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PREFACE TO VERSION 1

LS-OPT originated in 1995 from research done within the Department of Mechanical Engineering,
University of Pretoria, South Africa. The original development was done in collaboration with colleagues in
the Department of Aerospace Engineering, Mechanics and Engineering Science at the University of Florida
in Gainesville.

Much of the later development at LSTC was influenced by industrial partners, particularly in the automotive
industry. Thanks are due to these partners for their cooperation and also for providing access to high-end
computing hardware.

At LSTC, the author wishes to give special thanks to colleague and co-developer Dr. Trent Eggleston.
Thanks are due to Mr. Mike Burger for setting up the examples.

Nielen Stander
Livermore, CA
August, 1999
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PREFACE TO VERSION 2

Version 2 of LS-OPT evolved from Version 1 and differs in many significant regards. These can be
summarized as follows:

The addition of a mathematical library of expressions for composite functions.
The addition of variable screening through the analysis of variance.

The expansion of the multidisciplinary design optimization capability of LS-OPT.
The expansion of the set of point selection schemes available to the user.

The interface to the LS-DYNA binary database.

Additional features to facilitate the distribution of simulation runs on a network.
The addition of Neural Nets and Kriging as metamodeling techniques.
Probabilistic modeling and Monte Carlo simulation. A sequential search method.

LN~ WNE

As in the past, these developments have been influenced by industrial partners, particularly in the

automotive industry. Several developments were also contributed by Nely Fedorova and Serge Terekhoff of

SFTI. Invaluable research contributions have been made by Professor Larsgunnar Nilsson and his group in
the Mechanical Engineering Department at Linkdping University, Sweden and by Professor Ken Craig’s

group in the Department of Mechanical Engineering at the University of Pretoria, South Africa. The authors

also wish to give special thanks to Mike Burger at LSTC for setting up further examples for Version 2.

Nielen Stander, Ken Craig, Trent Eggleston and Willem Roux
Livermore, CA
January, 2003
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PREFACE TO VERSION 3

The development of LS-OPT has continued with an emphasis on the integration with LS-DYNA and LS-
PREPOST and differs from the previous version in the following significant regards:
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LS-OPT is now available for Microsoft Windows.

Commands have been added to simplify parameter identification using continuous curves of
measured data.

Stochastic fields have been added to LS-DYNA (Version 971) to provide the capability of modeling
geometric and shell thickness variability.

Extended visualization of statistical quantities based on multiple runs were implemented by further
integrating LS-PREPOST.

An internal d3plot interface was developed.

Reliability-Based Design Optimization (RBDO) is now possible using the probability of failure in
the design constraints.

Neural network committees were introduced as a means to quantify and generalize response
variability.

Mixed discrete-continuous optimization is now possible.

Parameter identification is enhanced by providing the necessary graphical pre- and postprocessing
features. Confidence intervals are introduced to quantify the uncertainty of the optimal parameters.
The importation of user-defined sampling schemes has been refined.

Matrix operations have been introduced.

Data extraction can be done by specifying a coordinate (as an alternative to a node, element or part)
to identify the spatial location. The coordinate can be referred to a selected state.

A simple feature is provided to gather and compress the database for portability.

A utility is provide to both reduce the d3plot file sizes by deleting results and to transform the d3plot
results to a moving coordinate system.

Checking of LS-DYNA keyword files is introduced as a means to avoid common output request
problems.

Statistical distributions can be plotted in the distribution panel in the GUI.

A feature is introduced to retry aborted runs on queuing systems.

3-Dimensional point plotting of results is introduced as an enhancement of metamodel plotting.
Radial basis function networks as surrogate models.

Multi-objective optimization for converging to the Pareto optimal front (direct & metamodel-based).
Robust parameter (Taguchi) design is supported. The variation of a response can be used as an
objective or a constraint in the optimization process.

Mapping of results to the FE mesh of the base design: the results are considered at fixed coordinates.
These capabilities allow the viewing of metalforming robustness measures in LS-PREPOST.

The ANSA morpher is supported as a preprocessor.

The truncated normal distribution is supported.

Extra input files can be provided for variable parsing.

A library-based user-defined metamodel is supported.

User-defined analysis results can be imported.

PRESS predictions can be plotted as a function of the computed values.

The DynaStats panel has been redesigned completely (Version 3.4)
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30. Strategies for metamodel-based optimization are provided as GUI options

31. An algorithm panel has been added for setting optimization algorithm parameters.

32. User-defined sampling points can be evaluated using an existing metamodel.

33. The Adaptive Simulated Annealing algorithm has been added as a core optimization solver. Hybrid
algorithms such as the Hybrid SA and Hybrid GA have also been added.

34. Kriging has been updated and accelerated.

35. Enhancements were made to the Accuracy selection in the viewer by allowing color-coded point
attributes such as feasibility and iteration number.

36. The Tradeoff selection has also been enhanced by converting it to a 3-D application with color
coding for the 4™ dimension as well as color status of points for feasibility and iteration number.

As in the past, these developments were strongly influenced by industrial partners, particularly in the
automotive industry. LS-OPT is also being applied, among others, in metal forming and the identification of
system and material parameters.

In addition to long-time participants: Professor Larsgunnar Nilsson (Mechanical Engineering Department,
Linkdping University, Sweden), significant contributions have been made by Dr. Daniel Hilding, Mr. David
Bjorkevik, Mr. Christoffer Belestam and Mr. Ake Svedin of Engineering Research AB (Linkdping) as well
as Dr.-Ing. Heiner Mullerschén, Dipl.-Ing. Marko Thiele and Dipl.-Math. Katharina Witowski of
DYNAmore GmbH, Stuttgart, Germany.

Nielen Stander, Willem Roux and Tushar Goel
Livermore, CA
January, 2009
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PREFACE TO VERSION 4

The development of LS-OPT has continued with an emphasis on the integration with LS-DYNA and LS-
PREPOST. The main focus of Version 4 has been the development of a new graphical postprocessor as well
as the improvement of the job scheduling system, especially with regard to scheduling on computer clusters.
The following features have been added:

Version 4.0:

1.

