options, see Section 18.1.7. 
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Figure 18-10: Plot Selector with previously saved setups 

18.1.7. Command line options 

The post-processing tool of LS-OPT may be started from the Viewer Panel in LS-OPTui, or the executable 
viewer located in the LS-OPT installation directory may be called from the command line: 

viewer [-p <str>] [-l <str>] [-h] [--verbose] [com-file] 

Table 18-4 explains the command line options.  

-p <str>, --show-plot=<str> Open the given plot, valid plot types are 
accuracy Accuracy (Section 18.3.3) 
correlation Correlation Bars (Section 18.2.6) 
corrmatrix Correlation Matrix (Section 18.2.1) 
history Histories – Metamodel (Section 18.3.5) 
history_ar Histories  – Simulations (Section 18.2.4) 
hrv Hyper-Radial Visualization (Section 18.5.3) 
interpol 2D Interpolator (Section 18.3.2) 
opthist Optimization History (Section 18.4.1) 
parallelcoord Parallel Coordinates – Pareto Optimal Solutions 

(Section 18.5.2) 
parallelcoord_ar Parallel Coordinate – Simulations (Section 18.2.3) 
scatter Scatter Plots (Section 18.2.2) 
sensitivities Sensitivity (Section 18.3.4) 
som Self-Orgamizing Maps – Pareto Optimal Solutions 

(Section 0) 
statistics Statistical Tools (Section 18.2.5) 
stoch Stochastic Contribution (Section 18.6.3) 
surface Surface (Section 0) 
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tradeoff Tradeoff (Section 18.5.1) 
variable Variables (Section 18.4.2)  

-l <str>, --load-setup=<str> Load plot Setup from file, see section Save Plot Setup 
-h, --help show help message for command line options 
--verbose generate verbose log messages 
com-file LS-OPT command file 

By default, the viewer loads the LS-OPT database called lsopt_db 

Table 18-4: Command line options 

18.1.8. Iteration Panel 

Except for the Optimization History plot which displays the iteration history, all plots allow specifications 
for the iteration data to be shown. The available options depend on the plot type (see Figure 18-11). 

 

 

Figure 18-11: Iteration Panel- only current iteration (left), all previous/ all iterations (middle), iteration 
range and step size (right) 

A slider is available to select the current iteration to be plotted. Some plots allow plotting all previous 
iterations or all iterations, and the Scatter- and Tradeoff plots also allow the specification of a range and a 
step size, e.g. the selection in the right iteration panel in  

Figure 18-11 plots iterations 2,4,6,8 and 10. 

18.1.9. Ranges 

Most plots allow specifications of the ranges for all plotted entities, Figure 18-12.  

The default is Auto. In this case, the range is set to the minimal and maximal value to plot.  

For surface plots, there are two options for Auto range selection. Auto, Entire design space plots the 
surface across the full design space, Auto, region of interest uses only the subregion of the selected 
iteration. 

If never shrink plot range is selected, the ranges of the previous plot are considered and they are enlarged 
if the new plot has values outside that range, see the Neural Net plot displayed in Figure 18-26. This option 
is ignored if entities change. 

Manual range selection allows the user to specify lower and upper bounds for each plotted entity. 
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Figure 18-12: Ranges selections 

18.2. Visualization of Simulation Results 

18.2.1. Correlation Matrix 

The correlation matrix displays 2D scatter plots, histograms and the linear correlation coefficients calculated 
from the simulation results of the selected load case for the selected variables, dependents, responses and 
composites, Figure 18-13. 

Moving the mouse on a scatter plot displays its ranges and marks the respective correlation coefficient with 
a yellow border, and vice versa. Row and column entities may be selected separately, hence it’s also 
possible to display e.g. only correlation coefficients, Figure 18-14.  

By double-clicking on a scatter plot or histogram, the respective plot may be reached, see Section 18.2.2 or 
Section 18.2.5, respectively. 

The correlation coefficients are color-coded from blue to red. Blue indicates a strong negative correlation, 
red a strong positive correlation, whereas grey indicates almost no correlation. 
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Figure 18-13: Correlation matrix with scatter plots, histograms and linear correlation coefficient 

 

 

Figure 18-14: Correlation matrix, only correlation coefficients 
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18.2.2. Scatter Plot 

The results of all the simulated points for the selected iterations appear as dots on the scatter plots. This 
feature allows the three-dimensional plotting of any three entities. A fourth entity may be displayed using 
the color of the points. Other coloring options are explained below. 2D plots can be obtained by selecting 
No entity for the z axis. For 3D plots, the image rotation is performed by holding down the Ctrl key while 
moving the mouse (same as LS-PREPOST). 

To be able to view the results of composite functions spanning two or more disciplines or cases, the 
duplicate sampling method (Section 5.2) must be selected before starting an analysis. This also implies that 
the number of variables must be the same for all the disciplines involved and yields coincident experimental 
designs. (This can be accomplished by selecting the duplicate option in the Sampling tab when inputting the 
data in the GUI). 

Color Entities – 3D Plots 

Selection Description 
Feasibility Feasible points are shown in green, infeasible points in red  
Previous b/w The points for the current iteration are shown in green (feasible) or red 

(infeasible). Previous points as light grey (feasible) or dark grey (infeasible) 
Iterations The iteration sequence is shown using a color progression from blue through red. 
Neutral All points are shown in blue 
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Figure 18-15: Scatter plot in View panel in LS-OPTui. The 4th dimension is represented by point color. 

 

Points Options 

Selection Description 
Analysis Results Plot simulation results (Default for the Scatter Plot) 
Pareto Optimal Solutions Plot Pareto optimal solutions (Default for the Tradeoff Plot, Section 18.5.1) 
Use reduced set of points Only active for Pareto optimal solutions, plots 100 uniformly distributed 

points selected from the Pareto optimal solutions 

 

 

18.2.3. Parallel Coordinate Plot 

In contrast to the Scatter Plot, the number of dimensions that can be visualized using the Parallel Coordinate 
Plot is not restricted. Each dimension is visualized on a vertical axis and each data point is shown as a poly-
line connecting the respective values on the vertical axis, Figure 18-16. The ranges of the entities may be 
changed using the sliders at the ends of each vertical axis rendering the points outside the ranges 
unselectable. Points within the selected ranges are colored in blue, while the remaining points are colored in 
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grey. Selected points are colored in purple, if only a single point is selected, the corresponding value for 
each entity is displayed in the plot.  

 

Figure 18-16: Parallel Coordinate Plot with selected point 

Options 

Selection Description 
Analysis Results Plots simulation results (Default) 
Pareto Optimal Solutions Plots Pareto optimal solutions (Section 18.5.2) 
Use reduced set of points Only active for Pareto optimal solutions; plots 100 points selected from the 

Pareto optimal solutions 
Select from active points Selects all points that are not outside the constraints set by the handles, see 

Section 18.1.4. Useful for visualizing this set of points in another plot. 
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18.2.4. History Plot 

This plot visualizes history curves based on time data or crossplots obtained from simulations, Figure 18-17. 
The coloring options are the same as the point coloring options, see 18.2.2. If histories from files are defined 
in the optimization problem, they can be visualized in addition to the simulation curves, Figure 18-18. 

The Predicted History option is explained in Section 18.3.5. 

 

Figure 18-17: History Plot, curves colored by variable 

Options 

Selection Description 
Feasible Plot feasible runs 
Infeasible Plot infeasible runs 
Only selected Plot only selected runs, see 18.1.4., in this case, the selected curves are not 

highlighted 
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Figure 18-18: Histories from simulations colored by variable with target curve (File history)  

 

18.2.5. Statistical Tools 

The Statistical Tools option offers three types of plots, Histogram, Summary and Bounds. 

The feature enables plotting either (i) the simulation results directly or (ii) using the metamodels together 
with the statistical distribution of the variables to construct the plots. The simulation results will be read 
from the ExtendedResults file of the relevant solver. If the use of the metamodels is selected then a Monte 
Carlo simulation using a Latin Hypercube experimental design and the statistical distributions of the 
variables will be conducted on the metamodel to obtain the desired values. The user can control the number 
of points in this Monte Carlo simulation.  

If desired, the residuals of the metamodel fit can be added to results of the Monte Carlo simulation as a 
normal distribution. 

For optimization results, an iteration can be selected, while for probabilistic evaluations the default iteration, 
iteration 1, will automatically be selected. 
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Histogram 

Histograms of the variables, dependents, responses, and composites are available. The number of histogram 
bars may be specified by the user. 

The histogram panel is shown in Figure 18-19. 

 

 

Figure 18-19: Histogram constructed from simulation results 

 

Summary 

Here, the standard deviation and the mean value for the selected variable, dependent, response or composite 
is visualized with the 95% confidence interval in red, Figure 18-20. 
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Figure 18-20: Standard deviation and mean value of selected response constructed from simulation 
results 

 

Bounds 

The user may specify lower and upper bounds, respectively, for the selected variable, dependent, response 
or composite. The probabilities that the entity exceeds the bounds are visualized with 95% confidence 
interval in red, Figure 18-21. 
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Figure 18-21: Probability of Mass > 0.5 with 95% confidence interval in red constructed from simulation 
results 

Histogram Options 

Selection Description 
Use Metamodels and 
Distributions 

Use metamodels and statistical distribution of the input variables to 
construct statistics 

Metamodel Points Number of points used for Monte Carlo Simulation on the metamodel to 
construct statistics 

Add Residuals Add residuals of the metamodel fit (“noise”) to the results of the Monte 
Carlo simulation as a normal distribution 

Use Opt. Iter. Start Design  

18.2.6. Correlation Bars 

Both the covariance and the coefficient of correlation of the responses and composites with respect to the 
design variables can be displayed, Figure 18-22. 

 

Either the simulated points or the metamodels together with the statistical distribution of the variables can 
be used. If a metamodel is used then a Monte Carlo simulation using a Latin Hypercube experimental design 
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and the statistical distributions of the variables will be conducted on the metamodel to obtain the desired 
results. The user can control the number of points in the Monte Carlo simulation. 

 

The plot can be used to estimate the stochastic contribution of an analysis without a metamodel. 

 

Figure 18-22: Coefficient of Correlation plot with 95% confidence interval in red 

Options 

Selection Description 
Correlation Plot correlation coefficient 
Covariance Plot covariance 
Use Metamodels and 
Distributions 

Use metamodels and statistical distribution of variables to construct 
statistics 

Metamodel Points Number of points used for Monte Carlo Simulation on the metamodel to 
construct statistics 

Use Opt. Iter. Start Design  

18.3. Visualization of Metamodel Results 
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Figure 23: Metamodel options 

18.3.1. Surface Plot 

Two- or three-dimensional cross-sections of the metamodel surfaces and simulation points can be plotted 
and viewed from arbitrary angles. The image rotation is performed by holding down the Ctrl key while 
moving the mouse (same as LS-PREPOST). The XY, XZ and YZ buttons at the bottom of the panel rotate 
the plot to the respective coordinate plane. 

The following options are available: 

Setup 

The selection of one or two variables and the response or composite function is done here. The sliders allow 
changing the variable values for unselected variables (variables not plotted). The slider for the active 
variables can be activated by selecting the “Predicted Value” option. 

Selection Description 
Gridlines Gridlines are displayed on the surface, Figure 18-24 
Isolines Isolines are displayed on the surface, Figure 18-25 
Constraints Constraints are displayed on the surface, Figure 18-27. 

Feasible regions are in green, the shade of red shows the degree 
of infeasibility (number of violated constraints), the colored 
lines in 3D and the + marks in 2D, respectively show the 
location where the constraints are exactly met. 

Predicted value The predicted value for the selected variable values is displayed 
on the surface, the variable and response values are displayed in 
the top left corner, Figure 18-24 

Center variable sliders on Optimum Variable sliders are set to optimal values of selected iteration 
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Point plotting options 

Selection Description 
Feasible Show feasible runs only 
Infeasible Show infeasible runs only 
Predicted Optimum Show predicted optimum 
Computed Optimum Show computed optimum 
Failed runs on surface Failed runs such as error terminations are projected to the surface 

in grey 
Points only Show only points without surface 
Project points to surface The points are projected on the surface to improve visibility. 

Future versions will have a transparency option. 
Show Residuals Shows a black vertical line connecting the computed and 

predicted values. 
 

Point status 

Selection Description 
Feasibility Feasible points are shown in green, infeasible points in red 
Previous b/w The points for the current iteration are shown in green (feasible) 

or red (infeasible). Previous points as light grey (feasible) or 
dark grey (infeasible) 

Iterations The iteration sequence is shown using a color progression from 
blue through red. See Figure 18-25. 

Optimum runs Optimal points are shown in green/red and all other points in 
white. 

 



CHAPTER 18: 17BVIEWING RESULTS 
 

LS-OPT Version 4.3  378 

 

Figure 18-24: Metamodel plot showing feasible (green) and infeasible (red) points. The predicted point is 
shown in violet (t_hood = 4, t_bumper = 4) with the values displayed at the top left. 
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Figure 18-25: Metamodel plot showing point color coding for iteration numbers. 

 

Figure 18-26: Surface plot representing only the region of interest of the fourth iteration. 
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Figure 18-27: Plot showing isolines on the objective function as well as constraint contours and 
feasibility. Feasible regions are in green. Shade of red shows degree of infeasibility (number of violated 
constraints). Note the legend describing constraints at the top right. 

 

Figure 18-28: Plot showing isolines and points opposite the “Points” tab. 
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Fringe plot options for neural nets 

The options are function value or standard deviation of the Neural Net committee values. See Figure 18-29. 

 

 

Figure 18-29: Metamodel plot showing standard deviation of the Neural Net committee values. 

 

18.3.2. 2D Interpolator Plot 

The Interpolator plot is a tool to display multiple two-dimensional surface plots. All selected responses and 
composites are plotted against all selected variables. The default is to display each response against all 
variables in a row.  

Options 

Selection Description 
Constraints Constraints are displayed on the surface. 

Feasible regions are in green, the shade of red shows the degree 
of infeasibility (number of violated constraints), the colored + 
marks in 2D show the location where the constraints are exactly 
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met. 
Predicted value The predicted value for the selected variable values is displayed 

on the surface (purple line), the variable and response values are 
displayed in the panel 

Transpose Allows to display each response against all variables in a 
column. 

Center variable sliders on Optimum Variable sliders are set to optimal values of selected iteration 

 

 

Figure 18-30: Interpolator Plot with constraints (Feasible regions are in green, shade of red shows 
degree of infeasibility (number of violated constraints)) and predicted value (purple line) 

 

18.3.3. Accuracy Plot 

The accuracy of the metamodel fit for the selected response or composite is illustrated in a Predicted vs. 
Computed plot, Figure 18-31. The results for the metamodel of each iteration are displayed separately using 
the slider bar. All points used to approximate the metamodel are displayed, i.e., for linear metamodels, the 
points of the current iteration are displayed, whereas for all other metamodels, the points of all previous 
iterations are also visualized, Figure 18-31. The error measures are displayed in the heading. 
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Options 

Selection Description 
Feasible Plot feasible runs 
Infeasible Plot infeasible runs 
PRESS statistics PRESS residuals are plotted against computed values 
Status (colors) Coloring options for points, see 18.2.2 
 
 

 

 

Figure 18-31: Computed vs. Predicted plot in View panel in LS-OPTui. The points are color-coded to 
represent the feasibility. The largest points represent the most recent iteration. 

 

18.3.4. Sensitivities 

The Sensitivities Plot provides visualization of the results of ANOVA and global sensitivity analysis (GSA) 
using Sobol’s variance-based sensitivity indices. 

 



CHAPTER 18: 17BVIEWING RESULTS 
 

LS-OPT Version 4.3  384 

Linear ANOVA 

The Analysis of Variance (ANOVA) (refer to Section 2.4) of the approximation to the experimental design 
is automatically performed if a polynomial response surface method is selected. The ANOVA information 
can be used to screen variables (remove insignificant variables) at the start of or during the optimization 
process. The ANOVA method, a more sophisticated version of what is sometimes termed ‘Sensitivities’ or 
‘DOE’, determines the significance of main and interaction effects through a partial F-test (equivalent to 
Student’s t-test) [1]. This screening is especially useful to reduce the number of design variables for 
different disciplines (see Sections 5.2 (theory) and 22.6 (example)). 

 

If a probabilistic or an RBDO analysis is being done, then the Stochastic Contribution plots (see Section 
18.6.3) are recommended. 

 

The ANOVA results are viewed in bar/tornado chart format, Figure 18-32. The Sort option sorts the 
ANOVA values by relevance, the sorting doesn’t consider the 90% confidence interval. 

 

 

Figure 18-32: Linear ANOVA plot in View panel in LS-OPTui, sorted 
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GSA/Sobol 

A global sensitivity analysis is only performed if Compute global Sensitivities is selected in the Sampling 
panel of LS-OPTui, see Section 13.2. 

Figure 18-33 displays an example of a global sensitivities plot. Each bar represents the contribution of a 
variable to the variance of the respective response (total sensitivity index). The values are normalized such 
that the sum of all displayed values is 100%. The values are displayed in the labels. For sorted plots, the 
cumulative sensitivity indices of all values in descending order are also displayed in the label.   

Clicking on the chart displays the respective sensitivity values and variances in the plot. 

Options 

Selection Description 
Sort Sorts data by relevance 
Transpose Sensitivity values are grouped by response/composite 
Main contribution Main contribution is displayed in addition to total contribution 
Multi Allows selection of multiple responses/composites 

 

 

Figure 18-33: Sorted global sensitivities of all responses and composites 
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18.3.5. History Plot 

If the Approximate History option is set in the Sampling Panel of LS-OPTui, a database that approximates 
the histories for any design point using metamodels is provided, see Section 14.22. If Predicted History is 
selected, the history evaluated on the metamodel for the selected design point is visualized, Figure 18-35. If 
the predicted histories are colored by variable, multiple curves are plotted for equidistant values in the range 
of the selected variable. This visualizes the influence of the selected parameter on the history curve, Figure 
18-18. 

The center variable sliders on options set the variable sliders to specific values. 

 

Selection – center variable 
sliders on … 

Description 

Optimum Set variable sliders to optimum of current iteration 
Nearest history Set variable sliders to variable values of nearest history, this is the computed 

history with design point closest to selected design point for predicted 
history 

Selected point Set variable sliders to a selected point, e.g. a Pareto optimal solution 
Only active if there is only one selected point 

 

 

Figure 18-34: Predicted Histories colored by variable 
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Options 

Selection Description 
Nearest Show computed history with design point closest to selected design point 
Maximal Residual Plot maximal residual  
Deviation Residual Plot standard deviation of residuals 
Number of predicted curves Number of plotted curves if histories are colored by variable 
 

 

Figure 18-35: Predicted History with nearest history and maximal residual 

 

18.4. Visualization of Optimization Results 

18.4.1. Optimization History 

The optimization history of a variable, dependent, response, constraint, objective, multi-objective or the 
approximation error parameters of pure responses (not composites or expressions) shows the changes of the 
respective values of the optimum over the iterations. For the variables, the upper and lower bounds 
(subregion) are also displayed, Figure 18-36. For all the dependents, responses, objectives, constraints and 
maximum violation, a black solid line indicates the predicted values, while the red squares represent the 
computed values at the starting point of each iteration, Figure 18-37. For constraints, the lower and upper 
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bound are displayed with a blue and red line, respectively. For the error parameters, only one solid red line 
of the optimization history is plotted. RMS, Maximum and R2 error indicators are available. 

 

Figure 18-36: Optimization History plot of a variable – variable values (red) and subregions (blue) 
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Figure 18-37: Optimization History of a response – computed (red points) and predicted (black) values 

18.4.2. Variables Plot 

The variables plot visualizes variable values and confidence intervals for *.1 run of the selected iteration in 
a range scaled to [0,1], Figure 18-38. Clicking on the charts displays the actual value and the bounds on the 
plot. 
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Figure 18-38: Variable Plot 

18.5. Visualization of Pareto Optimal Solutions 

18.5.1. Tradeoff Plot 

The Tradeoff plot (Section 4.12.1) functions similar to the Scatter plot, Section 18.2.2, but the default 
setting is here to plot Pareto optimal solution data instead of Analysis Result data.  
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Figure 18-39: Tradeoff plot 

18.5.2. Parallel Coordinate Plot 

The Parallel Coordinate Plot (Section 4.12.3) in the Pareto optimal solutions category functions similar to 
the Parallel Coordinate Plot described in Section 18.2.3, but here, the default setting is to visualize Pareto 
data. 
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Figure 18-40: Parallel Coordinate Plot for Pareto optimal solutions with selected point (purple line) 

18.5.3. Hyper-Radial Visualization 

The hyper-radial visualization reduces multi-dimensional data to a two-dimensional graph by grouping the 
objectives and calculating a weighted sum for each group. These values are displayed in two dimensions. 
The designer may incorporate his preferences by selecting the weights. The best point with respect to the 
selected weights is colored purple in the plot, Figure 18-41. 

The theory of hyper-radial visualization is explained in Section 4.12.2. 

Grouping 

The objectives may be grouped using the 3-state buttons in the Axis column. 

Selection Description 

 Add objective to the group displayed on the x axis 

 
Add objective to the group displayed on the y axis 

 Ignore objective 
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Selection of Weights 

The weights may be selected using the sliders or the text fields in the Weights column. The selected values 
represent the ratio of the weights and are scaled internally such that the sum of the weights is 1. 

Options 

Selection Description 
Use reduced set of points Plot only reduced set of Pareto optimal solutions 
Scale weights Scale weights by range of objectives 
Color Entity Color entity for HRV points 

 

Figure 18-41: Hyper-radial visualization, equal weights, points colored by variable 

 

18.5.4. Self-Organizing Maps 

The theory of Self-Organizing Maps (SOM) is explained in Section 18.5.4. 

Component Selection 

By default, component maps of all objectives as well as the D-, U- and C-matrices are displayed. To modify 
the plot, select the position in the dynamic grid, Figure 18-42, and slot content, see Section 4.12.4. Describe 
the cell selection behaviour. D-, U-, C- maps. Refer to Section 4.12.4 for an explanation of the map types. 

 

Figure 18-42: Selection of position for SOM 
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Figure 18-43: Self-Organizing Map, component plots of objectives and distance measure 

Parameter Panel 

The advanced user may want to modify some parameters for the training of the SOM. These options are 
available in the Parameters panel. Modifications in the Parameter Panel effect retraining of the SOM. 

Selection Description 
Training Iterations Number of iterations performed for training of SOM, default depends on 

honeycomb dimensions and number of data points 
Initial Radius Initial radius used for training of SOM, default depends on honeycomb 

dimensions 
Honeycomb dimensions Honeycomb dimensions, default 12x9 

 

18.6. Stochastic Analysis 

18.6.1. Statistics 

See Section 18.2.5. 
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Histogram 

 

Figure 18-44: Histogram constructed using metamodel together with the statistical distribution of the 
variables 
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Summary 

 

Figure 18-45: Mean value and standard deviation constructed using metamodel together with the 
statistical distribution of the variables 
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Bounds 

 

Figure 18-46: Probability of Composite Disp > 1 with 95% confidence interval in red constructed using 
metamodel together with the statistical distribution of the variables 

18.6.2. Correlation Bars 

See Section 18.2.6. 
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Figure 18-47: Correlation Bars evaluated on metamodel 

 

18.6.3. Stochastic Contribution 

The stochastic contribution of the variables to the variance of the responses and composites (see Section 
6.7) can be displayed as a bar chart. 

 

Optionally the user can elect to display the influence of the residuals from the metamodel fit and the effect 
of all the variables summed together. Contrasting these two values indicates how well the cause-effect 
relationship for the specific response is resolved. If both the residuals and the sum of the contributions are 
requested, then a total is displayed that is the sum of the contributions of all the variables as well as the 
residuals. 

 

The computations are done using the metamodels and stored in databases for visualization. 

 

Higher order effects, if any, are included in the results plotted. In the Sobol terminology, the total effect as 
opposed to the main effect is therefore plotted. See Section 6.7 for the details. 
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For optimization the stochastic contribution is computed using the optimal design. 

 

The stochastic contribution panel is shown in Figure 18-48. 

 

 

Figure 18-48: Stochastic Contribution plot 

 

18.7. References 

[1] Myers, R.H. and Montgomery, D.C. Response Surface Methodology. Process and Product 
Optimization using Designed Experiments. Wiley, 1995 
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19. Applications of Optimization 

This chapter provides a brief description of some of the applications of optimization that can be performed 
using LS-OPT. It should be read in conjunction with Chapter 22, the Examples chapter, where the 
applications are illustrated with practical examples. 

19.1. Multidisciplinary design optimization (MDO) 

The MDO capability in LS-OPT implies that the user has the option of assigning different variables, 
experimental designs and job specification information to different solvers or disciplines. The directory 
structure change that has been incorporated in this version, separates the number of experiments that needs 
to be run for each solver by creating separate Experiments, AnalysisResults, 
DesignFunctions and ExtendedResults files in each solver directory. 

 

Command file syntax: 

mdo mdotype 

 

The only mdotype available is mdf, or multidisciplinary feasible. 

19.1.1. Command file 

All variable definitions are defined first, as when solving non-MDO problems, regardless of whether they 
belong to all disciplines or solvers. This means that the variable starting value, bounds (minimum and 
maximum) and range (sub-region size) are defined together. If a variable is not shared by all disciplines, 
however, i.e., it belongs to some but not all of the disciplines (solvers), then it is flagged using the syntax 
local variable_name. At this stage, no mention is made in the command file to which solver(s) the 
particular variable belongs. This reference is made under the solver context, where the syntax Solver 
variable variable_name is used.  

 

See the examples in Section 22.6 for the command file format. 
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19.2. Worst-case design 

The default setting in LS-OPT is that all design variables are treated as minimization variables. This means 
that the objective function is minimized (or maximized) with respect to all the variables. Maximization 
variables are selected in the Variables panel (see Figure 11-1) by toggling the required variables from 
‘Minimize’ to ‘Maximize’. 

19.3. Reliability-based design optimization (RBDO)* 

LS-OPT has a reliability-based design capability based on the computation of the standard deviation of any 
response. The theoretical concerns are discussed in Section 5.5. 

 

The method computes the standard deviation of the responses using the same metamodel as used for the 
deterministic optimization portion of the problem using the First Order Second Method (FOSM) or First 
Order Reliability Method (FORM) method. No additional FE runs are therefore required for the 
probabilistic computations. 

 

The method requires very little information additionally to what is required for deterministic optimization. 
Specify the following: 

1. Statistical distributions associated with the design variables 

2. Probabilistic bounds on the constraints.0. 

 

The statistical distributions associated with the design variables are specified in the same manner as for a 
Monte Carlo analysis using a metamodel. 

 

The current GUI support is the same as for deterministic design optimization and Monte Carlo analysis. 

 

Command file syntax: 

probability upper bound constraint ’con_name’ upper_bound 
probability lower bound constraint ’con_name’ lower_bound 
iterate number_of_iterations 

 

An example is given in Section 22.2.11. 
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20. Optimization Algorithm 
Selection and Settings 

This chapter describes the parameter settings for the optimization methods, strategies and algorithms used in 
LS-OPT. The default parameters should be sufficient for most optimization applications. The following 
sections describe how to choose an optimization strategy and modify the default settings. 

20.1. Introduction 

The two basic optimization branches are Metamodel-based optimization and Direct optimization. 
Metamodel-based optimization is used to create and optimize an approximate model of the design instead of 
optimizing the design through direct simulation. The metamodel is thus created as a simple and inexpensive 
surrogate of the actual design. Once the metamodel is created it can be used to find the optimum or, in the 
case of multiple objectives, the Pareto Optimal Front.  

 

In this section different strategies for building a metamodel are discussed. The strategies depend mostly on 
whether the user wants to build a metamodel that can be used for global exploration or whether she is only 
interested in finding an optimal set of parameters. An important criterion for choosing a strategy is also 
whether the user wants to build the metamodel and solve the problem iteratively or whether he has a 
"simulation budget" i.e. a certain number of simulations and just wants to use the budget as effectively as 
possible to build a metamodel for improving the design and obtaining as much information about the design 
as possible. 

20.2. Selecting an optimization methodology 

The syntax is as follows: 

Command file syntax: 

Optimization method [srsm|genalg] 

 

Metamodel-based optimization (srsm) is the default. Note that the choice of the Direct Genetic Algorithm 
may require a large number of simulations. The method selections can be made in the GUI using the Task 
button in the menu bar at the top of the GUI. 
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20.3. Selecting strategies for metamodel-based optimization 

Command file syntax: 

Metamodel Optimization Strategy [SINGLESTAGE| SEQUENTIAL| 
DOMAINREDUCTION]  

 

There are three available strategies for automating the metamodel-based optimization procedure. These 
strategies only apply to the tasks Metamodel-based Optimization and RBDO. In the GUI, the strategies are 
selected in the "Strategy" panel. The available optimization strategies are (i) Single Stage, (ii) Sequential 
and (iii) Sequential with Domain Reduction (SRSM).  

 

This is the only panel in which the Pareto Optimal Frontier (see Section 4.9.2) can be selected and the panel 
starts with this option. Selection limits the available options to the global strategies Single Stage and 
Sequential (see Figure 20-1). The remaining option (Sequential with Domain Reduction) is typically only 
used for optimization in which the user is only interested in the final optimum point (such as parameter 
identification) and not in any global exploration of the design. A strategy selection resets the Sampling 
panel (a warning is given!), Algorithms panel and Run panel with recommended selections. The strategies 
are discussed one by one.  

 

 

Figure 20-1: Selection to create Pareto Optimal Front showing the available two global strategies 
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20.3.1. Single stage 

In this approach, the experimental design for choosing the sampling points is done only once. The 
metamodel selection defaults to Radial Basis Function Networks with Space Filling as the sampling scheme. 
The verification run is omitted by default. The setting is shown in Figure 20-2 and is the default option. 

 
 

 

Figure 20-2: Single Stage strategy selected in the Strategy tab 

20.3.2. Sequential strategy 

In this approach, sampling is done sequentially. A small number of points is typically chosen for each 
iteration and multiple iterations can be requested in the Run panel. The approach has the advantage that the 
iterative process can be stopped as soon as the metamodels or optimum points have achieved sufficient 
accuracy. The setting is shown in Figure 20-3. 
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Figure 20-3: Sequential strategy selected in Strategy tab 

The default settings for sampling follow below (see Sampling panel):  

1. Radial Basis Function networks 

2. Space Filling sampling. 

3. The first iteration is Linear D-Optimal. 

4. Choose the number of points per iteration to not be less than the default for a linear approximation 
( 1)1(5.1 ++n ) where n is the number of variables.0. 

It was demonstrated in Reference [16] that, for Space Filling, the Sequential approach had similar accuracy 
compared to the Single Stage approach, i.e. 10 × 30 points added sequentially is almost as good as 300 
points. Therefore both the Single Stage and Sequential Methods are good for design exploration using a 
metamodel. Both these strategies work better with metamodels other than polynomials because of the 
flexibility of metamodels such as RBF's to adjust to an arbitrary number of points. 

20.3.3. Sequential strategy with domain reduction 

This approach is the same as that in 20.3.2 but, in order to accelerate convergence, the domain reduction 
strategy is used to reduce the size of the subregion. During a particular iteration, the subregion is used to 
bind the positions of new points. Figure 20-4 shows the selection of a domain reduction scheme. 
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Figure 20-4: Sequential Strategy with Domain Reduction selected in the Strategy tab. 

The default domain reduction approach is SRSM which is the original LS-OPT design automation strategy. 
It allows the building of a new response surface (typically linear polynomial) in each iteration. The size of 
the subregion is automatically adjusted for each iteration (see Section 4.6) and points belonging to previous 
iterations are ignored. This method is only suitable for convergence to an optimum, cannot be used to 
construct a Pareto Optimal Front and is not recommended for any other type of design exploration. The 
method is ideal for system identification (see Section 5.3). 

 

The default settings for sampling are listed below (see Sampling panel):  

1. Linear polynomial 

2. D-optimal sampling 

3. Default number of sampling points based on the number of design variables (see Table 2-1).0. 

20.4. Domain reduction in metamodel-based optimization 

20.4.1. Setting the subdomain parameters  

To automate the successive subdomain scheme for SRSM, the size of the region of interest (as defined by 
the range of each variable) is adapted based on the accuracy of the previous optimum and also on the 
occurrence of oscillation (see theory in Section 4.6). 
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The following parameters can be adjusted (refer also to Section 4.6). A suitable default has been provided 
for each parameter and the user should not find it necessary to change any of these parameters. They can 
also be set in the GUI (see Figure 20-5). 

Table 20-1: Subdomain parameters and default values 

Default Item Parameter 
SRSM SRSM (NN) 

objective Tolerance on objective function 
accuracy εf 

0.01 0.01 

design Tolerance on design accuracy εx 0.01 0.01 
stoppingtype and: objective and design; 

or:  objective or design 
and and 

response Tolerance on accuracy of response 
surface εr 

0.01 0.01 

psi γpan 1.0 1.0 
gamma γosc 0.6 1.0 
eta Zoom parameter η 0.6 0.75 

*Applied when the design has not changed. 

 

Command file syntax: 

iterate param parameter_identifier value 

 

The iterative process is terminated if the following convergence criteria become active: 
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where x refers to the vector of design variables, d is the size of the design space, f denotes the value of the 
objective function, si denotes the approximation error of ith response characterized by the ratio of square root 
PRESS statistics and the mean value of response and, (k) and (k – 1) refer to two successive iteration 
numbers. The stoppingtype parameter is used to determine whether (and) or (or) will be used, e.g., 
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iterate param design 0.001 
iterate param objective 0.001 
iterate param stoppingtype or 
iterate param response 0.01 
 

implies that the optimization will terminate when either criterion is met. 

20.4.2. Changing the behavior of the subdomain 

Resetting the subdomain range 

It is possible to reset the subregion range to the initial range, e.g. for adding points in the full design space 
(or any specified range around the optimum) after an optimization has been conducted. This feature is 
typically only used in a restart mode. The GUI option is "Reset to Initial Range on Iteration" (Figure 20-5). 

 
Command file syntax: 

iterate param reset range iteration iteration_number 

 

Example: 
iterate param reset range iteration 3 
 

The point selection of iteration 3 will be conducted in the initial range around the most recent optimum 
point. Full adaptivity will be applied again starting with iteration 4. 

Freezing the subdomain range 

This feature allows for points to be added without changing the size of the subregion. Adaptivity can be 
frozen at a specified iteration number. The GUI option is "Freeze Range from iteration" (Figure 20-5). 

 
Command file syntax: 

iterate param adapt off iteration iteration_number 

 

Example: 
iterate param adapt off iteration 3 
 

Adaptivity will be applied up to the second iteration. Therefore iterations 3 and higher will have the same 
range (although the region of interest may be panning). The flag is useful for adding points to the full design 
space without any changes in the boundaries. 
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Figure 20-5: Setting the domain reduction parameters using SRSM Advanced Settings 

20.5. Selecting an algorithm for metamodel-based optimization 

Optimization algorithms for metamodel-based optimization can be selected in the Algorithms panel in the 
GUI (see Figure 20-6). 

 

The four core solvers that can be used for metamodel optimization are LFOPC, the Genetic Algorithm and 
Adaptive Simulated Annealing (ASA). Three hybrid algorithms may also be selected namely the Hybrid GA 
and Hybrid SA. The hybrid algorithms start with the GA and SA to find an approximate global optimum 
after which LFOPC is used to sharpen the solution. The solution to a hybrid algorithm will be at least as 
good as the one provided by the global optimizer (GA and SA). The syntax is as follows: 

 

Command file syntax: 

Optimization algorithm [lfopc|genalg|hybrid ga|simulated 
annealing|hybrid simulated annealing] 

 

Hybrid Simulated Annealing is the default. 
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20.6. Setting parameters in the LFOPC algorithm 

The values of the responses are scaled with the values at the initial design. The default parameters in 
LFOPC should therefore be adequate. Should the user have more stringent requirements, the following 
parameters may be set for LFOPC. These can also be set in the GUI. 

Table 20-2: LFOPC parameters and default values 

Item Parameter Default value Remark
mu Initial penalty value μ 1.0E+2  
mumax Maximum penalty value μ max 1.0E+4 1 
xtol Convergence tolerance εx on the step movement 1.0E-8 2 
eg Convergence tolerance εf on the norm of the gradient 1.0E-5 2 
delt Maximum step size δ See remark 3 
steps Maximum number of steps per phase 1000 1 
print Printing interval 10 4 

 
Remarks: 
 

1. For higher accuracy, at the expense of economy, the value of μ max can be increased. Since the 
optimization is done on approximate functions, economy is usually not important. The value of 
steps must then be increased as well. 

2. The optimization is terminated when either of the convergence criteria becomes active that is when  

xε<Δ )(x  

or 

ff ε<∇ )(x  

3. It is recommended that the maximum step size, δ, be of the same order of magnitude as the 
“diameter of the region of interest”. To enable a small step size for the successive approximation 

scheme, the value of delt has been defaulted to ∑ =
=δ

n

i
range

1
2)(05.0 . 

4. If print = steps + 1, then the printing is done on step 0 and exit only. The values of the design 
variables are suppressed on intermediate steps if print < 0. 

5. The parameters can also be set in the GUI (Algorithms panel). See Figure 20-6.0. 

 

Command file syntax: 

lfop param parameter_identifier value 
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Example: 
lfop param eg 1.0e-6 
 

In the case of an infeasible optimization problem, the solver will find the most feasible design within the 
given region of interest bounded by the simple upper and lower bounds. A global solution is attempted by 
multiple starts from a set of random points. 

 

 

Figure 20-6: Selection of the LFOPC parameters 

20.7. Setting parameters in the genetic algorithm 

The default parameters in the GA should be adequate for most problems. However, if the user needs to 
explore different methods, the following parameters may be set. These can also be set in the GUI (see 
Figure 20-7). 

Table 20-3: GA parameters and default values 

Item Parameter Default value Type Remark
popsize Population size (always even) 30/100 Integer 1 
generation Number of generations 100/250 Integer 1 
selection Selection operator: 

Tournament, Roullette, SUS 
TOURN  2 

Tourn Size Tournament size for 
tournament selection operator 

2 Integer 2 
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Elitism Switch elitism for single 
objective GA: ON/OFF 

ON   

NumElites Number of elites passed to 
next generation 

2 Integer  

Encoding variable Type of encoding for a 
variable: Binary=1, Real=2 

2 Integer 2 

Numbits variable Number of bits assigned to a 
binary variable 

15 Integer 2 

Binary crossover type Type of binary crossover: One 
point, Uniform 

One Point   

Binary crossover 
probability 

Binary crossover probability 1.00 Real  

Real crossover type  Type of real crossover: SBX, 
BLX 

SBX   

Real crossover probability Real crossover probability 1.00 Real  
BLX alpha param Value of α for BLX operator 0.5 Real  
Real crossover 
distribution index 

Distribution index for SBX 
crossover operator 

10.0 Real  

Binary mutation 
probability 

Mutation probability for binary 
mutation 

1/number of 
binary digits  

Real  

Real mutation probability Mutation probability in real-
space 

1/number of 
real variables 

Real  

Real mutation distribution 
index 

Distribution index for mutation 
operator 

10.0 Real  

MOEA TYPE Multi-objective optimization 
algorithm: NSGA2, SPEA2 

NSGA2   

Restart interval Frequency of writing restart 
file. For multi-objective 
problems, this parameter 
governs the frequency of 
writing TradeOff files 

10 Integer  

Remarks: 
 
Command file syntax: 

GA parameter parameter_identifier value 

 

Example: 
GA parameter popsize 100 
 

For direct GA, the default population size is 30 and number of generations is 100. For SRSM, the default 
population size is 100 and number of generations is 250. 
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Command file syntax: 

Encoding variable variable_name value 

 

Example: 
Encoding variable ‘x1’ 1 
Numbits variable ‘x1’ 20 
 

 

Figure 20-7: Selection of the GA parameters for creating a Pareto Optimal Frontier 

20.8. Setting parameters in the simulated annealing algorithm 

The adaptive simulated annealing parameters can be modified in the command file manually. 

Table 20-4: ASA parameters and default values 

Item Parameter Default 
value 

Type 

Temperature ratio Ratio of minimum and 
maximum temperature 

1e-6 Real 

Annealing scale Annealing scale 1000 Integer 
Function param 
ratio 

Ratio of cost temperature ratio 
and parameter temperature ratio 

1 Integer 

Maximum simulation Maximum number of function 
evaluations  

10000 Integer 
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Temperature update 
interval 

Number of function evaluations 
at some temperature 

1 Integer 

NumElites Number of elites passed to next 
generation 

2 Integer 

 
Command file syntax: 

SA parameter_identifier value 

 

Example: 
SA temperature ratio 1e-6 
 

The parameters can also be set in the GUI (see Figure 20-8). 

 

Figure 20-8: Selection of the SA parameters 

20.9. Termination criterion for multi-objective optimizers 

A few termination criteria are available for multi-objective optimizers. While the default selection is 
maximum number of function evaluations/generations, one can also use consolidation ratio or hypervolume 
based metrics to terminate the search as shown in Figure 20-9.  
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Table 20-5: Termination criteria and default values 

Item Parameter Default Type 
stoppingtype MOO performance metric*: Consolidation Ratio 

| Variable Consolidation Ratio | Hypervolume 
*No information needed for maximum function 
criterion 

NONE  

Generation interval Interval to calculate MOO performance metrics 10 Integer 
Hypervolume 
deviation threshold 

Threshold value for the change in normalized 
hypervolume 

1.0e-4 Real 

Consolidation ratio 
threshold ratio 

Parameter F defining bound (CRi/F) on the 
variation in the consolidation ratio  

5 Real 

Consolidation ratio 
threshold 

Threshold value of the consolidation ratio 0.8 Real 

 
Command file syntax: 

Multiobjective parameter_identifier value 

 

Example: 
Multiobjective generation interval 5 
 

 

Figure 20-9: Termination criteria selection for multi-objective optimizers 
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20.10. Verification runs 

After the last full iteration a verification run of the predicted optimal design is executed. This run can also 
be omitted if the user is only interested in the prediction of the optimum using the metamodel.  

Command file syntax: 

iterate noverify 

The verification run can also be omitted by setting a flag in the Run panel. 

 

For multi-objective optimization problems, multiple verification runs can be done. A discrete Space Filling 
algorithm is used to select Pareto Optimal points which are evenly distributed in the design space. 

 
Command file syntax: 

verify number_of_design_points 

The number of verification runs can be set in the GUI. 
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21. LS-DYNA Results Statistics 

The statistics of the LS-DYNA results can be displayed on the FE model. The statistics of the LS-DYNA 
d3plot results and LS-OPT history data are computed by LS-OPT for viewing in LS-PREPOST. These 
statistics shows: 

o The variation of the LS-DYNA results due to the variation of the design parameters. 

o The variation of the LS-DYNA results due to bifurcations and other stochastic process events. 

The d3plot results are computed and displayed for every node or element for every state in the d3plot 
database, while the history results are likewise computed and displayed for every timestep in the history. 

 

A more complete list of the statistics that can be computed and visualized is: 

1. Statistics of the Monte Carlo data from the LS-DYNA jobs. These are the data from the 
experimental designs used. If the experimental design was for a Monte Carlo analysis then the 
experimental design reflects the variation of the design variables, but if the experimental design was 
for creating a metamodel then the experimental design does not reflect the statistical variation of the 
design variables. 

2. Statistics of the results considering the variation of the design variables using the approximations 
(metamodels) created from the LS-DYNA jobs. The distributions of the design variables and the 
metamodels are used to compute the variation of the responses. If distributions were not assigned to 
the design variables, the resulting variation will be zero. The metamodels allow the computations of 
the following: 

o The deterministic or parametric variation of the responses caused by the variation of the design 
variables. 

o Statistics of the residuals from the metamodels created from the LS-DYNA jobs. These residuals are 
used to find bifurcations in the structural behavior – the outliers comprise the displacement changes 
not associated with a design variable change. See Section 6.6 regarding the computation of outliers. 
This is the process variation is associated with structural effects such as bifurcations and not with 
changes in the design variable values. 

o The stochastic contribution of a variable can be investigated. 

o A probabilistic safety margin with respect to a bound on the LS-DYNA response can be plotted.  

o The LS-OPT histories of all the LS-DYNA runs can be plotted. 



CHAPTER 21: 20BLS-DYNA RESULTS STATISTICS 

LS-OPT Version 4.3  419 

3. The correlation of d3plot results or histories with an LS-OPT response can be displayed. This can be 
used, for example, to identify the changes in displacements associated with noise in an LS-OPT 
response.0. 

21.1. Working with the plots 

Use the GUI panel shown in Figure 21-1 to work with the plots. Utilize the following actions: 

o Create This creates a new plot. Note that this only creates the definition of the plot. The data for the 
must be generated before it can be displayed.  

o Generate The data for a plot is generated. This is done only once per plot. More than one plot can be 
selected to be generated – there is no need to generate plots one-by-one. 

o Display Plot previously created and generated can be displayed. 

o Edit A plot can be edited or copied. This may require that the data be re-generated. 

o Bifurcation A study can be investigated for bifurcations, and the bifurcation can be plotted. 

o Delete A plot can be deleted. 

The plot definitions are stored in a file which allows re-use of a methodology in different studies (see 
Section 21.13). 
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Figure 21-1 Visualization of DYNA results statistics. After a plot has been created using the plot creation 
wizard, the data for the plot must be generated by running LS-OPT, following which the plot can be 
displayed in LS-PREPOST. An existing plot can be edited, or a bifurcation in the plot can be 
investigated, or the plot can be deleted. 

21.2. Monte Carlo 

The statistics of the responses from a Monte Carlo procedure can be computed. The task will calculate: 

1. Statistics of the response  

o Mean value of the response 

o Standard deviation of the response 

o Range of the response (maximum minus the minimum value) 

o Maximum value of the response 

o Minimum value of the response 

o ID of the LS-DYNA job where the maximum value occurred. This can be used to indentify the jobs 
likely to contain a different bifurcation. 

o ID of the LS-DYNA job where the minimum value occurred. This can be used to indentify the jobs 
likely to contain a different bifurcation. 
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2. The margin of safety (constraint margin) considering (i) a given bound on the response and (ii) the 
variation of the response as computed using the Monte Carlo analysis (see also Section 21.7).0. 

21.3. Metamodels and residuals 

Metamodels (approximations) can be used to predict the statistics of the responses. These metamodels 
(approximations) will be computed for all results for all nodes for all time steps. 

 

The metamodels are also useful for separating deterministic variation, caused by the variation of the design 
variables, from the process variation. The two types of variation are as shown in Figure 21-2. 

 

Figure 21-2 Different types of variation that can occur in a structure. The deterministic variation, 
predicted using the metamodel, is due to changes in the design variable values. The process variation, not 
associated with change in the design variable values, shows up in the residuals of the metamodel fit. 

Metamodels are able to distinguish the process variation because, as shown in Figure 21-3, a metamodel can 
only predict the effect of the design variables. Process variation, not predictable by the design variables, 
becomes residuals. 
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Figure 21-3 Metamodels can be used to distinguish between changes in the results due to the design 
variable changes and changes due to bifurcations. 

The metamodel task will calculate: 

1. Statistics of the response due to all the variables using the metamodel 

o Mean value of the response 

o Standard deviation of the response 

o Range (four standard deviations) 

o Maximum value (mean plus two standard deviations) 

o Minimum value (mean minus two standard deviations) 

2. Statistics of the residuals 

o Mean value of the residuals (always zero) 

o Standard deviation of the residuals 

o Range of the residuals (maximum minus the minimum value) 

o Maximum value of the residuals 

o Minimum value of the residuals 

o ID of the LS-DYNA job where the maximum residual occurred. This can be used to indentify the 
jobs likely to contain a different bifurcation. 

o ID of the LS-DYNA job where the minimum residual occurred. This can be used to indentify the 
jobs likely to contain a different bifurcation. 

3. Stochastic contribution of each individual variable 
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4. The margin of safety (constraint margin) considering (i) a given bound on the response and (ii) the 
variation of the response as computed using the metamodel (see also Section 21.7). 

5. All the computations as specified for the Monte Carlo procedure. The data required for this 
computation is read in for the metamodel computations, so very little time is expended computed 
these results as well.0. 

 

The standard deviation of the variation caused by the design variables are computed using the metamodel as 
described in Section 6.7. The maximum, minimum, and range are computed using the mean value 
plus/minus two standard deviations. The Max Job ID and Min Job ID are not meaningful for the metamodel 
results. 

 

The residuals are computed as the difference between the values computed using FEA and the values 
predicted using the metamodel (see Section 6.6 for more details). 

 

A linear or a quadratic response surface can be used. 

 

The metamodel processing speed is approximately 105 – 106 finite element nodes a second, where the total 
number of nodes to be processed is the number of nodes in the model times the number of states times the 
number of jobs. FLD computations, which require the computation of the principle strains, can be a factor of 
five slower than computations using the nodal displacements. The overall speed is dominated by the time 
required to read the d3plot files from disk, which means accessing files over a network will be slow. 

21.4. Monte Carlo and metamodel analysis commands 

This section gives the commands required for the computation of the statistics from a Monte Carlo or a 
metamodel based set of LS-DYNA results. 

 

Either the LS-DYNA d3plot results or LS-OPT history results can be analyzed. The resulting output can be 
viewed in LS-PREPOST. The results will be in the solver directory with extensions of .statdb and .history. 

 

The statistics are computed for a single solver and a single iteration. 

 

Command file syntax: 

dynastat solver ‘case_name‘ 
dynastat iteration interation_number 
dynastat order approx_order 
analyze dynastat  
analyze dynastat d3plot ‘result_type’ ‘component’ 
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analyze dynastat d3plot ‘FLD’ ‘fld_component’ parameters fld_t 
fld_n 
analyze dynastat d3plot ‘FLD’ ‘fld_component’ fld_curve_id 
analyze dynastat history ‘history_name’ 

 

Example: 
dynastat order linear 
 

Item Description Default 
case_name Name of analysis case The first or only case specified 
iteration_number Iteration number 1 
approx_order linear | quadratic Do not use a metamodel 
result_type The available result types are 

listed Appendix A 
 

component The available components are 
listed Appendix A 

 

fld_t FLD curve t coefficient  
fld_n FLD curve n coefficient  
fld_curve_id ID in the LS-DYNA file of the 

FLD curve to be used 
 

history_name Name of LS-OPT history  
 

 

Example: 
$ analyze displacement using a metamodel 
dynastat solver ‘CRASH’ 
dynastat iteration 1 
analyze dynastat 
dynastat order linear 
$ 
$ analyze history using a metamodel 
dynastat solver ‘CRASH’ 
dynastat iteration 1 
dynastat order linear 
analyze dynastat history ‘nHist’ 

21.5. Correlation 

21.5.1. Correlation of fringe plots or histories with responses 

The correlation of the LS-DYNA results or LS-OPT histories with a response can be computed. This 
quantity indicates whether the changes in the responses are associated with the changes in the displacement 
or history. Figure 21-4 shows examples of a positive, a negative, and a lack of correlation. 
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Figure 21-4 Correlation between X, shown in the upper left corner, and different responses Y. Different 
responses Y with a positive, a negative, and no correlation are shown. 

If not enough FE evaluations were conducted, the resulting fringe plot can be visually noisy. Thirty or more 
FE evaluations may be required. 

 

Note that the correlation of history is with respect to a response at a single time instance. 
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Figure 21-5 Viewing the correlation between an LS-DYNA response and an LS-OPT response. 
Additionally, the correlation between an LS-OPT history and an LS-OPT response can also be viewed. 

 

Command file syntax: 

 dynastat correlation response ’name’ 

 

Item Description 
name Name of response or composite  

Example: 
dynastat correlation response ‘node_max’ 
 

21.5.2. Correlation between variables 

If correlation between variables are specified as described in Section 12.3.4, this will be handled 
automatically for Monte Carlo results as well as results computed using a linear metamodel. Quadratic 
metamodels will generate an error message. 
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21.6. Stochastic contribution of a variable (Design sensitivity analysis) 

The contribution of each design variable to the variation of the nodal response can also be plotted on the 
model. These results are computed as described in Section 6.7.  

 

The most important variable, or rather the variable responsible for the most variation of the response, can be 
plotted on the model. Actually, only the index of the variable is displayed on the model. This index is the 
same as in the list of variables as shown in the LS-DYNA results statistics GUI. 

 

Figure 21-6 Viewing the stochastic contribution of a single variable. 

21.7. Safety margin 

The safety margin as shown in Figure 21-7 can be displayed in three ways: 

1. The safety margin — the difference between the bound and mean, 

2. The safety margin measured (scaled) in standard deviations (sigmas), and 

3. The probability of exceeding the bound.0.  
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Figure 21-7 The safety margin is the difference, measured in standard deviations, between the mean 
response and the constraint bound on the response. 

 

The bound must therefore be specified when the statistics are computed as shown in Figure 21-8. Obtaining 
the safety margin for a different bound requires the generation of a new plot. 

 

The probability of exceeding the bound is computed using the FOSM method (see Section 6.4.4) using the 
normal distribution together with the safety margin measured in standard deviations (sigmas). The 
computation is therefore done in the six-sigma sense interpretation — the number of sigmas (standard 
deviations) is the unit of measure. For a Monte Carlo computation of the probability is desired, then it must 
be computed using a response in viewer; if this response was not defined originally then it must be extracted 
from the d3plot database: first defining a d3plot response, do a repair/extract, and use Viewer. 
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Figure 21-8 Plotting a safety margin or the probability of failure requires that the bound must be 
specified. 

21.8. Visualization in LS-PREPOST 

The user can select the LS-PREPOST plot details in LS-OPT (Figure 21-9). The GUI options will reflect 
whether displacements or history data is being investigated and whether coefficient of correlation results are 
requested. 
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Figure 21-9  The statistics viewing options. The statistics will be shown in LS-PREPOST using the FE 
model from the LS-DYNA job specified using the Job field. The FE models of the jobs containing the 
maximum and minimum values can be overlayed in order to identify bifurcations as described in Section 
21.10. 

The Job Index field specifies the FE model used for the display of the results. Additionally, the FE models 
containing the maximum and the minimum results can be overlayed in order to spot bifurcations as 
described in a later section. 

21.9. Viewing LS-OPT histories 

The LS-OPT histories for all the LS-DYNA run can be viewed simultaneously. See Figure 21-12 for an 
example. 
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Figure 21-10 Viewing all the LS-OPT histories. 

 

 

Figure 21-11 Statistics of an LS-OPT history. 
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Figure 21-12 The LS-OPT histories of all the LS-DYNA run can be viewed simultaneously. 

21.10. Bifurcation investigations 

The residuals plots are useful for finding bifurcations. The standard deviation (or range) of the residuals 
indicate regions where the changes in displacements are not explained by changes in the design variable 
values ― it is therefore a plot of the unexpected displacements or ‘surprise factor’.  The plots from a Monte 
Carlo analysis can also be used to find bifurcations similarly to the residuals from a metamodel-based 
Monte Carlo analysis. 
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Figure 21-13 Bifurcation options. The bifurcation is found by superimposing the FE models containing 
the maximum and minimum results. The specification of a node ID associated with the bifurcation may 
be required if the extreme values in the model are not caused by the bifurcation. 

21.10.1. Automatic detection 

Automatic detection of the LS-DYNA jobs containing the minimum and maximum outlier can be done as 
shown in Figure 21-9.  The GUI the user must select (i) overlay of the FE models containing the maximum 
and minimum results and (ii) whether the global minimum or the minimum at specific node must be used. 
Viewing the maximum and minimum job simultaneously allows the bifurcation to be identified. See Figure 
21-9 for an example of the resulting LS-PREPOST plot. 
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Figure 21-14 Viewing a bifurcation. The structure is a plate that can buckle either left or right. Three FE 
models are shown, and the two distinctly different solution modes are clearly visible. The creation and 
display of the plot containing all three models are automated in LS-OPT. 

21.10.2. Manual detection 

The steps for manual detection are: 

1. Plot displacement magnitude outlier Range to identify location in FE model where the bifurcation 
occurred. 

2. Identify job in which maximum value occurred using a Max Job ID plot 

3. Identify job in which minimum value occurred using a Min Job ID plot 

4. View the location in model for the jobs having the minimum and maximum value.0. 

Recommendations: 

o Engineering knowledge of the structure is important. 

o Look at the x, y, and z components in addition to the displacement magnitude to understand in which 
direction the bifurcation occurred; most bifurcations are actually best identified considering a 
displacement component. 

o The history results may be useful to find the time at which a bifurcation occurred. 

o The correlation between a response and displacements (or histories) indicates if variation of the 
displacement is linked to variation of the response. 
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o Look at all of the states in the d3plot database; the bifurcation may be clearer at an earlier analysis 
time. 

21.11. Displacement magnitude issues* 

Approximation of the displacement magnitudes (resultants) introduces some special cases. The magnitude is 
defined as the square root of a sum of squares, which is difficult to approximate around the origin, 
especially using linear approximations. Figure 21-15 illustrates. The x, y, and z displacement components 
do not suffer from this problem. 

 
 

Figure 21-15 Displacement approximation scenarios. The displacement magnitude, being always larger 
than zero, cannot be approximated accurately around the origin if some of the displacement components 
can have a negative value.  

Unexpected results may occur even if the displacement magnitude is approximated correctly. The 
displacement magnitude is always a positive quantity, which, in addition to the fitting problems, can also 
cause problems when computing the coefficient of correlation with a response quantity. Figure 21-16 
illustrates two buckling modes of a flange evaluated at two locations in space. The displacement magnitude 
variance differs for the two locations though the buckling modes are similar. The variance of the 
displacement magnitude will therefore be smaller than what would be found considering the components. 
Considering a displacement component will cure this problem, but a displacement component aligned with 
the required direction may not always exist. 
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Figure 21-16 The displacement magnitude can depend on the aligment of the flange with the axis. The 
buckling will be difficult to spot if it is aligned with the position of the axis. For configuration A, the two 
vectors have nearly the same length, while for configuration B, they clearly have different lengths. 

Recommendations: 

o Use the x, y, and z displacement components.  

21.12. Metalforming options 

Metalforming has some special requirements. It is possible to: 

1. Map the results from each iteration to the mesh of the base design. The results will be computed at a 
specific spatial location instead of a node (Eulerian system). This is required in metalforming 
because: 

o The adaptivitity will result in the different iterations having different meshes. 

o It is more natural in metalforming to consider the results at a specific geometric location than at a 
specific node. 

This is done only for the work piece. This part must therefore be specified in the LS-OPT input. More 
detail is shown in Figure 21-17, Figure 21-18, and Figure 21-19. 

2. Specify the FLC curve to be used in the computation of the FLD responses. This can be done by 
either specifying the number of a curve in the LS-DYNA input deck or using two parameters similar 
to that being used in LS-PREPOST.0. 
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Figure 21-17 For metal forming specify that the coordinates instead of the nodes must be followed and 
specify the part (blank) for which the results must be mapped. 

 

Figure 21-18 Interpolation of metal forming results. 
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Figure 21-19 Acuracy of of the mapping operation for element results is shown for two cases. For each 
case the results are shown as the element centroid results for the original mapped mesh, the element 
results averaged at the nodes for the original mapped mesh, and the results mapped to the nodes of the 
base mesh. For the first case it can be seen that the mapping accuracy is good if the mesh is sufficiently 
fine to consider smoothly varying results. The second case, which occur when yielding occurs in a single 
element, indicates a loss of information. But for this second case, the exact numerical value of the 
original results is not considered very accurate, so we can consider the mapped results as sufficient as 
long as they conserve the prediction of failure. For the second case the numerical values are mesh-
dependent, so the prediction of failure is the quantity that should be mapped to another mesh. 

 
Command file syntax: 

dynastat map part 
analyze dynastat d3plot ‘FLD’ ‘fld_component’ parameters fld_t 
fld_n 
analyze dynastat d3plot ‘FLD’ ‘fld_component’ fld_curve_id 

 

Item Description 
part ID of part to be mapped 
fld_t FLD curve t coefficient 
fld_n FLD curve n coefficient 
fld_curve_id ID in the LS-DYNA file of the 

FLD curve to be used 
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Example: 
dynastat map 8 
analyze dynastat ‘FLD’ ‘lower_eps1/fldc’ parameters 0.8 0.21 

21.13. Re-use and persistence of an evaluation methodology* 

The definitions of the plots are saved in a filed named dynastatplots.xml. Copy this file to the directory 
where you want to re-use the definitions. The plots will be available when you restart the LS-OPT gui. The 
plots will have to be re-generated though; note that you can select all of the plots when you generate plots – 
there is no need to generate plots one-by-one. 
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22. Example Problems 

22.1. Two-bar truss (2 variables) 

This example has the following features: 

o A user-defined solver is used. 

o Extraction is performed using user-defined scripts. 

o First- and second-order response surface approximations are compared. 

o The effect of subregion size is investigated. 

o A trade-off study is performed. 

The design optimization process is automated. 

22.1.1. Description of problem 

This example problem as shown in Figure 22-1 has one geometric and one element sizing variable. 
 

 

x2 

x1 

x2 

F 

 
Figure 22-1: The two-bar truss example 

 

The problem is statically determinate. The forces on the members depend only on the geometric variable. 
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Only one load case is considered: F = (Fx,Fy) = (24.8kN, 198.4kN). 

 

There are two design variables: x1 the cross-sectional area of the bars, and x2 half of the distance (m) 
between the supported nodes. The lower bounds on the variables are 0.2cm2 and 0.1m, respectively. The 
upper bounds on the variables are 4.0cm2 and 1.6m, respectively. 

 

The objective function is the weight of the structure. 

2
211 1)( xxCxf +=      (22-1)  

The stresses in the members are constrained to be less than 100 MPa. 
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xxx
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where C1 = 1.0 and C2 = 0.124. 

 

Only the first stress constraint is considered since it will always have the larger value. 

 

The C language is used for the simulation program. The following two programs simulate the weight 
response and stress response respectively. 

 
gw.c 
#include <stdlib.h> 
#include <stdio.h> 
#include <math.h> 
 
#define NUMVAR 2 
 
main (int argc, char *argv[]) 
{ 
int i, flag; 
double x[NUMVAR], val; 
 
    for (i=0; i<NUMVAR; i++) { 
 flag = sscanf (argv[i+1], "%lf", &x[i]); 
 if (flag != 1)  { 
     printf ("Error in calculation of Objective Function\n"); 
     exit (1); 
     } 
 } 
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    val =  x[0] * sqrt(1 + x[1]*x[1]); 
 
    printf ("%lf\n", val); 
    fprintf (stderr, "N o r m a l\n"); 
 
    exit (0); 
} 
 
gs.c 
#include <stdlib.h> 
#include <stdio.h> 
#include <math.h> 
 
#define NUMVAR 2 
 
main (int argc, char *argv[]) 
{ 
int i, flag; 
double x[NUMVAR], val; 
double x2; 
 
    for (i=0; i<NUMVAR; i++) { 
 flag = sscanf (argv[i+1], "%lf", &x[i]); 
 if (flag != 1) { 
     printf ("Error in calculation of constraint1\n"); 
     exit (1); 
     } 
 } 
    x2 = 1 + x[1]*x[1];  
    val = 0.124 * sqrt (x2) * (8/x[0] + 1/x[0]/x[1]); 
 
    printf ("%lf\n", val); 
    fprintf (stderr, "N o r m a l\n"); 
 
    exit (0); 
} 

The UNIX script program 2bar_com runs the C-programs gw and gss using the design variable file 
XPoint which is resident in each run directory, as input. For practical purposes, 2bar_com, gw and gs 
have been placed in a directory above the working directory (or three directories above the run directory). 
Hence the references ../../../2bar_com, ../../../gw, etc. in the LS-OPT input file. 

 

Note the output of the string "N o r m a l" so that the completion status may be recognized. 

 

2bar_com: 

../../../gw `cat XPoint` >wt; ../../../gss `cat XPoint` >str 
 

The UNIX extraction scripts get_wt and get_str are defined as user interfaces: 

 
get_wt: 
cat wt 
 
get_str: 
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cat str 
 

In Sections 22.1.2 to 22.1.4, a typical semi-automated optimization procedure is illustrated. Section 22.1.5 
shows how a trade-off study can be conducted, while the last subsection 22.1.6 shows how an automated 
procedure can be specified for this example problem. 

22.1.2. A first approximation using linear response surfaces 

The first iteration is chosen to be linear. The input file for LS-OPT given below. The initial design is located 
at x = (2.0, 0.8). 

 
"2BAR1: Two-Bar Truss: A first approximation (linear)" 
$ Created on Wed Jul 10 17:41:03 2002 
$ 
$ DESIGN VARIABLES 
$ 
variables 2 
 Variable 'Area' 2 
  Lower bound variable 'Area' 0.2 
  Upper bound variable 'Area' 4 
  Range 'Area' 4 
 Variable 'Base' 0.8 
  Lower bound variable 'Base' 0.1 
  Upper bound variable 'Base' 1.6 
  Range 'Base' 1.6 
solvers 1 
responses 2 
$ 
$ NO HISTORIES ARE DEFINED 
$ 
$ 
$ DEFINITION OF SOLVER "RUNS" 
$ 
 solver own 'RUNS' 
  solver command "../../../2bar_com" 
$ 
$ RESPONSES FOR SOLVER "RUNS" 
$ 
 response 'Weight' 1 0 "cat wt" 
 response 'Weight' linear 
 response 'Stress' 1 0 "cat str" 
 response 'Stress' linear 
$ 
$ NO HISTORIES DEFINED FOR SOLVER "RUNS" 
$ 
$ 
$ OBJECTIVE FUNCTIONS 
$ 
 objectives 1 
 objective 'Weight' 1 
$ 
$ CONSTRAINT DEFINITIONS 
$ 
 constraints 1 
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 constraint 'Stress' 
  upper bound constraint 'Stress' 1 
$ 
$ EXPERIMENTAL DESIGN 
$ 
 Order linear 
 Experimental design dopt 
 Basis experiment 3toK 
 Number experiment 5 
$ 
$ JOB INFO 
$ 
 concurrent jobs 4 
 iterate param design 0.01 
 iterate param objective 0.01 
 iterate 1 
STOP 
 

The input is echoed in the file lsopt_input. 

The output is given in lsopt_output and in the View panel of LS-OPTui.  

 

A summary of the response surface statistics from the output file is given: 

 
Approximating Response 'Weight' using 5 points (ITERATION 1) 
---------------------------------------------------------------- 
          Global error parameters of response surface 
          ------------------------------------------- 
Linear Function Approximation: 
------------------------------ 
Mean response value           =     2.9413 
 
RMS error                     =     0.7569 (25.73%) 
Maximum Residual              =     0.8978 (30.52%) 
Average Error                 =     0.7131 (24.24%) 
Square Root PRESS Residual    =     2.5054 (85.18%) 
Variance                      =     0.9549 
R^2                           =     0.9217 
R^2 (adjusted)                =     0.9217 
R^2 (prediction)              =     0.1426 
Determinant of [X]'[X]        =     3.5615 
 
Approximating Response 'Stress' using 5 points (ITERATION 1) 
---------------------------------------------------------------- 
          Global error parameters of response surface 
          ------------------------------------------- 
Linear Function Approximation: 
------------------------------ 
Mean response value           =     4.6210 
 
RMS error                     =     2.0701 (44.80%) 
Maximum Residual              =     4.1095 (88.93%) 
Average Error                 =     1.6438 (35.57%) 
Square Root PRESS Residual    =     3.9077 (84.56%) 



CHAPTER 22:  21BEXAMPLE PROBLEMS 
 

LS-OPT Version 4.3  445 

Variance                      =     7.1420 
R^2                           =     0.8243 
R^2 (adjusted)                =     0.8243 
R^2 (prediction)              =     0.3738 
Determinant of [X]'[X]        =     3.5615 
 

The accuracy of the response surfaces can also be illustrated by plotting the predicted results vs. the 
computed results (Figure 22-2). 

 

Prediction accuracy of Weight  
(Iteration 1 - Linear) 

Prediction accuracy of Stress  
(Iteration 1 - Linear) 

Figure 22-2: Prediction accuracy of Weight and Stress (Iteration 1 – Linear) 

 

The R2 values are large. However the prediction accuracy, especially for weight, seems to be poor, so that a 
higher order of approximation will be required. 

 

Nevertheless an improved design is predicted with the constraint value (stress) changing from an 
approximate 4.884 (severely violated) to 1.0 (the constraint is active). Due to inaccuracy, the actual 
constraint value of the optimum is 0.634. The weight changes from 2.776 to 4.137 (3.557 computed) to 
accommodate the violated stress: 

 
DESIGN POINT 
------------  
Variable Name                    Lower Bound   Value    Upper Bound 
--------------------------------|-----------|----------|----------- 
Area                                     0.2      3.539          4 
Base                                     0.1        0.1        1.6 
--------------------------------|-----------|----------|----------- 
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RESPONSE FUNCTIONS: 
------------------  
                                |       Scaled        |       Unscaled      | 
                                |---------------------|---------------------| 
RESPONSE                        | Computed   Predicted| Computed   Predicted| 
--------------------------------|----------|----------|----------|----------| 
Weight                          |     3.557      4.137|     3.557      4.137| 
Stress                          |    0.6338          1|    0.6338          1| 
--------------------------------|----------|----------|----------|----------| 
 
               OBJECTIVE: 
               ---------  
Computed Value  =      3.557 
Predicted Value =      4.137 
 
 
OBJECTIVE FUNCTIONS: 
-------------------  
OBJECTIVE NAME                  | Computed   Predicted  WT. 
--------------------------------|----------|----------|---- 
Weight                          |     3.557      4.137|   1 
--------------------------------|----------|----------|---- 
 
CONSTRAINT FUNCTIONS: 
--------------------  
CONSTRAINT NAME                 | Computed | Predicted|  Lower   |  Upper   |Viol? 
--------------------------------|----------|----------|----------|----------|----- 
Stress                          |    0.6338          1|    -1e+30          1|no 
--------------------------------|----------|----------|----------|----------|----- 
 
 
CONSTRAINT VIOLATIONS: 
---------------------  
                                |  Computed Violation | Predicted Violation | 
CONSTRAINT NAME                 |----------|----------|----------|----------| 
                                |  Lower   |  Upper   |  Lower   |  Upper   | 
--------------------------------|----------|----------|----------|----------| 
Stress                          |    -          -     |    -          -     | 
--------------------------------|----------|----------|----------|----------| 
 
 
MAXIMUM VIOLATION: 
------------------  
                   |         Computed          |        Predicted          | 
     Quantity      |---------------------------|---------------------------| 
                   |   Constraint      Value   |   Constraint      Value   | 
-------------------|----------------|----------|----------------|----------| 
Maximum Violation  |Stress                    0|Stress            6.995e-08| 
Smallest Margin    |Stress               0.3662|Stress            6.995e-08| 
-------------------|----------------|----------|----------------|----------| 
 

22.1.3. Updating the approximation to second order 

To improve the accuracy, a second run is conducted using a quadratic approximation. The following 
statements differ from the input file above: 
"2BAR2: Two-Bar Truss: Updating the approximation to 2nd order" 
response 'Weight' quadratic 
response 'Stress' quadratic 
$ 
$ EXPERIMENTAL DESIGN 
$ 
 Order quadratic 
 Experimental design dopt 
 Basis experiment 5toK 
 Number experiment 10 

The approximation results have improved considerably, but the stress approximation is still poor. 
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Approximating Response 'Weight' using 10 points (ITERATION 1) 
---------------------------------------------------------------- 
          Global error parameters of response surface 
          ------------------------------------------- 
Quadratic Function Approximation: 
--------------------------------- 
Mean response value           =     2.8402 
 
RMS error                     =     0.0942 (3.32%) 
Maximum Residual              =     0.1755 (6.18%) 
Average Error                 =     0.0737 (2.59%) 
Square Root PRESS Residual    =     0.2815 (9.91%) 
Variance                      =     0.0177 
R^2                           =     0.9983 
R^2 (adjusted)                =     0.9983 
R^2 (prediction)              =     0.9851 
Determinant of [X]'[X]        =    14.6629 
 
 
 
Approximating Response 'Stress' using 10 points (ITERATION 1) 
---------------------------------------------------------------- 
          Global error parameters of response surface 
          ------------------------------------------- 
Quadratic Function Approximation: 
--------------------------------- 
Mean response value           =     3.4592 
 
RMS error                     =     1.0291 (29.75%) 
Maximum Residual              =     2.0762 (60.02%) 
Average Error                 =     0.8385 (24.24%) 
Square Root PRESS Residual    =     2.4797 (71.68%) 
Variance                      =     2.1182 
R^2                           =     0.9378 
R^2 (adjusted)                =     0.9378 
R^2 (prediction)              =     0.6387 
Determinant of [X]'[X]        =    14.6629 
 

The fit is illustrated below in Figure 22-3: 
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Prediction accuracy of Weight  

(Iteration 1 - Quadratic) 
Prediction accuracy of Stress  

(Iteration 1 - Quadratic) 

Figure 22-3: Prediction accuracy of Weight and Stress (Iteration 1 – Quadratic) 

 

An improved design is predicted with the constraint value (stress) changing from a computed 0.734 to 1.0 
(the approximate constraint becomes active). Due to inaccuracy, the actual constraint value of the optimum 
is a feasible 0.793. The weight changes from 2.561 to 1.925 (1.907 computed). 
 
DESIGN POINT 
------------  
Variable Name                    Lower Bound   Value    Upper Bound 
--------------------------------|-----------|----------|----------- 
Area                                     0.2      1.766          4 
Base                                     0.1     0.4068        1.6 
--------------------------------|-----------|----------|----------- 
 
RESPONSE FUNCTIONS: 
------------------  
                                |       Scaled        |       Unscaled      | 
                                |---------------------|---------------------| 
RESPONSE                        | Computed   Predicted| Computed   Predicted| 
--------------------------------|----------|----------|----------|----------| 
Weight                          |     1.907      1.925|     1.907      1.925| 
Stress                          |    0.7927          1|    0.7927          1| 
--------------------------------|----------|----------|----------|----------| 
 
               OBJECTIVE: 
               ---------  
Computed Value  =      1.907 
Predicted Value =      1.925 
 
OBJECTIVE FUNCTIONS: 
-------------------  
OBJECTIVE NAME                  | Computed   Predicted  WT. 
--------------------------------|----------|----------|---- 
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Weight                          |     1.907      1.925|   1 
--------------------------------|----------|----------|---- 
 
CONSTRAINT FUNCTIONS: 
--------------------  
CONSTRAINT NAME                 | Computed | Predicted|  Lower   |  Upper   |Viol? 
--------------------------------|----------|----------|----------|----------|----- 
Stress                          |    0.7927          1|    -1e+30          1|YES 
--------------------------------|----------|----------|----------|----------|----- 
 
 
CONSTRAINT VIOLATIONS: 
---------------------  
                                |  Computed Violation | Predicted Violation | 
CONSTRAINT NAME                 |----------|----------|----------|----------| 
                                |  Lower   |  Upper   |  Lower   |  Upper   | 
--------------------------------|----------|----------|----------|----------| 
Stress                          |    -          -     |    -       1.033e-06| 
--------------------------------|----------|----------|----------|----------| 
 
 
MAXIMUM VIOLATION: 
------------------  
                   |         Computed          |        Predicted          | 
     Quantity      |---------------------------|---------------------------| 
                   |   Constraint      Value   |   Constraint      Value   | 
-------------------|----------------|----------|----------------|----------| 
Maximum Violation  |Stress                    0|Stress            1.033e-06| 
Smallest Margin    |Stress               0.2073|Stress            1.033e-06| 
-------------------|----------------|----------|----------------|----------| 

 

22.1.4. Reducing the region of interest for further refinement 

It seems that further accuracy can only be obtained by reducing the size of the subregion. In the following 
analysis, the current optimum (1.766; 0.4086) was used as a starting point while the region of interest was 
cut in half. The order of the approximation is quadratic. The modified statements are: 
 
"2BAR3: Two-Bar Truss: Reducing the region of interest" 
$ Created on Thu Jul 11 07:46:24 2002 
$ 
$ DESIGN VARIABLES 
  Range 'Area' 2 
  Range 'Base' 0.8 
 

The approximations have been significantly improved: 
Approximating Response 'Weight' using 10 points (ITERATION 1) 
---------------------------------------------------------------- 
          Global error parameters of response surface 
          ------------------------------------------- 
Quadratic Function Approximation: 
--------------------------------- 
Mean response value           =     2.0282 
 
RMS error                     =     0.0209 (1.03%) 
Maximum Residual              =     0.0385 (1.90%) 
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Average Error                 =     0.0157 (0.77%) 
Square Root PRESS Residual    =     0.0697 (3.44%) 
Variance                      =     0.0009 
R^2                           =     0.9995 
R^2 (adjusted)                =     0.9995 
R^2 (prediction)              =     0.9944 
Determinant of [X]'[X]        =     0.0071 
 
Approximating Response 'Stress' using 10 points (ITERATION 1) 
---------------------------------------------------------------- 
          Global error parameters of response surface 
          ------------------------------------------- 
Quadratic Function Approximation: 
--------------------------------- 
Mean response value           =     1.2293 
 
RMS error                     =     0.0966 (7.85%) 
Maximum Residual              =     0.1831 (14.89%) 
Average Error                 =     0.0826 (6.72%) 
Square Root PRESS Residual    =     0.3159 (25.69%) 
Variance                      =     0.0186 
R^2                           =     0.9830 
R^2 (adjusted)                =     0.9830 
R^2 (prediction)              =     0.8182 
Determinant of [X]'[X]        =     0.0071 
 

The results after one iteration are as follows: 
 
DESIGN POINT 
------------  
Variable Name                    Lower Bound   Value    Upper Bound 
--------------------------------|-----------|----------|----------- 
Area                                     0.2      1.444          4 
Base                                     0.1     0.5408        1.6 
--------------------------------|-----------|----------|----------- 
 
RESPONSE FUNCTIONS: 
------------------  
                                |       Scaled        |       Unscaled      | 
                                |---------------------|---------------------| 
RESPONSE                        | Computed   Predicted| Computed   Predicted| 
--------------------------------|----------|----------|----------|----------| 
Weight                          |     1.642      1.627|     1.642      1.627| 
Stress                          |    0.9614          1|    0.9614          1| 
--------------------------------|----------|----------|----------|----------| 
 
               OBJECTIVE: 
               ---------  
Computed Value  =      1.642 
Predicted Value =      1.627 
 
 
OBJECTIVE FUNCTIONS: 
-------------------  
OBJECTIVE NAME                  | Computed   Predicted  WT. 
--------------------------------|----------|----------|---- 
Weight                          |     1.642      1.627|   1 
--------------------------------|----------|----------|---- 
 
CONSTRAINT FUNCTIONS: 
--------------------  
CONSTRAINT NAME                 | Computed | Predicted|  Lower   |  Upper   |Viol? 
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--------------------------------|----------|----------|----------|----------|----- 
Stress                          |    0.9614          1|    -1e+30          1|no 
--------------------------------|----------|----------|----------|----------|----- 
 
 
CONSTRAINT VIOLATIONS: 
---------------------  
                                |  Computed Violation | Predicted Violation | 
CONSTRAINT NAME                 |----------|----------|----------|----------| 
                                |  Lower   |  Upper   |  Lower   |  Upper   | 
--------------------------------|----------|----------|----------|----------| 
Stress                          |    -          -     |    -          -     | 
--------------------------------|----------|----------|----------|----------| 

 

An improved design is predicted with the constraint value (stress) changing from an approximate 0.8033 
(0.7928 computed) to 1.0 (the approximate constraint becomes active). Due to inaccuracy, the actual 
constraint value of the optimum is a feasible 0.961. This value is now much closer to the value of the 
simulation result. The weight changes from 1.909( 1.907 computed) to 1.627 (1.642 computed). 