The Viewer has been redesigned completely to accommodate a multi-window format using a split-
window and detachable window feature.

The Correlation matrix for simulation variables and results has been added.

For visualizing the Pareto Optimal Frontier, Hyper-Radial Visualization and Parallel Coordinate
plots have been added to the more traditional scatter plot. Multiple points can be selected to create a
table of response values. Point highlighting is cross-connected between plot types.

An interface for the METAPost postprocessor has been added.

5. Topology optimization LS-OPT®/Topology has been added as a separate module. Please refer to the

LS-OPT/Topology User's Manual.

6. Many of the features such as the Reliability-Based Design Optimization have been significantly
accelerated.

7. The Blackbox queuing system has been streamlined in terms of providing better diagnostics and a
special queuing system Honda has been added.

8. The NASTRAN® interface for frequency extraction and mode tracking has been added.

Version 4.1:

9. Discrete sampling can be done on a variable by variable basis for most sampling schemes including
D-Optimality, Space Filling and Full Factorial.

10. The Space Filling algorithm has been improved for accuracy and speed.

11. Job scheduling has been significantly improved. Environment variables can be exported through
queuing systems.

12. Job data is displayed on the run progress bars with a selection to view the solver log file at any stage
of the run.

13. Three injury criteria: a3ms, Chest Compression and Viscous Criterion have been added.

14. SPH, DBBEMAC and NODFOR groups have been added to the LS-DYNA response interface.

15. GenEx, the LS-OPT Generic Extractor provides features for extracting entities from text files. This
allows LS-OPT to be used with any solver code that produces a text database.

16. Responses can be linked to LS-DYNA cases (*CASE keyword).
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In addition to polynomials, Radial Basis Functions can now be used for parameter identification.

The following features have been added to the Viewer: Self-Organizing Maps (for multi-objective
optimization), two-dimensional interpolation matrix using metamodels, global sensitivities (Sobol),
Computed (simulation) and Predicted (metamodel) histories, Parallel Coordinate plot for simulation
results.

Experiments can be replicated for stochastic fields. Improvements have been made to Stochastic
Fields (*PERTURBATION) in LS-DYNA. Special coordinate systems have been added.
*PERTURBATION_MATERIAL has been added for MAT24.

To avoid synchronization errors, the Experiments and AnalysisResults databases have been
converted to self-contained .csv files.

The Run page has been rationalized. Clean start options are now available for all tasks.

A selected subset of Pareto optimal points can be exported to a standard format. The file can be used
to schedule the points as simulations.

Version 4.2:
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. The algorithm for constrained experimental design has been greatly improved. An optimization
algorithm was introduced to locate design points within specified constraint bounds.

. LSTCVM has been added as a Secure Proxy Server for distributing solver jobs across a computer
cluster. Running LS-OPT on a Windows machine controlling solver jobs on a Linux cluster is now
possible.

Individual jobs can be stopped using LSKILLJOB from the LS-OPT GUI. This feature has been
implemented to kill lagging jobs which tend to hold up the entire optimization run. Accelerated job
killing is provided as an option. A job can also be flagged for restart. LSTCVM and LSKILLJOB
combined with LSCHEDULER and other auxiliary programs provide a sophisticated job distribution
system.

More injury criteria are now available, namely MOC, NNIC, NIC, Nkm, LNLI, TTI and TI. A 3-
node version of the injury criterion Clip3m has been added.

Kinematics for NODOUT-based responses and histories. Includes the calculation of deformation and
distance in global, local and local-in-reference-frame coordinate systems.

DBFSI (fluid structure interaction) is available in the history and response interfaces.

Curve Mapping has been added to improve the curve matching metric for material identification,
especially for hysteretic curves, curves with steep sections and cases where only partial test data is
available. A newly developed Partial Curve Mapping algorithm is used.

Metamodel prediction accuracy based on PRESS error has been added as a stopping criterion for the
Sequential Response Surface Method (SRSM).

Automatic internal constraint scaling based on the constraint bounds has been added to the GUI.
This feature ensures that constraint violations are treated equally irrespective of their magnitudes.

The Dominated Hypervolume method as a stopping criterion for multi-objective optimization
methods (GA). Crowding Distance and Spread of the Pareto Optimal Front can be monitored
graphically.
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33. Self-Organizing Maps is available to visualize simulation results.

34. Refinements have been made to the 2D Metamodel Cross-Section display by adding simulation
points. The History display was improved by allowing the selection and display of multiple histories.
There is stronger unification amongst the different types of displays.

35. LS-OPT database archiving has been expanded to include extra files such as solver input files.

36. Histories have been added to the GenEx (generic extraction) result extraction feature. In the past,
only responses could be extracted.

37. The input file environment can be used to store include files. LS-OPT will in this case automatically
be able to parse and transmit the files (e.g. to a cluster).

38. A derivative history function has been added to compute the derivative of a time history, e.g.
acceleration from velocity.

39. A general filtering feature for time histories has been added. Filtering has been available for LS-
DYNA-extracted data, but can now be applied to any time history, also those produced using
expressions or generic extraction.

Version 4.3

40. The MAC criterion replaces the Generalized Mass criterion for mode tracking (merged to Version
4.2). An option to turn off mode tracking was added.

41. Mode tracking is supported for all versions of LS-DYNA, including LS-DYNA MPP (merged to
Version 4.2).

42. Sampling of the Pareto Optimal Front as a sampling option. A Space Filling algorithm, to maximize
the distance between any two points in the design space, is used.

43. Option for selecting the number of verification runs for the trade-off curve of multi-objective
optimization. Space Filling sampling is done to obtain a well-distributed trade-off set.

44. Head injury criterion (HIC) using three nodes for the different coordinate directions.
45. Support Vector Regression introduced as a metamodeling type.
46. User-defined postprocessor option.

The automotive and other industries have again made significant contributions to the development of new
features in LS-OPT. In addition to long-time participant Professor Larsgunnar Nilsson (Mechanical
Engineering Department, Linképing University, Sweden), Dr. Daniel Hilding, Mr. David Bjorkevik and Mr.
Christoffer Belestam of Engineering Research AB (Linkoping) as well as Dr.-Ing. Heiner Mllerschén and
Dipl.-Math. Katharina Witowski of DYNAmore GmbH, Stuttgart, Germany have made major contributions
as developers. Dr. Trent Eggleston has recently created LSTCVM and LSKILLJOB and, while working
with customers, has made vast improvements to solver job scheduling via queuing systems.

Nielen Stander and Anirban Basudhar
Livermore, CA
August, 2012
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PREFACE TO VERSION 5

The development of LS-OPT has continued with an emphasis on the integration with LS-DYNA. The main
focus of Version 5 has been the development of a new graphical pre-processor to accommodate design
processes, in which the design stages are dependent on one another, as well as the improvement of the job
scheduling system to enable handling of job dependencies. Transparency of the job scheduling process has
also been improved. The following features have been added:

Version 5.0:

1. A process consisting of a chain of dependent stages can be analyzed. The process can be defined in
the form of a flow chart which can merge and branch. Solver stages have been added as a new
concept and building block for defining a flow chart.

File operations such as deleting and copying between dependent stages are available.
3. GUI features have been added to easily identify sources of design parameters.

4. Job monitoring has been enhanced by allowing progress visualization on a stage-by-stage basis. Any
run directory can be viewed.

5. Resource definitions have been added to enhance the concurrent job submission capability.

6. Variables can be de-activated arbitrarily using a table of checkboxes. This avoids the necessity for
changing variables to constants.

7. New metal forming failure criteria.

8. String variables. These variables allow the definition of discrete variables sets with names as might
be used for include file names. GUI support is provided.

9. The recovery of databases from remote servers has been added as a GUI feature.

10. A sorting feature has been added to the Correlation Matrix in the Viewer. The cross-correlations for
any entity can be sorted.

As in previous years, the automotive and other industries have made significant contributions to the
development of new features in LS-OPT. In addition to long-time participant Professor Larsgunnar Nilsson
(Mechanical Engineering Department, Linkdping University, Sweden), Dr. Daniel Hilding, Mr. David
Bjorkevik, Mr. Ake Svedin and Mr. Christoffer Belestam of DYNAmore Nordic, Linkdping as well as Dr.-
Ing. Heiner Mullerschén and Dipl.-Math. Katharina Witowski of DYNAmore GmbH, Stuttgart, Germany
have made major contributions as developers. Dr. Trent Eggleston has redesigned the job scheduler to
accommaodate the launching and load balancing of jobs with dependencies. Special thanks go to Katharina
for patiently editing the manual, a major task in this version.

Nielen Stander and Anirban Basudhar
Livermore, CA
April, 2013
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property is the gradient of the response with respect to the noise variable. This gradient prescribes the noise
in the response and can be controlled using the control variables. The gradient, as shown in the figure, is
large for large values of the control variable. Smaller values of the control variable will therefore result in a
more robust design, because of the lower gradient and accordingly less scatter in the response................. 554
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1. Introduction

In the conventional design approach, a design is improved by evaluating its response and making design
changes based on experience or intuition. This approach does not always lead to the desired result, that of a
‘best” design, since design objectives are sometimes in conflict, and it is not always clear how to change the
design to achieve the best compromise of these objectives. A more systematic approach can be obtained by
using an inverse process of first specifying the criteria and then computing the *best’ design. The procedure
by which design criteria are incorporated as objectives and constraints into an optimization problem that is
then solved, is referred to as optimal design.

The state of computational methods and computer hardware has only recently advanced to the level where
complex nonlinear problems can be analyzed routinely. Many examples can be found in the simulation of
impact problems and manufacturing processes. The responses resulting from these time-dependent
processes are, as a result of behavioral instability, often highly sensitive to design changes. Program logic,
as for instance encountered in parallel programming or adaptivity, may cause spurious sensitivity. Roundoff
error may further aggravate these effects, which, if not properly addressed in an optimization method, could
obstruct the improvement of the design by corrupting the function gradients.

Among several methodologies available to address optimization in this design environment, response
surface methodology (RSM), a statistical method for constructing smooth approximations to functions in a
multi-dimensional space, has achieved prominence in recent years. Rather than relying on local information
such as a gradient only, RSM selects designs that are optimally distributed throughout the design space to
construct approximate surfaces or ‘design formulae’. Thus, the local effect caused by ‘noise’ is alleviated
and the method attempts to find a representation of the design response within a bounded design space or
smaller region of interest. This extraction of global information allows the designer to explore the design
space, using alternative design formulations. For instance, in vehicle design, the designer may decide to
investigate the effect of varying a mass constraint, while monitoring the crashworthiness responses of a
vehicle. The designer might also decide to constrain the crashworthiness response while minimizing or
maximizing any other criteria such as mass, ride comfort criteria, etc. These criteria can be weighted
differently according to importance and therefore the design space needs to be explored more widely.