22.1.5. Conducting a trade-off study 

The present region of interest (2; 0.8) is chosen in order to conduct a study in which the weight is traded off 
against the stress constraint. The trade-off is performed by selecting the Trade-off option in the View panel 
of LS-OPTui.  

 

The upper bound of the stress constraint is varied from 0.2 to 2.0 with 20 increments. Select Constraint as 
the Trade-off option and enter the bounds and number of increments. Generate the trade-off. This initiates 
the solution of a series of optimization problems using the response surface generated in Section 22.1.4, 
with the constraint in each (constant coefficient of the constraint response surface polynomial) being varied 
between the limits selected. The resulting curve is also referred to as a Pareto optimality curve. When 
plotting, select the ‘Constraint’ Stress, and not the ‘Response’ Stress, as the latter represents only the left-
hand side of the constraint equation (17.2). 

 

The resulting trade-off diagram (Figure 22-4) shows the compromise in weight when the stress constraint is 
tightened. 
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Figure 22-4: Trade-off of stress and weight 

22.1.6. Automating the design process 

This section illustrates the automation of the design process for both a linear and a quadratic response 
surface approximation order. 10 iterations are performed for the linear approximation, with only 5 iterations 
performed for the more expensive quadratic approximation. 

 

The modified statements in the input file are as follows: 

 
Variable 'Area' 2 
  Range 'Area' 4 
 Variable 'Base' 0.8 
  Range 'Base' 1.6 
$ 
$ EXPERIMENTAL DESIGN 
$ 
Order linear 
Number experiment 5 
$ 
$ JOB INFO 
$ 
iterate 10 
 

for the linear approximation, and 
$ 
$ EXPERIMENTAL DESIGN 
$ 
 Order quadratic 
 Number experiment 10 
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$ 
$ JOB INFO 
$ 
iterate 5 
 

The final results of the two types of approximations are as follows: 

 
Table 22-1: Summary of final results (2-bar truss) 

 Linear Quadratic 
Number of iterations 10 5 

Number of simulations 51 51 
Area 1.414 1.408 
Base 0.3737 0.3845 

Weight 1.51 1.509 
Stress 0.9993 1.000 

 

The optimization histories have been plotted to illustrate convergence in Figure 22-5. 

  

  
a) Optimization history of Area (Linear) b) Optimization history of Area (Quadratic) 
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c) Optimization history of Base (Linear) d) Optimization history of Base (Quadratic) 

  
e) Optimization history of Weight (Linear) f) Optimization history of Weight (Quadratic) 
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g) Optimization history of Stress (Linear) h) Optimization history of Stress (Quadratic) 

Figure 22-5: Optimization history of design variables and responses (Linear and Quadratic) 

 
Remarks: 

Note that the more accurate but more expensive quadratic approximation converges in about 3 design 
iterations (30 simulations), while it takes about 7 iterations (35 simulations) for the objective of the linear 
case to converge. 

In general, the lower the order of the approximation, the more iterations are required to refine the optimum. 

22.2. Small car crash (2 variables) 

This example has the following features: 

An LS-DYNA explicit crash simulation is performed. 

Extraction is performed using standard LS-DYNA interfaces. 

First- and second-order response surface approximations are compared. 

The design optimization process is automated. 

A trade-off study is performed using both a quadratic and neural network approximation. 

A limited reliability-based design optimization study is performed. 

22.2.1. Introduction 

This example considers the crashworthiness of a simplified small car model. A simplified vehicle moving at 
a constant velocity of 15.64m.s-1 (35mph) impacts a rigid pole. See Figure 22-6. The thickness of the front 
nose above the bumper is specified  as part of the hood. LS-DYNA is used to perform a simulation of the 
crash for a simulation duration of 50ms. 
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a) deformed (50ms) b) undeformed 

Figure 22-6: Small car impacting a pole 

22.2.2. Design criteria and design variables 

The objective is to minimize the Head Injury Criterion (HIC) over a 15ms interval of a selected point 
subject to an intrusion constraint of 550mm of the pole into the vehicle at 50ms. The HIC is based on linear 
head acceleration and is widely used in occupant safety regulations in the automotive industry as a brain 
injury criterion. In summary, the criteria of interest are the following: 

Head injury criterion (HIC) of a selected point (15ms) 

Peak acceleration of a chosen point filtered at 60Hz (SAE). 

Component Mass of the structural components (bumper, front, hood and underside) 

Intrusion computed using the relative motion of two points 

Units are in mm and sec 

 

The design variables are the shell thickness of the car front (t_hood ) and the shell thickness of the bumper 
(t_bumper) (see Figure 22-6). 

22.2.3. Design formulation 

The design formulation is as follows: 

 

Minimize 

HIC (15ms)    (22-4) 

subject to 

Bumper 

Hood 



CHAPTER 22:  21BEXAMPLE PROBLEMS 
 

LS-OPT Version 4.3  457 

Intrusion (50ms) < 550mm    

The intrusion is measured as the difference between the displacement of nodes 167 and 432.  

Remark: 

The mass is computed but not constrained. This is useful for monitoring the mass changes. 

22.2.4. Modeling 

The simulation is performed using LS-DYNA. An extract from the parameterized input deck is shown 
below. Note how the design variables are labeled for substitution through the characters << >>. The cylinder 
for impact is modeled as a rigid wall. 
 
$ 
$ DEFINITION OF MATERIAL     1 
$ 
*MAT_PLASTIC_KINEMATIC 
1,1.000E-07,2.000E+05,0.300,400.,0.,0. 
0.,0.,0. 
*HOURGLASS 
1,0,0.,0,0.,0. 
*SECTION_SHELL 
1,2,0.,0.,0.,0.,0 
2.00,2.00,2.00,2.00,0. 
*PART 
material type # 3 (Kinematic/Isotropic Elastic-Plastic)                          
1,1,1,0,1,0 
$ 
$ DEFINITION OF MATERIAL     2 
$ 
*MAT_PLASTIC_KINEMATIC 
2,7.800E-08,2.000E+05,0.300,400.,0.,0. 
0.,0.,0. 
*HOURGLASS 
2,0,0.,0,0.,0. 
*SECTION_SHELL 
2,2,0.,0.,0.,0.,0 
<<t_bumper>>,<<t_bumper>>,<<t_bumper>>,<<t_bumper>>,0. 
*PART 
material type # 3 (Kinematic/Isotropic Elastic-Plastic)                          
2,2,2,0,2,0 
$ 
$ DEFINITION OF MATERIAL     3 
$ 
*MAT_PLASTIC_KINEMATIC 
3,7.800E-08,2.000E+05,0.300,400.,0.,0. 
0.,0.,0. 
*HOURGLASS 
3,0,0.,0,0.,0. 
*SECTION_SHELL 
3,2,0.,0.,0.,0.,0 
<<t_hood>>,<<t_hood>>,<<t_hood>>,<<t_hood>>,0. 
*PART 
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material type # 3 (Kinematic/Isotropic Elastic-Plastic)                          
3,3,3,0,3,0 
$ 
$ DEFINITION OF MATERIAL     4 
$ 
*MAT_PLASTIC_KINEMATIC 
4,7.800E-08,2.000E+05,0.300,400.,0.,0. 
0.,0.,0. 
*HOURGLASS 
4,0,0.,0,0.,0. 
*SECTION_SHELL 
4,2,0.,0.,0.,0.,0 
<<t_hood>>,<<t_hood>>,<<t_hood>>,<<t_hood>>,0. 
*PART 
material type # 3 (Kinematic/Isotropic Elastic-Plastic)                          
4,4,4,0,4,0 
$ 
$ DEFINITION OF MATERIAL     5 
$ 
*MAT_PLASTIC_KINEMATIC 
5,7.800E-08,2.000E+05,0.300,400.,0.,0. 
0.,0.,0. 
*HOURGLASS 
5,0,0.,0,0.,0. 
*SECTION_SHELL 
5,2,0.,0.,0.,0.,0 
<<t_hood>>,<<t_hood>>,<<t_hood>>,<<t_hood>>,0. 
*PART 
material type # 3 (Kinematic/Isotropic Elastic-Plastic)                          
5,5,5,0,5,0 
$ 

22.2.5. First linear iteration 

A design space of [1; 5] is used for both design variables with no range specified. This means that the range 
defaults to the whole design space. The LS-OPT input file is as follows: 
 
"Small Car Problem: EX4a" 
$ Created on Mon Aug 26 19:11:06 2002 
solvers 1 
responses 5 
$ 
$ NO HISTORIES ARE DEFINED 
$ 
$ 
$ DESIGN VARIABLES 
$ 
variables 2 
 Variable 't_hood' 1 
  Lower bound variable 't_hood' 1 
  Upper bound variable 't_hood' 5 
 Variable 't_bumper' 3 
  Lower bound variable 't_bumper' 1 
  Upper bound variable 't_bumper' 5 
$ 
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$ DEFINITION OF SOLVER "1" 
$ 
 solver dyna '1' 
  solver command "lsdyna" 
  solver input file "car5.k" 
  solver append file "rigid2" 
  solver order linear 
  solver experiment design dopt 
  solver number experiments 5 
  solver basis experiment 3toK 
  solver concurrent jobs 1 
$ 
$ RESPONSES FOR SOLVER "1" 
$ 
 response 'Acc_max' 1 0 "DynaASCII Nodout X_ACC   432 Max SAE 60" 
 response 'Acc_max' linear 
 response 'Mass' 1 0 "DynaMass 2 3 4 5 MASS" 
 response 'Mass' linear 
 response 'Intru_2' 1 0 "DynaASCII Nodout X_DISP 432 Timestep" 
 response 'Intru_2' linear 
 response 'Intru_1' 1 0 "DynaASCII Nodout X_DISP 167 Timestep" 
 response 'Intru_1' linear 
 response 'HIC' 1 0 "DynaASCII Nodout HIC15 9810. 1 432" 
 response 'HIC' linear 
$ 
$ NO HISTORIES DEFINED FOR SOLVER "1" 
$ 
$ 
$ HISTORIES AND RESPONSES DEFINED BY EXPRESSIONS 
$ 
 composites 1 
 composite 'Intrusion' type weighted 
  composite 'Intrusion' response 'Intru_2' -1 scale 1 
  composite 'Intrusion' response 'Intru_1' 1 scale 1 
$ 
$ OBJECTIVE FUNCTIONS 
$ 
 objectives 1 
 objective 'HIC' 1 
$ 
$ CONSTRAINT DEFINITIONS 
$ 
 constraints 1 
 constraint 'Intrusion' 
  upper bound constraint 'Intrusion' 550 
$ 
$ JOB INFO 
$ 
 iterate param design 0.01 
 iterate param objective 0.01 
 iterate 1 
STOP 
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The computed vs. predicted HIC and Intru_2 responses are given in Figure 22-7. The corresponding R2 
value for HIC is 0.9248, while the RMS error is 27.19%.  For Intru_2, the R2 value is 0.9896, while the 
RMS error is 0.80%. 

 

  
a) HIC response b) Intru_2 response 

Figure 22-7: Computed vs. predicted responses – Linear approximation 

 

The summary data for the first iteration is: 

Baseline: 
--------------------------------------- 
ITERATION NUMBER (Baseline)             
--------------------------------------- 
 
 
DESIGN POINT 
------------  
Variable Name                    Lower Bound   Value    Upper Bound 
--------------------------------|-----------|----------|----------- 
t_hood                                     1          1          5 
t_bumper                                   1          3          5 
--------------------------------|-----------|----------|----------- 
 
 
RESPONSE FUNCTIONS: 
------------------  
                                |       Scaled        |       Unscaled      | 
                                |---------------------|---------------------| 
RESPONSE                        | Computed   Predicted| Computed   Predicted| 
--------------------------------|----------|----------|----------|----------| 
Acc_max                         | 8.345e+04  1.162e+05| 8.345e+04  1.162e+05| 
Mass                            |    0.4103     0.4103|    0.4103     0.4103| 
Intru_2                         |    -736.7       -738|    -736.7       -738| 
Intru_1                         |      -161     -160.7|      -161     -160.7| 
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HIC                             |     68.26      74.68|     68.26      74.68| 
--------------------------------|----------|----------|----------|----------| 

and 1st optimum: 
 
DESIGN POINT 
------------  
Variable Name                    Lower Bound   Value    Upper Bound 
--------------------------------|-----------|----------|----------- 
t_hood                                     1      1.549          5 
t_bumper                                   1          5          5 
--------------------------------|-----------|----------|----------- 
 
RESPONSE FUNCTIONS: 
------------------  
                                |       Scaled        |       Unscaled      | 
                                |---------------------|---------------------| 
RESPONSE                        | Computed   Predicted| Computed   Predicted| 
--------------------------------|----------|----------|----------|----------| 
Acc_max                         | 1.248e+05  1.781e+05| 1.248e+05  1.781e+05| 
Mass                            |    0.6571      0.657|    0.6571      0.657| 
Intru_2                         |    -713.7     -711.4|    -713.7     -711.4| 
Intru_1                         |    -164.6     -161.4|    -164.6     -161.4| 
HIC                             |     126.7      39.47|     126.7      39.47| 
--------------------------------|----------|----------|----------|----------| 

22.2.6. First quadratic iteration 

The LS-OPT input file is modified as follows (the response approximations are all quadratic (not 
shown)): 
 
Order quadratic 
 Experimental design dopt 
 Basis experiment 5toK 
 Number experiment 10 
 

For very expensive simulations, if a previously extracted simulation is available, as, e.g., from the previous 
linear iteration in Section 22.2.5, then these points can be used to reduce the computational cost of this 
quadratic approximation. To do this, the previous AnalysisResults_1.csv file is copied to the 
current case directory before restarting the LS-OPT run. See also Section 13.7 on augmentation of existing 
results.  

 

As is shown in the results below, the computed vs. predicted HIC and Intru_2 responses are is now 
improved from the linear approximation. The accuracy of the HIC and Intru_2 responses are given in 
Figure 22-8. The corresponding R2 value for HIC is 0.9767, while the RMS error is 10.28%. For Intru_2, 
the R2 value is 0.9913, while the RMS error is 0.61%. When conducting trade-off studies, a higher-order 
approximation like the current one will be preferable. See trade-off of HIC versus intrusion in a range 
450mm to 600mm, in Figure 22-8c). 
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a) HIC response b) Intru_2 response 

 
c) Trade-off of HIC versus Intrusion 

Figure 22-8: Computed vs. predicted responses and trade-off – Quadratic approximation 

 

The summary data for the first iteration is: 

 

Baseline: 
--------------------------------------- 
ITERATION NUMBER (Baseline)             
--------------------------------------- 
 
DESIGN POINT 
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------------  
Variable Name                    Lower Bound   Value    Upper Bound 
--------------------------------|-----------|----------|----------- 
t_hood                                     1          1          5 
t_bumper                                   1          3          5 
--------------------------------|-----------|----------|----------- 
 
RESPONSE FUNCTIONS: 
------------------  
                                |       Scaled        |       Unscaled      | 
                                |---------------------|---------------------| 
RESPONSE                        | Computed   Predicted| Computed   Predicted| 
--------------------------------|----------|----------|----------|----------| 
Acc_max                         | 8.345e+04  1.385e+05| 8.345e+04  1.385e+05| 
Mass                            |    0.4103     0.4103|    0.4103     0.4103| 
Intru_2                         |    -736.7       -736|    -736.7       -736| 
Intru_1                         |      -161     -160.3|      -161     -160.3| 
HIC                             |     68.26      10.72|     68.26      10.72| 
--------------------------------|----------|----------|----------|----------| 

 

and 1st optimum: 
 
DESIGN POINT 
------------  
Variable Name                    Lower Bound   Value    Upper Bound 
--------------------------------|-----------|----------|----------- 
t_hood                                     1      1.653          5 
t_bumper                                   1      3.704          5 
--------------------------------|-----------|----------|----------- 
 
RESPONSE FUNCTIONS: 
------------------  
                                |       Scaled        |       Unscaled      | 
                                |---------------------|---------------------| 
RESPONSE                        | Computed   Predicted| Computed   Predicted| 
--------------------------------|----------|----------|----------|----------| 
Acc_max                         | 1.576e+05  1.985e+05| 1.576e+05  1.985e+05| 
Mass                            |    0.6017     0.6018|    0.6017     0.6018| 
Intru_2                         |    -712.7     -711.9|    -712.7     -711.9| 
Intru_1                         |    -163.3     -161.9|    -163.3     -161.9| 
HIC                             |     171.4      108.2|     171.4      108.2| 
--------------------------------|----------|----------|----------|----------| 

22.2.7. Automated run 

An automated optimization is performed with a linear approximation. The LS-OPT input file is modified as 
follows: 
 
Order linear 
 Experimental design dopt 
 Basis experiment 3toK 
 Number experiment 5 
 
iterate 8 
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It can be seen in Figure 22-9 that the objective function (HIC) and intrusion constraint are approximately 
optimized at the 5th iteration. It takes about 8 iterations for the approximated (solid line) and computed 
(square symbols) HIC to correspond. The approximation improves through the contraction of the subregion. 
As the variable t_hood never moves to the edge of the subregion during the optimization process, the 
heuristic in LS-OPT enforces pure zooming (see Figure 22-10). For t_bumper, panning occurs as well due 
to the fact that the linear approximation predicts a variable on the edge of the subregion. 

 

  
a) Optimization history of HIC b) Optimization history of Intrusion 

Figure 22-9: Optimization history of HIC and Intrusion 
 

  
a) Optimization history of t_hood b) Optimization history of t_bumper 

Figure 22-10: Optimization history of design variables 
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22.2.8. Trade-off using neural network approximation 

In order to build a more accurate response surface for trade-off studies, the Neural Net method is chosen 
under the ExpDesign panel. This results in a feedforward (FF) neural network (Section 3.1) being solved for 
the points selected. The recommended point selection scheme (Space Filling) is used. One iteration is 
performed to analyze only one experimental design with 25 points. The modifications to the command input 
file are as follows: 

 
$ 
$ DEFINITION OF SOLVER "1" 
$ 
 solver dyna '1' 
  solver command "lsdyna" 
  solver input file "car5.k" 
  solver append file "rigid2" 
  solver order FF 
  solver update doe 
  solver experiment design space_filling 
  solver number experiments 25 
iterate 1 
 

The response surface accuracy is illustrated in Figure 22-11 for the HIC and Intru_2 responses. The HIC 
has more scatter than Intru_2 for the 25 design points used.  

 

  
a) HIC response b) Intru_2 constraint 

Figure 22-11: Response surface accuracy using neural network approximation 
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A trade-off study considers a variation in the Intrusion constraint (originally fixed at 550mm) between 450 
and 600mm, the same as in  Figure 22-8c). The experimental design used for the responses in Figure 22-11 
is shown in Figure 22-12. The effect of the Space-Filling algorithm in maximizing the minimum distance 
between the experimental design points can clearly be seen from the evenly distributed design. The resulting 
Pareto optimality curves for HIC and the two design variables (t_hood and t_bumper) can be seen in 
Figure 22-13. It can be seen that a tightening of the Intrusion constraint increases the HIC value through an 
increase of the hood thickness in the optimal design. 

 

 

Figure 22-12: Experimental design points used for trade-off  

  
a) Objective (HIC) versus Intrusion constraint b) t_bumper versus Intrusion constraint 
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c) t_hood versus Intrusion constraint 

Figure 22-13: Trade-off results – Small car (2 variables) 

 

22.2.9. Mixed-discrete optimization 

Mixed discrete optimization is achieved simply by setting the t_hood variable to be discrete with possible 
values of 1.0, 2.0, 3.0, 4.0, and 5.0.  The input file commands describing the variables are: 
$ 
$ DESIGN VARIABLES 
$ 
variables 2 
 Variable 't_bumpr' 1 
  Lower bound variable 't_bumpr' 1 
  Upper bound variable 't_bumpr' 5 
  Range 't_bumpr' 4 
 Variable 't_hood' 1 
  Variable 't_hood' discrete {1 2 3 4 5 } 
$ 
 

The results design variables histories are shown in Figure 22-14.  
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Figure 22-14 Mixed-discrete variable histories. 

 

22.2.10. Optimization using Direct GA simulation 

The same problem is solved using a direct GA simulation. For illustration, the population size is taken as 6 
(Popsize) and number of generations is limited to 5 (Generation). The continuous variable ‘bumper 
thickness’ is treated as binary variable (Encoding variable), where 20 bits are used to discretize the variable 
(Number of bits). The Stochastic Universal Sampling method is used as selection operator (Selection). 
Elitism is switched on (Elitism) and two elite members (NumElites) are used in each generation. Since, both 
real and binary encoding is used for different variables, the operators have to be specified in both genotype 
spaces. For real crossover, SBX operator is used (Real Crossover Type) with a distribution index of 5 (Real 
Crossover Distribution Index) and crossover probability of 0.99 (Real Crossover Probability). Uniform 
crossover operator is used for binary variables (Binary Crossover Type), with a crossover probability of 1.0 
(Binary Crossover Probability). While the real mutation probability (Real Mutation Probability) is 1.0, 
binary mutation probability (Binary Mutation Probability) is 0.05.  
 
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ 
$      OPTIMIZATION METHOD    
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ 
$ 
Optimization Method GA 
 
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ 
$ Genetic Algorithm Parameters 
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ 
 GA Parameter Popsize 6 
 GA Parameter Generation 5 
 Encoding Variable 't_bumper' 2 
 Number of Bits variable 't_bumper' 20 
 GA Parameter Selection 3 
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 GA Parameter Elitism 1 
 GA Parameter NumElites 2 
 GA Parameter Real Crossover Type 1 
 GA Parameter Real Crossover Probability 0.99 
 GA Parameter Real Crossover Distribution Index 5.0 
 GA Parameter Binary Crossover Type 2 
 GA Parameter Binary Crossover Probability 1.0 
 GA Parameter Real Mutation Probability 1.0 
 GA Parameter Real Mut Dist Index 5.0 
 GA Parameter Binary Mutation Probability 0.05 
 GA Parameter Restart Status 0 
 GA Parameter Seed 854526 
 
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ 

The outcome of the optimization is shown in Figure 22-15. In the chosen example, there is small variation in 
the optimized results with generation. The discrete variable was fixed at 2 units and the variations in the 
bumper thickness were very small. Consequently, the reduction in HIC and intrusion values are not visible 
in the optimization history, though there were small improvements. Note that the optimization history treats  
‘generation’ as ‘iteration’ to display results. 

 

 
A) Variable thood    B) Variable tbumper 

 
C) Objective HIC    D) Constraint Intrusion 
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Figure 22-15 Optimization history of mixed-discrete variable optimization using direct GA simulation. 

 

22.2.11. RBDO (Reliability-based design optimization) using FOSM (First Order 
Second Moment Method)* 

The First Order Second Moment reliability-based design optimization in LS-OPT is illustrated in this 
example. The optimization problem is modified as follows: 

 

Minimize 

HIC    (22-5) 

subject to  Probability[Intrusion > 550mm ] < 610−  

 

The formulation in Eq. HIC    (22-5 implies that the car is made safer by 6 standard 
deviations of the intrusion.  

The following commands must be added to the LS-OPT input file used for the automated run (Section 
22.2.7): 
$ 
$ Define distributions 
$ 
Distributions 2 
 distribution ‘hood_dist’ UNIFORM –0.05 0.05 
 distribution ‘bumper_dist’ UNIFORM –0.05 0.05 
$ 
$ Assign distributions to variables 
$ 
variable 't_hood' distribution ‘hood_dist’ 
variable 't_bumper' distribution ‘bumper_dist’ 
$ 
$ Assign probabilistic bounds to constraints 
$ 
 probability upper bound constraint ‘Intrusion’ 1e-6 
 

The results are: x = <1.78, 3.44>, a HIC value of 182, and an intrusion of 545 with a standard deviation of 
1.06. 

22.3. Impact of a cylinder (2 variables) 

This example has the following features: 

 

An LS-DYNA explicit impact simulation is performed. 
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An independent parametric preprocessor is used to incorporate shape optimization. 

Extraction is performed using standard ASCII LS-DYNA interfaces. 

Second-order response surface approximations are compared using different subregions. 

The design optimization process is automated. 

Noisy response variables are improved using filtering. 

 

The example in this chapter is modeled on one by Yamazaki [1]. 

22.3.1. Problem statement 

The problem consists of a tube impacting a rigid wall as shown in Figure 22-16. The energy absorbed is 
maximized subject to a constraint on the rigid wall impact force. The cylinder has a constant mass of 0.54 
kg with the design variables being the mean radius and thickness. The length of the cylinder is thus 
dependent on the design variables because of the mass constraint. A concentrated mass of 500 times the 
cylinder weight is attached to the end of the cylinder not impacting the rigid wall. The deformed shape at 
20ms is shown in Figure 22-17 for a typical design. 

 
 

x1 x2 

 l 

10m/s

 

Figure 22-16: Impacting cylinder 
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Figure 22-17: Deformed finite element model (time = 20ms) 

 

The optimization problem is stated as: 

Maximize 02.021internal ),( =txxE  

subject to 

00070),( 21 ≤average
wall

normal xxF
 

212
52.0)(

xx
xl

πρ
=

 

where the design variables x1 and x2 are the radius and the thickness of the cylinder respectively. 
02.0internal )( =txE  is the objective function and constraint functions average

wall
normal xF )(  and l(x) are the average 

normal force on the rigid wall and the length of the cylinder, respectively. 

 

The problem is simulated using LS-DYNA. The following TrueGrid input file including the <<name>> 
statements is used to create the FE input deck with the FE model as shown in Figure 22-17. Note that the 
design variables have been scaled. 

 
c cyl2 - crush cylinder - constant volume 
lsdyna3d keyword 
lsdyopts secforc .00002 rwforc .00002 ; 
lsdyopts endtim .02 d3plot dtcycl .0001 ; ; 
lsdyopts thkchg 2 ; 
lsdyopts elout 0.001 
lsdyopts glstat 0.001 
lsdymats 1 3 rho 2880 shell elfor bt tsti 4 
  e 71.38e9 pr .33 sigy 102.0e6 etan 0.2855e9 ; 
lsdymats 2 20 rho 14.3e6 e 7.138e10 pr .33 cmo con 4 7 shell elfor bt tsti 4; 
para 
 r [<<Radius>>/1000.0] 
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 l [3.0e+1/<<Radius>>/<<Wall_Thickness>>] 
 h [<<Wall_Thickness>>/1000.0] 
 l2 [75.0/<<Radius>>*0.02] 
 h2 .002 
 v0 10. 
 n .33 
 pi 3.14159 
; 
plane 1 0 0 -.002 0 0 1 .001 ston pen 2. stick ; 
sid 1 lsdsi 13 slvmat 1;scoef .4 dcoef .4 sfsps 1.5 ; ; ; 
c ************** part 1 mat 1 ************* shell 
cylinder 
-1; 1 60; 1 50 51; 
%r 
0 360 
0 %l [%l2+%l] 
dom 1 1 1 1 2 3 
  x=x+.01*%h*sin(%pi*z*57.3/(%pi*(%r*%r*%h*%h/(12*(1-%n*%n)))**.25)) 
thick %h 
thi ;;2 3; %h2 
c bi ; ;-3 0 -3; dx 1 dy 1  rx 1 ry 1 rz 1 ; 
c interrupt 
swi ;; ;1 
velocity 0 0 [-%v0] 
mate 1 
mti ;; 2 3; 2 
c element spring block 
epb 1 1 1 1 2 3 
endpart 
merge 
stp .000001 
write 
end 
 

22.3.2. A first approximation 

In the first iteration, a quadratic approximation is chosen from the beginning. The ASCII database is suitable 
for this analysis as the energy and impact force can be extracted from the glstat and rwforc databases 
respectively. Five processors are available. The region of interest is arbitrarily chosen to be about half the 
size of the design space. 

 

The following LS-OPT command input deck was used to find the approximate optimum solution: 
"Cylinder Impact Problem" 
$ Created on Thu Jul 11 11:37:33 2002 
$ 
$ DESIGN VARIABLES 
$ 
variables 2 
 Variable 'Radius' 75 
  Lower bound variable 'Radius' 20 
  Upper bound variable 'Radius' 100 
  Range 'Radius' 50 
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 Variable 'Wall_Thickness' 3 
  Lower bound variable 'Wall_Thickness' 2 
  Upper bound variable 'Wall_Thickness' 6 
  Range 'Wall_Thickness' 2 
solvers 1 
responses 2 
$ 
$ NO HISTORIES ARE DEFINED 
$ 
$ 
$ DEFINITION OF SOLVER "RUN1" 
$ 
 solver dyna960 'RUN1' 
  solver command "lsdyna" 
  solver input file "trugrdo" 
  prepro truegrid 
  prepro command "/net/src/ultra4_4/common/hp/tg2.1/tg" 
  prepro input file "cyl2" 
$ 
$ RESPONSES FOR SOLVER "RUN1" 
$ 
 response 'Internal_Energy' 1 0 "DynaASCII Glstat I_Ener 0 Timestep" 
 response 'Internal_Energy' quadratic 
 response 'Rigid_Wall_Force' 1 0 "DynaASCII rwforc normal 1 ave" 
 response 'Rigid_Wall_Force' quadratic 
$ 
$ NO HISTORIES DEFINED FOR SOLVER "RUN1" 
$ 
$ 
$ OBJECTIVE FUNCTIONS 
$ 
 objectives 1 
 maximize 
 objective 'Internal_Energy' 1 
$ 
$ CONSTRAINT DEFINITIONS 
$ 
 constraints 1 
 constraint 'Rigid_Wall_Force' 
  upper bound constraint 'Rigid_Wall_Force' 70000 
$ 
$ EXPERIMENTAL DESIGN 
$ 
 Order quadratic 
 Experimental design dopt 
 Basis experiment 5toK 
 Number experiment 10 
$ 
$ JOB INFO 
$ 
 concurrent jobs 5 
 iterate param design 0.01 
 iterate param objective 0.01 
 iterate 1 
STOP 
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The curve-fitting results below show that the internal energy is approximated reasonably well whereas the 
average force is poorly approximated. The accuracy plots confirm this result (Figure 22-18). 
 
Approximating Response 'Internal_Energy' using 10 points (ITERATION 1) 
---------------------------------------------------------------- 
          Global error parameters of response surface 
          ------------------------------------------- 
Quadratic Function Approximation: 
--------------------------------- 
Mean response value           = 10686.0081 
 
RMS error                     =   790.3291 (7.40%) 
Maximum Residual              =  1538.9208 (14.40%) 
Average Error                 =   654.4415 (6.12%) 
Square Root PRESS Residual    =  2213.7994 (20.72%) 
Variance                      = 1249240.2552 
R^2                           =     0.9166 
R^2 (adjusted)                =     0.9166 
R^2 (prediction)              =     0.3453 
Determinant of [X]'[X]        =     1.3973 
 
 
Approximating Response 'Rigid_Wall_Force' using 10 points (ITERATION 1) 
---------------------------------------------------------------- 
          Global error parameters of response surface 
          ------------------------------------------- 
Quadratic Function Approximation: 
--------------------------------- 
Mean response value           = 121662.9474 
 
RMS error                     = 24730.1732 (20.33%) 
Maximum Residual              = 48569.4162 (39.92%) 
Average Error                 = 21111.3307 (17.35%) 
Square Root PRESS Residual    = 75619.5531 (62.15%) 
Variance                      = 1223162932.2092 
R^2                           =     0.8138 
R^2 (adjusted)                =     0.8138 
R^2 (prediction)              =    -0.7406 
Determinant of [X]'[X]        =     1.3973 
 
The initial design below shows that the constraint is severely exceeded. 
 
DESIGN POINT 
------------  
Variable Name                    Lower Bound   Value    Upper Bound 
--------------------------------|-----------|----------|----------- 
Radius                                    20         75        100 
Wall_Thickness                             2          3          6 
--------------------------------|-----------|----------|----------- 
 
RESPONSE FUNCTIONS: 
------------------  
                                |       Scaled        |       Unscaled      | 
                                |---------------------|---------------------| 
RESPONSE                        | Computed   Predicted| Computed   Predicted| 
--------------------------------|----------|----------|----------|----------| 
Internal_Energy                 | 1.296e+04  1.142e+04| 1.296e+04  1.142e+04| 
Rigid_Wall_Force                | 1.749e+05  1.407e+05| 1.749e+05  1.407e+05| 
--------------------------------|----------|----------|----------|----------| 
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Figure 22-18: Prediction accuracy of Internal Energy and Rigid Wall Force (One Quadratic iteration) 
 
 

Despite the relatively poor approximation a prediction of the optimum is made based on the approximation 
response surface. The results are shown below. The fact that the optimal Radius is on the lower bound of 
the subregion specified (Range = 50), suggests an optimal value below 50. 
 
DESIGN POINT 
------------  
Variable Name                    Lower Bound   Value    Upper Bound 
--------------------------------|-----------|----------|----------- 
Radius                                    20         50        100 
Wall_Thickness                             2      2.978          6 
--------------------------------|-----------|----------|----------- 
 
RESPONSE FUNCTIONS: 
------------------  
                                |       Scaled        |       Unscaled      | 
                                |---------------------|---------------------| 
RESPONSE                        | Computed   Predicted| Computed   Predicted| 
--------------------------------|----------|----------|----------|----------| 
Internal_Energy                 |      7914       8778|      7914       8778| 
Rigid_Wall_Force                | 4.789e+04      7e+04| 4.789e+04      7e+04| 
--------------------------------|----------|----------|----------|----------| 
 

22.3.3. Refining the design model using a second iteration 

During the previous optimization step, the Radius variable was reduced from 75 to 50 (on the boundary 
of the region of interest). It was also apparent that the approximations were fairly inaccurate. Therefore, in 
the new iteration, the region of interest is reduced from [50;2] to [35;1.5] while retaining a quadratic 
approximation order. The starting point is taken as the current optimum: (50,2.978). The modified 
commands in the input file are as follows: 
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$ 
$ DESIGN VARIABLES 
$ 
variables 2 
 Variable 'Radius' 50 
  Lower bound variable 'Radius' 20 
  Upper bound variable 'Radius' 100 
  Range 'Radius' 35 
 Variable 'Wall_Thickness' 2.9783 
  Lower bound variable 'Wall_Thickness' 2 
  Upper bound variable 'Wall_Thickness' 6 
  Range 'Wall_Thickness' 1.5 
 

As shown below, the accuracy of fit improves but the average rigid wall force is still inaccurate. 
 
Approximating Response 'Internal_Energy' using 10 points (ITERATION 1) 
---------------------------------------------------------------- 
          Global error parameters of response surface 
          ------------------------------------------- 
Quadratic Function Approximation: 
--------------------------------- 
Mean response value           =  8640.2050 
 
RMS error                     =   526.9459 (6.10%) 
Maximum Residual              =   890.0759 (10.30%) 
Average Error                 =   388.4472 (4.50%) 
Square Root PRESS Residual    =  1339.4046 (15.50%) 
Variance                      = 555344.0180 
R^2                           =     0.9632 
R^2 (adjusted)                =     0.9632 
R^2 (prediction)              =     0.7622 
Determinant of [X]'[X]        =     0.0556 
 
Approximating Response 'Rigid_Wall_Force' using 10 points (ITERATION 1) 
---------------------------------------------------------------- 
          Global error parameters of response surface 
          ------------------------------------------- 
Quadratic Function Approximation: 
--------------------------------- 
Mean response value           = 82483.2224 
 
RMS error                     = 19905.3990 (24.13%) 
Maximum Residual              = 35713.1794 (43.30%) 
Average Error                 = 17060.6074 (20.68%) 
Square Root PRESS Residual    = 54209.4513 (65.72%) 
Variance                      = 792449819.5138 
R^2                           =     0.8949 
R^2 (adjusted)                =     0.8949 
R^2 (prediction)              =     0.2204 
Determinant of [X]'[X]        =     0.0556 
 

The goodness of fit diagrams are shown in Figure 22-19. 
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Figure 22-19: Prediction accuracy of Internal Energy and Rigid Wall Force (One Quadratic iteration) 
 

Nevertheless an optimization is conducted of the approximate subproblem, yielding a much improved 
feasible result. The objective function increases to 9575 (9777 computed) whereas the constraint is active at 
70 000. The computed constraint is lower at 64 170. However the Wall_Thickness is now on the upper 
bound, suggesting an optimal value larger than 3.728. 
 
DESIGN POINT 
------------  
Variable Name                    Lower Bound   Value    Upper Bound 
--------------------------------|-----------|----------|----------- 
Radius                                    20      42.43        100 
Wall_Thickness                             2      3.728          6 
--------------------------------|-----------|----------|----------- 
 
RESPONSE FUNCTIONS: 
------------------  
                                |       Scaled        |       Unscaled      | 
                                |---------------------|---------------------| 
RESPONSE                        | Computed   Predicted| Computed   Predicted| 
--------------------------------|----------|----------|----------|----------| 
Internal_Energy                 |      9777       9575|      9777       9575| 
Rigid_Wall_Force                | 6.417e+04      7e+04| 6.417e+04      7e+04| 
--------------------------------|----------|----------|----------|----------| 

22.3.4. Third iteration 

Because of the large change in the Wall_Thickness on to the upper bound of the region of interest, a 
third iteration is conducted, keeping the region of interest the same. The starting point is the previous 
optimum: 

 
Variable 'Radius' 42.43 
Variable 'Wall_Thickness' 3.728 
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The approximation improves as shown below: 
 
Approximating Response 'Internal_Energy' using 10 points (ITERATION 1) 
---------------------------------------------------------------- 
          Global error parameters of response surface 
          ------------------------------------------- 
Quadratic Function Approximation: 
--------------------------------- 
Mean response value           =  9801.0070 
 
RMS error                     =   439.8326 (4.49%) 
Maximum Residual              =   834.5960 (8.52%) 
Average Error                 =   372.3133 (3.80%) 
Square Root PRESS Residual    =  1451.3233 (14.81%) 
Variance                      = 386905.5050 
R^2                           =     0.9618 
R^2 (adjusted)                =     0.9618 
R^2 (prediction)              =     0.5842 
Determinant of [X]'[X]        =     0.0131 
 

Approximating Response 'Rigid_Wall_Force' using 10 points (ITERATION 1) 
---------------------------------------------------------------- 
          Global error parameters of response surface 
          ------------------------------------------- 
Quadratic Function Approximation: 
--------------------------------- 
Mean response value           = 81576.0534 
 
RMS error                     = 12169.4703 (14.92%) 
Maximum Residual              = 26348.0687 (32.30%) 
Average Error                 = 10539.2275 (12.92%) 
Square Root PRESS Residual    = 37676.3033 (46.19%) 
Variance                      = 296192016.4365 
R^2                           =     0.9301 
R^2 (adjusted)                =     0.9301 
R^2 (prediction)              =     0.3303 
Determinant of [X]'[X]        =     0.0131 
 

Because the size of the region of interest remained the same, the curve-fitting results show only a slight 
change (because of the new location), in this case an improvement. However, as the optimization results 
below show, the design is much improved, i.e. the objective value has increased whereas the approximate 
constraint is active. Unfortunately, due to the poor fit of the Rigid_Wall_Force, the simulation result 
exceeds the force constraint by about 10kN (14%). Further reduction of the region of interest is required to 
reduce the error, or filtering of the force can be considered to reduce the noise on this response. 
DESIGN POINT 
------------  
Variable Name                    Lower Bound   Value    Upper Bound 
--------------------------------|-----------|----------|----------- 
Radius                                    20      36.51        100 
Wall_Thickness                             2      4.478          6 
--------------------------------|-----------|----------|----------- 
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RESPONSE FUNCTIONS: 
------------------  
                                |       Scaled        |       Unscaled      | 
                                |---------------------|---------------------| 
RESPONSE                        | Computed   Predicted| Computed   Predicted| 
--------------------------------|----------|----------|----------|----------| 
Internal_Energy                 | 1.129e+04  1.075e+04| 1.129e+04  1.075e+04| 
Rigid_Wall_Force                | 8.007e+04      7e+04| 8.007e+04      7e+04| 
--------------------------------|----------|----------|----------|----------| 
 

The table below gives a summary of the three iterations of the step-by-step procedure. 

 

Table 22-2: Comparison of results (Cylinder impact) 

Variable Initial Iteration 1 Iteration 2 Iteration 3 
Radius 75 50 42.43 36.51 
Wall_thickness 3 2.978 3.728 4.478 
Energy (Computed) 12960 7914 9777 11290 
Force (Computed) 174900 47890 64170 80070 
 

It is apparent that the result of the second iteration is a dramatic improvement on the starting design and a 
good approximation to the converged optimum design. 

22.3.5. Response filtering: using the peak force as a constraint 

Because of the poor accuracy of the response surface fit for the rigid wall force above, it was decided to 
modify the force constraint so that the peak filtered force is used instead. Therefore, the previous response 
definition for Rigid_Wall_Force is replaced with a command that extracts the maximum rigid wall 
force from a response from which frequencies exceeding 300Hz are excluded. The upper bound of the force 
constraint is changed to 80000. 
 
response ’Rigid_Wall_Force’ "DynaASCII RWForc Normal 1 Max SAE 300" 
 

20 iterations are specified with a 1% tolerance for convergence. 

 

As expected, the response histories (Figure 22-20) show that the baseline design is severely infeasible (the 
first peak force is about 1.75 x 106 vs. the constraint value of 0.08 x 106. A steady reduction in the error of 
the response surfaces is observed up to about iteration 5. The optimization terminates after 16 iterations, 
having reached the 1% threshold for both objective and design variable changes.  
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a) Radius 

 
b) Wall_Thickness 

  
c) Internal_Energy 

 
d) Rigid_Wall_Force 
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e) RMS error of Internal_Energy f) RMS error of Rigid_Wall_Force 

 
Figure 22-20: Optimization history of automated design (filtered force) 

 

The optimization process steadily reduces the infeasibility, but the force constraint is still slightly violated 
when convergence is reached. The internal energy is significantly lower than previously: 
 
DESIGN POINT 
------------  
Variable Name                    Lower Bound   Value    Upper Bound 
--------------------------------|-----------|----------|----------- 
Radius                                    20      20.51        100 
Wall_Thickness                             2      4.342          6 
--------------------------------|-----------|----------|----------- 
 
RESPONSE FUNCTIONS: 
------------------  
                                |       Scaled        |       Unscaled      | 
                                |---------------------|---------------------| 
RESPONSE                        | Computed   Predicted| Computed   Predicted| 
--------------------------------|----------|----------|----------|----------| 
Internal_Energy                 |      8344       8645|      8344       8645| 
Rigid_Wall_Force                | 8.112e+04      8e+04| 8.112e+04      8e+04| 
--------------------------------|----------|----------|----------|----------| 
 

Figure 22-21 below confirms that the final design is only slightly infeasible when the maximum filtered 
force exceeds the specified limit for a short duration at around 9ms. 
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Figure 22-21: Cylinder: Constrained rigid wall force: F(t) < 80000 (SAE 300Hz filtered) 

22.4. Sheet-metal forming (3 variables) 

A sheet-metal forming example in which the design involves thinning and FLD criteria is demonstrated in 
this chapter. The example has the following features: 

The maximum of all the design variables is minimized. 

Adaptive meshing is used in the finite element analysis. 

The binary LS-DYNA database is used. 

The example employs the sheet metal forming interface utilities. 

Composite functions are used. 

An appended file containing extra input is used. 

The example utilizes the independent parametric preprocessor, Truegrid15. 

22.4.1. Problem statement 

The design parameterization for the sheet metal forming example is shown in Figure 22-22. 

 

                                                 
15 Registered Trademark of XYZ Scientific Applications Inc. 
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Figure 22-22: Parameterization of cross-section 

 

The FE model is shown in Figure 22-23. 

 

 

Figure 22-23: Quarter segment of FE model: tools and blank 

 

The design problem is formulated to minimize the maximum tool radius while also specifying an FLD 
constraint and a maximum thickness reduction of 20% (thinning constraint). Since the user wants to enforce 
the FLD and thinning constraints strictly, these constraints are defined as strict. To minimize the 
maximum radius, a small upper bound for the radii has been specified (arbitrarily chosen as a number close 
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to the lower bound of the design space, namely 1.1). The optimization solver will then minimize the 
maximum difference between the radii and their respective bounds. The radius constraints must not be 
enforced strictly. This translates to the following mathematical formulation: 

Minimize e 
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The design variables r1, r2 and r3 are the radii of the work piece as indicated in Figure 22-22. Δt is the 
thickness reduction which is positive when the thickness is reduced. The FLD constraint is feasible when 
smaller than zero. 

22.4.2. First Iteration 

The initial run is a quadratic analysis designed as an initial investigation of the following issues: 

The dependency of the through thickness strain constraint on the radii. 

The dependency of the FLD constraint on the radii. 

The location of the optimal design point. 

The subregion considered for this study is 2.0 large in r1, r2 and r3 and is centered about (1.5, 1.5, 1.5)T. The 
FLD constraint formulation tested in this phase is based on the maximum perpendicular distance of a point 
violating the FLD constraint to the FLD curve (see Section 14.9.2). 

 

The LS-OPT command file used to run the problem is: 

 
"Sheet: Minimization of Maximum Tool Radius" 
Author "Aaron Spelling" 
$ Created on Wed May 29 19:23:20 2002 
$ 
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$ DESIGN VARIABLES 
$ 
variables 3 
 Variable 'Radius_1' 1.5 
  Lower bound variable 'Radius_1' 1 
  Upper bound variable 'Radius_1' 4.5 
  Range 'Radius_1' 4 
 Variable 'Radius_2' 1.5 
  Lower bound variable 'Radius_2' 1 
  Upper bound variable 'Radius_2' 4.5 
  Range 'Radius_2' 4 
 Variable 'Radius_3' 1.5 
  Lower bound variable 'Radius_3' 1 
  Upper bound variable 'Radius_3' 4.5 
  Range 'Radius_3' 4 
solvers 1 
responses 2 
$ 
$ NO HISTORIES ARE DEFINED 
$ 
$ 
$ DEFINITION OF SOLVER "DYNA1" 
$ 
 solver dyna 'DYNA1' 
  solver command "lsdyna" 
  solver input file "trugrdo" 
  solver append file "ShellSetList" 
  prepro truegrid 
  prepro command "/net/src/ultra4_4/common/hp/tg2.1/tg" 
  prepro input file "m3.tg.opt" 
$ 
$ RESPONSES FOR SOLVER "DYNA1" 
$ 
 response 'Thinning' 1 0 "DynaThick REDUCTION MAX" 
 response 'Thinning' linear 
 response 'FLD' 1 0 "DynaFLDg CENTER 1 2 3 90" 
 response 'FLD' linear 
$ 
$ NO HISTORIES DEFINED FOR SOLVER "DYNA1" 
$ 
$ 
$ HISTORIES AND RESPONSES DEFINED BY EXPRESSIONS 
$ 
 composites 4 
 composite 'Rad1' type weighted 
  composite 'Rad1' variable 'Radius_1' 1 scale 1 
 composite 'Rad2' type weighted 
  composite 'Rad2' variable 'Radius_2' 1 scale 1 
 composite 'Rad3' type weighted 
  composite 'Rad3' variable 'Radius_3' 1 scale 1 
 composite 'Thinning_scaled' {Thinning/100} 
$ 
$ NO OBJECTIVES DEFINED 
$ 
 objectives 0 
$ 
$ CONSTRAINT DEFINITIONS 
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$ 
 constraints 5 
 constraint 'FLD' 
  strict 
  upper bound constraint 'FLD' 0.0 
 constraint 'Rad1' 
  slack 
  upper bound constraint 'Rad1' 1.1 
 constraint 'Rad2' 
  upper bound constraint 'Rad2' 1.1 
 constraint 'Rad3' 
  upper bound constraint 'Rad3' 1.1 
 constraint 'Thinning_scaled' 
  strict 
  upper bound constraint 'Thinning_scaled' 0.2 
$ 
$ EXPERIMENTAL DESIGN 
$ 
 Order quadratic 
 Experimental design dopt 
 Basis experiment 3toK 
 Number experiment 16 
$ 
$ JOB INFO 
$ 
 concurrent jobs 8 
 iterate param design 0.01 
 iterate param objective 0.01 
 iterate 1 
STOP 
 

The file ShellSetList contains commands for LS-DYNA in addition to the preprocessor output. It is 
slotted into the input file. Adaptive meshing is chosen as an analysis feature for the simulation. The FLD 
curve data is also specified in this file. The extra commands are: 

 
*DATABASE_BINARY_RUNRSF 
70 
*DATABASE_EXTENT_BINARY 
0, 0, 0, 1, 0, 0, 0, 1 
0, 0, 0, 0, 0, 0 
$ 
$ SLIDING INTERFACE DEFINITIONS 
$ 
$ TrueGrid Sliding Interface # 1 
$ 
*CONTACT_FORMING_ONE_WAY_SURFACE_TO_SURFACE 
$ workpiece vs punch 
0.1000000              0.000   0.000 
 1 2 3 3           1
        
 

  0.0 
$ 
*CONTACT_FORMING_ONE_WAY_SURFACE_TO_SURFACE 
$ workpiece vs die 
 1 3 3 3           1
       1 
   0.1000000              0.000     0.000 

   0.0 
$ 
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*CONTACT_FORMING_ONE_WAY_SURFACE_TO_SURFACE 
$ workpiece vs blankholder 
 1 4 3 3           
1       1 
   0.1000000              0.000     0.000 

   0.0 
$ 
*CONTROL_ADAPTIVE 
$ ADPFREQ   ADPTOL   ADPOPT   MAXLVL    TBIRTH    TDEATH LCADP IOFLAG 
0.100E-03    5.000        2      3 0.000E+00 1.0000000      0      1 
$ ADPSIZE   ADPASS   IREFLG   ADPENE 
0.0000000       1     0 3.0000 
*LOAD_RIGID_BODY 
 
$    rbID  dir     lcID     scale 

  2    3     2 1.0000000 
*LOAD_RIGID_BODY 
$    rbID  dir     lcID     scale 

  4    3  3 1.0000000 
*DEFINE_CURVE 
$   FLD curve 
90 
$ 
-1,2.083 
0,.25 
1,.75 
*END 

 

The input file (file m3.tg.opt) used to generate the FE mesh in Truegrid is: 
 
c generate LS-DYNA input deck for sheet metal example 
lsdyna keyword 
lsdyopts endtim .0009  nodout 1.e-6 d3plot dtcycl .0001 ; ; 
lsdyopts istupd 1 ; 
c lsdymats 1 37 shell elfor bt rho 7.8e-9 e 2.e5 pr .28  
c     sigy 200. etan 572 er 1.4 ; 
lsdymats 2 20 shell elfor bt rho 7.8e-9 e 2.e5 pr .28 shth .1   
    cmo con 4 7; 
lsdymats 3 20 shell elfor bt rho 7.8e-9 e 2.e5 pr .28 shth .1   
    cmo con 7 7 ; 
lsdymats 4 20 shell elfor bt rho 7.8e-9 e 2.e5 pr .28 shth .1   
    cmo con 4 7; 
plane 2 0 0 0 1 0 0 .01 symm ; 
plane 3 0 0 0 0 1 0 0.01 symm ; 
c  sid 1 lsdsi a10 slvmat 1;mstmat 2;scoef .1 ; ; ; 
c  sid 2 lsdsi a10 slvmat 1;mstmat 3;scoef .1 ; ; ; 
c  sid 3 lsdsi a10 slvmat 1;mstmat 4;scoef .1 ; ; ; 
c 
lcd 1  
     0.000000000E+00     0.275600006E+03 
     0.665699990E-04     0.276100006E+03 
     0.136500006E-03     0.276700012E+03 
 
   . 
   .  
   . 
 
     0.312799990E+00     0.481799988E+03 
     0.469900012E+00     0.517200012E+03 
     0.705600023E+00     0.555299988E+03 
; 
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c 
c die cross-section 
para 
c 
 r1 <<Radius_1>> c upper radius  minimum = 2. 
 r2 <<Radius_2>> c middle radius minimum = 2. 
 r3 <<Radius_3>> c lower radius  minimum = 2. 
 load2 -100000 
 load3 -20000 
 th1 1.0          c thickness of blank 
 th3 .00          c thickness of die and punch 
 th2 [1.001*%th1] 
 l1  20           c length of draw (5-40) 
c 
 z5 [%l1-22] 
c Position of workpiece 
 z4   [%z5+1.001*%th1/2.+%th3/2] 
c Position of blankholder 
 z3   [%z4+1.001*%th1/2.+%th3/2] 
 n1 [25+4.0*%l1] 
 n2 [25+8.0*%l1] 
c part 2 
 z6 [%z5+4+%th2] 
 z7 [%z5+%l1+4+%th2] 
; 
c 
c die cross-section 
 
   . 
   . 
   . 
 c punch cross-section (closed configuration) 
ld 2 
 lod 1 [%th2+%th3] 
    
c punch cross-section (withdrawn configuration) 
ld 3 lstl 2 0 [%z5+26] 
 
   . 
   . 
   . 
 
endpart 
c ***************** part 2 mat 2 ********* punch  
cylinder 
1 8 35 40 67 76 [76+%n1] [70+%n1+10]; 1 41 ; -1 ; 
.001 17. 23. 36. 44. 50. 75. 100. 
0. 90. 
%z7 
 
   . 
   . 
   . 
 
thick %th3 
mate 2 
endpart 
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c *********** part 3 mat 4 ********* blankholder  
cylinder 
1 10 ; 1 41 ; -1 ; 
80. 100. 
0. 90. 
[%z3] 
b 0 0 0 0 0 0 dx 1 dy 1 rx 1 ry 1 rz 1; 
thick %th3 
mate 4 
endpart 
   
c *********** part 4 mat 1 workpiece  
block 
1 21 ; 1 21 ; -1 ; 
0. 100. 
0. 100. 
[%z4] 
thick [%th1] 
mate 1 
endpart 
merge 
write 
end 
 

The error parameters for the fitted functions are given in the following output (from lsopt_output 
file): 
 
Approximating Response 'Thinning' using 16 points (ITERATION 1) 
---------------------------------------------------------------- 
          Global error parameters of response surface 
          ------------------------------------------- 
Quadratic Function Approximation: 
--------------------------------- 
Mean response value           =    27.8994 
 
RMS error                     =     0.6657 (2.39%) 
Maximum Residual              =     1.2932 (4.64%) 
Average Error                 =     0.5860 (2.10%) 
Square Root PRESS Residual    =     2.0126 (7.21%) 
Variance                      =     1.0130 
R^2                           =     0.9913 
R^2 (adjusted)                =     0.9826 
R^2 (prediction)              =     0.9207 
Determinant of [X]'[X]        =  2231.5965 
 
Approximating Response 'FLD' using 16 points (ITERATION 1) 
---------------------------------------------------------------- 
          Global error parameters of response surface 
          ------------------------------------------- 
Quadratic Function Approximation: 
--------------------------------- 
Mean response value           =     0.0698 
 
RMS error                     =     0.0121 (17.33%) 
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Maximum Residual              =     0.0247 (35.35%) 
Average Error                 =     0.0103 (14.74%) 
Square Root PRESS Residual    =     0.0332 (47.59%) 
Variance                      =     0.0003 
R^2                           =     0.9771 
R^2 (adjusted)                =     0.9542 
R^2 (prediction)              =     0.8272 
Determinant of [X]'[X]        =  2231.5965 
 

The thinning has a reasonably accurate response surface but the FLD approximation requires further 
refinement. The initial design has the following response surface results which fail the criteria for maximum 
thinning, but not for FLD: 

 
DESIGN POINT 
------------  
Variable Name                    Lower Bound   Value    Upper Bound 
--------------------------------|-----------|----------|----------- 
Radius_1                                   1        1.5        4.5 
Radius_2                                   1        1.5        4.5 
Radius_3                                   1        1.5        4.5 
--------------------------------|-----------|----------|----------- 
 
CONSTRAINT FUNCTIONS: 
--------------------  
CONSTRAINT NAME                 | Computed | Predicted|  Lower   |  Upper   |Viol? 
--------------------------------|----------|----------|----------|----------|----- 
FLD                             |   0.09123     0.1006|    -1e+30          0|YES 
Rad1                            |       1.5        1.5|    -1e+30        1.1|YES 
Rad2                            |       1.5        1.5|    -1e+30        1.1|YES 
Rad3                            |       1.5        1.5|    -1e+30        1.1|YES 
Thinning_scaled                 |    0.2957     0.3078|    -1e+30        0.2|YES 
--------------------------------|----------|----------|----------|----------|----- 
CONSTRAINT VIOLATIONS: 
---------------------  
                                |  Computed Violation | Predicted Violation | 
CONSTRAINT NAME                 |----------|----------|----------|----------| 
                                |  Lower   |  Upper   |  Lower   |  Upper   | 
--------------------------------|----------|----------|----------|----------| 
FLD                             |    -         0.09123|    -          0.1006| 
Rad1                            |    -             0.4|    -             0.4| 
Rad2                            |    -             0.4|    -             0.4| 
Rad3                            |    -             0.4|    -             0.4| 
Thinning_scaled                 |    -         0.09567|    -          0.1078| 
--------------------------------|----------|----------|----------|----------| 
 

As shown below, after 1 iteration, a feasible design is generated. The simulation response of the optimum is 
closely approximated by the response surface. 

 
DESIGN POINT 
------------  
Variable Name                    Lower Bound   Value    Upper Bound 
--------------------------------|-----------|----------|----------- 
Radius_1                                   1      3.006        4.5 
Radius_2                                   1      3.006        4.5 
Radius_3                                   1      3.006        4.5 
--------------------------------|-----------|----------|----------- 
 
CONSTRAINT FUNCTIONS: 
--------------------  
CONSTRAINT NAME                 | Computed | Predicted|  Lower   |  Upper   |Viol? 
--------------------------------|----------|----------|----------|----------|----- 
FLD                             |  -0.04308   -0.03841|    -1e+30          0|no 
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Rad1                            |     3.006      3.006|    -1e+30        1.1|YES 
Rad2                            |     3.006      3.006|    -1e+30        1.1|YES 
Rad3                            |     3.006      3.006|    -1e+30        1.1|YES 
Thinning_scaled                 |    0.2172        0.2|    -1e+30        0.2|no 
--------------------------------|----------|----------|----------|----------|----- 
 
CONSTRAINT VIOLATIONS: 
---------------------  
                                |  Computed Violation | Predicted Violation | 
CONSTRAINT NAME                 |----------|----------|----------|----------| 
                                |  Lower   |  Upper   |  Lower   |  Upper   | 
--------------------------------|----------|----------|----------|----------| 
FLD                             |    -          -     |    -          -     | 
Rad1                            |    -           1.906|    -           1.906| 
Rad2                            |    -           1.906|    -           1.906| 
Rad3                            |    -           1.906|    -           1.906| 
Thinning_scaled                 |    -         0.01718|    -          -     | 
--------------------------------|----------|----------|----------|----------| 

22.4.3. Automated design 

The optimization process can also be automated so that no user intervention is required. The starting design, 
lower and upper bounds, and region of interest is modified from the 1 iteration study above. 

 

The input file is modified as follows: 

 

The variable definitions are as follows: 

 
Variable 'Radius_1' 1.5 
  Lower bound variable 'Radius_1' 1 
  Upper bound variable 'Radius_1' 4.5 
  Range 'Radius_1' 1 
 Variable 'Radius_2' 1.5 
  Lower bound variable 'Radius_2' 1 
  Upper bound variable 'Radius_2' 4.5 
  Range 'Radius_2' 1 
 Variable 'Radius_3' 1.5 
  Lower bound variable 'Radius_3' 1 
  Upper bound variable 'Radius_3' 4.5 
  Range 'Radius_3' 1 
 

The number of D-optimal experiments is reduced because of the linear approximation used: 

 
Order linear 
 Experimental design dopt 
 Basis experiment 3toK 
 Number experiment 7 
 

The optimization is run for 10 iterations: 
iterate 10 
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The optimization history is shown in Figure 22-24 for the design variables and responses: 

 

  
a) Optimization history of variable ‘Radius_1’ b) Optimization history of variable ‘Radius_2’ 

  
c) Optimization history of variable ‘Radius_3’ d) Optimization history of response ‘Thinning’ 
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e) Optimization history of response FLD 

 

Figure 22-24: Optimization history of design variables and responses (automated design) 

 

The details of the 10th iteration have been extracted: 

 
DESIGN POINT 
------------  
Variable Name                    Lower Bound   Value    Upper Bound 
--------------------------------|-----------|----------|----------- 
Radius_1                                   1      2.653        4.5 
Radius_2                                   1      2.286        4.5 
Radius_3                                   1      2.004        4.5 
--------------------------------|-----------|----------|----------- 
 
RESPONSE FUNCTIONS: 
------------------  
                                |       Scaled        |       Unscaled      | 
                                |---------------------|---------------------| 
RESPONSE                        | Computed   Predicted| Computed   Predicted| 
--------------------------------|----------|----------|----------|----------| 
Thinning                        |     19.92       19.6|     19.92       19.6| 
FLD                             | -0.000843  -0.002907| -0.000843  -0.002907| 
--------------------------------|----------|----------|----------|----------| 

 

A comparison between the starting and the final values is tabulated below: 

 

Table 22-3: Comparison of results (Sheet-metal forming) 

Variable Start (Computed) Optimal (Predicted) Optimal (Computed) 
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Thinning 29.57 19.92 19.6 
FLD 0.09123 -0.000843 -0.002907 
Radius_1 1.5 2.653  
Radius_2 1.5 2.286  
Radius_3 1.5 2.004  

 

The FLD diagrams (Figure 22-25) for the baseline design and the optimum illustrate the improvement of the 
FLD feasibility: 

  

Baseline FLD diagram FLD diagram of 10th iteration 

Figure 22-25: FLD diagrams of baseline and 10th iteration 

 

A typical deformed state is depicted in Figure 22-26 below. 

 

Figure 22-26: Deformed state 
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22.5. System identification (elastoplastic material) (2 variables) 

A methodology for deriving system or material parameters from experimental results, known as system 
identification, is applied here using optimization. The example has the following features: 

The MeanSqErr composite function is used 

The Crossplot history is used  

The Min-Max formulation is demonstrated 

Multiple test cases are employed 

The confidence intervals of the optimal parameters is reported. 

22.5.1. Problem statement 

 

Figure 22-27: Sample of elastoplastic material subjected to a controlled vertical displacement 

The material parameters of a foam material must be determined from experimental results, namely the 
resultant reaction force vs. displacement history of a cubic sample on a rigid base (see Figure 22-27). The 
problem is solved by minimizing the mean squared residual force (rcforc binary database) with the 
material parameters Young's modulus E and Yield stress Y as the unknown optimization variables.  

 

The “experimental” resultant forces vs. displacements are shown below. The results were generated from an 
LS-DYNA run with the parameters ( 610=E , 310=Y ). Samples are taken at times 2, 4, 6 and 8 ms:   

 
Test1.txt 
   
  0.36168 10162 
  0.72562 12964 
  1.0903  14840 
  1.4538  17672 
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Test2.txt 
 
  0.36168 17393 
  0.72562 19559 
  1.0903  22098 
  1.4538  26833 
 

The finite element models for the two cases are represented in the keyword files foam1.k and foam2.k 
respectively. 
 

22.5.2. Ordinate-based Curve Matching 

The LS-OPT command file is given below. The displacement and force histories are used to construct a 
force vs. displacement crossplot for the two cases. The mean squared residual error (MSE) between each 
crossplot and the corresponding test data is then computed. The two MSE values are simply added to find 
the objective value. Although only four test points are given for each case, 10 points at constant intervals are 
interpolated for use in the MeanSqErr (Section 15.6.1) composite: 
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where P=10, 1=ps  and 1=pW . The representative MSE command is: 

composite 'MSE1' { MeanSqErr ( Test1, Force_vs_Disp1, 10 ) } 
"Example 6" 
$ Created on Mon Nov 28 10:42:41 2005 
solvers 2 
$ 
$ WARNING -- NO RESPONSES ARE DEFINED 
$ 
histories 8 
$ 
$ DESIGN VARIABLES 
$ 
variables 2 
 Variable 'Youngs_Modulus' 700000 
  Lower bound variable 'Youngs_Modulus' 500000 
  Upper bound variable 'Youngs_Modulus' 2e+06 
  Local 'Youngs_Modulus' 
 Variable 'Yield_Stress' 1500 
  Lower bound variable 'Yield_Stress' 500 
  Upper bound variable 'Yield_Stress' 2000 
$ 
$ CONSTANTS 
$ 
constants 3 
 Constant 'Begin' 0.002 
 Constant 'End' 0.008 
 Constant 'numpoints' 4 
 
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ 
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$      OPTIMIZATION METHOD    
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ 
$ 
Optimization Method SRSM 
 
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ 
$      SOLVER "Case1" 
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ 
$ 
$ DEFINITION OF SOLVER "Case1" 
$ 
 solver dyna960 'Case1' 
  solver command "ls970.single" 
  solver input file "foam1.k" 
$ ------ Pre-processor -------- 
$   NO PREPROCESSOR SPECIFIED 
$ ------ Sampling ------------- 
  solver order linear 
  solver experiment design dopt 
  solver basis experiment 5toK 
$ ------ Job information ------ 
  solver concurrent jobs 1 
$ 
$ WARNING - NO RESPONSES DEFINED FOR SOLVER "Case1" 
$ 
$ 
$ HISTORIES FOR SOLVER "Case1" 
$ 
 history 'Force1' "BinoutHistory -res_type rcforc -cmp z_force -id 1 -side SLAVE" 
 history 'Disp1' "BinoutHistory -res_type nodout -cmp z_displacement -id 296" 
$ 
$ HISTORY EXPRESSIONS FOR SOLVER "Case1" 
$ 
 history 'Force_vs_Disp1' expression { Crossplot ("-Disp1", "Force1") } 
 
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ 
$      SOLVER "Case2" 
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ 
$ 
$ DEFINITION OF SOLVER "Case2" 
$ 
 solver dyna960 'Case2' 
  solver command "ls970.single" 
  solver input file "foam2.k" 
$ ------ Pre-processor -------- 
$   NO PREPROCESSOR SPECIFIED 
$ ------ Sampling ------------- 
  solver order linear 
  solver experiment design dopt 
  solver basis experiment 5toK 
$ ------ Job information ------ 
  solver concurrent jobs 1 
$ 
$ LOCAL DESIGN VARIABLES FOR SOLVER "Case2" 
$ 
  solver variable 'Youngs_Modulus' 
$ 
$ WARNING - NO RESPONSES DEFINED FOR SOLVER "Case2" 
$ 
$ 
$ HISTORIES FOR SOLVER "Case2" 
$ 
 history 'Force2' "BinoutHistory -res_type rcforc -cmp z_force -id 1 -side SLAVE" 
 history 'Disp2' "BinoutHistory -res_type nodout -cmp z_displacement -id 288" 
$ 
$ HISTORY EXPRESSIONS FOR SOLVER "Case2" 
$ 
 history 'Force_vs_Disp2' expression { Crossplot ("-Disp2", "Force2") } 
 
$ 
$ HISTORIES FROM FILES 
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$ 
 history 'Test1' file "Test1.txt" 
 history 'Test2' file "Test2.txt" 
composites 3 
$ 
$ COMPOSITE EXPRESSIONS 
$ 
 composite 'MSE1' { MeanSqErr ( Test1, Force_vs_Disp1, 10 ) } 
 composite 'MSE2' { MeanSqErr ( Test2, Force_vs_Disp2, 10 ) } 
 composite 'MSE' { sqrt(MSE1 + MSE2) } 
$ 
$ OBJECTIVE FUNCTIONS 
$ 
 objectives 2 
 objective 'MSE1' 1 
 objective 'MSE2' 1 
$ 
$ THERE ARE NO CONSTRAINTS!!! 
$ 
 constraints 0 
$ 
$ JOB INFO 
$ 
 concurrent jobs 1 
 iterate param design 0.01 
 iterate param objective 0.01 
 iterate param stoppingtype and 
 iterate 2 
STOP 
 

22.5.3. Maximum residual formulation 

In this formulation, the deviations from the respective target values are incorporated as constraint violations, 
so that the optimization problem for parameter identification becomes: 

Minimize  e, 

subject to 

e
s

Gf

j

jj ≤
−)(x

;   j = 1,…,8 

e ≥ 0 

This formulation is automatically activated in LS-OPT by specifying the individual responses in equality 
constraints, i.e. without specifying the objective function as the maximum constraint violation. This is due 
to the fact LS-OPT automatically minimizes the infeasibility e , ignoring the objective function until a 
feasible design is found. When used in parameter identification, all the constraints are in general never 
completely satisfied due to typically over-determined systems that are used and therefore the objective 
function specification may be omitted. 

 

As a method of second choice, the Minmax method presently requires a more laborious input preparation 
than the MSE approach. It will be simplified, using a single command, in a later version of LS-OPT. 
 
"Example 6c" 
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$ Created on Sun Apr  4 18:00:20 2004 
solvers 2 
responses 8 
histories 2 
$ 
$ DESIGN VARIABLES 
$ 
variables 2 
 Variable 'Youngs_Modulus' 700000 
  Lower bound variable 'Youngs_Modulus' 500000 
  Upper bound variable 'Youngs_Modulus' 2e+06 
 Variable 'Yield_Stress' 1500 
  Lower bound variable 'Yield_Stress' 500 
  Upper bound variable 'Yield_Stress' 2000 
 
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ 
$      OPTIMIZATION METHOD    
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ 
$ 
Optimization Method SRSM 
 
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ 
$      SOLVER "Case1" 
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ 
$ 
$ DEFINITION OF SOLVER "Case1" 
$ 
 solver dyna960 'Case1' 
  solver command "ls970.single" 
  solver input file "foam1.k" 
  solver order linear 
  solver experiment design dopt 
  solver number experiments 5 
  solver basis experiment 3toK 
  solver concurrent jobs 1 
$ 
$ WARNING - NO RESPONSES DEFINED FOR SOLVER "Case1" 
$ 
$ 
$ HISTORIES FOR SOLVER "Case1" 
$ 
 history 'Force1' "BinoutHistory -res_type rcforc -cmp z_force -id 1  -side SLAVE " 
$ 
$ RESPONSE EXPRESSIONS FOR SOLVER "Case1" 
$ 
 response 'F1_1' expression {Force1(0.002)} 
 response 'F2_1' expression {Force1(0.004)} 
 response 'F3_1' expression {Force1(0.006)} 
 response 'F4_1' expression {Force1(0.008)} 
 
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ 
$      SOLVER "Case2" 
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ 
$ 
$ DEFINITION OF SOLVER "Case2" 
$ 
 solver dyna960 'Case2' 
  solver command "ls970.single" 
  solver input file "foam2.k" 
  solver order linear 
  solver experiment duplicate 'Case1' 
  solver concurrent jobs 1 
$ 
$ WARNING - NO RESPONSES DEFINED FOR SOLVER "Case2" 
$ 
$ 
$ HISTORIES FOR SOLVER "Case2" 
$ 
 history 'Force2' "BinoutHistory -res_type rcforc -cmp z_force -id 1  -side SLAVE " 
$ 
$ RESPONSE EXPRESSIONS FOR SOLVER "Case2" 
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$ 
 response 'F1_2' expression {Force2(0.002)} 
 response 'F2_2' expression {Force2(0.004)} 
 response 'F3_2' expression {Force2(0.006)} 
 response 'F4_2' expression {Force2(0.008)} 
 
composites 1 
$ 
$ COMPOSITE RESPONSES 
$ 
 composite 'Residual' type targeted 
  composite 'Residual' response 'F1_1' 10162 scale 1 
   weight 1 
  composite 'Residual' response 'F2_1' 12964 scale 1 
   weight 1 
  composite 'Residual' response 'F3_1' 14840 scale 1 
   weight 1 
  composite 'Residual' response 'F4_1' 17672 scale 1 
   weight 1 
  composite 'Residual' response 'F1_2' 17393 scale 1 
   weight 1 
  composite 'Residual' response 'F2_2' 19559 scale 1 
   weight 1 
  composite 'Residual' response 'F3_2' 22098 scale 1 
   weight 1 
  composite 'Residual' response 'F4_2' 26833 scale 1 
   weight 1 
$ 
$ NO OBJECTIVES DEFINED 
$ 
 objectives 0 
$ 
$ CONSTRAINT DEFINITIONS 
$ 
 constraints 8 
 constraint 'F1_1' 
  lower bound constraint 'F1_1' 10162 
  upper bound constraint 'F1_1' 10162 
 constraint 'F2_1' 
  lower bound constraint 'F2_1' 12964 
  upper bound constraint 'F2_1' 12964 
 constraint 'F3_1' 
  lower bound constraint 'F3_1' 14840 
  upper bound constraint 'F3_1' 14840 
 constraint 'F4_1' 
  lower bound constraint 'F4_1' 17672 
  upper bound constraint 'F4_1' 17672 
 constraint 'F1_2' 
  lower bound constraint 'F1_2' 17393 
  upper bound constraint 'F1_2' 17393 
 constraint 'F2_2' 
  lower bound constraint 'F2_2' 19559 
  upper bound constraint 'F2_2' 19559 
 constraint 'F3_2' 
  lower bound constraint 'F3_2' 22098 
  upper bound constraint 'F3_2' 22098 
 constraint 'F4_2' 
  lower bound constraint 'F4_2' 26833 
  upper bound constraint 'F4_2' 26833 
$ 
$ JOB INFO 
$ 
 iterate param design 0.01 
 iterate param objective 0.01 
 iterate param stoppingtype or 
 iterate 5 
STOP 
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22.5.4. Results 

The results for both methods are compared below. Note that the optimum Young’s modulus differs slightly 
due to its relative insignificance in the optimization as depicted in the following ANOVA plot representing 
the 4th point of the history plot and demonstrated by the size of its confidence interval (see table). 

 

 
 

22.5.5. Mean Squared Error (MSE) formulation 

Printout of the lsopt_report file: 
 
========================================================================= 
            M E A N   S Q U A R E D   E R R O R   V A L U E S             
 
                              ITERATION 5 
========================================================================= 
 
-------------------------------------------- 
Objective name                      MSE 
-------------------------------------------- 
MSE1                             .000221574 
MSE2                             .000175544 
-------------------------------------------- 
Total                            .000397118 
-------------------------------------------- 
 
 
========================================================================= 
            M E A N   S Q U A R E D   E R R O R   R E S I D U A L S         
 
                            ITERATION 5 
========================================================================= 
 
 
   COMPOSITE : MSE1 
 
     "Force_vs_Disp1"  calibrated to  "Test1" 
---------------------------------------------------------------------------------------------- 
 
     Computed MSE Value  = 0.00026367 
     Predicted MSE Value = 0.000221574 
 
---------------------------------------------------------------------------------------------- 
       TEST DATA            |             COMPUTED RESULTS              |                      
------|----------|----------|----------|----------|----------|----------|----------|---------- 
 Point  Point       Target  | Computed   Computed | Predicted  Predicted|  Weight     Scale    
 No.    Location    Value   | Value      Error    | Value      Error    |  Value      Value    
------|----------|----------|----------|----------|----------|----------|----------|---------- 
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     1     0.3617  1.016e+04| 1.027e+04      107.9| 1.026e+04      98.01|         1  1.767e+04 
     2      0.483   1.11e+04|  1.08e+04     -298.9|  1.08e+04     -299.4|         1  1.767e+04 
     3     0.6044  1.203e+04| 1.143e+04     -605.1| 1.157e+04       -458|         1  1.767e+04 
     4     0.7257  1.296e+04| 1.283e+04     -129.6| 1.276e+04     -204.2|         1  1.767e+04 
     5     0.8471  1.359e+04| 1.317e+04     -422.7| 1.314e+04       -447|         1  1.767e+04 
     6     0.9684  1.421e+04| 1.397e+04       -240| 1.397e+04     -242.4|         1  1.767e+04 
     7       1.09  1.484e+04|  1.49e+04      58.49|  1.49e+04      58.67|         1  1.767e+04 
     8      1.211  1.578e+04| 1.592e+04      136.1| 1.591e+04        131|         1  1.767e+04 
     9      1.332  1.673e+04| 1.688e+04      148.9| 1.674e+04      16.58|         1  1.767e+04 
    10      1.454  1.767e+04| 1.743e+04     -243.2| 1.742e+04     -248.4|         1  1.767e+04 
---------------------------------------------------------------------------------------------- 
 
 
   COMPOSITE : MSE2 
 
     "Force_vs_Disp2"  calibrated to  "Test2" 
---------------------------------------------------------------------------------------------- 
 
     Computed MSE Value  = 9.06349e-05 
     Predicted MSE Value = 0.000175544 
 
---------------------------------------------------------------------------------------------- 
       TEST DATA            |             COMPUTED RESULTS              |                      
------|----------|----------|----------|----------|----------|----------|----------|---------- 
 Point  Point       Target  | Computed   Computed | Predicted  Predicted|  Weight     Scale    
 No.    Location    Value   | Value      Error    | Value      Error    |  Value      Value    
------|----------|----------|----------|----------|----------|----------|----------|---------- 
     1     0.3617  1.739e+04| 1.753e+04      138.8| 1.762e+04      223.9|         1  2.683e+04 
     2      0.483  1.812e+04| 1.823e+04      112.7| 1.824e+04      127.4|         1  2.683e+04 
     3     0.6044  1.884e+04| 1.897e+04      130.5| 1.896e+04      121.3|         1  2.683e+04 
     4     0.7257  1.956e+04| 1.973e+04      170.2| 1.972e+04      165.1|         1  2.683e+04 
     5     0.8471   2.04e+04| 2.053e+04      120.7| 2.052e+04      118.2|         1  2.683e+04 
     6     0.9684  2.125e+04| 2.137e+04      123.3| 2.137e+04      119.3|         1  2.683e+04 
     7       1.09  2.209e+04| 2.228e+04        184| 2.228e+04      184.3|         1  2.683e+04 
     8      1.211  2.367e+04| 2.438e+04      705.9| 2.471e+04       1037|         1  2.683e+04 
     9      1.332  2.525e+04| 2.519e+04     -59.33| 2.539e+04      132.9|         1  2.683e+04 
    10      1.454  2.683e+04| 2.674e+04     -95.55| 2.684e+04      5.068|         1  2.683e+04 
---------------------------------------------------------------------------------------------- 
 
========================================================================= 
 
========================================================================= 
                 C O N F I D E N C E   I N T E R V A L S                  
 
                              ITERATION 5 
========================================================================= 
 
------------------------------------------------------------ 
 90% Confidence intervals for individual optimal parameters 
------------------------------------------------------------ 
Name                  Value              Confidence     
                                          Interval      
                                      Lower      Upper  
------------------------------------------------------------ 
Youngs_Modulus   739559.415      72970.5803 1406148.25 
Yield_Stress     1009.14575      978.501323 1039.79017 
------------------------------------------------------------ 
 
========================================================================= 
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Figure 22-28: Optimization history of MSE2. The history plots comparing the response to the test data 
are selected by clicking near the selected iteration on the plot and then on the MeanSqErr button. 