Part of the challenge of developing a design program is that designers are not always able to clearly define
their design problem. In some cases, design criteria may be regulated by safety or other considerations and
therefore a response has to be constrained to a specific value. These can be easily defined as mathematical
constraint equations. In other cases, fixed criteria are not available but the designer knows whether the
responses must be minimized or maximized. In vehicle design, for instance, crashworthiness can be
constrained because of regulation, while other parameters such as mass, cost and ride comfort can be treated
as objectives to be incorporated in a multi-objective optimization problem. Because the relative importance
of various criteria can be subjective, the ability to visualize the trade-off properties of one response vs.
another becomes important.
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CHAPTER 1: Introduction

Trade-off curves are visual tools used to depict compromise properties where several important response
parameters are involved in the same design. They play an extremely important role in modern design where
design adjustments must be made accurately and rapidly. Design trade-off curves are constructed using the
principle of Pareto optimality. This implies that only those designs of which the improvement of one
response will necessarily result in the deterioration of any other response are represented. In this sense no
further improvement of a Pareto optimal design can be made: it is the best compromise. The designer still
has a choice of designs but the factor remaining is the subjective choice of which feature or criterion is more
important than another. Although this choice must ultimately be made by the designer, these curves can be
helpful by limiting the number of possible solutions. An example in vehicle design is the trade-off between
mass (or energy efficiency) and safety.

Adding to the complexity, is the fact that mechanical design is really an interdisciplinary process involving
a variety of modeling and analysis tools. To facilitate this process, and allow the designer to focus on
creativity and refinement, it is important to provide suitable interfacing utilities to integrate these design
tools. Designs are bound to become more complex due to the legislation of safety and energy efficiency as
well as commercial competition. It is therefore likely that in future an increasing number of disciplines will
have to be integrated into a particular design. This approach of multidisciplinary design requires the
designer to run more than one case, often using more than one type of solver. For example, the design of a
vehicle may require the consideration of crashworthiness, ride comfort, noise level as well as durability.
Moreover, the crashworthiness analysis may require more than one analysis case, e.g. frontal and side
impact. It is therefore likely that as computers become more powerful, the integration of design tools will
become more commonplace, requiring a multidisciplinary design interface.

Modern architectures often feature multiple processors and all indications are that the demand for
distributed computing will strengthen into the future. This is causing a revolution in computing as single
analyses that took a number of days in the recent past can now be done within a few hours. Optimization,
and RSM in particular, lend themselves very well to being applied in distributed computing environments
because of the low level of message passing. Response surface methodology is efficiently handled, since
each design can be analyzed independently during a particular iteration. Needless to say, sequential methods
have a smaller advantage in distributed computing environments than global search methods such as RSM.

The present version of LS-OPT also features Monte Carlo based point selection schemes and optimization
methods. The respective relevance of stochastic and response surface based methods may be of interest. In a
pure response surface based method, the effect of the variables is distinguished from chance events while
Monte Carlo simulation is used to investigate the effect of these chance events. The two methods should be
used in a complimentary fashion rather than substituting the one for the other. In the case of events in which
chance plays a significant role, responses of design interest are often of a global nature (being averaged or
integrated over time). These responses are mainly deterministic in character. The full vehicle crash example
in this manual can attest to the deterministic qualities of intrusion and acceleration pulses. These types of
responses may be highly nonlinear and have random components due to uncontrollable noise variables, but
they are not random.

Stochastic methods have an important purpose when conducted directly or on the surrogate (approximated)
design response in reliability based design optimization and robustness improvement. This methodology is
currently under development and will be available in future versions of LS-OPT.
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1.1. Overview of the manual

This LS-OPT® manual consists of three parts.
Part | is the User’s Manual, which guides the user in the use of LS-OPTui, the graphical user interface.

Part 11 is the Examples section, where examples are used to illustrate the application of LS-OPT to a variety
of practical applications.

Part 11l is the Theoretical Manual in which the fundamentals are provided for the various features in LS-
OPT.

Appendices contain interface features, database file descriptions, a mathematical expression library, a
Glossary, etc. Two appendices are dedicated to helping the user install LS-OPT. The second of these is more
advanced and dedicated to remote job scheduling, e.g. using a queuing system.

Sections containing advanced topics are indicated with an asterisk (*).

How to read this manual:

Most users will start learning LS-OPT by consulting the User’s Manual section beginning with Chapter 2
(Getting Started).

The Examples (Chapters 17 through 19) are included to demonstrate the features and capabilities and can be
read together with Chapters 2 to 16 to help the user to set up a problem formulation.

The Theoretical Manual (Chapters 20 through 24) serves mainly as an in-depth reference section for the
underlying methods.

The items in the Appendices are included for reference to detail, while the Appendix J; Document Type
Definition (DTD) provides an overview of all the features.

Tha manual functions as a hypertext document such that links in the manual body can be used for cross-
referencing and will take the reader to the relevant item such as Section 3.2.1, Reference [4] or Figure 21-5
(Just click on any of the afore-mentioned references). Alt+Left Arrow returns to the original reference
point.
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2. Getting Started

2.1. Installation of LS-OPT

Refer to Appendix H: (Installing LS-OPT) for information on the installation of LS-OPT.
Execution commandsTable 2-1 describes the LS-OPT execution commands.

Table 2-1: LS-OPT execution commands

Command

Description

Isoptui command_fi le_name

Execute the graphical user interface

Isopt command_file_name

LS-OPT batch execution

Isopt env

Check the LS-OPT environment setting. The LS-OPT
environment is automatically set to the location of the Isopt
executable.

viewer command_file_name

Execute the graphical postprocessor (also accessible from main
GUI)

com2lsopt com.abcde abcde.lsopt

Converts a legacy ‘com’ file to a .Isopt file in XML format

2.2. Name conventions in LS-OPT

Entities such as variables, responses, etc. are identified by their names. A name length is limited to 61
characters.In addition to numbers 0-9, upper or lower case letters, a name can contain any of the following
characters:__ .. Spaces are not allowed.

For entities that can not be used in mathematical expressions, i.e. stage and sampling, the name can

contain the characters -+%-= as well.

For entities that can be used in mathematical expressions, i.e. variable, history, response,
composite and fTilehistory, the leading character must be alphabetical. Those entities must be
given unique names, because mathematical expressions can be constructed using various entities in the same

formula.
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2.3.

2.3.1.

A modus operandi for design using response surfaces

Preparation for design

Since the design optimization process is expensive, the designer should avoid discovering major flaws in the
model or process at an advanced stage of the design. Therefore the procedure must be carefully planned and
the designer needs to be familiar with the model, procedure and design tools well in advance. The following
points are considered important:

1.

10.

The user should be familiar with and have confidence in the accuracy of the model (e.g., finite
element model) used for the design. Without a reliable model, the design would make little or no
sense.

Select suitable criteria to formulate the design. The responses represented in the criteria must be
produced by the analyses and be accessible to LS-OPT.

Request the necessary output from the analysis program and set appropriate time intervals for time-
dependent output. Avoid unnecessary output as a high rate of output will rapidly deplete the
available storage space.

Run at least one simulation using LS-OPT (baseline design). To save time, the termination time of
the simulation can be reduced substantially. This exercise will test the response extraction
commands and various other features. Automated response checking is available, but manual
checking is still recommended.

Just as in the case of traditional simulation it is advisable to dump restart files for long simulations.
LS-OPT will automatically restart a design simulation if a restart file is available. For this purpose,
the runrsT file is required when using LS-DYNA as solver.

Determine suitable design parameters. In the beginning, it is important to select many rather than
few design variables. If more than one discipline is involved in the design, some interdisciplinary
discussion is required with regard to the choice of design variables.

Determine suitable starting values for the design parameters. The starting values are an estimate of
the optimum design. These values can be acquired from a present design if it exists. The starting
design will form the center point of the first region of interest.

Choose a design space. This is represented by absolute bounds on the variables that you have
chosen. The responses may also be bounded if previous information of the functional responses is
available. Even a simple approximation of the design response can be useful to determine
approximate function bounds for conducting an analysis.

Choose a suitable starting design range for the design variables. The range should be neither too
small, nor too large. A small design region is conservative but may require many iterations to
converge or may not allow convergence of the design at all. It may be too small to capture the
variability of the response because of the dominance of noise. It may also be too large, such that a
large modeling error is introduced. This is usually less serious as the region of interest is gradually
reduced during the optimization process.

If the user has trouble deciding the size of the starting range, it should be omitted. In this case the
full design space is chosen.
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11. Choose a suitable order for the design approximations when using polynomial response surfaces (the
default). A good starting approximation is linear because it requires the least number of analyses to
construct. However, it is also the least accurate. The choice therefore also depends on the available
resources. However, linear experimental designs can be easily augmented to incorporate higher order
terms.

Before choosing a metamodel, please also consult Sections 21.3 and 22.5.

After suitable preparation, the optimization process may now be commenced. At this point, the user has to
decide whether to use an automated iterative procedure (Section 21.3) or whether to firstly perform variable
screening (through ANOVA or Global Sensitivity Analysis) based on one or a few iterations. Variable
screening is important for reducing the number of design variables, and therefore the overall computational
time. Variable screening is illustrated in two examples (see Sections 17.5 and 17.6).

An automated iterative procedure can be conducted with any choice of approximating function. It
automatically adjusts the size of the subregion and automatically terminates whenever the stopping criterion
is satisfied. The feature that reduces the size of the subregion can also be overridden by the user so that
points are sequentially added to the full design space. This becomes necessary if the user wants to explore
the design space such as constructing a Pareto Optimal front. If a single optimal point is desired, it is
probably the best to use a sequential linear approximation method with domain reduction, especially if there
is a large number of design variables. See also Section 22.5.

A step-by-step semi-automated procedure can be just as useful, since it allows the designer to proceed more
resourcefully. Computer time can be wasted with iterative methods, especially if handled carelessly. It
mostly pays to pause after the first iteration to allow verification of the data and design formulation and
inspection of the results, including ANOVA and GSA data. In many cases, it takes only 2 to 3 iterations to
achieve a reasonably optimal design. An improvement of the design can usually be achieved within one
iteration.

A suggested step-by-step semi-automated procedure is outlined as follows:

2.3.2. A step-by-step design optimization procedure

1. Evaluate as many points as required to construct a linear approximation. Assess the accuracy of the
linear approximation using any of the error parameters. Inspect the main effects by looking at the
ANOVA and GSA results. This will highlight insignificant variables that may be removed from the
problem. An ANOVA/GSA is simply a single iteration run, typically using a linear response surface
to investigate main and/or interaction effects. The ANOVA and GSA results can be viewed in the
post-processor of LS-OPT (see Section 14.3.4).

2. If the linear approximation is not accurate enough, add enough points to enable the construction of a
quadratic approximation. Assess the accuracy of the quadratic approximation. Intermediate steps can
be added to assess the accuracy of the interaction and/or elliptic approximations. Radial Basis
Functions (Section 21.1.3) can also be used as more flexible higher order functions (They do not
require a minimum number of points).

3. If the higher order approximation is not accurate enough, the problem may be twofold:
o0 There is significant noise in the design response.

o There is a modeling error, i.e. the function is too nonlinear and the subregion is too large to
enable an accurate quadratic approximation.
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In case (3a), different approaches can be taken. Firstly, the user should try to identify the source of
the noise, e.g. when considering acceleration-related responses, was filtering performed? Are
sufficient significant digits available for the response in the extraction database (not a problem when
using LS-DYNA since data is extracted from a binary database)? Is mesh adaptivity used correctly?
Secondly, if the noise cannot be attributed to a specific numerical source, the process being modeled
may be chaotic or random, leading to a noisy response. In this case, the user could implement
reliability-based design optimization techniques as described in Section 24.8. Thirdly, other less
noisy, but still relevant, design responses could be considered as alternative objective or constraint
functions in the formulation of the optimization problem.

In case (3b), the subregion can be made smaller.

In most cases the source of discrepancy cannot be identified, so in either case a further iteration
would be required to determine whether the design can be improved.

4. Optimize the approximate subproblem. The solution will be either in the interior or on the boundary
of the subregion.

If the approximate solution is in the interior, the solution may be good enough, especially if it is close to
the starting point. It is recommended to analyze the optimum design to verify its accuracy. If the
accuracy of any of the functions in the current subproblem is poor, another iteration is required with a
reduced subregion size.