 
 

 
 

Figure 22-29: Comparison of force-displacement and data from Test1 (baseline) 
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Figure 22-30: Comparison of force-displacement and data from Test1 (optimum) 

22.5.6. Maximum residual formulation 
DESIGN POINT 
------------  
Variable Name                    Lower Bound   Value    Upper Bound 
--------------------------------|-----------|----------|-----------|-------- 
Youngs_Modulus                         5e+05  7.083e+05       2e+06  
Yield_Stress                             500       1001        2000  
--------------------------------|-----------|----------|-----------|-------- 
 
RESPONSE FUNCTIONS: 
------------------  
                                |       Scaled        |       Unscaled      | 
                                |---------------------|---------------------| 
RESPONSE                        | Computed   Predicted| Computed   Predicted| 
--------------------------------|----------|----------|----------|----------| 
F1_1                            |  1.02e+04   1.02e+04|  1.02e+04   1.02e+04| 
F2_1                            | 1.273e+04  1.295e+04| 1.273e+04  1.295e+04| 
F3_1                            | 1.478e+04  1.477e+04| 1.478e+04  1.477e+04| 
F4_1                            | 1.735e+04  1.748e+04| 1.735e+04  1.748e+04| 
F1_2                            | 1.743e+04  1.748e+04| 1.743e+04  1.748e+04| 
F2_2                            | 1.957e+04  1.956e+04| 1.957e+04  1.956e+04| 
F3_2                            |  2.21e+04  2.234e+04|  2.21e+04  2.234e+04| 
F4_2                            | 2.653e+04  2.678e+04| 2.653e+04  2.678e+04| 
--------------------------------|----------|----------|----------|----------| 
 
COMPOSITE FUNCTIONS: 
-------------------- 
COMPOSITE NAME                  | Computed | Predicted| 
--------------------------------|----------|----------| 
Residual                        |     505.2      332.9| 
--------------------------------|----------|----------| 
 
 
CONSTRAINT FUNCTIONS: 
--------------------  
CONSTRAINT NAME                 | Computed | Predicted|  Lower   |  Upper   |Viol? 
--------------------------------|----------|----------|----------|----------|----- 
F1_1                            |  1.02e+04   1.02e+04| 1.016e+04  1.016e+04|YES 
F2_1                            | 1.273e+04  1.295e+04| 1.296e+04  1.296e+04|YES 
F3_1                            | 1.478e+04  1.477e+04| 1.484e+04  1.484e+04|YES 
F4_1                            | 1.735e+04  1.748e+04| 1.767e+04  1.767e+04|YES 
F1_2                            | 1.743e+04  1.748e+04| 1.739e+04  1.739e+04|YES 
F2_2                            | 1.957e+04  1.956e+04| 1.956e+04  1.956e+04| 
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F3_2                            |  2.21e+04  2.234e+04|  2.21e+04   2.21e+04|YES 
F4_2                            | 2.653e+04  2.678e+04| 2.683e+04  2.683e+04|YES 
--------------------------------|----------|----------|----------|----------|----- 
 
 
CONSTRAINT VIOLATIONS: 
---------------------  
                                |  Computed Violation | Predicted Violation | 
CONSTRAINT NAME                 |----------|----------|----------|----------| 
                                |  Lower   |  Upper   |  Lower   |  Upper   | 
--------------------------------|----------|----------|----------|----------| 
F1_1                            |    -            37.3|    -           35.91| 
F2_1                            |     230.2     -     |     10.99     -     | 
F3_1                            |     61.33     -     |     65.56     -     | 
F4_1                            |     326.2     -     |     194.5     -     | 
F1_2                            |    -           40.46|    -           85.06| 
F2_2                            |    -           10.74|    0.9383     -     | 
F3_2                            |    -           2.992|    -           240.1| 
F4_2                            |     298.1     -     |     49.21     -     | 
--------------------------------|----------|----------|----------|----------| 
 
 
MAXIMUM VIOLATION: 
------------------  
                   |         Computed          |        Predicted          | 
     Quantity      |---------------------------|---------------------------| 
                   |   Constraint      Value   |   Constraint      Value   | 
-------------------|----------------|----------|----------------|----------| 
Maximum Violation  |F4_1                  326.2|F3_2                  240.1| 
Smallest Margin    |F3_2                  2.992|F2_2                 0.9383| 
-------------------|----------------|----------|----------------|----------| 
 

22.6. Large vehicle crash and vibration (MDO/MOO) (7 variables) 

(Example by courtesy of DaimlerChrysler) 

 

This example has the following features: 

LS-DYNA is used for both explicit full frontal crash and implicit NVH simulations. 

Multidisciplinary design optimization (MDO) and Multi-objective optimization (MOO) are illustrated with 
a realistic full vehicle example. 

Extraction is performed using standard LS-DYNA interfaces. 

This example illustrates a realistic application of Multidisciplinary Design Optimization (MDO) and 
concerns the coupling of the crash performance of a large vehicle with one of its Noise Vibration and 
Harshness (NVH) criteria, namely the torsional mode frequency [2].  

22.6.1. FE Modeling 

The crashworthiness simulation considers a model containing approximately 30,000 elements of a National 
Highway Transportation and Safety Association (NHTSA) vehicle [3] undergoing a full frontal impact. A 
modal analysis is performed on a so-called ‘body-in-white’ model containing approximately 18,000 
elements. The crash model for the full vehicle is shown in Figure 22-31 for the undeformed and deformed 
(time = 78ms) states, and with only the structural components affected by the design variables, both in the 
undeformed and deformed (time = 72ms) states, in Figure 22-32. The NVH model is depicted in Figure 
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22-33 in the first torsion vibrational mode. Only body parts that are crucial to the vibrational mode shapes 
are retained in this model. The design variables are all thicknesses or gages of structural components in the 
engine compartment of the vehicle (Figure 22-32), parameterized directly in the LS-DYNA input file. 
Twelve parts are affected, comprising aprons, rails, shotguns, cradle rails and the cradle cross member 
(Figure 22-32). LS-DYNA v.971 is used for both the crash and NVH simulations, in explicit and implicit 
modes respectively. 

 
 

 

 
(a)       (b) 

Figure 22-31: Crash model of vehicle showing road and wall a) Undeformed b) Deformed (78ms) 

 

 
(a) (b) 

 

Figure 22-32: Structural components affected by design variables – a) Undeformed and (b) deformed 
(time = 72ms) 

 

Left and right 
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 and inner 
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Figure 22-33: Body-in-white model of vehicle in torsional vibration mode (38.7Hz) 

22.6.2. Design formulation 

This example illustrates the following: 

o Multidisciplinary optimization 

o Discrete optimization 

o Multi-objective optimization 

o Complex mathematical expressions 

The formulation is as follows: 

Minimize  Mass    

Minimize Maximum intrusion    

subject to     

 Maximum intrusion(xcrash) < 551.27mm 

Stage 1 pulse(xcrash) > 14.51g  

Stage 2 pulse(xcrash) > 17.59g  

Stage 3 pulse(xcrash) > 20.75g  

41.38Hz < Torsional mode frequency(xNVH) < 42.38Hz 

Variables: 

xcrash  = [rail_inner, rail_outer, cradle_rails, aprons, shotgun_inner, shotgun_outer, cradle_crossmember]T 

xNVH = [rail_inner, rail_outer, cradle_rails, aprons, shotgun_inner, shotgun_outer, cradle_crossmember]T. 

 

The three stage pulses are calculated from the SAE filtered (60Hz) acceleration and displacement of a left 
rear sill node in the following fashion: 
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Stage i pulse = ∫−
− 2

1

d
12

d

d

xa
dd

k  ;  

k = 0.5 for i = 1, 1.0 otherwise; 

with the limits [d1;d2] = [0;184]; [184;334]; [334;Max(displacement)] for i = 1,2,3 respectively, all 
displacement units in mm and the minus sign to convert acceleration to deceleration. The Stage 1 pulse is 
represented by a triangle with the peak value being the value used. 

 

The constraints are scaled using the target values to balance the violations of the different constraints. This 
scaling is only important in cases where multiple constraints are violated as in the current problem. 
However, it is a good idea to apply scaling of constraints as a rule. 

22.6.3. Input preparation 

The MDO and MOO features are specified as follows: 

o MDO. The two disciplines (crash and NVH) are treated separately. Variables are flagged as local 
with the Local variable_name statement, and then linked to a solver using the Solver 
variable variable_name command. 

o MOO. Two design objectives (Intrusion and mass) are stated. The weight of the mass has been set to 
1.0 whereas the weight on the intrusion has been set to 0.0. These weights are specified in the 
“Objectives” panel of the GUI. This implies that the optimization path is based on minimal mass 
alone while the Pareto optimal front is constructed based on both objectives. The GA must be 
selected (also in the Objectives panel) as metamodel optimizer to obtain the Pareto optimal front. 

o Discrete variables. These are specified as an array of space delimited values. 

 

The command file is given below: 

 
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ 
Command file "com" 
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ 
$ Generated using LS-OPT Version 4.1 
$ 
"Taurus Full Vehicle MDO : Crash and NVH. (Manual Ex. 22.6)" 
$ 
Author "Tushar Goel" 
$ Created on Wed Jan  6 12:16:56 2010 
solvers 2 
responses 14 
histories 2 
$ 
$ DESIGN VARIABLES 
$ 
variables 7 
 Variable 'cradle_rails' 1.93 
  Lower bound variable 'cradle_rails' 1. 
  Upper bound variable 'cradle_rails' 3. 
 Variable 'cradle_csmbr' 1.93 
  Lower bound variable 'cradle_csmbr' 1. 
  Upper bound variable 'cradle_csmbr' 3. 
 Variable 'shotgun_inner' 1.3 
  Lower bound variable 'shotgun_inner' 1. 
  Upper bound variable 'shotgun_inner' 2.5 
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 Variable 'shotgun_outer' 1.3 
  Lower bound variable 'shotgun_outer' 1. 
  Upper bound variable 'shotgun_outer' 2.5 
 Variable 'rail_inner' 2. 
  Lower bound variable 'rail_inner' 1. 
  Upper bound variable 'rail_inner' 3. 
 Variable 'rail_outer' 1.5 
  Lower bound variable 'rail_outer' 1. 
  Upper bound variable 'rail_outer' 3. 
 Variable 'aprons' 1.3 
  Lower bound variable 'aprons' 1. 
  Upper bound variable 'aprons' 2.5 
 
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ 
$      OPTIMIZATION METHOD    
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ 
$ 
Optimization Method SRSM 
 
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ 
$      SOLVER "CRASH" 
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ 
$ 
$ DEFINITION OF SOLVER "CRASH" 
$ 
 solver dyna960 'CRASH' 
  solver command "submit_pbs" 
  solver input file "taurus_mod.dyn" 
  solver check output on  
  solver compress d3plot off  
$ ------ Pre-processor -------- 
$   NO PREPROCESSOR SPECIFIED 
$ ------ Post-processor -------- 
$   NO POSTPROCESSOR SPECIFIED 
$ ------ Metamodeling --------- 
  solver order RBF 
  solver experiment design space_filling 
   solver update doe 
   solver alternate experiment 1 
  solver approximate history linear 
$ ------ Job information ------ 
  solver concurrent jobs 0 
  solver queue pbs 
$ 
$ RESPONSES FOR SOLVER "CRASH" 
$ 
 response 'Disp' 1 0 "BinoutResponse -res_type Nodout  -cmp x_displacement -id 26730 -select MAX -start_time 
0.0000" 
$ 
$ HISTORIES FOR SOLVER "CRASH" 
$ 
 history 'XDISP' "BinoutHistory -res_type nodout -cmp x_displacement -id 26730 " 
 history 'XACCEL' "BinoutHistory -res_type nodout  -cmp x_acceleration -id 26730  -filter SAE -filter_freq 
60.0000" 
$ 
$ RESPONSE EXPRESSIONS FOR SOLVER "CRASH" 
$ 
 response 'time_to_184' expression {Lookup("XDISP(t)",184)} 
 response 'time_to_334' expression {Lookup("XDISP(t)",334)} 
 response 'time_to_max' expression {LookupMax("XDISP(t)")} 
 response 'Integral_0_184' expression {Integral("XACCEL(t)",0,time_to_184,"XDISP(t)")} 
 response 'Integral_184_334' expression {Integral("XACCEL(t)",time_to_184,time_to_334,"XDISP(t)")} 
 response 'Integral_334_max' expression {Integral("XACCEL(t)",time_to_334,time_to_max,"XDISP(t)")} 
 response 'Stage1Pulse' expression {(Integral_0_184/(-9810))*2/184} 
 response 'Stage2Pulse' expression {(Integral_184_334/(-9810))/(334-184)} 
 response 'Stage3Pulse' expression {(Integral_334_max/(-9810))/(Disp-334)} 
 
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ 
$      SOLVER "NVH" 
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ 
$ 
$ DEFINITION OF SOLVER "NVH" 
$ 
 solver dyna960 'NVH' 
  solver command "submit_pbs_nvh" 
  solver input file "taurus_biw.dyn" 
  solver check output on  
  solver compress d3plot off  
$ ------ Pre-processor -------- 
$   NO PREPROCESSOR SPECIFIED 
$ ------ Post-processor -------- 
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$   NO POSTPROCESSOR SPECIFIED 
$ ------ Metamodeling --------- 
  solver order RBF 
  solver experiment design space_filling 
   solver update doe 
   solver alternate experiment 1 
$ ------ Job information ------ 
  solver concurrent jobs 0 
  solver queue pbs 
$ 
$ RESPONSES FOR SOLVER "NVH" 
$ 
 response 'Vehicle_Mass_NVH' 2204.62 0 "DynaMass 29 30 32 33 34 35 79 81 82 83 MASS" 
 response 'Frequency' 1 0 "DynaFreq 2 FREQ" 
 response 'Mode' 1 0 "DynaFreq 2 NUMBER" 
 response 'Generalized_Mass' 1 0 "DynaFreq 2 GENMASS" 
 
composites 6 
$ 
$ COMPOSITE RESPONSES 
$ 
 composite 'Disp_scaled' type targeted 
  composite 'Disp_scaled' response 'Disp' 0 scale 551.27 
 composite 'Frequency_scaled' type targeted 
  composite 'Frequency_scaled' response 'Frequency' 0 scale 41.8831 
$ 
$ COMPOSITE EXPRESSIONS 
$ 
 composite 'Mass_scaled' {Vehicle_Mass_NVH/99.078} 
 composite 'Stage1Pulse_scaled' {Stage1Pulse/14.512408} 
 composite 'Stage2Pulse_scaled' {Stage2Pulse/17.586303} 
 composite 'Stage3Pulse_scaled' {Stage3Pulse/20.745213} 
$ 
$ OBJECTIVE FUNCTIONS 
$ 
 objectives 2 
 objective 'Disp_scaled' 0 
 objective 'Mass_scaled' 1 
$ 
$ CONSTRAINT DEFINITIONS 
$ 
 constraints 5 
 constraint 'Disp_scaled' 
  upper bound constraint 'Disp_scaled' 1 
 constraint 'Frequency_scaled' 
  lower bound constraint 'Frequency_scaled' 0.9881 
  upper bound constraint 'Frequency_scaled' 1.0119 
 constraint 'Stage1Pulse_scaled' 
  lower bound constraint 'Stage1Pulse_scaled' 1 
 constraint 'Stage2Pulse_scaled' 
  lower bound constraint 'Stage2Pulse_scaled' 1 
 constraint 'Stage3Pulse_scaled' 
  lower bound constraint 'Stage3Pulse_scaled' 1 
$ 
$ PARAMETERS FOR METAMODEL OPTIMIZATION 
$ 
 Metamodel Optimization Strategy SEQUENTIAL 
$ 
  iterate param design 0.01 
  iterate param objective 0.01 
  iterate param stoppingtype and 
$ 
$ OPTIMIZATION ALGORITHM 
$ 
 Optimization Algorithm genetic algorithm 
 GA Parameter MOEA Type NSGA II 
 GA Parameter Restart Interval 20 
 GA Parameter Selection Tournament 
 GA Parameter Real Crossover type SBX 
 GA Parameter Real Crossover Distribution Index 10 
 GA Parameter Real Mutation Distribution Index 10 
  Use GSA 
$ 
$ JOB INFO 
$ 
$run baseline 
 iterate 10 
STOP 
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22.6.4. Variable screening 

The variable screening was done to identify variables with low influence on responses. Both ANOVA and 
Sobol’s global sensitivity methods were used to identify non-influential variables. The plots below showed 
the ANOVA charts for the 7 design responses (Figure 22-34). The influence of different variables on each 
case for CRASH and NVH solvers was quantified using Sobol’s global sensitivity analysis by considering 
the optimization problem specific responses (responses that were used as objectives and/or constraints) as 
shown in Figure 22-35. All plots were based on a single iteration with a linear approximation and D-
optimality criterion as sampling scheme. It was obvious that the rail thicknesses were the most important 
variables for the CRASH examples; and cradle rail thickness was the most important variable for NVH 
analysis. The thickness of cradle cross-member was least important for both NVH and CRASH analysis.  

 

From these plots, the most important subsets of variables (global sensitivity index > 5%) were chosen for 
different cases. More variables were allowed for the NVH analysis because of its relatively small 
computational cost. The results from the two methods ANOVA and Sobol’s GSA were consistent. 

 
xcrash = [rail_inner, rail_outer, cradle_rails, aprons, shotgun_outer]T; 
xNVH = [rail_inner, rail_outer, cradle_rails, aprons, shotgun_inner, shotgun_outer]T. 
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Figure 22-34: ANOVA plots for objectives and constraints. 

 

Figure 22-35: Global sensitivity analysis of several responses for different cases. 
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22.6.5. Optimization history results and Pareto optimal front 

Optimization history of mass for full set of variables Optimization history of mass for screened variables 

Figure 22-36: Optimization history of scaled mass. 
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Full variable set  Partial variable set 

Figure 22-37: Optimization history of the most important variables for CRASH and NVH cases. 

  
Pareto optimal front using the full set of variables. Pareto optimal front using the partial set of variables.

Figure 22-38: Pareto optimal front. 
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Figure 22-36 shows the optimization history of the mass (objective function). For the purpose of 
comparison, two optimization runs were conducted, one with the full variable set and the other with the 
screened variables. Note the similarity of the minimal mass for both cases. The history of the most 
important variables for different cases is shown in Figure 22-37. The blue lines represent the upper and 
lower bounds of the region of interest for this variable. Though the histories were different, the final results 
pointed to similar values of the design variables. The Pareto optimal front obtained for the two cases is 
shown in Figure 22-38. The reduced variable case was better than the full variable example in the low 
displacement section whereas the full variable set resulted in better convergence in the low mass section of 
the Pareto optimal front. This explained the slight anomaly in the final solution shown in the optimization 
history.  

22.6.6. Summary of results 

The file reported below is the lsopt_report file which is viewable using the View→Summary GUI 
selection in the top menu bar and can also be found in the main working directory. The gradient information 
(derivatives of the responses with respect to the variables) is also available from the file, but is omitted here 
for brevity. 
 
Evaluated results written to file: 
"/florida_1/tushar/MANUAL/TAURUS/REDUCED_VAR/ExtendedResultsMETA_1.csv" 
 
 
LS-OPT Version        : 4.1 
LS-OPT Revision       : 57436 
LS-OPT Version Date   : Jan 6, 2010 
 
File name             : lsopt_report 
This file created on  : Thu Jan  7 09:43:34 2010 
 
Project Command File  : com 
 
*************************************************************************** 
Problem description: 
 Taurus Full Vehicle MDO : Crash and NVH. (Manual Ex. 22.6) 
*************************************************************************** 
 
--------------------------------------------------------------------------- 
               N U M B E R S   O F   E A C H   E N T I T Y 
--------------------------------------------------------------------------- 
Number of design variables ..............................     6 
Number of response functions ............................    14 
Number of constraint functions ..........................     5 
Number of objective functions ...........................     2 
--------------------------------------------------------------------------- 
                   D E S I G N   V A R I A B L E   D A T A                  
--------------------------------------------------------------------------- 
 
Continuous Variables  
--------------------------------------------| 
Variable Name     Lower Bound   Upper Bound   
----------------|-------------|-------------| 
cradle_rails               1           3 
shotgun_inner              1         2.5 
shotgun_outer              1         2.5 
rail_inner                 1           3 
rail_outer                 1           3 
aprons                     1         2.5 
--------------------------------------------------------------------------- 
 
--------------------------------------------------------------------------- 
                    O B J E C T I V E   F U N C T I O N S                   
--------------------------------------------------------------------------- 
Objective ...................... MINIMIZE 
 
-------------------------------------------- 
Objective name                   Weights 
-------------------------------------------- 
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Disp_scaled                      0           
Mass_scaled                      1           
 
-------------------------------------------- 
 
--------------------------------------------------------------------------- 
                      O P T I M I Z A T I O N   A L G O R I T H M  
--------------------------------------------------------------------------- 
 Method ............................ Metamodel-based Optimization 
 Strategy .......................... Sequential (global sampling) 
 Optimization Algorithm ............ Genetic Algorithm 
--------------------------------------------------------------------------- 
 
================================================================== 
 
 
              ------------------------------ 
              | Evaluating Starting Design | 
              |        ITERATION  1        | 
              ------------------------------ 
 
 
          C O M P U T E D  vs.  P R E D I C T E D 
          --------------------------------------- 
 
Using Metamodel of Iteration 1  
 
--------------------------------------------- 
 
 
DESIGN POINT 
------------  
Variable Name                    Lower Bound   Value    Upper Bound 
--------------------------------|-----------|----------|-----------|-------- 
cradle_rails                               1          1           3 Active 
shotgun_inner                              1        2.3         2.5  
shotgun_outer                              1       2.45         2.5  
rail_inner                                 1       2.82           3  
rail_outer                                 1       1.09           3  
aprons                                     1          1         2.5 Active 
--------------------------------|-----------|----------|-----------|-------- 
 
 
RESPONSE VALUES: 
---------------  
Name                            | Computed   Predicted| 
--------------------------------|----------|----------| 
Disp                            |     513.4      517.8| 
time_to_184                     |   0.01475    0.01474| 
time_to_334                     |   0.02895    0.02892| 
time_to_max                     |    0.0671     0.0658| 
Integral_0_184                  | -1.37e+07 -1.348e+07| 
Integral_184_334                |-2.898e+07 -2.824e+07| 
Integral_334_max                |-4.244e+07 -4.306e+07| 
Stage1Pulse                     |     15.18      14.93| 
Stage2Pulse                     |     19.69      19.19| 
Stage3Pulse                     |     24.11      23.95| 
Vehicle_Mass_NVH                |     95.34      95.34| 
Frequency                       |     42.33      42.49| 
Mode                            |         2      2.433| 
Generalized_Mass                |         1     0.9645| 
--------------------------------|----------|----------| 
 
COMPOSITE FUNCTIONS: 
-------------------- 
COMPOSITE NAME                  | Computed | Predicted| 
--------------------------------|----------|----------| 
Disp_scaled                     |    0.9313     0.9392| 
Frequency_scaled                |     1.011      1.014| 
Mass_scaled                     |    0.9623     0.9623| 
Stage1Pulse_scaled              |     1.046      1.029| 
Stage2Pulse_scaled              |      1.12      1.091| 
Stage3Pulse_scaled              |     1.162      1.155| 
--------------------------------|----------|----------| 
 
 
               OBJECTIVE: 
               ---------  
Computed Value  =     0.9623 
Predicted Value =     0.9623 
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OBJECTIVE VALUES: 
----------------  
Name                            | Computed   Predicted  WT. 
--------------------------------|----------|----------|---- 
Disp_scaled                     |    0.9313     0.9392|   0 
Mass_scaled                     |    0.9623     0.9623|   1 
--------------------------------|----------|----------|---- 
 
CONSTRAINT VALUES: 
-----------------  
Name                            | Computed | Predicted|  Lower   |  Upper   |Viol? 
--------------------------------|----------|----------|----------|----------|----- 
Disp_scaled                     |    0.9313     0.9392|    -1e+30          1| 
Frequency_scaled                |     1.011      1.014|    0.9881      1.012|YES 
Stage1Pulse_scaled              |     1.046      1.029|         1      1e+30| 
Stage2Pulse_scaled              |      1.12      1.091|         1      1e+30| 
Stage3Pulse_scaled              |     1.162      1.155|         1      1e+30| 
--------------------------------|----------|----------|----------|----------|----- 
 
 
CONSTRAINT VIOLATIONS: 
---------------------  
                                |  Computed Violation | Predicted Violation | 
Name                            |----------|----------|----------|----------| 
                                |  Lower   |  Upper   |  Lower   |  Upper   | 
--------------------------------|----------|----------|----------|----------| 
Disp_scaled                     |    -          -     |    -          -     | 
Frequency_scaled                |    -          -     |    -        0.002489| 
Stage1Pulse_scaled              |    -          -     |    -          -     | 
Stage2Pulse_scaled              |    -          -     |    -          -     | 
Stage3Pulse_scaled              |    -          -     |    -          -     | 
--------------------------------|----------|----------|----------|----------| 
 
 
MAXIMUM VIOLATION: 
----------------- 
                   |         Computed          |        Predicted          | 
     Quantity      |---------------------------|---------------------------| 
                   |   Constraint      Value   |   Constraint      Value   | 
-------------------|----------------|----------|----------------|----------| 
Maximum Violation  |Disp_scaled               0|Frequency_scaled   0.002489| 
Smallest Margin    |Frequency_scaled   0.001296|Frequency_scaled   0.002489| 
-------------------|----------------|----------|----------------|----------| 
 
============================================================================= 
   E R R O R   M E A S U R E S   F O R   R E S P O N S E S 
                                                                              
     ITERATION 10 
                                                                              
       Number of points = 100 
============================================================================= 
 
--------------------------------------------------------------------------------------------------------- 
 Response Name   |Metamodel | RMS      |RMS Error | Maximum  | Sq. Root | Sq. Root | R-Sq.    | R-Sq.     
                 | type     | Error    |  (% of   | Residual | PRESS    | PRESS (% |          | Predicted 
                 |          |          |   mean)  |          |          | of mean) |          |           
-----------------|----------|---------------------|----------|---------------------|----------|---------- 
 Disp              RBF Net          3.75      0.723       10.6       5.74       1.11      0.979      0.964 
 time_to_184       RBF Net      6.01e-07    0.00408   2.35e-06   1.63e-06     0.0111      0.997      0.991 
 time_to_334       RBF Net      1.97e-05     0.0678   6.25e-05   3.69e-05      0.127      0.997      0.994 
 time_to_max       RBF Net      0.000981       1.49    0.00335    0.00118        1.8      0.914      0.898 
 Integral_0_184    RBF Net      7.19e+04      0.554   1.96e+05    1.3e+05      0.998      0.985      0.968 
 Integral_184_334  RBF Net      5.95e+05       2.01   2.01e+06   7.28e+05       2.46      0.982      0.977 
 Integral_334_max  RBF Net      4.37e+05       1.06   1.32e+06   6.05e+05       1.46      0.991      0.985 
 Stage1Pulse       RBF Net        0.0797      0.554      0.218      0.144      0.999      0.985      0.968 
 Stage2Pulse       RBF Net         0.404       2.01       1.36      0.494       2.46      0.982      0.977 
 Stage3Pulse       RBF Net         0.418       1.82       1.02      0.694       3.02      0.847      0.721 
 Vehicle_Mass_NVH  RBF Net       0.00711    0.00649     0.0219    0.00759    0.00692          1          1 
 Frequency         RBF Net       0.00475     0.0113     0.0207     0.0567      0.135          1      0.998 
 Mode              RBF Net         0.194        8.5      0.503       0.26       11.4      0.792      0.665 
 Generalized_Mass  RBF Net         0.028       2.92      0.118      0.035       3.66      0.543      0.454 
-----------------|----------|---------------------|----------|---------------------|--------------------- 
 
 
==================================================================== 
        G L O B A L  S E N S I T I V I T Y  E S T I M A T E S         
==================================================================== 
 
Cumulative Variable Influence [CRASH]  
----------------------------------------------------------------------- 
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                           AVERAGED                   MAXIMUM             
----------------------------------------------------------------------- 
 Variable        Main Effect  Total Effect  Main Effect  Total Effect  
--------------   -------------------------  --------------------------- 
 cradle_rails           0.105        0.12        0.167       0.182 
 shotgun_inner       -0.00942           0      0.00219           0 
 shotgun_outer         0.0465      0.0602        0.304       0.339 
 rail_inner             0.493       0.516        0.692       0.704 
 rail_outer             0.206       0.228        0.339       0.349 
 aprons                0.0914       0.107        0.197       0.251 
----------------------------------------------------------------------- 
 
Cumulative Variable Influence [NVH]  
----------------------------------------------------------------------- 
                           AVERAGED                   MAXIMUM             
----------------------------------------------------------------------- 
 Variable        Main Effect  Total Effect  Main Effect  Total Effect  
--------------   -------------------------  --------------------------- 
 cradle_rails           0.295        0.33        0.442       0.495 
 shotgun_inner          0.298       0.334        0.444       0.473 
 shotgun_outer          0.146       0.164        0.266       0.296 
 rail_inner            0.0631      0.0685        0.219       0.231 
 rail_outer            0.0596      0.0721        0.177       0.189 
 aprons                0.0809      0.0892        0.287       0.299 
----------------------------------------------------------------------- 
==================================================================== 
 
 
================================================ 
           F I N A L   D E S I G N               
           ITERATION 11   
================================================ 
 
 
DESIGN POINT 
------------  
Variable Name                    Lower Bound   Value    Upper Bound 
--------------------------------|-----------|----------|-----------|-------- 
cradle_rails                               1      1.062           3  
shotgun_inner                              1      1.651         2.5  
shotgun_outer                              1      2.496         2.5  
rail_inner                                 1       2.51           3  
rail_outer                                 1          1           3 Active 
aprons                                     1          1         2.5 Active 
--------------------------------|-----------|----------|-----------|-------- 
 
RESPONSE VALUES: 
---------------  
Name                            | Computed   Predicted| 
--------------------------------|----------|----------| 
Disp                            |     528.3      532.4| 
time_to_184                     |   0.01474    0.01474| 
time_to_334                     |   0.02874    0.02874| 
time_to_max                     |   0.06865    0.06957| 
Integral_0_184                  |-1.361e+07 -1.364e+07| 
Integral_184_334                |-2.611e+07 -2.589e+07| 
Integral_334_max                |-4.475e+07 -4.494e+07| 
Stage1Pulse                     |     15.07      15.12| 
Stage2Pulse                     |     17.74      17.59| 
Stage3Pulse                     |     23.48      23.05| 
Vehicle_Mass_NVH                |     89.05      89.05| 
Frequency                       |     41.41       41.4| 
Mode                            |         2      1.971| 
Generalized_Mass                |    0.9964     0.9992| 
--------------------------------|----------|----------| 
 
COMPOSITE FUNCTIONS: 
-------------------- 
COMPOSITE NAME                  | Computed | Predicted| 
--------------------------------|----------|----------| 
Disp_scaled                     |    0.9583     0.9658| 
Frequency_scaled                |    0.9886     0.9884| 
Mass_scaled                     |    0.8988     0.8988| 
Stage1Pulse_scaled              |     1.039      1.042| 
Stage2Pulse_scaled              |     1.009          1| 
Stage3Pulse_scaled              |     1.132      1.111| 
--------------------------------|----------|----------| 
 
 
               OBJECTIVE: 
               ---------  
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Computed Value  =     0.8988 
Predicted Value =     0.8988 
 
 
OBJECTIVE VALUES: 
----------------  
Name                            | Computed   Predicted  WT. 
--------------------------------|----------|----------|---- 
Disp_scaled                     |    0.9583     0.9658|   0 
Mass_scaled                     |    0.8988     0.8988|   1 
--------------------------------|----------|----------|---- 
 
CONSTRAINT VALUES: 
-----------------  
Name                            | Computed | Predicted|  Lower   |  Upper   |Viol? 
--------------------------------|----------|----------|----------|----------|----- 
Disp_scaled                     |    0.9583     0.9658|    -1e+30          1| 
Frequency_scaled                |    0.9886     0.9884|    0.9881      1.012| 
Stage1Pulse_scaled              |     1.039      1.042|         1      1e+30| 
Stage2Pulse_scaled              |     1.009          1|         1      1e+30| 
Stage3Pulse_scaled              |     1.132      1.111|         1      1e+30| 
--------------------------------|----------|----------|----------|----------|----- 
 
 
CONSTRAINT VIOLATIONS: 
---------------------  
                                |  Computed Violation | Predicted Violation | 
Name                            |----------|----------|----------|----------| 
                                |  Lower   |  Upper   |  Lower   |  Upper   | 
--------------------------------|----------|----------|----------|----------| 
Disp_scaled                     |    -          -     |    -          -     | 
Frequency_scaled                |    -          -     |    -          -     | 
Stage1Pulse_scaled              |    -          -     |    -          -     | 
Stage2Pulse_scaled              |    -          -     |    -          -     | 
Stage3Pulse_scaled              |    -          -     |    -          -     | 
--------------------------------|----------|----------|----------|----------| 
 
 
MAXIMUM VIOLATION: 
----------------- 
                   |         Computed          |        Predicted          | 
     Quantity      |---------------------------|---------------------------| 
                   |   Constraint      Value   |   Constraint      Value   | 
-------------------|----------------|----------|----------------|----------| 
Maximum Violation  |Disp_scaled               0|Disp_scaled               0| 
Smallest Margin    |Frequency_scaled  0.0004954|Frequency_scaled  0.0002608| 
-------------------|----------------|----------|----------------|----------| 
 
                           ANALYSIS COMPLETED 
 
                                            Thu Jan  7 15:58:13 2010 

22.6.7. Multi-objective optimization using Direct GA simulation 

Next, this MDO problem is solved to study the trade-off between mass and intrusion. The problem 
statement is given as: 

 

Minimize  Mass    

Minimize Maximum intrusion    

subject to     

 Stage 1 pulse(xcrash) > 14.51g 

Stage 2 pulse(xcrash) > 17.59g 
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Stage 3 pulse(xcrash) > 20.75g 

41.38Hz < Torsional mode frequency(xNVH) < 42.38Hz (Fully-shared variables) 

The problem is solved using direct GA simulations. For this problem, all seven design variables were used 
for both disciplines. The NSGA-II algorithm (MOEA) was used in conjunction with real encoding of design 
variables. Tournament selection operator (Selection), with a tournament size of two (Tourn Size), was used 
to remove individuals with low fitness values. The simulated binary crossover (Real Crossover Type) and 
mutation operators were used to create child populations. The distribution index for crossover and mutation 
were taken as 5 (Crossover Distribution Index, Mutation Distribution Index). The trade-off files were 
generated at each generation (Restart Interval). The GA parameters are implemented as follows: 

 
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ 
$      OPTIMIZATION METHOD    
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ 
$ 
Optimization Method GA 
 
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ 
$ Genetic Algorithm Parameters 
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ 
 GA Parameter Popsize 80 
 GA Parameter Generation 100 
 GA Parameter MOEA NSGA II 
 GA Parameter Selection Tournament 
 GA Parameter Tourn Size 2 
 GA Parameter Real Crossover Type SBX 
 GA Parameter Real Crossover Probability 0.99 
 GA Parameter Real Crossover Distribution Index 5.0 
 GA Parameter Real Mutation Probability 0.15 
 GA Parameter Real Mut Dist Index 5.0 
 GA Parameter Restart Interval 1 
 
$ 
$ COMPOSITE RESPONSES 
$ 
 composite 'Disp_scaled' type targeted 
  composite 'Disp_scaled' response 'Disp' 0 scale 551.27 
 composite 'Frequency_scaled' type targeted 
  composite 'Frequency_scaled' response 'Frequency' 0 scale 41.8831 
$ 
$ COMPOSITE EXPRESSIONS 
$ 
 composite 'Stage1Pulse_scaled' {Stage1Pulse/14.512408} 
 composite 'Stage2Pulse_scaled' {Stage2Pulse/17.586303} 
 composite 'Stage3Pulse_scaled' {Stage3Pulse/20.745213} 
$ 
$ OBJECTIVE FUNCTIONS 
$ 
 objectives 2 
 objective 'Mass_scaled' 1 
 objective 'Disp_scaled' 1 
$ 
$ CONSTRAINT DEFINITIONS 
$ 
 constraints 4 
 constraint 'Frequency_scaled' 
  lower bound constraint 'Frequency_scaled' 0.9881 
  upper bound constraint 'Frequency_scaled' 1.0119 
 constraint 'Stage1Pulse_scaled' 
  lower bound constraint 'Stage1Pulse_scaled' 1 
 constraint 'Stage2Pulse_scaled' 
  lower bound constraint 'Stage2Pulse_scaled' 1 
 constraint 'Stage3Pulse_scaled' 
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  lower bound constraint 'Stage3Pulse_scaled' 1 
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ 
 

The outcome of the optimization is shown in Figure 22-39. Initial population did not have any feasible 
design but after running for 100 generations, the population resulted into 81 unique non-dominated designs. 
These designs are shown by blue dots (connected by the line) on the left hand-side. 

 

Initial population – no feasible design Tradeoff solutions at different generations 

Figure 22-39: Tradeoffs between scaled mass and intrusion (displacement). 

The results show that the potential of improvement by using multi-objective optimization. Trade-off 
between the two objectives shows that intrusion can be reduced by increasing the mass. The trade-off curve 
clearly illustrates that reduction in intrusion (from 0.922 to 0.976) might require proportionate increase in 
mass (from 0.974 to 1.14). A trade-off design (0.974, 0.976) can achieve nearly 2.5% reduction in both 
objectives. The ranges of the optimal design variables corresponding to the candidate Pareto optimal front 
are given in Table 22-4. Quite interestingly, the variations in different design variables are fairly small. 

Table 22-4: Ranges of design variables in the final optimal solution set. 

Variable Lower Upper
Rail inner 2.99 3.00 
Rail outer 1.20 1.35 
Aprons 1.15 1.80 
Shotgun inner 1.00 1.3 
Shotgun outer 1.19 2.11 
Cradle cross member 2.27 3.00 
Cradle rails 1 1.05 
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22.7. Knee impact with variable screening (11 variables) 

(Example by courtesy of Visteon and Ford Motor Company) 

This example has the following new features: 

o A sequential optimization is done using a constant region of interest 

o An independent parametric preprocessor is used 

o The minimum of two maxima is obtained in the objective (multi-criteria or multi-objective problem). 
The LFOPC metamodel optimization algorithm (the default algorithm) is used for this purpose. 

o A pre-processor is used for shape parameterization. 

22.7.1. FE modeling 

Figure 22-40 shows the finite element model of a typical automotive instrument panel (IP) [4]. For model 
simplification and reduced per-iteration computational times, only the driver's side of the IP is used in the 
analysis, and consists of around 25,000 shell elements. Symmetry boundary conditions are assumed at the 
centerline, and to simulate a bench component "Bendix" test, body attachments are assumed fixed in all 6 
directions. Also shown in Figure 22-40 are simplified knee forms which move in a direction as determined 
from prior physical tests. As shown in the figure, this system is composed of a knee bolster (steel, plastic or 
both) that also serves as a steering column cover with a styled surface, and two energy absorption (EA) 
brackets (usually steel) attached to the cross vehicle IP structure. The brackets absorb a significant portion 
of the lower torso energy of the occupant by deforming appropriately. Sometimes, a steering column 
isolator (also known as a yoke) may be used as part of the knee bolster system to delay the wrap-around of 
the knees around the steering column. The last three components are non-visible and hence their shape can 
be optimized.  The 11 design variables are shown in Figure 22-41. The three gauges and the yoke cross-
sectional radius are also considered in a separate sizing (4 variable) optimization. 