If the solution is on the boundary of the subregion the desired solution is probably beyond the region.
Therefore, if the user wants to explore the design space more fully, a new approximation has to be built.
The accuracy of the current response surfaces can be used as an indication of whether to reduce the size
of the new region.

The whole procedure can then be repeated for the new subregion and is repeated automatically when
selecting a larger number of iterations initially.

2.4. Recommended test procedure

A full optimization run can be very costly. It is therefore recommended to proceed with care. Check that the
LS-OPT optimization run is set up correctly before commencing to the full run. By far the most of the time
should be spent in checking that the optimization runs will yield useful results. A common problem is to not
check the robustness of the design so that some of the solver runs are aborted due to unreasonable
parameters which may cause distortion of the mesh, interference of parts or undefinable geometry.

The following general procedure is therefore recommended:

1. Test the robustness of the analysis model by running a few (perhaps two or three) designs in the
extreme corners of the chosen design space. Run these designs to their full term (in the case of time-
dependent analysis). Two important designs are those with all the design variables set at their
minimum and maximum values. The starting design can be run by selecting Baseline Run from the
control bar Run menu.

2. Modify the input to define the experimental design for a full analysis.

3. For a time dependent analysis or non-linear analysis, reduce the termination time or load
significantly to test the logistics and features of the problem and solution procedure.
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4. Execute LS-OPT with the full problem specified and monitor the process.
Also refer to Section 2.2.

2.5. Pitfalls in design optimization

A number of pitfalls or potential difficulties with optimization are highlighted here. The perils of using
numerical sensitivity analysis have already been discussed and will not be repeated in detail.

2.5.1. Global optimality

The Karush-Kuhn-Tucker conditions govern the local optimality of a point. However, there may be more
than one optimum in the design space. This is typical of most designs, and even the simplest design problem
(such as the well known 10-bar truss sizing problem with 10 design variables), may have more than one
optimum. The objective is, of course, to find the global optimum. Many gradient-based as well as discrete
optimal design methods have been devised to address global optimality rigorously, but as there is no
mathematical criterion available for global optimality, nothing short of an exhaustive search method can
determine whether a design is optimal or not. Most global optimization methods require large numbers of
function evaluations (simulations). In LS-OPT, global optimality is treated on the level of the approximate
subproblem through a multi-start method originating at all the experimental design points. If the user can
afford to run a direct optimization procedure, a Genetic Algorithm (Section 22.8) can be used.

2.5.2. Noise

Although noise may evince the same problems as global optimality, the term refers more to a high
frequency, randomly jagged response than an undulating one. This may be largely due to numerical round-
off and/or chaotic behavior. Even though the application of analytical or semi-analytical design sensitivities
for ‘noisy’ problems is currently an active research subject, suitable gradient-based optimization methods
which can be applied to impact and metal-forming problems are not likely to be forthcoming. This is largely
because of the continuity requirements of optimization algorithms and the increased expense of the
sensitivity analysis. Although fewer function evaluations are required, analytical sensitivity analysis is
costly to implement and probably even more costly to parallelize.

2.5.3. Non-robust designs

Because RSM is a global approximation method, the experimental design may contain designs in the remote
corners of the region of interest which are prone to failure during simulation (aside from the fact that the
designer may not be remotely interested in these designs). An example is the identification of the parameters
of a monotonic load curve which in some of the parameter sets proposed by the experimental design may be
non-monotonic. This may cause unexpected behavior and possible failure of the simulation process. This is
almost always an indication that the design formulation is non-robust. In most cases poor design
formulations can be eliminated by providing suitable constraints to the problem and using these to limit
future experimental designs to a ‘reasonable’ design space (see Section 20.2.8).
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2.5.4. Impossible designs

The set of impossible designs represents a ‘hole’ in the design space. A simple example is a two-bar truss
structure with each of the truss members being assigned a length parameter. An impossible design occurs
when the design variables are such that the sum of the lengths becomes smaller than the base measurement,
and the truss becomes unassemblable. It can also occur if the design space is violated resulting in
unreasonable variables such as non-positive sizes of members or angles outside the range of operability. In
complex structures it may be difficult to formulate explicit bounds of impossible regions or “holes’.

2.5.5. Non-unique designs

In some cases multiple solutions will give the same or similar values for the objective function. The
phenomenon often appears in under-defined parameter identification problems. The underlying problem is
that of a singular system of equations having more than one solution. The symptoms of non-uniqueness are:

o Different solutions are found having the same objective function values
o0 The confidence interval for a non-linear regression problem is very large, signaling a singular system

For nonlinear regression problems, the user should ensure that the test/target results are sufficient. It could
be that the data set is large but that some of the parameters are insensitive to the functions corresponding to
the data. An example is the determination of the Young’s modulus (E) of a material, but having test points
only in the plastic range of deformation (see example Section 18.1). In this case the response functions are
insensitive to E and will show a very high confidence interval for E (Section 18.1.4).

The difference between a non-robust design and an impossible one is that the non-robust design may show
unexpected behavior, causing the run to be aborted, while the impossible design cannot be synthesized at
all.

Impossible designs are common in mechanism design.

2.6. Setup of a simple optimization problem

2.6.1. Working directory

Create a working directory for keeping the main command file, input files and other command files as well
as the LS-OPT program output. Make sure there are no blanks in the path names.

2.6.2. Startup

Open the graphical user interface of LS-OPT as described in Section 3.1 and enter the required
specifications to generate an LS-OPT project file to start from, Figure 2-1. Selecting Create will open up the
main LS-OPT GUI window, Figure 2-2.
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Figure 2-1: LS-OPT Startup dialog. Select the working directory, enter a name for the LS-OPT project
file and a name for the initial sampling and initial stage to generate a new project.
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Figure 2-2: The main LS-OPT GUI window visualizes the optimization process flow. Selecting a box
opens the respective dialog. The stage box (CRASH) can be moved freely using the left mouse button.

2.6.3. Task

Open the Task dialog by selecting the corresponding icon from the control bar (B8). Select the task to run,
Figure 2-3, e.g. Metamodel-based Optimization with Strategy: Sequential with Domain Reduction, Chapter
4. The main GUI displays the process flow of the selected task.
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B Task selection @

Main task
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@ Optimization
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) Monte Carlo analysis
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Direct simulation
() Optimization

() Monte Carlo analysis
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() Sequential

@ Sequential with Domain Reduction (SRSM)

1. Sampling points are added sequentially
in an adaptive subregion.

2. Metamodel optimization is done at each iteration
and is limited to the current subregion.

3. Suitable for finding a converged solution
(e.g. system identification).

4. Generally unsuitable for global exploration.

[ Global sensitivities
Do verification run

Figure 2-3: Task dialog. Select the main task and strategy

2.6.4. Stage

Set up the process chain. In the simplest case, a single Stage is required to interface with a solver, e.g. LS-
DYNA. Select the already available Stage box, Figure 2-4. Select the solver Package Name, the solver
Command and the parameterized Input File, Chapter 5. In more complex cases further stages can be added,
e.g. for a pre-processor or post-processor.

Then switch to the Parameters tab to check the parameters found in the solver input file, Figure 2-5.

Next, switch to the Responses and Histories panel, Figure 2-6, to define results to be extracted from the
solver output database (to be used as objectives or constraints in the optimization phase), Chapter 6.
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Figure 2-4: Stage dialog - Setup. Select the solver package name, the command and the solver input file
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Figure 2-5: Stage dialog — Parameters. Displays the parameters found in the input file specified in Setup
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Figure 2-6: Stage dialog - Responses page. Select a response type from the list on the right to add a new
response definition.

2.6.5. Setup

Select the Setup box at the top left of the main GUI, Chapter 7. All parameters that are defined in stage
input files should automatically be available as constants, Figure 2-7.

Select the desired variable Types. In most cases Continuous variables are used.

Then enter the requested values, e.g. the Starting value and Minimum and Maximum values to define the
design space for a continuous variable.

Now follow the arrows to the next box in the optimization process flow to define the respective settings and
options.
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Figure 2-7: Parameter Setup dialog. Define the parameter type and required values.

2.6.6. Sampling and Metamodels

Select the Sampling box, Chapter 8. Select the Metamodel and Point Selection types, or just use the default

values, Figure 2-8.

The Build Metamodels box is coupled to the same dialog as the Sampling box. It is displayed at the end of
the process to correctly represent the optimization process. Hence the Build Metamodels box can be

skipped.

Lol
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Sampling Metamodel Settings | Active Variables = Features | Constraints

Pointselection

() Full Factorial

() Linear Koshal

() Quadratic Koshal
() Composite

@ D-Optimal

() Monte Carlo

() Latin Hypercube
) Space Filling

() User-defined

Number of Simulation Points (per Iteration per Case)

5 (default) |
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Figure 2-8: Sampling dialog. Select the metamodel type and point selection scheme.
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2.6.7. Optimization

Select the Optimization box, Chapter 10. From the previously defined Responses, select the objectives,

Figure 2-9.

Switch to the Constraints tab. From the previously defined Responses, select the constraints and specify

lower and upper bounds, respectively, Figure 2-10. Use the default setting for the algorithm.

&

Objectives || Constraints | Algorithms

[] Maximize the Objective Function (instead of minimize)
Objective components:
Response/Composite Weight

x HIC | 1 Edefault)]

Add new

Responses

Composites

Intrusion

Figure 2-9: Optimization - Objectives. Select the objective components from the list on the right.

&
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Optimization constraints:

Response Lower Bound  Strict Upper Bound  Strict
x Mass Set lower bound x | 0.5.| O
= Intrusion Set lower bound x | 550] [}

Add new
Responses
Disp2
Displ

a};}n
VR 7]
3
[«1}
5

HIC

Composites

Figure 2-10: Optimization - Constraints. Select constraints from the list on the right. Specify lower and

upper bounds as required.
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2.6.8. Termination criteria

Select the Termination criteria box, Chapter 11. Specify the Maximum number of lIterations, e.g. 5
iterations. Use the default values for the other options.

i Termination Criteria =
Tolerance Required for Termination

(@ Design AND Objective AND Metamodel Accuracy
() Design OR Objective OR Metamodel Accuracy

Design Change Tolerance

[D.Dl {default is 0.01) |

Objective Function Tolerance

|:D.Dl (default is 0.01) |

Response Accuracy Tolerance

|:1.CICI (default) |

Maximum number of Iterations

-~

E E

Figure 2-11: Termination Criteria dialog. Specify the maximum number of iterations

2.6.9. Run

After setting up the optimization problem, run the task using the options from the control bar Run menu ( »
), Section 3.3.

It is recommended to first run a Baseline Run to check if the stage process chain works correctly and the
results are extracted as expected. Then run the full task using the Normal Run option.

2.6.10. Viewer

Use the Viewer (Chapter 14) to evaluate the results by selecting &£ from the the main GUI window control
bar. The Viewer provides features to display metamodels and plot simulation results and optimization
progress.

2.7. REFERENCES

[1] Stander, N. Goel, T. Metamodel sensitivity to sequential sampling strategies in crashworthiness
design. In Proceedings of the 12 AIAA/ISSMO Multidisciplinary Analysis and Optimization
Conference,Victoria, British Columbia, Canada, Sep 10-12, 2008.
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3. Graphical User Interface

This chapter introduces the graphical user interface of LS-OPT. The LS-OPT GUI enables the user to
construct a simulation process, using a flowchart to define the stage dependencies. The process can then be
subjected to any of the available analysis tasks such as simulation, optimization, Monte Carlo analysis, etc.
Using progress bars and LEDs, the GUI also provides a window on the progress of each of the optimization
steps and simulation stages.