 

Styled surface, 
non-optimizable

Non-visible, 
optimizable 
structural part 

Simplified 
knee forms 
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Figure 22-40: Typical instrument panel prepared for a "Bendix" component test 
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Figure 22-41: Typical major components of a knee bolster system and definition of design variables. 

The simulation is carried out for a 40 ms duration by which time the knees have been brought to rest.  It 
may be mentioned here that the Bendix component test is used mainly for knee bolster system development; 
for certification purposes, a different physical test representative of the full vehicle is performed. Since the 
simulation used herein is at a subsystem level, the results reported here may be used mainly for illustration 
purposes. 

22.7.2. Design formulation 

The optimization problem is defined as follows: 

 

Minimize   ( max (Knee_Force_Left, Knee_Force_Right) ) 

Subject to 

Left Knee intrusion < 115mm

Right Knee intrusion < 115mm

Yoke displacement <  85mm 

Kinetic Energy <  1.54e5 
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Minimization over both knee forces is achieved by constraining them to impossibly low values. The LFOPC 
optimization algorithm must be selected since it will therefore always try to minimize the maximum knee 
force. The constraints other than the knee forces need to be set to “strict” so that if violations occur, only the 
knee forces will be violated. The “Constraints” panel of the GUI is shown below. 

 

 

Figure 22-42: Constraints for the knee bolster design problem. 

The knee forces have been filtered, SAE 60 Hz, to improve the approximation accuracy. 

22.7.3. Input preparation 

Truegrid is used to parameterize the geometry. The section of the Truegrid input file (s7.tg) where the 
design variables are substituted, is shown below: 

 
para 
  w1 <<L_Flange_Width>> c Left EA flange width 
  w2 <<R_Flange_Width>> c Right EA flange width 
  thick1 <<L_Bracket_Gauge>> c Left bracket gauge 
  thick2 <<R_Bracket_Gauge>> c Right bracket gauge 
  thick3 <<Bolster_gauge>> c Knee bolster gauge 
  f1  <<T_Flange_Depth>> c Left EA Depth Top 
  f2  <<F_Flange_Depth>> c Left EA Depth Front 
  f3  <<B_Flange_Depth>> c Left EA Depth Bottom 
  f4  <<I_Flange_Width>> c Left EA Inner Flange Width 
  r1  <<Yoke_Radius>> c Yoke bar radius 
  r2  <<R_Bracket_Radius>> c Oblong hole radius 
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The LS-OPT input file is shown below for the 11-variable shape optimization case: 
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ 
Command file "com_seq" 
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ 
$ Generated using LS-OPT Version 4.1 
$ 
"Knee impact with 11 variables" 
$ 
$ Created on Fri Jan  8 16:39:08 2010 
solvers 1 
responses 7 
$ 
$ NO HISTORIES ARE DEFINED 
$ 
$ 
$ DESIGN VARIABLES 
$ 
variables 11 
 Variable 'L_Bracket_Gauge' 1.1 
  Lower bound variable 'L_Bracket_Gauge' .7 
  Upper bound variable 'L_Bracket_Gauge' 3. 
 Variable 'T_Flange_Depth' 28.3 
  Lower bound variable 'T_Flange_Depth' 20. 
  Upper bound variable 'T_Flange_Depth' 50. 
 Variable 'F_Flange_Depth' 27.5 
  Lower bound variable 'F_Flange_Depth' 20. 
  Upper bound variable 'F_Flange_Depth' 50. 
 Variable 'B_Flange_Depth' 22.3 
  Lower bound variable 'B_Flange_Depth' 15. 
  Upper bound variable 'B_Flange_Depth' 50. 
 Variable 'I_Flange_Width' 7. 
  Lower bound variable 'I_Flange_Width' 5. 
  Upper bound variable 'I_Flange_Width' 25. 
 Variable 'L_Flange_Width' 32. 
  Lower bound variable 'L_Flange_Width' 20. 
  Upper bound variable 'L_Flange_Width' 50. 
 Variable 'R_Bracket_Gauge' 1.1 
  Lower bound variable 'R_Bracket_Gauge' .7 
  Upper bound variable 'R_Bracket_Gauge' 3. 
 Variable 'R_Flange_Width' 32. 
  Lower bound variable 'R_Flange_Width' 20. 
  Upper bound variable 'R_Flange_Width' 50. 
 Variable 'R_Bracket_Radius' 15. 
  Lower bound variable 'R_Bracket_Radius' 10. 
  Upper bound variable 'R_Bracket_Radius' 25. 
 Variable 'Bolster_gauge' 3.5 
  Lower bound variable 'Bolster_gauge' 1. 
  Upper bound variable 'Bolster_gauge' 6. 
 Variable 'Yolk_Radius' 4. 
  Lower bound variable 'Yolk_Radius' 2. 
  Upper bound variable 'Yolk_Radius' 8. 
 
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ 
$      OPTIMIZATION METHOD    
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ 
$ 
Optimization Method SRSM 
 
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ 
$      SOLVER "1" 
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ 
$ 
$ DEFINITION OF SOLVER "1" 
$ 
 solver dyna960 '1' 
  solver command "/florida_1/tushar/MANUAL/KNEE/ALLVAR/submit_pbs" 
  solver input file "ford7.k" 
  solver check output off  
  solver compress d3plot off  
$ ------ Pre-processor -------- 
  prepro truegrid 
  prepro command "sleep 90;cp ../../curves .; cp ../../node .; cp ../../elem .; cp ../../elem-bar .; pwd;tg" 
  prepro input file "s7.tg" 
$ ------ Post-processor -------- 
$   NO POSTPROCESSOR SPECIFIED 
$ ------ Metamodeling --------- 
  solver order RBF 
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   solver RBF transfer Gauss 
   solver RBF optimize GCV 
  solver experiment design space_filling 
   solver number experiments 21 
   solver update doe 
   solver alternate experiment 1 
$ ------ Job information ------ 
  solver concurrent jobs 0 
  solver queue pbs 
$ 
$ RESPONSES FOR SOLVER "1" 
$ 
 response 'L_Knee_Force' 0.000153846 0 "BinoutResponse -res_type RCForc -cmp force -invariant MAGNITUDE  -id 
1  -side MASTER -select MAX -start_time 0.0000 -filter SAE  -filter_freq 60.0000" 
 response 'R_Knee_Force' 0.000153846 0 "BinoutResponse -res_type RCForc -cmp force -invariant MAGNITUDE  -id 
2  -side MASTER -select MAX -start_time 0.0000 -filter SAE  -filter_freq 60.0000" 
 response 'L_Knee_Disp' 0.00869565 0 "BinoutResponse -res_type Nodout  -cmp displacement -invariant 
MAGNITUDE -id 24897 -select MAX -start_time 0.0000" 
 response 'R_Knee_Disp' 0.00869565 0 "BinoutResponse -res_type Nodout  -cmp displacement -invariant 
MAGNITUDE -id 25337 -select MAX -start_time 0.0000" 
 response 'Yoke_Disp' 0.0117647 0 "BinoutResponse -res_type Nodout  -cmp displacement -invariant MAGNITUDE -
id 28816 -select MAX -start_time 0.0000" 
 response 'Kinetic_Energy' 6.49351e-06 0 "BinoutResponse -res_type GLStat -cmp kinetic_energy  -select TIME 
" 
 response 'Mass' 638.162 0 "DynaMass 7 8 48 62 MASS" 
 
composites 2 
$ 
$ COMPOSITE EXPRESSIONS 
$ 
 composite 'MaxForce' {max(L_Knee_Force,R_Knee_Force)} 
 composite 'Intrusion' {(L_Knee_Disp+R_Knee_Disp)/2} 
$ 
$ OBJECTIVE FUNCTIONS 
$ 
 objectives 1 
 objective 'MaxForce' 1 
$ 
$ CONSTRAINT DEFINITIONS 
$ 
 constraints 4 
 constraint 'L_Knee_Disp' 
  strict 
  upper bound constraint 'L_Knee_Disp' 1 
 constraint 'R_Knee_Disp' 
  slack 
  strict 
  upper bound constraint 'R_Knee_Disp' 1 
 constraint 'Yoke_Disp' 
  slack 
  strict 
  upper bound constraint 'Yoke_Disp' 1 
 constraint 'Kinetic_Energy' 
  slack 
  strict 
  upper bound constraint 'Kinetic_Energy' 1 
$ 
$ PARAMETERS FOR METAMODEL OPTIMIZATION 
$ 
 Metamodel Optimization Strategy SEQUENTIAL 
$ 
  iterate param design 0.01 
  iterate param objective 0.01 
  iterate param stoppingtype and 
$ 
$ OPTIMIZATION ALGORITHM 
$ 
 Optimization Algorithm hybrid simulated annealing 
$ 
$ SA PARAMETERS 
$ 
 sa maximum simulation 20000 
  Use GSA 
  Set GSA Resolution 100000 
$ 
$ JOB INFO 
$ 
$ run baseline 
 iterate 10 
STOP 
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22.7.4. Variable screening 

A single iteration is done with a linear approximation to generate the ANOVA and Sobol’s global sensitivity 
analysis charts. The charts are shown in the figure below. Note the large confidence intervals (low 
confidence levels) on some of the responses, especially the Left Knee Force and Yoke Displacement.  
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Figure 22-43: ANOVA plots for objectives and constraints of knee-bolster design problem. 

 

Figure 22-44: Global sensitivity analysis of objectives and constraints. 

The six variables chosen from the charts are: 

 
x=[ Bolster_gauge,Yoke_Radius,L_Bracket_Gauge,R_Bracket_Gauge,R_Flange_Width,I_Flange_Depth]T; 
 

The changes in the input file are as follows: 
variables 6 
 Variable 'L_Bracket_Gauge' .7 
  Lower bound variable 'L_Bracket_Gauge' .7 
  Upper bound variable 'L_Bracket_Gauge' 3. 
 Variable 'I_Flange_Width' 5. 
  Lower bound variable 'I_Flange_Width' 5. 
  Upper bound variable 'I_Flange_Width' 25. 
 Variable 'R_Bracket_Gauge' .7 
  Lower bound variable 'R_Bracket_Gauge' .7 
  Upper bound variable 'R_Bracket_Gauge' 3. 
 Variable 'R_Flange_Width' 20. 
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  Lower bound variable 'R_Flange_Width' 20. 
  Upper bound variable 'R_Flange_Width' 50. 
 Variable 'Bolster_gauge' 3.6 
  Lower bound variable 'Bolster_gauge' 1. 
  Upper bound variable 'Bolster_gauge' 6. 
 Variable 'Yolk_Radius' 2. 
  Lower bound variable 'Yolk_Radius' 2. 
  Upper bound variable 'Yolk_Radius' 8. 
$ 
$ CONSTANTS 
$ 
constants 5 
 Constant 'T_Flange_Depth' 50 
 Constant 'F_Flange_Depth' 20 
 Constant 'B_Flange_Depth' 15 
 Constant 'L_Flange_Width' 20 
 Constant 'R_Bracket_Radius' 10 

22.7.5. Optimization strategy 

In contrast to the strategy of the full vehicle example, a sequential strategy in which, the region of interest is 
kept constant, is chosen. The reader is also referred to [5] for a discussion of the accuracy and purpose of the 
various sequential sampling strategies available in LS-OPT. LFOPC (the default algorithm) is chosen as the 
core solver because of the requirement to minimize the maximum knee force. 

22.7.6. Optimization history results 

The plots below show optimization history of the objectives, constraints and some responses. The 
simulations converged after three iterations. While the baseline design resulted in a maximum force of 1.315 
units, the optimum design resulted in only 0.966 units of maximum force. Though intermediate results were 
infeasible, the final design was feasible. 
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Figure 22-45: Optimization history of objectives and maximum constraint violations. 

22.7.7. Summary of results 

The following is an edited version of the lsopt_report file (also viewable by selecting 
View→Summary). 
 
LS-OPT Version        : 4.1 
LS-OPT Revision       : 57436 
LS-OPT Version Date   : Jan 6, 2010 
 
Project Command File  : com_srsm 
 
*************************************************************************** 
Problem description: 
 Knee impact with 11 variables 
*************************************************************************** 
 
Continuous Variables  
--------------------------------------------| 
Variable Name     Lower Bound   Upper Bound   
----------------|-------------|-------------| 
L_Bracket_Gauge          0.7           3 
I_Flange_Width             5          25 
R_Bracket_Gauge          0.7           3 
R_Flange_Width            20          50 
Bolster_gauge              1           6 
Yolk_Radius                2           8 
--------------------------------------------------------------------------- 
 
--------------------------------------------------------------------------- 
                   C O N S T R A I N T    F U N C T I O N S                 
--------------------------------------------------------------------------- 
Constraint name                  Lower Bound                  Upper Bound 
--------------------------------------------------------------------------- 
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R_Knee_Disp                      -1e+30      1           
L_Knee_Disp                      -1e+30      1           
Yoke_Disp                        -1e+30      1           
Kinetic_Energy                   -1e+30      1           
--------------------------------------------------------------------------- 
--------------------------------------------------------------------------- 
                      O P T I M I Z A T I O N   A L G O R I T H M  
--------------------------------------------------------------------------- 
 Method ............................ Metamodel-based Optimization 
 Strategy .......................... Sequential with Domain Reduction 
 Optimization Algorithm ............ Hybrid SA (Simulated Annealing + LFOPC) 
--------------------------------------------------------------------------- 
 
================================================================== 
              ------------------------------ 
              | Evaluating Starting Design | 
              |        ITERATION  1        | 
              ------------------------------ 
 
 
          C O M P U T E D  vs.  P R E D I C T E D 
          --------------------------------------- 
Using Metamodel of Iteration 1  
--------------------------------------------- 
DESIGN POINT 
------------  
Variable Name                    Lower Bound   Value    Upper Bound 
--------------------------------|-----------|----------|-----------|-------- 
L_Bracket_Gauge                          0.7        0.7           3 Active 
I_Flange_Width                             5          5          25 Active 
R_Bracket_Gauge                          0.7        0.7           3 Active 
R_Flange_Width                            20         20          50 Active 
Bolster_gauge                              1        3.6           6  
Yolk_Radius                                2          2           8 Active 
--------------------------------|-----------|----------|-----------|-------- 
 
 
RESPONSE VALUES: 
---------------  
Name                            | Computed   Predicted| 
--------------------------------|----------|----------| 
L_Knee_Force                    |    0.9102     0.9275| 
R_Knee_Force                    |     1.093      0.981| 
R_Knee_Disp                     |    0.8355      0.865| 
L_Knee_Disp                     |     1.011     0.9917| 
Yoke_Disp                       |     0.609     0.6354| 
Kinetic_Energy                  |    0.3851     0.3586| 
Mass                            |    0.6152     0.5795| 
--------------------------------|----------|----------| 
 
COMPOSITE FUNCTIONS: 
-------------------- 
COMPOSITE NAME                  | Computed | Predicted| 
--------------------------------|----------|----------| 
MaxForce                        |     1.093      0.981| 
Intrusion                       |    0.9234     0.9284| 
--------------------------------|----------|----------| 
 
 
               OBJECTIVE: 
               ---------  
Computed Value  =      1.093 
Predicted Value =      0.981 
 
 
OBJECTIVE VALUES: 
----------------  
Name                            | Computed   Predicted  WT. 
--------------------------------|----------|----------|---- 
MaxForce                        |     1.093      0.981|   1 
--------------------------------|----------|----------|---- 
 
CONSTRAINT VALUES: 
-----------------  
Name                            | Computed | Predicted|  Lower   |  Upper   |Viol? 
--------------------------------|----------|----------|----------|----------|----- 
R_Knee_Disp                     |    0.8355      0.865|    -1e+30          1| 
L_Knee_Disp                     |     1.011     0.9917|    -1e+30          1| 
Yoke_Disp                       |     0.609     0.6354|    -1e+30          1| 
Kinetic_Energy                  |    0.3851     0.3586|    -1e+30          1| 
--------------------------------|----------|----------|----------|----------|----- 
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CONSTRAINT VIOLATIONS: 
---------------------  
                                |  Computed Violation | Predicted Violation | 
Name                            |----------|----------|----------|----------| 
                                |  Lower   |  Upper   |  Lower   |  Upper   | 
--------------------------------|----------|----------|----------|----------| 
R_Knee_Disp                     |    -          -     |    -          -     | 
L_Knee_Disp                     |    -         0.01141|    -          -     | 
Yoke_Disp                       |    -          -     |    -          -     | 
Kinetic_Energy                  |    -          -     |    -          -     | 
--------------------------------|----------|----------|----------|----------| 
 
 
MAXIMUM VIOLATION: 
----------------- 
                   |         Computed          |        Predicted          | 
     Quantity      |---------------------------|---------------------------| 
                   |   Constraint      Value   |   Constraint      Value   | 
-------------------|----------------|----------|----------------|----------| 
Maximum Violation  |L_Knee_Disp         0.01141|R_Knee_Disp               0| 
Smallest Margin    |L_Knee_Disp         0.01141|L_Knee_Disp        0.008291| 
-------------------|----------------|----------|----------------|----------| 
 
 
============================================================================= 
   E R R O R   M E A S U R E S   F O R   R E S P O N S E S 
                                                                              
     ITERATION 3 
                                                                              
       Number of points = 42 
============================================================================= 
 
------------------------------------------------------------------------------------------------------------ 
 Response Name    |Metamodel | RMS      |RMS Error | Maximum  | Sq. Root | Sq. Root | R-Sq.    | R-Sq.     
                  | type     | Error    |  (% of   | Residual | PRESS    | PRESS (% |          | Predicted 
                  |          |          |   mean)  |          |          | of mean) |          |           
------------------|----------|---------------------|----------|---------------------|----------|---------- 
 L_Knee_Force       RBF Net        0.0896       6.93      0.249      0.143         11      0.891      0.818 
 R_Knee_Force       RBF Net        0.0402       3.18      0.093     0.0654       5.17       0.93      0.895 
 R_Knee_Disp        RBF Net        0.0232        2.8     0.0709     0.0322       3.89      0.811      0.732 
 L_Knee_Disp        RBF Net        0.0132       1.67      0.035      0.041        5.2       0.98      0.923 
 Yoke_Disp          RBF Net         0.202       30.3      0.691      0.244       36.6      0.281      0.167 
 Kinetic_Energy     RBF Net        0.0459       12.7      0.107     0.0531       14.6      0.434      0.461 
 Mass               RBF Net        0.0181       1.74     0.0514     0.0254       2.45      0.989      0.992 
------------------|----------|---------------------|----------|---------------------|--------------------- 
 
==================================================================== 
        G L O B A L  S E N S I T I V I T Y  E S T I M A T E S         
==================================================================== 
 
Cumulative Variable Influence [1]  
------------------------------------------------------------------------- 
                             AVERAGED                   MAXIMUM             
------------------------------------------------------------------------- 
 Variable          Main Effect  Total Effect  Main Effect  Total Effect  
----------------   -------------------------  --------------------------- 
 L_Bracket_Gauge          0.025       0.438       0.0511       0.591 
 I_Flange_Width         0.00728        0.15       0.0117       0.179 
 R_Bracket_Gauge         0.0484       0.552         0.11        0.82 
 R_Flange_Width          0.0383       0.498       0.0676       0.578 
 Bolster_gauge            0.045       0.445        0.129       0.669 
 Yolk_Radius              0.025       0.406       0.0498       0.515 
------------------------------------------------------------------------- 
==================================================================== 
 
================================================ 
           F I N A L   D E S I G N               
           ITERATION 4   
================================================ 
 
 
DESIGN POINT 
------------  
Variable Name                    Lower Bound   Value    Upper Bound 
--------------------------------|-----------|----------|-----------|-------- 
L_Bracket_Gauge                          0.7        0.7           3 Active 
I_Flange_Width                             5      24.97          25  
R_Bracket_Gauge                          0.7     0.7015           3 Active 
R_Flange_Width                            20         20          50 Active 
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Bolster_gauge                              1      5.156           6  
Yolk_Radius                                2          2           8 Active 
--------------------------------|-----------|----------|-----------|-------- 
 
RESPONSE VALUES: 
---------------  
Name                            | Computed   Predicted| 
--------------------------------|----------|----------| 
L_Knee_Force                    |    0.9076     0.9374| 
R_Knee_Force                    |    0.9662     0.9374| 
R_Knee_Disp                     |    0.8583     0.8518| 
L_Knee_Disp                     |    0.8975     0.9037| 
Yoke_Disp                       |     0.228      0.581| 
Kinetic_Energy                  |    0.3965     0.3169| 
Mass                            |    0.8054     0.8007| 
--------------------------------|----------|----------| 
 
COMPOSITE FUNCTIONS: 
-------------------- 
COMPOSITE NAME                  | Computed | Predicted| 
--------------------------------|----------|----------| 
MaxForce                        |    0.9662     0.9374| 
Intrusion                       |    0.8779     0.8777| 
--------------------------------|----------|----------| 
 
 
               OBJECTIVE: 
               ---------  
Computed Value  =     0.9662 
Predicted Value =     0.9374 
 
 
OBJECTIVE VALUES: 
----------------  
Name                            | Computed   Predicted  WT. 
--------------------------------|----------|----------|---- 
MaxForce                        |    0.9662     0.9374|   1 
--------------------------------|----------|----------|---- 
 
CONSTRAINT VALUES: 
-----------------  
Name                            | Computed | Predicted|  Lower   |  Upper   |Viol? 
--------------------------------|----------|----------|----------|----------|----- 
R_Knee_Disp                     |    0.8583     0.8518|    -1e+30          1| 
L_Knee_Disp                     |    0.8975     0.9037|    -1e+30          1| 
Yoke_Disp                       |     0.228      0.581|    -1e+30          1| 
Kinetic_Energy                  |    0.3965     0.3169|    -1e+30          1| 
--------------------------------|----------|----------|----------|----------|----- 
 
 
CONSTRAINT VIOLATIONS: 
---------------------  
                                |  Computed Violation | Predicted Violation | 
Name                            |----------|----------|----------|----------| 
                                |  Lower   |  Upper   |  Lower   |  Upper   | 
--------------------------------|----------|----------|----------|----------| 
R_Knee_Disp                     |    -          -     |    -          -     | 
L_Knee_Disp                     |    -          -     |    -          -     | 
Yoke_Disp                       |    -          -     |    -          -     | 
Kinetic_Energy                  |    -          -     |    -          -     | 
--------------------------------|----------|----------|----------|----------| 
 
 
MAXIMUM VIOLATION: 
----------------- 
                   |         Computed          |        Predicted          | 
     Quantity      |---------------------------|---------------------------| 
                   |   Constraint      Value   |   Constraint      Value   | 
-------------------|----------------|----------|----------------|----------| 
Maximum Violation  |R_Knee_Disp               0|R_Knee_Disp               0| 
Smallest Margin    |L_Knee_Disp          0.1025|L_Knee_Disp         0.09635| 
-------------------|----------------|----------|----------------|----------| 
 
                           ANALYSIS COMPLETED 
 
                                            Tue Jan 12 12:17:44 2010 
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22.8. Optimization with analytical design sensitivities 

This example demonstrates how analytical gradients (Section 13.10) provided by a solver can be used for 
optimization using the SLP algorithm and the domain reduction scheme [5] (Section 4.6). The solver, a Perl 
program is shown below, followed by the command file for optimization. In this example the input 
variables are read from the file: XPoint placed in the run directory by LS-OPT. The input variables can 
also be read by defining this file as an input file and using the <<variable_name>> format to label the 
variable locations for substitution. Note that each response requires a unique Gradient file. 

 
Solver program: 
 
# Open output files for response results 
# 
open(FOUT,">fsol"); 
open(G1OUT,">g1sol"); 
open(G2OUT,">g2sol"); 
# 
# Output files for gradients 
# 
open(DF,">Gradf"); 
open(DG1,">Gradg1"); 
open(DG2,">Gradg2"); 
# 
# Open the input file "XPoint" (automatically  
# placed by LS-OPT in the run directory) 
# 
open(X,"<XPoint"); 
# 
# Compute results and write to the files 
# (i.e. conduct the simulation) 
# 
while (<X>) { 
   ($x1,$x2) = split; 
} 
# 
print FOUT  ($x1*$x1) + (4*($x2-0.5)*($x2-0.5)),"\n"; 
# Derivative of f(x1,x2) 
#----------------------- 
print DF    (2*$x1)," ";          # df/dx1 
print DF    (8*($x2-0.5)),"\n";   # df/dx2 
# 
print G1OUT $x1 + $x2,"\n"; 
# Derivative of g1(x1,x2) 
#------------------------ 
print DG1 1," "; 
print DG1 1,"\n"; 
# 
print G2OUT (-2*$x1) + $x2,"\n"; 
# Derivative of g2(x1,x2) 
#------------------------ 
print DG2 -2," "; 
print DG2 1,"\n"; 
# 
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# Signal normal termination 
# 
print "N o r m a l\n"; 
 
Command file: 
 
"Example 2b: QP problem (analytical sensitivity analysis)" 
solvers 1 
responses 3 
$ 
$ DESIGN VARIABLES 
$ 
variables 2 
 Variable 'x1' 1 
  Lower bound variable 'x1' -3 
  Upper bound variable 'x1' 3 
  Range 'x1' 1 
 Variable 'x2' 1 
  Lower bound variable 'x2' 0 
  Upper bound variable 'x2' 2 
  Range 'x2' 1 
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ 
$      SOLVER "1" 
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ 
solver own '1' 
  solver command "/home/LSOPT_EXE/perl ../../ex2" 
  solver experimental design analytical_DSA 
$ 
$ RESPONSES FOR SOLVER "1" 
$ The Gradf, Gradg1 and Gradg2 files are individually copied to "Gradient" 
 response 'f' 1 0 "cp Gradf Gradient; cat fsol" 
 response 'g1' 1 0 "cp Gradg1 Gradient; cat g1sol" 
 response 'g2' 1 0 "cp Gradg2 Gradient; cat g2sol" 
$ 
$ OBJECTIVE FUNCTIONS 
$ 
 objectives 1 
 maximize 
 objective 'f' 1 
$ 
$ CONSTRAINT DEFINITIONS 
$ 
 constraints 2 
 constraint 'g1' 
  upper bound constraint 'g1' 1 
 constraint 'g2' 
  upper bound constraint 'g2' 2 
$ 
$ JOB INFO 
$ 
 iterate param design 0.01 
 iterate param objective 0.01 
 iterate param stoppingtype and 
 iterate 5 
STOP 
Typical ″Gradient″ file (e.g. for f): 
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1.8000000000 –3.20000000000 
 

The optimization results are shown in the plots below. An iteration represents a single simulation. The dots 
represent the computed results while the solid line represents a linear approximation constructed from the 
gradient information of the previous point. 

 
 

 

22.9. Probabilistic Analysis 

22.9.1. Overview 

This example has the following features: 

Probabilistic analysis 

Monte Carlo analysis 

Monte Carlo analysis using a metamodel 

Bifurcations analysis 
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22.9.2. Problem description 

 

Figure 22-46: Tube impact 

A symmetric short crush tube impacted by a moving wall as shown in the figure is considered. The design 
criterion is the intrusion of the wall into the space initially occupied by the tube (alternatively, how much 
the structure is shortened by the impact with the wall). 

Both the shell thickness and the yield strength of the structure follow a probabilistic distribution. The shell 
thickness is normally distributed around a value of 1.0 with a standard deviation of 5% while the yield 
strength is normally distributed around a value scaled to 1.0 with a standard deviation of 10%. 

The nominal design has an intrusion of 144.4 units. The probability of the intrusion being greater than 150 
units is computed. The best-known results are obtained using a Monte Carlo analysis of 1500 runs. The 
problem is analyzed using a Monte-Carlo evaluation of 60 runs and a quadratic response surface build using 
a 3k experimental design. The results from the different methods are close to each other as can be seen in the 
following table. 

 

Response Monte Carlo 

1500 runs 

Monte Carlo 

60 runs 

Response Surface

9 runs 

Average Intrusion 141.3 141.8 141.4 

Intrusion Standard Deviation 15.8 15.2 15.0 

Probability of Intrusion > 150 0.32 0.33 0.29 

 

Using the response surface, the derivatives of the intrusions with respect to the design variables are 
computed as given in the following table. 
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Variable Intrusion derivative 

Shell Thickness 208 

Yield Strength 107 

 

The quadratic response surface also allows the investigation of the dependence of the response variation on 
each design variable variation. The values of the intrusion standard deviation given in the following table 
are computed considering the variable as the only source of variation in the structure (the variation of the 
other design variables are set to zero). 

 

Source of variation Intrusion Standard Deviation 

Shell Thickness 10.4 

Yield Strength 10.7 

 

The details of the analyses are given the following subsections. 

22.9.3. Monte Carlo evaluation 

The probabilistic variation is described by specifying statistical distributions and assigning the statistical 
distributions to noise variables. 
"Tube Crush Monte Carlo " 
$ Created on Tue Apr  1 11:26:07 2003 
solvers 1 
$ 
distribution 2 
 distribution 't' NORMAL 1.0 0.05 
 distribution 'y' NORMAL 1.0 0.10 
$ 
$ DESIGN VARIABLES 
$ 
variables 2 
 noise variable 'T1' distribution 't' 
 noise variable 'YS' distribution 'y' 
$ 
$ DEFINITION OF SOLVER "SOLVER_1" 
$ 
 solver dyna960 'SOLVER_1' 
  solver command "ls970.single" 
  solver input file "tube.k" 
  solver experiment design lhd centralpoint 
  solver number experiments 60 
$ 
$ HISTORIES FOR SOLVER "SOLVER_1" 
$ 
histories 1 
 history 'NHist' "BinoutHistory -res_type nodout -cmp z_displacement -id 486" 
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$ 
$ RESPONSES FOR SOLVER "SOLVER_1" 
$ 
responses 2 
 response 'NodDisp' 1 0 "BinoutResponse -res_type nodout -cmp z_displacement -id 486  
-select MIN " 
 response 'DispT' {LookupMin("NHist(t)")} 
$ 
$ 
$  
 constraints 1 
  constraint 'NodDisp' 
  lower bound constraint 'NodDisp' -150 
$ 
$ JOB INFO 
$ 
 analyze monte carlo 
STOP 
 

The LS-OPT output: 

 
 
############################################################### 
Direct Monte Carlo simulation considering 2 stochastic variables. 
############################################################### 
 
 
##################################################### 
STATISTICS OF VARIABLES 
##################################################### 
 
Variable 'T1' 
Distribution Information 
------------------------ 
Number of points   :     60 
Mean Value         :      1 
Standard Deviation : 0.04948 
Coef of Variation  : 0.04948 
Maximum Value      :   1.12 
Minimum Value      : 0.8803 
 
 
Variable 'YS' 
Distribution Information 
------------------------ 
Number of points   :     60 
Mean Value         :      1 
Standard Deviation : 0.09895 
Coef of Variation  : 0.09895 
Maximum Value      :  1.239 
Minimum Value      : 0.7606 
 
 
##################################################### 
STATISTICS OF RESPONSES 
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##################################################### 
 
Response 'NodDisp' 
Distribution Information 
------------------------ 
Number of points   :     60 
Mean Value         : -141.8 
Standard Deviation :  15.21 
Coef of Variation  : 0.1073 
Maximum Value      : -102.3 
Minimum Value      : -168.9 
 
 
 
Response 'DispT' 
Distribution Information 
------------------------ 
Number of points   :     60 
Mean Value         :  7.726 
Standard Deviation : 0.6055 
Coef of Variation  : 0.07837 
Maximum Value      :    8.4 
Minimum Value      :    5.5 
 
 
 
##################################################### 
STATISTICS OF COMPOSITES 
##################################################### 
 
 
##################################################### 
STATISTICS OF CONSTRAINTS 
##################################################### 
 
 
Constraint 'NodDisp' 
Distribution Information 
------------------------ 
Number of points   :     60 
Mean Value         : -141.8 
Standard Deviation :  15.21 
Coef of Variation  : 0.1073 
Maximum Value      : -102.3 
Minimum Value      : -168.9 
 
Lower Bound:  
------------  
 Bound ....................................   -150 
 Evaluations exceeding this bound .........     20 
 Probability of exceeding bound ........... 0.3333 
 Confidence Interval on Probability. 
  Standard Deviation of Prediction Error: 0.06086 
  Lower Bound | Probability | Higher Bound  
       0.2116 |      0.3333 |      0.455 
  Confidence Interval of 95% assuming Normal Distribution 
  Confidence Interval of 75% using Tchebysheff's Theorem 
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Reliability Assuming Normal Distribution 
======================================== 
Lower Bound:  
------------  
 Bound ............................   -150 
 Probability of exceeding Bound ... 0.2956 
 Reliability Index (Beta) ......... 0.5372 
 
 
 
                           ANALYSIS COMPLETED 

22.9.4. Monte Carlo using metamodel 

The bounds on the design variables are set to be two standard distributions away from the mean (the default 
for noise variables). Noise variables are not used because of the need to have more control over the variable 
bounds — specifically we want to change the standard deviation of some variables without affecting the 
variable bounds (the metamodel is computed scaled with respect to the upper and lower bounds on the 
variables). 

 

The command file for using a metamodel is:  
 
$  
"Tube Crush Metamodel Monte Carlo" 
$ Created on Tue Apr  1 11:26:07 2003 
solvers 1 
$ 
distribution 2 
 distribution 't' NORMAL 1.0 0.05 
 distribution 'y' NORMAL 1.0 0.10 
$ 
$ DESIGN VARIABLES 
$ 
variables 2 
 variable 'T1' 1.0 
  upper bound variable 'T1' 1.1 
  lower bound variable 'T1' 0.9 
  variable 'T1' distribution 't' 
 variable 'YS' 1.0 
  upper bound variable 'YS'  1.2 
  lower bound variable 'YS'  0.8 
  variable 'YS' distribution 'y' 
$ 
$ DEFINITION OF SOLVER "SOLVER_1" 
$ 
 solver dyna960 'SOLVER_1' 
  solver command "ls970.single" 
  solver input file "tube.k" 
  solver experiment design 3toK 
  solver order quadratic 
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$ 
$ HISTORIES FOR SOLVER "SOLVER_1" 
$ 
histories 1 
 history 'NHist' "BinoutHistory -res_type nodout -cmp z_displacement -id 486" 
$ 
$ RESPONSES FOR SOLVER "SOLVER_1" 
$ 
responses 2 
 response 'NodDisp' 1 0 "BinoutResponse -res_type nodout -cmp z_displacement -id 486 -
select MIN" 
 response 'DispT' {LookupMin("NHist(t)")} 
$ 
$ 
$  
 constraints 1 
  constraint 'NodDisp' 
  lower bound constraint 'NodDisp' -150.0 
$ 
$ JOB INFO 
$ 
 analyze metamodel monte carlo 
STOP 
 

The accuracy of the response surface is of interest: 

 
Approximating Response 'NodDisp' (ITERATION 1) 
---------------------------------------------------------------- 
Polynomial approximation: using 9 points 
 
          Global error parameters of response surface 
          ------------------------------------------- 
Quadratic Function Approximation: 
--------------------------------- 
Mean response value           =  -142.0087 
 
RMS error                     =     2.0840 (1.47%) 
Maximum Residual              =     3.3633 (2.37%) 
Average Error                 =     1.6430 (1.16%) 
Square Root PRESS Residual    =     6.2856 (4.43%) 
Variance                      =    13.0296 
R^2                           =     0.9928 
R^2 (adjusted)                =     0.9856 
R^2 (prediction)              =     0.9346 

The probabilistic evaluation results: 

 
 
############################################################### 
Monte Carlo simulation considering 2 stochastic variables. 
Computed using 1000000 simulations 
############################################################### 
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-------------------------------------------------------------- 
Results for reliability analysis using approximate functions 
-------------------------------------------------------------- 
 
 
##################################################### 
STATISTICS OF VARIABLES 
##################################################### 
 
 
Variable 'T1' 
Distribution Information 
------------------------ 
Number of points   : 1000000 
Mean Value         :      1 
Standard Deviation : 0.04997 
Coef of Variation  : 0.04997 
Maximum Value      :  1.227 
Minimum Value      : 0.7505 
 
 
 
Variable 'YS' 
Distribution Information 
------------------------ 
Number of points   : 1000000 
Mean Value         :      1 
Standard Deviation : 0.09994 
Coef of Variation  : 0.09994 
Maximum Value      :  1.472 
Minimum Value      : 0.5187 
 
 
 
##################################################### 
STATISTICS OF RESPONSES 
##################################################### 
Response 'NodDisp' 
Distribution Information 
------------------------ 
Number of points   : 1000000 
Mean Value         : -141.4 
Standard Deviation :  14.95 
Coef of Variation  : 0.1058 
Maximum Value      :  -68.5 
Minimum Value      : -206.3 
Response 'DispT' 
Distribution Information 
------------------------ 
Number of points   : 1000000 
Mean Value         :   7.68 
Standard Deviation :  0.546 
Coef of Variation  : 0.0711 
Maximum Value      :  9.267 
Minimum Value      :  2.565 
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##################################################### 
STATISTICS OF COMPOSITES 
##################################################### 
 
 
##################################################### 
STATISTICS OF CONSTRAINTS 
##################################################### 
 
 
Constraint 'NodDisp' 
Distribution Information 
------------------------ 
Number of points   : 1000000 
Mean Value         : -141.4 
Standard Deviation :  14.95 
Coef of Variation  : 0.1058 
Maximum Value      :  -68.5 
Minimum Value      : -206.3 
 
Lower Bound:  
------------  
 Bound ....................................   -150 
 Evaluations exceeding this bound ......... 285347 
 Probability of exceeding bound ........... 0.2853 
 Confidence Interval on Probability. 
  Standard Deviation of Prediction Error: 0.0004516 
  Lower Bound | Probability | Higher Bound  
       0.2844 |      0.2853 |     0.2863 
  Confidence Interval of 95% assuming Normal Distribution 
  Confidence Interval of 75% using Tchebysheff's Theorem 
 
 
 
                           ANALYSIS COMPLETED 

22.9.5. Bifurcation analysis 

A bifurcation analysis of the tube is conducted as described in Section 6.6, Section 21, and Example 22.10. 
The resulting buckling modes found for the metamodel-based analysis are as shown in Figure 22-47. An 
extra half wave is formed for the one design. 
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Figure 22-47 Tube Buckling 

22.10. Bifurcation/Outlier Analysis 

22.10.1. Overview 

This example has the following features: 

Monte Carlo analysis 

Identification of different buckling modes in the structure 

22.10.2. Problem description 

The plate as shown in Figure 22-48 has two buckling modes. Buckling in the positive z-direction occurs 
with a probability of 80% while buckling in the negative z-direction occurs with a probability of 20%. The 
statistical distribution of the tip nodes imperfection controls the probability of buckling. 
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Figure 22-48 Plate Buckling Example 

 
Monte Carlo evaluation 
A Latin hypercube experimental design is used for the Monte Carlo analysis. We analyze only five points. 
Given that the probability of 20% of buckling in the negative z-direction and a Latin hypercube 
experimental design, one run will buckle in the negative z-direction. The next section will demonstrate how 
to find out which run contains the different buckling mode. 

 
"Monte Carlo Analysis; 2 buckling modes" 
$ 
solvers 1 
$ 
distribution 1 
 distribution 'i' UNIFORM -0.001 0.004 
$ 
$ DESIGN VARIABLES 
$ 
variables 1 
 noise variable 'Imp' distribution 'i' 
$ 
$ 
$ SOLVER_1 
$ 
solver dyna960 'SOLVER_1' 
  solver command "ls970.single" 
  solver input file "plate.k" 
  solver experiment design lhd centralpoint 
  solver number experiments 5 
$ 
$ RESPONSES  
$ 
responses 4 
 response 'tip_x' 1 0 "BinoutResponse -res_type nodout -cmp x_displacement -id 12  -
select TIME " 
 response 'tip_y' 1 0 "BinoutResponse -res_type nodout -cmp y_displacement -id 12  -
select TIME " 
 response 'tip_z' 1 0 "BinoutResponse -res_type nodout -cmp z_displacement -id 12  -
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select TIME " 
 response 'tip_r' 1 0 "BinoutResponse -res_type nodout -cmp displacement  -invariant 
MAGNITUDE -id 12  -select TIME " 
$ 
$ 
$ JOB  
$ 
 analyze monte carlo 
STOP 

22.10.3. Automatic identification of buckling modes 

Different buckling modes can be identified automatically and displayed in LS-PREPOST. To identify 
bifurcations, we display the FE jobs having the extreme values. For this structure, either the global extreme 
z-displacement or the tip z-displacement can be considered in order to identify the bifurcation.  Automated 
identification of the bifurcation is done in the GUI as as shown in Figure 22-49 with the bifurcation as 
displayed using LS-PREPOST as shown in Figure 22-50. Some background on bifurcation indentification 
can be found in Section 21.10. A more user-intensive procedure is described in the next section. 

 

 

Figure 22-49 Selecting the automated identification of a bifurcation. The user must (i) select to overlay 
the FE models associated with the maximum and minimum residual and (ii) chose whether the residual 
is the global residual or a residual at a specific node. 
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Figure 22-50 LS-OPT identified and displayed this bifurcation automatically using the GUI setting 
shown in the previous figure. 

22.10.4. Manual identification of buckling modes 

The different buckling modes are identified using the DYNA Stats panel in LS-OPT.  

 

Next, LS-PREPOST can be launched to investigate the range (or standard deviation) of all the displacement 
components. From the displacement resultant plot, amongst others, it is clear that the bifurcation is at the 
tip. Looking at the other component plots, we find the z-displacement has a range of 5.3 and the x-
displacement a range of 4.5. The displacement magnitude computed using the maximum vector has a range 
of 6.9. 
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Figure 22-51 Range of z-component displacement 

 

Either the z-displacement or the maximum vector displacement magnitude can therefore be used to identify 
the buckling modes. Fringe plots of the run index of the maximum and minimum displacement identifies the 
runs as 2 and 4. 

 

 

Figure 22-52 Index of run with maximum z-component displacement 
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Figure 22-53 Index of run with minimum z-component displacement 

 

LS-OPT allows you to specify the job number to use for the LS-PREPOST plot. Plotting the results of run 2 
and 4 we find the second buckling mode as: 

 
 

 

Figure 22-54 Second buckling mode 
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22.11. Robust Parameter Design 

Consider the two-bar truss problem as shown in Figure 22-55. Variable x1, the area, is a noise variable 
described using a normal distribution with a mean of 2.0 and a standard deviation of 0.1. The distance 
between the legs, x2, is a control variable which will be adjusted to control the variance of the responses. 
The maximum stress is considered as the objective for the robust design process. 

 

Figure 22-55 The two-bar truss problem. The problem has two variables: the thickness of the bars and 
the leg widths as shown. The bar thicknesses are noise variables while the leg widths are adjusted 
(control variables) to minimize the effect of the variation of the bar thicknesses. The maximum stress in 
the structure is monitored. 

A response surface considering the effect of variables and the interaction between variables is used to 
approximate the stress response. 

 
"Two-bar Truss" 
$ 
solvers 1 
responses 2 
$ 
$ PROBABILISTIC DISTRIBUTIONS 
$ 
distribution 1 
 distribution 'area' NORMAL  2.0  0.1   
$ 
$ DESIGN VARIABLES 
$ 
variables 2 
 Noise variable 'Area' distribution 'area' 
 Variable 'Base' 0.8 
  Lower bound variable 'Base' 0.1 
  Upper bound variable 'Base' 1.6 
  Range 'Base' 1.6 
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$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ 
$      SOLVER "SOLVER_1" 
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ 
$ 
$ DEFINITION OF SOLVER "SOLVER_1" 
$ 
 solver own 'SOLVER_1' 
  solver command "echo N o r m a l" 
$ ------ Pre-processor -------- 
$   NO PREPROCESSOR SPECIFIED 
$ ------ Metamodeling --------- 
  solver order interaction 
  solver experiment design 3toK 
$ ------ Job information ------ 
  solver concurrent jobs 1 
$ 
$ RESPONSE EXPRESSIONS FOR SOLVER "SOLVER_1" 
$ 
 response 'Weight' expression { Area * sqrt(1+Base*Base) } 
 response 'Stress' expression { 0.124 * sqrt(1+Base*Base) * (8/Area + 1./Area/Base) } 
$ 
composites 1 
$ 
$ STD DEV COMPOSITES  
$ 
 composite 'StressStandardDeviation' noise 'Stress' 
$ 
$ OBJECTIVE FUNCTIONS 
$ 
 objectives 1 
 objective 'StressStandardDeviation' 1 
$ 
$ CONSTRAINT DEFINITIONS 
$ 
 constraints 0 
$ 
$ JOB INFO 
$ 
 iterate param design 0.01 
 iterate param objective 0.01 
 iterate param stoppingtype and 
 iterate 10 
STOP 
 

The stress response is shown in Figure 22-56. From the figure it can be seen that the ‘base’ variable must be 
set to values of large than 0.4 to obtain a minimum variation of the stress considering that the design will 
then be in the flattest region of the response. A value of 0.5 is obtained in the optimization results as shown 
in Figure 22-57. Also shown in the optimization results is the design history of the stress standard deviation. 
Note that the standard deviation response stayed fairly insensitive to changes in the control variable after 
iteration 4 and that the initial subregion size for the ‘base’ variable was too large, resulting in initial increase 
in ‘base’ variable due to an inaccurate initial response surface. 
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Figure 22-56 Contours of stress response. The flattest part of the response is when variable 'base' equals 
0.5. 

 

Figure 22-57 Optimization histories. Design variable ‘base’ is shown on the left and the standard 
deviation of the stress response is shown on the right. 

 

22.12. Using Stochastic Fields 

This example demonstrates: 

Using a stochastic field in a Monte Carlo analysis 

Using a variable and a stochastic field in a Monte Carlo analysis 

Doing replicate experiments using stochastic fields 

Using fixed stochastic fields 
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The structure as shown in the Figure 22-58 is considered. This is the compression of a beam with 
geometrical imperfections modeled using a stochastic field. The result considered is the load at the end of 
the analysis as shown in the figure. 
 

 

Figure 22-58 Problem with a stochastic field. The structural problem is shown in the top.  In the bottom 
left are sample beams with the perturbation exaggerated by a factor 100, and the corresponding histories 
are shown in the bottom right. 

 
The beam has a length of 20 and a Young’s modulus of 2e8. It is analyzed in using 128 type 2 beam 
elements using an implicit analysis and 20 increments to compress the end a distance of -0.002.  
 
The perturbation is created using the spectral method to have an autocorrelation function described by a 
Gaussian correlation function. The Gaussian correlation function is 

2)()( asexP −=  with s distance and the 
constant a = 0.1 in this study. The resulting perturbation is scaled by 0.01. The LS-DYNA® 

*PERTURABATION card is: 
*PERTURBATION_NODE 
$type, nid, scl, cmp, icoord, cid 
4, , 1.e-2, 3 
$cstype, e1, e2, rnd 
1, , , 
1, 1.e-1 
 



CHAPTER 22:  21BEXAMPLE PROBLEMS 
 

LS-OPT Version 4.3  556 

Using only a stochastic field 

 Firstly, a Monte Carlo analysis is done considering only the geometric stochastic fields. The stochastic field 
is set to vary freely using the LS-DYNA® keyword.  Every LS-OPT analysis needs a variable, so we added 
a dummy variable that does not do anything. Note that it is possible to have a variable controlling the 
random seed in the LS-DYNA® *PARAMETER keyword, which can be useful for many reasons, such as 
having only certain stochastic fields. 
 
The LS-OPT® input deck used is: 
$ 
solvers 1 
responses 2 
histories 1 
$ 
$ PROBABILISTIC DISTRIBUTIONS 
$ 
distribution 1 
 distribution 'UNIFORM1' UNIFORM  0  1   
$ 
$ DESIGN VARIABLES 
$ 
variables 1 
 Noise variable 'dummy' distribution 'UNIFORM1' 
$ 
$ CONSTANTS 
$ 
constants 2 
 Constant 'b' 0.1 
 Constant 'dt' 0.0001 
 
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ 
$      SOLVER "SOLVER_1" 
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ 
$ 
$ DEFINITION OF SOLVER "SOLVER_1" 
$ 
 solver dyna960 'SOLVER_1' 
  solver command "ls971.double.dev" 
  solver input file "beam_spert.k" 
  solver check output on  
  solver compress d3plot off  
$ ------ Pre-processor -------- 
$   NO PREPROCESSOR SPECIFIED 
$ ------ Post-processor -------- 
$   NO POSTPROCESSOR SPECIFIED 
$ ------ Metamodeling --------- 
  solver experiment design monte_carlo 
  solver number experiments 50 
$ ------ Job information ------ 
  solver concurrent jobs 1 
$ 
$ RESPONSES FOR SOLVER "SOLVER_1" 
$ 
 response 'FORCE_END' 1 0 "BinoutResponse -res_type bndout -cmp x_total -id 129  -sub 
velocity/nodes  -select TIME " 
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 response 'BNDOUT_xtotal_end' 1 0 "BinoutResponse -res_type bndout -cmp x_total -id 
129  -sub velocity/nodes  -select TIME " 
$ 
$ HISTORIES FOR SOLVER "SOLVER_1" 
$ 
 history 'BNDOUT_xtotal' "BinoutHistory -res_type bndout -cmp x_total -id 129  -sub 
velocity/nodes" 
 
composites 1 
$ 
$ COMPOSITE EXPRESSIONS 
$ 
 composite 'FORCE_END_ABS' {abs(FORCE_END)} 
$ 
$ NO OBJECTIVES DEFINED 
$ 
 objectives 0 
$ 
$ THERE ARE NO CONSTRAINTS 
$ 
 constraints 0 
$ 
$ JOB INFO 
$ 
analyze monte carlo 
STOP 
 
 
The histogram of the responses is shown in Figure 22-59. Note that the distribution has a characteristic 
shape. 
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Figure 22-59  Histogram of the responses using only a stochastic field. 

 

22.12.1. A variable and a stochastic field 

In this example a variable as well as the stochastic field are used to do the analysis. 
 
The variable and experimental design statements are modified as below: 
 
$ 
distribution 1 
 distribution 'N001' NORMAL  0.1  0.001   
$ 
$ DESIGN VARIABLES 
$ 
variables 1 
 Noise variable 'b' distribution 'N001' 
$ 
  solver experiment design space_filling 
  solver number experiments 50 
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Figure 22-60  Plot of the responses using the thickness variable and a stochastic field. 

 

22.12.2. Replicate experiments using stochastic fields 

In this example a variable as well as the stochastic field are used to do the analysis. Replicate runs are done 
at each experimental point with different values of the stochastic field. 
 
In LS-DYNA, we add the random seed of the stochastic field as a variable. We let it vary freely by setting 
the seed to zero: 
 
*PARAMETER 
irand, 0 
$ 
*PERTURBATION_NODE 
$type, nid, scl, cmp, icoord, cid 
4, , 1.e-2, 3,  
$cstype, e1, e2, rnd 
1, , , &rand 
$ 
1, 1.e-1 
$ 
 
 
In LS-OPT we use replicate experiments to analyze. The required modifications to the LS-OPT command 
file are as below: 
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distribution 1 
 distribution 'N001' NORMAL  0.1  0.001 
$ 
$ DESIGN VARIABLES 
$ 
variables 1 
 Noise variable 'b' distribution 'N001' 
$ 
$ CONSTANTS 
$ 
constants 1 
 Constant 'rand' 0$ 
 
 
 
  solver experiment design monte carlo 
  solver number experiments 5 
  solver number replicate experiments 10 
 
 
 

 

Figure 22-61  Plot of the responses using replicate experiments 
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22.12.3. Using fixed stochastic fields 

In this example a variable as well as the stochastic field are used to do the analysis. Replicate runs are done 
at each experimental point with the same stochastic fields. By using the seed for the stochastic field as a 
variable, we are able to specify the stochastic field used. 
 
The required modifications to the LS-OPT command file are: 
 
distribution 1 
 distribution 'N001' NORMAL  0.1  0.001 
$ 
$ 
variables 2 
 noise variable 'b' distribution 'N001' 
 variable 'rand'  3. 
 variable 'rand'  discrete {1. 2. 3. 4. 5. } 
 
solver experiment design 5toK 
 
Analyze metamodel monte carlo 
 

 

Figure 22-62  Plot of the responses using the same five stochastic fields in the replicates. 
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Appendix A 

LS-DYNA D3Plot Result Components 

 

The table contains component names for element variables. The result type and component name must be 
specified in the “D3Plot”  interface commands to extract response variables. 

 
Result Type Number Description Component name 
Stress 1 

2 
3 
4 
5 
6 

xx, yy, zz, xy, yz, zx stress xx_stress 
yy_stress 
zz_stress 
xy_stress 
yz_stress 
zx_stress 

 7 Effective plastic strain plastic_strain 
 8 Pressure or average strain pressure 
 9 von Mises stress von_mises 
 10 First principal deviator maximum 1st_prin_dev_stress 
 11 Second principal deviator 2st_prin_dev_stress 
 12 Third principal deviator minimum 3rd_prin_dev_stress 
 13 Maximum shear stress max_shear_stress 
 14 1st principal maximum stress 1st_principal_stress 
 15 2nd principal stress 2st_principal_stress 
 16 3rd principal min 3st_principal_stress 
Ndv 17 x-displacement x_displacement 
 18 y-displacement y_displacement 
 19 z-displacement z_displacement 
 20 Displacement magnitude result_displacement 
 21 x-velocity x_velocity 
 22 y-velocity y_velocity 
 23 z-velocity z_velocity 
 24 Velocity magnitude result_velocity 
 64 xy-displacement xy_displacement 
 65 yz-displacement yz_displacement 
 66 zx-displacement zx_displacement 
Result 26 Mxx bending resultant Mxx_bending 
 27 Myy bending resultant Myy_bending 
 28 Mxy bending resultant Mxy_bending 
 29 Qxx shear resultant Qxx_shear 
 30 Qyy shear resultant Qyy_shear 
 31 Nxx normal resultant Nxx_normal 
 32 Nyy normal resultant Nyy_normal 
 33 Nxy normal resultant Nxy_normal 
 34 Surface stress Nxx/t + 6Mxx/t2 Nxx/t+6Mxx/t^2 
 35 Surface stress Nxx/t – 6Mxx/t2 Nxx/t-6Mxx/t^2 
 36 Surface stress Nyy/t – 6Myy/t2 Nyy/t-6Myy/t^2 
 37 Surface stress Nyy/t + 6Myy/t2 Nyy/t+6Myy/t^2 
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Result Type Number Description Component name 
 38 Surface stress Nxy/t – 6Mxy/t2 Nxy/t+6Mxy/t^2 
 39 Surface stress Nxy/t + 6Mxy/t2 Nxy/t+6Mxy/t^2 
 40 Effective upper surface stress u_surf_eff_stress 
 41 Effective lower surface stress l_surf_eff_stress 
Strain 43 Lower surface effective plastic strain l_surf_plastic_strain 
 44 Upper surface effective plastic strain u_surf_plastic_strain 
 45 

46 
47 
48 
49 
50 

Lower surface xx, yy, zz, xy, yz, zx strain l_surf_xx_strain 
l_surf_yy_strain 
l_surf_zz_strain 
l_surf_xy_strain 
l_surf_yz_strain 
l_surf_zx_strain 

 51 
52 
53 
45 
55 
56 

Upper surface xx, yy, zz, xy, yz, zx strain u_surf_xx_strain 
u_surf_yy_strain 
u_surf_zz_strain 
u_surf_xy_strain 
u_surf_yz_strain 
u_surf_zx_strain 

 57 
58 
59 
60 
61 
62 

Middle surface xx, yy, zz, xy, yz, zx strain m_surf_xx_strain 
m_surf_yy_strain 
m_surf_zz_strain 
m_surf_xy_strain 
m_surf_yz_strain 
m_surf_zx_strain 

 69 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 
80 

Lower, upper, middle principal + effective strains l_surf_max_princ_strain 
l_surf_2nd_princ_strain 
l_surf_min_princ_strain 
l_surf_effective_princ_strain 
u_surf_max_princ_strain 
u_surf_2nd_princ_strain 
u_surf_min_princ_strain 
u_surf_effective_princ_strain 
m_surf_max_princ_strain 
m_surf_2nd_princ_strain 
m_surf_min_princ_strain 
m_surf_effective_princ_strain 

Misc 25 Temperature temperature 
 63 Internal energy density internal energy 
 67 Shell thickness shell_thickness 
 68 Shell thickness reduction (%) %_thickness_reduction 
 81 History variable 1 history_var#1 
FLD 501 

502 
503 
504 

Lower, upper, middle, maxima surface eps1/fldc lower_eps1/fldc 
upper_eps1/fldc 
middle_eps1/fldc 
maxima_eps1/fldc 

 505 
506 
507 
508 

Lower, upper, middle, maxima surface fldc-eps1 lower_fldc-eps1 
upper_ fldc-eps1 
middle_ fldc-eps1 
maxima_ fldc-eps1 

 509 
510 
511 
512 

Lower, upper, middle, maxima surface eps1 lower_ eps1 
upper_ eps1 
middle_ eps1 
maxima_ eps1 

 513 
514 

Lower, upper, middle, maxima surface eps2 lower_ eps1 
upper_ eps1 



 APPENDIX A:  LS-DYNA D3PLOT RESULT COMPONENTS  

LS-OPT Version 4.3  565 

Result Type Number Description Component name 
515 
516 

middle_ eps1 
maxima_ eps1 

Beam 701 Axial Force axial_force 
 702 S Force s_force 
 703 T Force t_force 
 704 SS Moment ss_moment 
 705 TT Moment tt_moment 
 706 Torsion torsion 
 707 Axial_stress axial_stress 
 708 RS Shear Stress rs_shear_stress 
 709 TR Shear Stress tr_shear_stress 
 710 Plastic Strain plastic_strain 
 711 Axial strain axial_strain 
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Appendix B 

LS-DYNA Binout Result Components 

Airbag Statistics: ABSTAT 
 

Component Description 
Volume 
pressure      
internal_energy 
dm_dt_in 
dm_dt_out       
total_mass     
gas_temp          
density          
surface_area   
reaction          

Volume 
Pressure 
Internal energy 
Input mass flow rate 
Output mass flow rate 
Mass 
Temperature 
Density 
Area  
Reaction 

 
 

Boundary Nodal Forces: BNDOUT 
 

Component Description 
Subdirectory discrete/nodes 
x_force  
y_force 
z_force 
x_total   
y_total   
z_total 
energy     
etotal 

X-force 
Y-force 
Z-force 
Total X-force 
Total Y-force 
Total Z-force 
Energy 
Total Energy 

 
 
 

Discrete Element Forces: DEFORC 
 

Component Description 
x_force           
y_force       
z_force  
resultant_force 
displacement      

X-force 
Y-force 
Z-force 
Resultant force 
Change in length 
 
 

 
 
 
 

 

Element Output: ELOUT 
 

Component Description 
Subdirectory solid 
sig_xx 
sig_xy 
sig_yy 
sig_yz 
sig_zx 
sig_zz 
yield 
effsg 
eps_xx 
eps_xy 
eps_yy 
eps_yz 
eps_zx 
eps_zz 

XX-stress 
YY-stress 
ZZ-stress 
XY-stress 
YZ-stress 
ZX-stress 
Yield function 
Effective stress 
XX-strain 
YY-strain 
ZZ-strain 
XY-strain 
YZ-strain 
ZX-strain 

 
Subdirectory beam 
axial 
shear_s 
shear_t 
moment_s 
moment_t 
torsion 

Axial force resultant 
s-Shear resultant 
t-Shear resultant 
s-Moment resultant 
t-Moment resultant 
Torsional resultant 
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Element Output: ELOUT 
 

Component Description 
Subdirectory shell 
sig_xx            
sig_yy   
sig_zz      
sig_xy            
sig_yz            
sig_zx            
plastic_strain 
upper_eps_xx 
lower_eps_xx  
upper_eps_yy      
lower_eps_yy  
upper_eps_zz  
lower_eps_zz 
upper_eps_xy 
lower_eps_xy          
upper_eps_yz      
lower_eps_yz      
upper_eps_zx       
lower_eps_zx   

XX-stress 
YY-stress 
ZZ-stress 
XY-stress 
YZ-stress 
ZX-stress 
Plastic strain 
XX-strain 
 
YY-strain 
 
ZZ-strain 
 
XY-strain 
 
YZ-strain 
 
ZX-strain 

 
Subdirectory thickshell 
sig_xx 
sig_yy 
sig_zz 
sig_xy 
sig_yz 
sig_zx 
yield                      
upper_eps_xx 
lower_eps_xx  
upper_eps_yy      
lower_eps_yy  
upper_eps_zz  
lower_eps_zz 
upper_eps_xy 
lower_eps_xy          
upper_eps_yz      
lower_eps_yz      
upper_eps_zx       
lower_eps_zx     

XX-stress 
YY-stress 
ZZ-stress 
XY-stress 
YZ-stress 
ZX-stress 
Yield 
XX-strain 
 
YY-strain 
 
ZZ-strain 
 
XY-strain 
 
YZ-strain 
 
ZX-strain  

 
 
 
 
 
 
 
 
 
 
 

Contact Entities Resultants: GCEOUT 
 

Component Description 
x_force           
y_force 
z_force 
force_magnitude 
x_moment          
y_moment 
z_moment 
moment_magnitude 

X-force 
Y-force 
Z-force 
Force magnitude 
X-moment 
Y-moment 
Z-moment 
Moment magnitude 

 
 

Global Statistics: GLSTAT 
 

Component Description 
kinetic_energy 
internal_energy 
total_energy 
energy_ratio 
stonewall_energy 
spring_and_damper_energy 
hourglass_energy 
sliding_interface_energy 
external_work 
global_x_velocity 
global_y_velocity 
global_z_velocity 
system_damping_energy 
energy_ratio_wo_eroded 
eroded_internal_energy 
eroded_kinetic_energy 

Kinetic energy 
Internal energy 
Total energy 
Ratio 
Stonewall energy 
Spring & Damper energy 
Hourglass energy 
Sliding interface energy 
External work 
Global x-velocity 
Global y-velocity 
Global z-velocity 
System damping energy 
Energy ratio w/o eroded 
Eroded internal energy 
Eroded kinetic energy 
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Joint Element Forces: JNTFORC 
 

Component Description 
Subdirectory joints 
x_force   
y_force  
z_force 
x_moment   
y_moment         
z_moment 
resultant_force  
resultant_moment   

X-force 
Y-force 
Z-force 
X-moment 
Y-moment 
Z-moment 
R-force 
R-moment  

 
Subdirectory type0 
 d(phi)_dt 
d(psi)_dt 
d(theta)_dt 
joint_energy 
phi_degrees 
phi_moment_damping 
phi_moment_stiffness 
phi_moment_total 
psi_degrees 
psi_moment_damping 
psi_moment_stiffness 
psi_moment_total  
theta_degrees  
theta_moment_damping 
theta_moment_stiffness 
theta_moment_total 

d(phi)/dt 
d(psi)/dt (degrees) 
d(theta)/dt (degrees) 
joint energy 
phi (degrees)  
phi moment-damping 
phi moment-stiffness 
phi moment-total 
psi (degrees) 
psi-moment-damping 
psi-moment-stiffness 
psi-moment-total 
theta (degrees) 
theta-moment-damping 
theta-moment-stiffness 
theta-moment-total 

 
 
 

Material Summary: MATSUM 
 

Component Description 
kinetic_energy    
internal_energy   
x_momentum      
y_momentum 
z_momentum   
x_rbvelocity      
y_rbvelocity      
z_rbvelocity      
hourglass_energy 

Kinetic energy 
Internal energy 
X-momentum 
Y-momentum 
Z-momentum 
X-rigid body velocity 
Y-rigid body velocity 
Z-rigid body velocity 
Hourglass energy 

 
 
 
 
 
 
 
 
 
 
 

Contact Node Forces: NCFORC 
 

Component Description 
Subdirectory master_00001 and slave_00001 
x_force  
y_force           
z_force      
pressure          
x 
y                 
z                 

X-force 
Y-force 
Z-force 
Pressure 
X coordinate 
Y coordinate 
Z coordinate 

 
 
 

Nodal Point Response: NODOUT 
 

Component Description 
Translational components 
x_displacement 
y_displacement 
z_displacement 
x_velocity 
y_velocity 
z_velocity 
x_acceleration 
y_acceleration 
z_acceleration 
x_coordinate 
y_coordinate 
z_coordinate 

X-displacement 
Y-displacement 
Z-displacement 
X-velocity 
Y-velocity 
Z-velocity 
X-acceleration 
Y-acceleration 
Z-acceleration 
X-coordinate 
Y-coordinate 
Z-coordinate 

 
Rotational components 
rx_acceleration 
rx_displacement 
rx_velocity 
ry_acceleration 
ry_displacement 
ry_velocity 
rz_acceleration 
rz_displacement 
rz_velocity 

XX-rotation 
YY-rotation 
ZZ-rotation 
XX-rotational velocity 
YY-rotational velocity 
ZZ-rotational velocity 
XX-rotational acceleration 
YY-rotational acceleration 
ZZ-rotational acceleration 

 
Injury coefficients 
CSI 
HIC15 
HIC36 

Chest Severity Index 
Head Injury Coefficient (15 ms) 
Head Injury Coefficient (36 ms) 
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Nodal Forces: NODFOR 
 

Component Description 
x_force  
y_force 
z_force 
x_total 
y_total 
z_total 
energy            
etotal            

X-force 
Y-force 
Z-force 
X-total force 
Y-total force 
Z-total force 
Energy 
Total Energy 

 
 

Rigid Body Data: RBDOUT 
 

Component Description 
Translational components 
global_dx 
global_dy 
global_dz 
global_vx 
global_vy 
global_vz 
global_ax 
global_ay 
global_az 
global_x 
global_y 
global_z 
local_dx 
local_dy 
local_dz 
local_vx 
local_vy 
local_vz 
local_ax 
local_ay 
local_az 

X-displacement 
Y-displacement 
Z-displacement 
X-velocity 
Y-velocity 
Z-velocity 
X-acceleration 
Y-acceleration 
Z-acceleration 
X-coordinate 
Y-coordinate 
Z-coordinate 
Local X-displacement 
Local Y-displacement 
Local Z-displacement 
Local X-velocity 
Local Y-velocity 
Local Z-velocity 
Local X-acceleration 
Local Y-acceleration 
Local Z-acceleration 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Component Description 
Rotational components 
global_rax 
global_ray 
global_raz 
global_rdx 
global_rdy 
global_rdz 
global_rvx 
global_rvy 
global_rvz 
local_rdx 
local_rdy 
local_rdz 
local_rvx 
local_rvy 
local_rvz 
local_rax 
local_ray 
local_raz 

X-rotation 
Y-rotation 
Z-rotation 
X-velocity 
Y-velocity 
Z-velocity 
X-acceleration 
Y-acceleration 
Z-acceleration 
Local X-rotation 
Local Y-rotation 
Local Z-rotation 
Local X-velocity 
Local Y-velocity 
Local Z-velocity 
Local X-acceleration 
Local Y-acceleration 
Local Z-acceleration 

 
Direction cosines 
dircos_11 
dircos_12 
dircos_13 
dircos_21 
dircos_22 
dircos_23 
dircos_31 
dircos_32 
dircos_33 

11 direction cosine 
12 direction cosine 
13 direction cosine 
21 direction cosine 
22 direction cosine 
23 direction cosine 
31 direction cosine 
32 direction cosine 
33 direction cosine 

 
Injury coefficients 
CSI 
HIC15 
HIC36 

Chest Severity Index 
Head Injury Coefficient (15 ms) 
Head Injury Coefficient (36 ms) 

 
 
 

Reaction Forces: RCFORC 
 

Component Description 
x_force           
y_force           
z_force       
mass 

X-force 
Y-force 
Z-force 
Mass 
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RigidWall Forces: RWFORC 
 

Component Description 
Subdirectory forces 
normal_force      
x_force           
y_force           
z_force 

normal 
X-force 
Y-force 
Z-force 

 
 

Section Forces: SECFORC 
 

Component Description 
x_force 
y_force 
z_force 
x_moment 
y_moment 
z_moment 
x_centroid 
y_centroid 
z_centroid 
total_force 
total_moment 
area 

X-force 
Y-force 
Z-force 
X-moment 
Y-moment 
Z-moment 
X-center 
Y-center 
Z-center 
Resultant force 
Resultant moment 
Area 
 

 
 
Single Point Constraint Reaction Forces: SPCFORC 

 
Component Description 
x_force 
y_force 
z_force         
x_resultant  
y_resultant 
z_resultant 
x_moment 
y_moment 
z_moment 

X-force 
Y-force 
Z-force 
Total X-force 
Total Y-force 
Total Z-force 
X-moment 
Y-moment 
Z-moment 

 
 

Spotweld and Rivet Forces: SWFORC 
 

Component Description 
axial      
shear 
failure_flag  

Axial force 
Shear force 
Failure flag 
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Appendix C 

Database files 

C.1 Design flow 
Source Database file Process Output Database file Level of 

directory 
for output 
database 

Command file (com) Point selection Experiments_n.csv Solver 
Experiments_n.csv Simulation 

runs 
Solver output files Run 

Solver output files Result 
extraction 

AnalysisResults_n.csv 
ExtendedResults 

Solver 

AnalysisResults Approximation DesignFunctions 
Net 

Solver 

DesignFunctions 
VirtualHistories 

Optimize OptimumResults 
OptimizationHistory 
OptimizerHistory_n.csv 
lsopt_results_n.csv 

Work 
 

 

C.2 Database file formats 
The database consists of text files, text files with comma separated values (.csv format) and binary files. The 
.csv files have three header lines. The first designates the version name, the second represents the variable 
names and the third represents the variable types. Variables names are provided for clarity (e.g. the user can 
import the file into a spreadsheet program) and to verify the consistency between the command file and the 
run database. The variable types are explained in Table 5. The symbol sk is used to ignore certain columns, 
e.g. the first one which simply contains the point number. 

Table 5: Variable types 

Symbol Explanation 
dv Design variable 
nv Noise variable 
dc Discrete variable 
rs Response 
sk Ignore 
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The Experiments_n.csv file 
This file appears in the case directory and is used to save the experimental point coordinates for the analysis 
runs. The file consists of header lines and data lines repeated for each experimental point.  
lsopt_version 4.1 
"Point","tbumper","thood", 
"sk","dv","dv", 
1,3.0000000000000000e+00,1.0000000000000000e+00, 
2,5.0000000000000000e+00,1.0000000000000000e+00, 
3,1.0000000000000000e+00,1.0000000000000000e+00, 
4,1.0000000000000000e+00,5.0000000000000000e+00, 
5,5.0000000000000000e+00,5.0000000000000000e+00, 
 
The AnalysisResults_n.csv file 
This file is used to save the responses at the experimental design points and appears in the case directory. 
Every line describes an experimental point and gives the variable and response values at the experimental 
point. The file consists of two header as well as data lines repeated for each experimental point. 
lsopt_version 4.1 
"Point","tbumper","thood","Disp2","Disp1" 
"sk","dv","dv","rs","rs" 
1,3.0000000000000000e+00,1.0000000000000000e+00,-7.3670259999999996e+02,-
1.6103350000000000e+02 
2,5.0000000000000000e+00,1.0000000000000000e+00,-7.3311230000000000e+02,-
1.5946590000000000e+02 
3,1.0000000000000000e+00,1.0000000000000000e+00,-7.4418650000000002e+02,-
1.6168279999999999e+02 
4,1.0000000000000000e+00,5.0000000000000000e+00,-6.4731250000000000e+02,-
1.5394180000000000e+02 
5,5.0000000000000000e+00,5.0000000000000000e+00,-6.1158939999999996e+02,-
1.6078149999999999e+02 

 

Values of 2.0*1030 are assigned to responses of simulations with error terminations. The 
AnalysisResults file is synchronous with the Experiments file. 

 
The DesignFunctions file 
The DesignFunctions file, which appears in the solver directory, is used to save a description of the 
polynomial design functions. It is an XML file with XML tags chosen such that the file is easy to read. 
Open a DesignFunction.* file in a text editor to understand the content of the database. 

 

The order of the constants in the database is for polynomial design functions is: 
beta_0, beta_1, ... , beta_n, beta_1_1, beta_1_2, beta_1_3, ..., beta_1_n, 
     beta_2_2, beta_2_3, ...., beta_2_n, 
     ...., beta_i_n, 
     beta_n_n 

with 
 f(x) = beta_0 + beta_1*x_1 + .... + beta_n*x_n + 
           beta_1_1*x_1*x_1 + beta_1_2*x_1*x_2 + ... + beta_1_n*x_1*x_n 
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           + beta_2_2*x_2*x_2 + ... + beta_2_n*x_2*x_n 
        ... 
  + beta_n_n*x_n*x_n       

 The following enumerations are used in the database. 

 
Function Types  
NO_SURFACE                0 
LINEAR                           77
MULT                             78
QUADRATIC                 79
INTERACTION               80
ELLIPTIC                  81
SPHERICAL                 82
FEEDFORWARD               83
FF_COMMITTEE              84
RADIALBASIS               85
NEURALNETWORK             86
ANALYTICAL_DSA_SURFACE   87
NUMERICAL_DSA_SURFACE    88
KRIGING                   89

 
   

Response Interface Type 
        RESP_INTERF_NULL  0 Interface unknown 
        USERINTERFACE 700 User defined 
        BINARY    701 LS-DYNA d3plot 
        ASCII  702 LS-DYNA ascii files 
        REXPRESSION  703 Mathematical expression 
        XYFILE       704 User specified history file [t,f(t)] 
        LSDA_BINARY 705  
        FREQUENCY             706 Frequency, Mode #, Generalized Mass 
        MASSC             707 Mass from d3hsp 
        D3P_DISP                  708 Disp from d3 plot file 

 

The flags for active coefficients exclude the constant a0. 

 
The VirtualHistoryFunction file 
The VirtualHistoryFunction file appears in the main work directory and stores the approximation models for 
all histories at each sampled time-step. One file per iteration is generated. Like the DesignFunctions file, 
this is also a XML database with XML tags chosen such that the file is easy to read. This file stores the 
approximation type, number of fitting points, bounds and number of design variables, approximation model 
information (C or Wt), fitting and PRESS residuals (R and PR) at the fitting points, and global error 
measures at each time-step (t) of the history curves. The enumerations for the type of the fitting function are 
the same as used for the DesignFunctions. 
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The OptimizationHistory file 
This file is used to save the optimization history results and appears in the work directory. Each line 
contains the values at the optimum point of an iteration.  

Entities Count 
Objective values Number of objectives 
Variables Number of variables 
Variable lower bounds Number of variables 
Variable upper bounds Number of variables 
RMS errors Number of responses 
Average errors Number of responses 
Maximum errors Number of responses 
R2 errors Number of responses 
Adjusted R2 errors Number of responses 
PRESS errors Number of responses 
Prediction R2 Number of responses 
Maximum prediction error Number of responses 
Responses Number of responses 
Multi-objective 1 
Constraint values Number of constraints 
Composite values Number of composites 
Responses (computed) Number of responses 
Max. constraint violation 1 
Composites (computed) Number of composites 
Constraints (computed) Number of constraints 
Objectives (computed) Number of objectives 
Multi-objective (computed) 1 
Max. constraint violation (computed) 1 
Constants Number of constants 
Dependents Number of dependents 
RBDO lower bound probability* Number of constraints 
RBDO upper bound probability* 
Generation number# 
Individual number# 

Number of constraints 
1 
1 

*Only written for RBDO problems. 
     #Only written for Direct GA simulations. 

 

Values of 2.0*1030 are assigned to responses of error terminations. 

The ExtendedResults file 
This file contains all points represented in the AnalysisResults_n.csv file and appears in the solver 
directory. All values are based on the simulation results. A line has the following format: 
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Entities Count 
Objective weights Number of objectives 
Objective values Number of objectives 
Variables Number of solver variables 
Responses Number of solver responses 
Multi-objective 1 
Constraint values Number of constraints 
Composite values Number of composites 
Max. constraint violation 1 
Constants Number of constants 
Dependents Number of dependents 

 

The values represent the number of entities in the solver. Values of 2.0*1030 are assigned to responses of 
simulations with error terminations. 

 
The OptimumResults file 
This file contains just the optimum design point data and appears in the main work directory. All values are 
metamodel values, i.e. interpolated. 

 
Entities Count 

Objective weights Number of objectives 
Objective values Number of objectives 
Variables Number of variables 
Responses Number of responses 
Multi-objective 1 or 0 (no objectives) 
Constraint values Number of constraints 
Composite values Number of composites 
Max. constraint violation 1 
Constants Number of constants 
Dependents Number of dependents 

 

The Sobol_GSA file 
This file contains the global sensitivity analysis database Sobol_GSA.n file and appears in the main work 
directory. One file per iteration is generated. For each response, the partial variance, main sensitivity index, 
total variance, and total Sobol sensitivity index due to different variables are stored. The mean and variance 
of the response is also stored. All quantities are based on metamodels. The analytical models are used to 
compute global sensitivity indices for polynomial approximations and Gaussian RBF functions, where as 
Monte-Carlo simulations are used for all other metamodels. 

 

The lsopt_results file 
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This lsda binary database contains all the Tradeoff points. A database file lsopt_results_[n].binout is created 
in the main work directory for nth iteration. This binary database file replaces the TradeOff* files created in 
the previous versions. The database lists the following information for each TradeOff point. 

 
Entities Location Count 

Objective values Inside directory Number of objectives 
Variables Inside directory Number of solver variables 
Responses Inside directory Number of solver responses 
Multi-objective  1 
Constraint values Inside directory Number of constraints 
Composite values Inside directory Number of composites 
Max. constraint violation  1 
Constants Inside directory Number of constants 
Dependents Inside directory Number of dependents 
Generation Index  1 
Individual Index  1 

 

The lsopt_db file 
The file should not be used or edited by the user. It is used to communicate the state of the databases 
between various LS-OPT components. The content of the file is subject to change. 
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Appendix D 

Mathematical Expressions 

Mathematical expressions are available for the following entities: 
 
Dependent 
result 
matrix 
history 
response 
composite 
multiobjective 
 
Syntax rules 

Mathematical expressions are placed in curly brackets in the command file or in double angular brackets 
(e.g. <<Thickness*25.4>>) in the input template files. 

Expressions consist of parameters and constants. A parameter can be any previously defined entity. 

Expressions can be wrapped to appear on multiple lines. 

Mathematical expressions can be used for any floating-point number, e.g. upper bound of constraint, 
convergence tolerance, objective weight, etc. 

An expression is limited to 1024 characters. 

Empty or underscore (_) arguments in functions will generate default values. 

 

 

 

 

 

 

 

 

 

Intrinsic functions 

Note: Trigonometric functions use and return degrees, not radians. 
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int(a) integer 
nint(a) nearest integer 
abs(a) absolute value 
mod(a,b) remainder of  a/b 
sign(a,b) transfer of sign from b to |a| 
max(a,b) maximum of a and b 
min(a,b) minimum of a and b 
sqrt(a)  square root 
exp(a) ea 
pow(a,b) ab 
log(a) natural logarithm 
log10(a) base 10 logarithm 
sin(a) sine 
cos(a) cosine 
tan(a) tangent 
asin(a) arc sine 
acos(a) arc cosine 
atan(a) arc tangent 
atan2(a,b) arc tangent of a/b 
sinh(a) hyperbolic sine 
cosh(a) hyperbolic cosine 
tanh(a) hyperbolic tangent 
asinh(a) arc hyperbolic sine 
acosh(a) arc hyperbolic cosine 
atanh(a) arc hyperbolic tangent 
sec(a) Secant 
csc(a) cosecant 
ctn(a) cotangent 
cnd(a) cumulative normal distribution: 

duux
x

∫
∞−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=Φ

2
exp

2
1)(

2

1,0 π
 

 

Matrix functions (3×3 only): 
inv(A) Inverse of matrix A 
tr(A) Transpose of matrix A 
rx(angle) Rotation about x-axis (angle in rad) 
ry(angle) Rotation about y-axis (angle in rad) 
rz(angle) Rotation about z-axis (angle in rad) 
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Special functions 

Special response functions can be specified to apply to response histories. These include integration, minima 
and maxima and finding the time at a specific value of the function. General expressions (in double quotes) 
can be used for limits and for the integration variable. Histories must be defined as strings in double quotes 
and functions of time using the symbol  t, e.g. ”Velocity(t)”. 

 
Expression Symbols 
FilterHistory(history[,filtertype, frequency, 
timeunits, num_average 

Filtered curve using SAE, 
Butterworth or running average 

DerivativeHistory(history, order) h
ffff

t
f iiii

12
88

d
d 2112 ++−− −+−

≈  
Crossplot (history_z, history_F [, numpoints, 
begin_time, end_time]) 

F(z) given F(t) and z(t) 

Integral(expression[,t_lower,t_upper,variable]) 
∫

b

a
tdgtf )()(  

Derivative(expression[,T_constant]) 
Tttf =ΔΔ |/  ~ Tttf =|d/d  

Min(expression[,t_lower,t_upper]) )]([minmin tff
t

=  

Max(expression[,t_lower,t_upper]) )]([maxmax tff
t

=  

Initial(expression) First function value on record 
Final(expression) Last function value on record 
TerminationTime (expression) Termination time. Time of last 

history value. 
Lookup(expression,value[,t_lower,t_upper]) Inverse function t(f = F) 
LookupMin(expression[,t_lower,t_upper]) Inverse function t(f = fmin) 
LookupMax(expression[,t_lower,t_upper]) Inverse function t(f = fmax) 
MeanSqErr(target_curve,computed_curve[,  
num_reg_points, start_point, end_point,  
weight_type, scale_type,  
weight_value, scale_value, 
weight_curve_name, scale_curve_name]) 

Mean Squared Error function 
2

1

)(1
∑ ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛ −

=

P

p p

pp
p s

Gf
W

P
x

 

CurveMapSegment3(target_curve,computed_curve) Curve Mapping discrepancy 
Rotate(x1,y1,z1, x2,y2,z2, x3,y3,z3) Rotation matrix defined by 3 

points. See Section 14. 
Matrix3x3Init(x1,y1,z1, x2,y2,z2, x3,y3,z3) Initialize 3×3 matrix 

 

The arguments used in the expressions have the following explanations: 

 
Argument Explanation Symbol Type 
t_lower lower limit of integration or range a generic 
t_upper upper limit of integration or range b generic 
variable integration variable g(t) generic 
expression history defined as an expression string f(t) generic 
value value for which lookup is required F generic 
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T_constant specific time Τ generic 
target_curve,computed_curve Target, computed curve names G history 
Num_reg_points Number of regression points n integer 
Start_point, end_point Location of first/last regression points z0, zP float 
Weight_type, Scale_type Weight and scale types  reserved 
Weight_value, scale_value Uniform weight and scale values W, s float 
History_z, history_F History names for abscissa and 

ordinate 
z(t), F(t) history 

numpoints Number of points in curve - integer 
Begin_time, end_time Begin and end times t1,tP float 
x1,y1,z1,x2,y2,z2,x3,y3,z3 Matrix components - generic 
filter_type Filtering type (SAE, Butterworth, 

running average) 
- integer 

frequency Filtering frequency (Hz) f float 
timeunits Time units (s or ms) - integer 
num_average Number of points averaged - integer 
order Order of differentiation (3 or 5 point 

template) 
- integer 

 

“Generic” implies that the quantity can be an expression, another defined entity or a constant number. An 
entity (which may be specified in an expression) can be any defined LS-OPT entity. Thus constant, 
variable, dependent, history, response and composite are acceptable. An expression is 
given in double quotes, e.g., ”4.2 * C1_1 * Displacement(t)”. 

 
Reserved variable names 
 

Name Explanation 
t Time 
LowerLimit 0.0 
UpperLimit Maximum event time over all histories of all solvers 

 

Omitting the lower and upper bounds implies operation over the entire available history. 

The Lookup function allows finding the value of t for a specified value of f(t) = F. If such a value cannot 
be found, the largest value (within the specified bounds) of t in the history is returned. The LookupMin 
and LookupMax functions return the value of t at the minimum or maximum respectively. 

 

The implied variable represented in the first column of any history file is t. Therefore all history files 
produced by the DynaASCII extraction command contain functions of t. The fourth argument of the 
Integral function defaults to t. The variable t must increase monotonically. 

 

The derivative assumes a piecewise linear function defined by the points in the history.n file. T_constant in 
the Derivative function defaults to the end time. 
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If a time is specified smaller than the smallest time value of the computed history, the first value is returned 
(same as Initial). If a time is specified larger than the largest time value of the computed history, the 
last value is returned (same as Final). For derivatives the first or last slopes are returned respectively. 

 
Constants associated with histories 

The following commands can be given to override defaults for history operations: 

 
Constant Explanation Default 
variable fdstepsize Finite difference step size for 

numerical derivatives with 
respect to variables 

0.0001*(Upper bound – Lower bound) 

historysize Number of time points for new 
history 

10000 

 
Command file syntax: 

variable fdstepsize value 
historysize integer value 

o The variable fdstepsize is used to find the gradients of expression composite functions. 
These are used in the optimization process. 

o The historysize is used when new histories are generated. 

 

Generic expressions 

Expressions can be specified for any floating-point number. In some cases, previously defined parameters 
can be used as follows: 

 
Number type Parameter type 
Constant none 
Starting variable constant 
Range variable 
Variable bounds variable 
Shift factor for response variable 
Scale factor for response variable 
Constraint bounds variable 
Objective weight variable 
Target value (composite) variable 
Scale factor (composite) variable 
Weight (composite) variable 
Parameters of SRSM none 
Parameters of LFOPC none 
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The parameter type represents the highest entity in the hierarchy. Thus constants are included in the variable 
parameters. 

In LS-OPT, expressions can be entered for variables, constants, dependents, histories, responses constraints 
and objectives. 

 
Example: 
 
constant ’Target1’ {12756.333/1000.} 
constant ’Target2’ {966002/1000.} 
variable ’Emod’ 1e7 
composite ’Residual’ type targeted 
composite ’Residual’ response ’F1’ {Target1} scale {Target1} 
composite ’Residual’ response ’F2’ {Target2} scale {Target2} 
objective ’Residual’ 
$ 
variable fdstepsize {1/500.} 
time fdstepsize {1/300.} 
history size 10000 
 
Examples illustrating syntax of expressions 
 
Example 1: 
 

The following example shows a simple evaluation of variables and functions. The histories are specified in 
plot files his1 and his2. A third function his3 is constructed from the files by averaging. 

 
File his1: 
 
0 0.0 
100 1000 
200 500 
300 500 
 
File his2: 
 
0 0.0 
100 2000 
200 2000 
300 2000 
 
Input file: 
"Mathematical Expressions" 
$ 
$ CONSTANTS 
$ 
constants 3 
constant ’lowerlimit’ 0 
constant ’upperlimit’ .200 
constant ’angle’ 30 
$ 
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$ DESIGN VARIABLE DEFINITIONS 
$ 
variables 2 
Variable ’x1’ 45 
Lower bound variable ’x1’ -10 
Upper bound variable ’x1’ 50 
Variable ’x2’ 45 
Lower bound variable ’x2’ -10 
Upper bound variable ’x2’ 50 
$ 
$ DEPENDENT VARIABLES 
$ 
dependents 2 
dependent ’ll’ {lowerlimit * 1000} 
dependent ’ul’ {upperlimit * 1000} 
$ 
. 
. 
. 
$ 
$ HISTORIES 
$ 
history 3 
history ’his1’ file "../../his1" 
history ’his2’ file "../../his2" 
history ’his3’ {(his1(t) + his2(t))/2} 
$ 
$ RESPONSES 
$ 
responses 42 
response ’LOWER’     expression {LowerLimit} 
response ’UPPER’     expression {UpperLimit} 
response ’UL’        expression {ul} 
response ’First’     expression {Initial("his1(t)")} 
response ’Last’      expression {Final("his1(t)")} 
response ’Last3’     expression {Final("(his1(t) + his2(t))/2")} 
response ’Max1’      expression {Max("his1(t)")} 
response ’Max2’      expression {Max("his1(t)","ll * 1.0")} 
response ’Maximum11’ expression {Max("his1(t)","ll",ul)} 
response ’Maximum32’ expression {Max("his3(t)",ll,ul)} 
response ’Minimum32’ expression {Min("his3(t)",ll,ul)} 
response ’Inverse11’ expression {Lookup("his1(t)",75)} 
response ’Inverse21’ expression {Lookup("his2(t)",75)} 
response ’Inverse31’ expression {Lookup("his3(t)",75)} 
response ’Inverse33’ expression {Lookup("(his1(t) + his2(t))/2",75)} 
response ’MaxI’      expression {max(Inverse11,Inverse21)} 
response ’MinI’      expression {min(Inverse11,Inverse21)} 
response ’hist’      expression {his3(Inverse31)} 
response ’hist66’    expression {his3(66.1) + 0.1} 
response ’nhist66’   expression {nint(hist66)} 
response ’ihist66’   expression {int(hist66)} 
response ’Integ11’   expression {Integral("his1(t)")} 
response ’Integ14’   expression {Integral("his1(t)",ll,ul,"t")} 
response ’Integ15’   expression {Integral("his1(t)",ll,UPPER,"t")} 
response ’Integ22’   expression {Integral("his2(t)",ll,ul,"t")} 
response ’Integ32’   expression {Integral("his3(t)",ll,ul,"t")} 
response ’Integ33’   expression {Integral("(his1(t) + his2(t))/2",ll,ul,"t")} 
response ’Integ34’   expression {Integral("his3(t)")} 
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response ’Integ35’   expression {Integral("his3(t)",ll)} 
response ’Integ36’   expression {Integral("his3(t)",ll,ul)} 
$ 
$ Cross-functional integrals 
$ 
response ’Integ2’    expression {Integral("his1(t)",ll,ul,"his2(t)")} 
response ’Integ3a’   expression {Integral("his1(t)",0,30,"his2(t)")} 
response ’Integ3b’   expression {Integral("his1(t)",30,100,"his2(t)")} 
response ’Integ4’    expression {Integ1 + Integ2} 
response ’Integ5’ expression {Integral("sin(t) * his1(t) * his2(t)",ll,ul,"t")} 
response ’Integ7’    expression {Integral("sin(t) * his1(t) * his2(t)")} 
response ’Velocity1’ expression {Derivative(”Displacement(t)”,0.08)} 
response ’Velocity2’ expression {Derivative(”Displacement(t)”)} 
$ 
$ COMPOSITE FUNCTIONS 
$ 
composites 1 
composite ’Integ6’ {(Integ3a/(4*Maximum11) + Integ2/2)**.5} 
$ 
$ OBJECTIVE FUNCTIONS 
$ 
objectives 1 
objective ’Integ6’ 
$ 
$ CONSTRAINT FUNCTIONS 
$ 
constraints 1 
constraint ’Integ1’ 
$ 
iterate 0 
STOP 
 
Example 2: 
constant ’v0’ 15.65 
$---------------------------------------------------------------------------- 
$ Extractions 
$---------------------------------------------------------------------------- 
history ’engine_velocity’    "DynaASCII nodout X_VEL 73579 TIMESTEP 0.0 SAE 30" 
history ’Apillar_velocity_1’ "DynaASCII nodout X_VEL 41195 TIMESTEP 0.0 SAE 30" 
history ’Apillar_velocity_2’ "DynaASCII nodout X_VEL 17251 TIMESTEP 0.0 SAE 30" 
history ’global_velocity’    "DynaASCII glstat X_VEL 0 TIMESTEP 0.0" 
$---------------------------------------------------------------------------- 
$ Mathematical Expressions for dependent histories 
$---------------------------------------------------------------------------- 
history ’Apillar_velocity_average’ {(Apillar_velocity_1 +  
                                     Apillar_velocity_2)/2} 
$ 
$ Find the time when the engine velocity = 0 
$ 
response ’time_to_engine_zero’ expression {Lookup("engine_velocity(t)",0)} 
$ 
$ Find the average velocity at time of engine velocity = 0 
$ 
response ’vel_A_engine_zero’ expression {Apillar_velocity_average 
 (time_to_engine_zero)} 
$ 
$ Integrate the average A-pillar velocity up to zero engine velocity 
$ Divide by the time to get the average 
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$ 
response ’PULSE_1’ expression  {Integral 
 ("Apillar_velocity_average(t)", 0, time_to_engine_zero) 
 /time_to_engine_zero} 
$ 
$ Find the time at which the global velocity is zero 
$ 
response ’time_to_zero_velocity’ expression {Lookup("global_velocity(t)",0)} 
$ 
$ Find the average A-pillar velocity where global velocity is zero 
$ 
response ’velocity_final’ {Apillar_velocity_average(time_to_zero_velocity)} 
response ’PULSE_2’ expression {Integral 
 ("Apillar_velocity_average(t)", time_to_engine_zero, 
 time_to_zero_velocity ) 
 /(time_to_zero_velocity - time_to_engine_zero)} 
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Appendix E 

Glossary 

 
 
 
 
ANOVA.  Analysis of variance. Used to perform variable screening by identifying insignificant variables. 
Variable regression coefficients are ranked based on their significance as obtained through a partial F-test. 
(See also variable screening). 
 
Bias error. The total error – the difference between the exact and computed response - is composed of a 
random and a bias component. The bias component is a systematic deviation between the chosen model 
(approximation type) and the exact response of the structure (FEA analysis is usually considered to be the 
exact response). Also known as the modeling error. (See also random error). 
 
Binout. The name of the binary output file generated by LS-DYNA (Version 970 onwards). 
 
Committee. A set of Neural Networks of the same order constructed using the same set of results. The nets 
are usually slightly different because a different weight initiator is typically used for the regression 
procedure of each individual net. 
 
Composite function. A function constructed by combining responses and design variables into a single 
value. Symbolized by F. 
 
Concurrent simulation. The running of simulation tasks in parallel without message passing between the 
tasks. 
 
Confidence interval. The interval in which a parameter may occur with a specified level of confidence. 
Computed using Student’s t-test. Typically applied to accompany the significance of a variable in the form 
of an error bar.  
 
Constraint. An absolute limit on a response variable specified in terms of an upper or lower limit. 
 
Constrained optimization. The mathematical optimization of a function subject to specified limits on other 
functions. 
 
Conventional Design. The procedure of using experience and/or intuition and/or ad hoc rules to improve a 
design. 
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Crossplot. A curve obtained by using the two ordinate values at a coinciding abscissa obtained from two 
separate functions. The two ordinate values are used as the abscissa and ordinate in the new crossplot. In 
LS-OPT two separate time histories are typically used to construct a single crossplot. 
 
Delimiter. Symbol(s) to separate numeric fields in a text file. Typically spaces, tabs or commas. 
 
Dependent. A function which is dependent on variables. Dependent variable. 
 
Design of Experiments. See experimental design. 
 
Design parameter. See design variable. 
 
Design formula. A simple mathematical expression which gives the response of a design when the design 
variables are substituted. See response surface. 
 
Design space. A region in the n-dimensional space of the design variables (x1 through xn to which the 
design is limited. The design space is specified by upper and lower bounds on the design variables. 
Response variables can also be used to bound the design space. 
 
Design surface. The response variable as a function of the design variables, used to construct the  
formulation of a design problem. (See also response surface, design rule). 
 
Design sensitivity. The gradient vector of the response. The derivatives of the response function in terms of 
the design variables. df /dxi. 
 
Design variable. An independent design parameter which is allowed to vary in order to change the design. 
Symbolized by (xi or x (vector containing several design variables)). 
 
Discipline. An area of analysis requiring a specific set of simulation tools, usually because of the unique 
nature of the physics involved, e.g. structural dynamics or fluid dynamics. In the context of MDO, often 
used interchangeably with solver. 
 
DOE. Design of Experiments. See experimental design. 
 
Domain reduction. The reduction of the region of interest in the design space during the optimization 
process. 
 
D-optimal. The state of an experimental design in which the determinant of the moment matrix XX T  of 
the least squares formulation is maximized. 
 
DSA. Design sensitivity analysis. 
 
Ensemble. A collection of neural nets of different (usually thought of as ascending) order based on the same 
set of results. 
 
Elliptic approximation. An approximation in which only the diagonal Hessian terms are used. 
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Experiment. Evaluation of a single design. 
 
Experimental Design. The selection of designs to enable the construction of a design response surface. 
Sometimes referred to as the Point Selection Scheme. 
 
Feasible Design. A design which complies with the constraint bounds. 
 
Feedforward Neural Network. See Neural Network. 
 
Function. A mathematical expression for a response variable in terms of design variables. Often used 
interchangeably with “response”. Symbolized by f. 
 
Functionally efficient. See Pareto optimal. 
 
Function evaluation. Using a solver to analyze a single design and produce a result. See Simulation. 
 
Global variable. A variable of which the scope spans across all the design disciplines or solvers. Used in 
the MDO context. 
Global approximation. A design function which is representative of the entire design space. 
 
Global Optimization. The mathematical procedure for finding the global optimum in the design space. E.g. 
Genetic Algorithm, Particle Swarm, etc. 
 
Gradient vector. A vector consisting of the derivatives of a function f in terms of a number of variables x1 
to xn. s = [df /dxi]. See Design Sensitivity. 
 
History. Response history containing two columns of (usually time) data generated by a simulation. 
 
Importance. See Weight. 
 
Infeasible Design. A design which does not comply with the constraint functions. An entire design space or 
region of interest can sometimes be infeasible. 
 
Isoline. A line representing a constant value of a scalar quantity. In the LS-OPT metamodel plotting feature 
isolines are used with metamodel functions. 
 
Iteration. A cycle involving an experimental design, function evaluations of the designs, approximation and 
optimization of the approximate problem. 
 
Kriging. A Metamodeling technique using Bayesian regression. 
  
Latin Hypercube Sampling. The use of a constrained random experimental design as a point selection 
scheme for response approximation.  
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Least Squares Approximation. The determination of the coefficients in a mathematical expression so that 
it approximates certain experimental results by the minimization of the sum of the squares of the 
approximation errors. Used to determine response surfaces as well as calibrating analysis models. 
 
Local Approximation. See Gradient vector. 
 
Local variable. A variable of which the scope is limited to a particular discipline or disciplines. Used in the 
MDO context. 
 
Material identification. See parameter identification. 
 
MDO. Multidisciplinary design optimization. 
 
Metamodeling. The construction of surrogate design models such as polynomial response surfaces, 
Artificial Neural Networks or Kriging surfaces from simulations at a set of design points.  
 
Min-Max optimization problem. An optimization problem in which the maximum value considering 
several responses or functions is minimized. 
 
Model calibration. The optimal adjustment of parameters in a numerical model to simulate the physical 
model as closely as possible. 
 
Modeling error. See bias error. 
 
Multidisciplinary design optimization (MDO). The inclusion of multiple disciplines in the design 
optimization process. In general, only some design variables need to be shared between the disciplines to 
provide limited coupling in the optimization of a multidisciplinary target or objective. 
 
Multi-objective. An objective function which is constituted of more than one objective. Symbolized by F.  
 
Multi-objective Optimization (MOO). Multi-objective optimization is the procedure for constructing a 
Pareto optimal front. 
 
Multi-criteria. Refers to optimization problems in which several criteria are considered. 
 
MP. Mathematical Programming. Mathematical optimization. 
 
MSE. Mean Squared Error. Used for system identification. 
 
Neural network approximation. The use of trained feedforward neural networks to perform non-linear 
regression, thereby constructing a non-linear metamodels (see metamodeling). 
 
Numerical sensitivity. A derivative of a function computed by using finite differences. 
 
Noise. See random error. 
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Objective. A function of the design variables that the designer wishes to minimize or maximize. If there 
exists more than one objective, the objectives have to be combined mathematically into a single objective. 
Symbolized by Φ . 
 
Optimal design. The methodology of using mathematical optimization tools to improve a design iteratively 
with the objective of finding the ‘best’ design in terms of predetermined criteria. 
 
Optimization strategy. A strategy for metamodel-based optimization such as Single Stage, Sequential or 
Sequential with Domain Reduction. 
 
Parameter identification. See System identification. 
 
Pareto optimal. A multi-objective design is Pareto-optimal if none of the objectives can be improved 
without at least one objective being affected adversely. A Pareto optimal front can be constructed using 
optimization. 
 
Point selection scheme. Same as experimental design. 
 
Preference function. A function of objectives used to combine several objectives into a single one suitable 
for the standard MP formulation. 
 
Preprocessor. A graphical tool used to prepare the input for a solver. 
 
Radial basis function network. The use of radial basis functions (RBFs) to approximate response 
functions. The LS-OPT default option is the Hardy’s multi-quadrics but a user can also select Gaussian 
function as the radial basis function. This is a global approximation method. 
 
Random error. The total error – the difference between the exact and computed response - is composed of 
a random and a bias component. The random component is, as the name implies, a random deviation from 
the nominal value of the exact response, often assumed to be normally distributed around the nominal value. 
(See also bias error). 
 
Reasonable design space. A subregion of the design space within the region of interest. It is bounded by 
lower and upper bounds of the response values. 
 
Region of interest. A sub-region of the design space. Usually defined by a mid-point design and a range of 
each design variable. Usually dynamic. 
 
Reliability-based design optimization (RBDO). The performing of design optimization while considering 
reliability-based failure criteria in the constraints of the design optimization formulation. This implies the 
inclusion of random variables in the generation of responses and then extracting the standard deviation of 
the responses about their mean values due to the random variance and including the standard deviation in 
the constraint(s) calculation. 
 
Residual. The difference between the computed response (using simulation) and the predicted response 
(using a response surface). 
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Response quantity. See response. 
 
Response Surface. A mathematical expression which relates the response variables to the design  
parameters. Typically computed using statistical methods. 
 
Response. A numerical indicator of the performance of the design. A function of the design variables 
approximated using a metamodel which can be used for optimization. Symbolized by f. Collected over all 
design iterations for plotting. (See also history). 
 
Result. A numerical indicator of the performance of the design. A result is not associated with a metamodel, 
but is typically used for intermediate calculations in metamodel-based analysis. 
 
RBF. Radial Basis Function. RBF’s are used as basis functions for metamodels (see also metamodeling). 
These functions are typically Gaussian.  
 
RSM. Response Surface Methodology. 
 
Run directory. The directory in which the simulations are done. Two levels below the Work directory. The 
run directory contains status files, the design coordinate file XPoint and all the simulation output. The 
logxxxx file which contains a log of the file transfer, the output log of the solver and a log of the result 
extraction also resides in this directory. 
 
Saturated design. An experimental design in which the number of points equals the number of unknown 
coefficients of the approximation. For a saturated design no test can be made for the lack of fit. 
 
Scale factor. A factor which is specified as a divisor of a response in order to normalize the response. 
 
Sensitivity. See Design sensitivity. 
 
Slack constraint. A constraint with a slack variable. The violation of this constraint can be minimized. 
 
Slack variable. The variable which is minimized to find a feasible solution to an optimization problem, e.g.  
e in: min e subject to .0;)( ≥≤ eexg j  See Strictness. 
 
Simulation. The analysis of a physical process or entity in order to compute useful responses. See Function 
evaluation. 
 
Solver. A computational tool used to analyze a structure or fluid using a mathematical model. See 
Discipline. 

Solver directory. A subdirectory of the work directory that bears the name of a solver and where database 
files resulting from extraction and the optimization process are stored. 

Space Filling Experimental Design. A class of experimental designs that employ an algorithm to 
maximize the minimum distance between any two points. 
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Space Mapping. A technique which uses a fine design model to improve a coarse surrogate model. The 
hope is, that if the misalignment between the coarse and fine models is not too large, only  a few fine model 
simulations will be required to significantly improve the coarse model. The coarse model can be a response 
surface. 

Stochastic.  Involving or containing random variables. Involving probability or chance. 

Stopping Criterion. A mathematical criterion for terminating an iterative procedure. 

Strictness. A number between 0 and 1 which signifies the strictness with which a design constraint must be 
treated. A zero value implies that the constraint may be violated. If a feasible design is possible all 
constraints will be satisfied. Used in the design formulation to minimize constraint violations. See Slack 
variable. 

Subproblem. The approximate design subproblem constructed using response surfaces. It is solved to find 
an approximate optimum. 

Subregion. See region of interest. 

Successive (or Sequential) Approximation Method. An iterative method using the successive solution of 
approximate subproblems. 

System identification. A procedure in which a numerical model is calibrated by optimizing selected 
parameters in order to minimize the residual error with respect to certain targeted responses. The targeted 
responses are usually derived from experimental results. 

Target. A desired value for a response. The optimizer will not use this value as a rigid constraint. Instead, it 
will try to get as close as possible to the specified value. 

Template. An input file in which some of the data has been replaced by variable names, e.g.  
<<Radius>>. A template may also contain the LS-DYNA *PARAMETER keyword with corresponding 
@-parameters. LS-OPT will recognize the parameters defined in the template and display them in the GUI.  

Trade-off curve. A curve constructed using Pareto optimal designs. 

Transformed variables. Variables which are transformed (mapped) to a different n-space using a 
functional relationship. The experimental design and optimization are performed in this space. 

Variable screening. Method to remove insignificant variables from the design optimization process based 
on a ranking of regression coefficients using analysis of variance (ANOVA). (See also ANOVA). 

Weight. A measure of importance of a response function or objective. Typically varies between 0 and 1. 

Work directory. The directory is which the input files reside and where output is produced. See also Run 
directory. 
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Appendix F 

LS-OPT Commands: Quick Reference Manual 

Note: 
 

All commands are case insensitive. 

The commands which are definitions are given in boldface. 

Page reference numbers of the syntax definition are given in the last column. 

Command phrases in { } are optional. 

Names cannot start with a number. 

 
string: Extraction command, solver/preprocessor command, filename (pathname)  in double quotes 
name:   Name in single quotes 
expression:  Mathematical expression in curly brackets 
 

F.1. Problem description 
 
Constants number  The number of constants in the problem 153 
Variables number  The number of variables in the problem 153 
Dependents number  The number of dependent variables 153 
Histories number  The number of histories 153 
Responses number  The number of responses 153 
Composites number  The number of composite functions 153 
Objectives number  The number of objectives 153 
Constraints number  The number of constraints 153 
Solvers number  The number of solvers 153  
Distribution number  The number of probabilistic distributions 153 
 

F.2. Parameter definition 
 
Constant name value  constant 225 
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F.3. Probabilistic distributions 
 
Distribution name type values       228 
 

type values 
NORMAL mu sigma 
UNIFORM lower upper 
USER_DEFINED_PDF filename 
USER_DEFINED_CDF filename 
LOGNORMAL mu sigma 
WEIBULL scale shape 
BETA lower upper shape1 shape2 

 

F.4. Design space and region of interest 
 
Variable name value  Starting value for design variable  223 
Range name value  Range of variable to define region of interest  223 
Lower bound variable name value  Lower bound of Variable  223 
Upper bound variable name value  Upper bound of Variable  223 
Dependent name expression  Dependent variable  225 
Variable name max Saddle direction flag 226 
Constant name value Value of constant 225 
Local name Variable is not global 224 

F.5. Multidisciplinary or multi-case environment 
 
Solver package_name name  software package identifier  205 
Solver input file string  solver input file name  205 
Solver command string  solver command line  205 
Solver append file string  name of file to be appended to input  205 
Solver check file string name of checkpoints file 265  
Solver evaluate file string name of sampling points file 265 
Solver extra file string names of extra files (can be repeated) 220 
Solver concurrent jobs number  number of concurrent jobs  164 
Solver variable Flag for solver variable 225 
 
Prepro name  software package identifier  211 
Prepro command string  pre-processor command file  211 
Prepro input file name  pre-processor input file  211 
Prepro output file name  pre-processor output file name for Templex  214 
 
Queue queue type  queue for workload scheduling  166 
Interval value  time interval for progress reports  205 
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F.6. Package identifiers 
 
ingrid   LS-INGRID     212 
truegrid   TrueGrid     212 
ansa   ANSA      213   
hypermorph HyperMorph     215 
dyna    LS-DYNA (versions prior to 960)  205 
dyna960   LS-DYNA Version 960/970  205 
own    user-defined     210 
 

F.7. Queuer identifiers 
 
lsf    Load Sharing Facility 
loadleveler  IBM LoadLeveler 
pbs    PBS 
nqe    NQE 
nqs   NQS 
aqs   AQS 
slurm  SLURM 
blackbox  Blackbox 
msccp  MS Windows Compute Cluster Server 
 

F.8. Metamodel 
 

Solver order [linear|elliptic| 
interaction|quadratic|FF|RBF|user] 

Type of approximating function 254

Solver RBF transfer [HMQ|GAUSS] Type of transfer function 247
Solver FF_committee size number Size of a FFNN committee 247
Solver FF_committee discard number Discard 2*number committee members 247
Solver FF_committee use [MEAN|MEDIAN] Centering procedure for NN evaluation 247
Solver user metamodel name Name (without pre-/suffix) 251
Solver user metamodel path path Metamodel library path 251
Solver user metamodel command string String used by metamodel 251
Solver user metamodel param value Input value 251

 
 
 
 

F.9. Point selection 
 

Solver experimental design design Experimental design type 255
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Solver basis experiment design Basis experiment for D-optimal design 
points selection scheme 255

Solver number basis experiments number Number of experimental points 255
Solver number experiment number Number of experimental points 255
Solver update doe Updating of experimental points 263
Solver experiment duplicate name  Duplicate previously defined experiment 260

Solver alternate experiment 1 Alternative experimental design required 
for first iteration 266

Solver alternate order[linear] Type of alternative approximating 
function 266

Solver alternate experimental design design Alternative experimental design type 266

Solver alternate basis experiment design Alternative basis experiment for D-
optimal design points selection scheme 266

Solver alternate number basis experiments 
number 

Alternative number of experimental 
points 266

Solver alternate number experiment number Alternative number of experimental 
points 266

Solver experiment augment iteration number Change number of points starting with 
iteration 267

 

F.10. Point selection types 
 

Experiment Description Identifier Default approximation 
Linear Koshal lin_koshal linear 
Quadratic Koshal quad_koshal quadratic 
Central Composite composite quadratic 
Latin Hypercube latin_hypercube linear 
Monte Carlo monte_carlo linear 
Plan plan linear 
User-defined user linear 
D-optimal dopt linear 
Space filling space_filling - 
Duplicate duplicate - 
Factorial Designs 
2n 2toK Linear 
3n 3toK quadratic 
M  M  M  
11n 11toK quadratic 

F.11. Database recovery 
 

Solver recover dyna[d3plot|d3hsp| 
binout|d3eigv] 

Recover DYNA database files of a 
remote job for given prefix 182

Solver recover file file_wildcard Recover database file(s) of a remote job 183
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F.12. Design problem formulation 
 
History name string Defines history function  270 
History name expression  Defines history function  270 
History name file string History from file 270 
Historysize number  Defines maximum number of data points in history function  273 
Result name string Defines a result 311 
Result name expression Defines a result 311 
Matrix name expression Defines a matrix 311 
Response name string  Defines response function   276 
Response name expression  Defines response function  276 
Response  
     [linear|elliptic|quadratic|FF|kriging]  Type of approximation  333 
 
Composite name type [weighted|targeted]  Type of composite function  332 
Composite name expression Defines composite function  333 
Composite name response name value* { scale factor }  Component definition  333 
Composite name variable name value* { scale factor }  Component definition  333 
Weight value  Weight (only targeted)  334 
 
Maximize  Maximize objective  341 
 
Objective name { weight  }   Objective definition  341 
 
Constraint name  Constraint definition  342 
[Lower|upper] bound constraint name value  Bound on constraint  343 
Strict / slack  Slack variable omission status  344 
Move / stay / move start Reasonable space  sampling 262 
Constraint name scale [lower|upper] bound factor Constraint scale factor 346 
 
* value = target value for type =  MSE, weight for type =  weighted 
 
 
 
 
 
 

F.13. LS-DYNA result interfaces 
 
DynaMass p1 p2 p3 ... pn mass_attribute Mass 285 
DynaThick [THICKNESS|REDUCTION] p1 p2 ... pm 
[MIN|MAX|AVE] 

Shell 
thickness 287 

DynaFLD p1 p2 ... pn intercept neg_slope 
pos_slope FLD 289 
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DynaFLDg [LOWER|CENTER|UPPER] p1 p2 ... pn 
load_curve_id General FLD 290 

DynaPStress [S1|S2|S3|MEAN] p1 p2 ... pn 
[MIN|MAX|AVE] 

Principal 
stress 291 

DynaFreq mode_original [FREQ|NUMBER|GENMASS] Modal data 

Error! 
Bookmark 
not 
defined. 

BinoutHistory –res_type res_type {-sub sub} –cmp 
component {-invariant invariant –id id –pos 
position –side side –filter filter_type –
filter_freq filter_freq –units units –ave_points 
ave_points -start_time -start_time start_time –
end_time end_time} 

Binout 279 

BinoutResponse {history_options} –select 
MAX|MIN|AVE|TIME Binout 280 

D3PlotHistory –res_type res_type {-sub sub} –
cmp component {–id id –pos position –pids 
part_ids –loc ELEMENT|NODE –select selection –
coord x y z –tref ref_state -setid setid}{–
start_time start_time –end_time end_time } 
 

d3plot 282 

D3PlotResponse {history_options} –select 
selection 

d3plot 284 

 

F.14. Solution tasks 
 
Iterate n  Iterate over n successive approximations 348 
Analyze Monte Carlo Monte Carlo evaluation 239 
Analyze Metamodel Monte Carlo Monte Carlo evaluation with metamodel 240 

F.15. LS-DYNA Results Statistics 
 
analyze dynastat {history name} Compute LS-DYNA results statistics 423 
dynastat order approx_order Use metamodels; order of metamodel   420 
dynstat outlier ON/OFF Report metamodel outliers  420 
dynastat max vector ON/OFF Displacement magnitude formulation 435 
dynastat component vector ON/OFF Displacement magnitude formulation 435 
dynastat correlation response name Correlation 424 
dynstat solver name Solver 423 
dynastat iteration number Iteration 423 

F.16. Intrinsic functions for mathematical expressions 
 
Note: Trigonometric functions use and return degrees, not radians. 
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int(a) integer 
nint(a) nearest integer 
abs(a) absolute value 
mod(a,b) remainder of  a/b 
sign(a,b) transfer of sign from b to |a| 
max(a,b) maximum of a and b 
min(a,b) minimum of a and b 
sqrt(a)  square root 
exp(a) ea 
pow(a,b) ab 
log(a) natural logarithm 
log10(a) base 10 logarithm 
sin(a) sine 
cos(a) cosine 
tan(a) tangent 
asin(a) arc sine 
acos(a) arc cosine 
atan(a) arc tangent 
atan2(a,b) arc tangent of a/b 
sinh(a) hyperbolic sine 
cosh(a) hyperbolic cosine 
tanh(a) hyperbolic tangent 
asinh(a) arc hyperbolic sine 
acosh(a) arc hyperbolic cosine 
atanh(a) arc hyperbolic tangent 
sec(a) secant 
csc(a) cosecant 
ctn(a) Cotangent 
cnd(a) cumulative normal distribution: 

duux
x

∫
∞−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=Φ

2
exp

2
1)(

2

1,0 π
 

 
3×3 Matrix functions: 
 

inv(A) Inverse of matrix A 
tr(A) Transpose of matrix A 
rx(angle) Rotation about x-axis (angle in rad) 
ry(angle) Rotation about y-axis (angle in rad) 
rz(angle) Rotation about z-axis (angle in rad) 
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F.17. Special functions for mathematical expressions 
 
Expression Symbols Type 

Crossplot(expr_f,expr_g[,numpts,t_lower,t_upper]) Crossplot g(t) vs. f(t) Virtual
History

DerivativeHistory(history, order) h
ffff

t
f iiii

12
88

d
d 2112 ++−− −+−

≈  History

FilterHistory(history[,type,frequency,timeunits, 
num_average 

Filtered curve using 
SAE, Butterworth or 
running average 

History

Integral(expression[,t_lower,t_upper,variable]) ∫
b

a
tdgtf )()(  Resp. 

Derivative(history[,T_constant]) h
ffff

t
f iiii

12
88

d
d 2112 ++−− −+−

≈
 Resp. 

Min(expression[,t_lower,t_upper]) )]([minmin tff
t

=  Resp. 

Max(expression[,t_lower,t_upper]) )]([maxmax tff
t

=  Resp. 

Initial(expression) First function value 
on record 

Resp. 

TerminationTime (expression) Last time value Resp. 

Final(expression) Last function value 
on record 

Resp. 

Lookup(expression,value[,t_lower,t_upper]) Inverse function 
t(f = F) 

Resp. 

LookupMin(expression[,t_lower,t_upper]) Inverse function 
t(f = fmin) 

Resp. 

LookupMax(expression[,t_lower,t_upper]) Inverse function 
t(f = fmax) 

Resp. 

MeanSqErr(target_G,history_f[,numpts,z_low,z_up, 
          wgt_typ,scl_typ,wgt_val,scl_val, 
          wgt_curve,scl_curve]) 

2

1

)(1 ∑
=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −P

p p

pp
p s

Gf
W

P
x Comp. 

CurveMapSegment3(target_G, history_f) See Section 5.3.2 Comp. 
Matrix3x3Init(x1,y1,z1, x2,y2,z2, x3,y3,z3) Initialize 3×3 matrix Matrix 
Rotate(x1,y1,z1, x2,y2,z2, x3,y3,z3) Rotation matrix 

defined by 3 points. 
Matrix 

F.18. Metamodel-based Optimization strategies 
 
Optimization strategy SINGLESTAGE Single stage optimization 404 
Optimization strategy SEQUENTIAL Sequential optimization 404 
Optimization strategy DOMAINREDUCTION Sequential optimization with domain 

reduction  
405 
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F.19. Selecting an optimization method 
 

Optimization method srsm Metamodel-based Optimization 402 
Optimization method genalg Genetic Algorithm 402 

 

F.20. Setting parameters for optimization algorithm 
 
iterate param identifier value  Define parameters in LFOPC  407 
 

F.21. Selecting an optimization algorithm for SRSM 
 

Optimization algorithm lfopc Leap Frog Optimizer 
(LFOPC) 

Optimization algorithm genalg Genetic Algorithm (GA) 

Optimization algorithm simulated annealing Adaptive Simulated 
Annealing (ASA) 

Optimization algorithm hybrid ga Hybrid GA/LFOPC 
Optimization algorithm hybrid simulated annealing Hybrid ASA/LFOPC 
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