3.1. LS-OPT user interface (LS-OPTui)

On Linux, the user interface is launched with the command
Isoptuil [command_file.lsopt]

On Windows, the user interface is launched using Isoptui.exe. A command file can be opened directly by
drag and drop or by double-clicking on the . Isopt filename.

If the user interface is launched without a command file argument, the Startup Dialog opens up, where the

user can either define a new LS-OPT project, or select an existing project to open, see Figure 3-1. The

options are explained in Table 3-1. Otherwise the specified LS-OPT project is opened in the user interface

(see Figure 3-2).

Legacy com.abcde files generated with previous LS-OPT versions can be opened with the command
Isoptui [com.abcde]

Saving the GUI contents produces a file abcde. Isopt in.xml format.

The file abcde.lsopt can also be generated by executing the following command in the command
prompt:

com2xml com.abcde abcde.lsopt
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New project

Working Directory

LSTC

Livermore Software
Technology Corp.

LS-OPT User Interface
Version 5.0 (Revision 79744)
by
Livermore Software Technology Corporation
(C) Copyright 2000-2011 - All Rights Reserved

Open recent project

iterate.correct.lsopt

[ DESIGMN_OPTIMIZATION

fhome/katharina/LSTC/optQA/CLASS_EXA

Filename

Isopt_db
fhome/katharina/LSTC/optQA/DYMNASTAT.

[mdo

multi_stage.lsopt

Problem Description

thome/katharina/LSTC/optQA/PROCESS_|

[Multi—disciplinary optimization

l com.rod.meta

Author

com rod.meta

[

l MC.lsopt

Initial Sampling name

thome/katharina/LSTC/optQA/DYNASTAT:
basf3.lsopt

[Sampling_CRASH

l fhome/katharina/LSTC/optQA/PROCESS_|

Initial Stage name

frequency.iterate.pack.lsopt
thome/katharina/LSCPT/Schulungsunter]

[CRASH

b

l < | |)]

[Open other project l

Figure 3-1: Startup Dialog of Isoptui
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Table 3-1: Startup Dialog options

Option Description Reference
Working Directory where the LS-OPT project input files and some of the
Directory results are stored.
Filename Name of the .xml file that stores the LS-OPT project. The extension

- Isopt is automatically appended to the selected name.
Problem A description of the problem can be given. This description is
Description echoed in the Isopt_input and Isopt_output files, in the

plot file titles and in the GUI display (table at bottom right).

(optional)
Author Author information (optional)
Initial Sampling  Each LS-OPT project requires at least one Sampling definition. The  Chapter 8
name name of the first sampling has to be specified here. A default name is

provided.
Initial Stage Each LS-OPT project requires at least one Stage definition. The Chapter 5
name Stage definition includes the solver type and command as well as the

main input file name. The name of the first stage has to be specified

here. A default name is provided.
Create Creates a new LS-OPT project and opens it in the main GUI Section 3.2
Open recent A project from the list of the last ten LS-OPT projects can be Section 3.2
project opened.
Open other Option to open any existing LS-OPT project Section 3.2
project ...
Quit Quit Isoptui

3.2. The GUI main window

The flowchart in the main GUI of LS-OPT (Figure 3-2) mimics the process of the selected task, e.g. starting
from global parameters defined in Setup, through the sampling, the simulation process chain defined by the
stages and dependencies, the building of meta-models, the metamodel optimization, checking of
convergence, and domain reduction in one or more loops, and finally the verification run for a meta-model
based, sequential optimization. Refer to Chapter 4 for details on the available tasks.

Double clicking on any of the boxes opens the corresponding dialog, where settings can be viewed and
adjusted. The dialogs and options are explained in the respective chapters, see Table 3-3.
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The control bar menus are described in Table 3-1.

mdo.lsopt - LS-OPT 5.0

H E + /" } IA_/ Metamodel-based optimization X 3

Setup ] Sampling Samplingl&

0 parameters J ..| 0 wars, 0 sp filling design:

- LS'TN‘\ Stagel J
Finish ] .

’ o ' Core Optimizer ’ )
Verification p .p : . Build Metamodels
o e | 0 objectives |
el |._ 0 constraints _,|

Multi-disciplinary optimization
fhomefkatharina/LSTC/loptQA/CLASS EXAMPLES/DESIGN OPTIMIZATION/mdo.lsop

Figure 3-2: Main LS-OPT GUI window for a setup of a Metamodel-base optimization
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Table 3-2: Main GUI Control Bar options

Icon Option Description Reference
5 New Opens the Startup Dialog (Figure 3-1) to create a new Section 3.1
optimization project.
Open Option to open an existing LS-OPT project
Save Save current project
Saveas ... Save current project as ...
Exit Exit Isoptui
=) Input Open the Isopt_input file
Output Open the Isopt_output file
Summary Report  Open the Isopt_report file
Warnings Open the WARNING_MESSAGE file
Errors Open the EXIT_STATUS file
Other file... Option to open any other text file
-+ Add Sampling Add additional Sampling. The name of the sampling Chapeter 8
will be used as the name of a subdirectory used for
sampling related databases such as
Experiments_n.csv and
AnalysisResults n.lIsox.
Add Stage in Add additional Stage in selected sampling. The name of Chapter 5
Sampling the stage will be used as the name of a sub-directory to
the working directory. Stage-related databases are
stored in this directory.
Add Composite  Add Composite Chapter 9
Add Domain Use Domain Reduction (same as Sequential with Section 4.8
Reduction Domain Reduction option in Task dialog)
Add Termination Switch to sequential Strategy Chapter 11

Criteria

LS-OPT Version 5.0
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Add Verification Run an additional simulation using the parameter values  Section 4.11
Run of the predicted optimum or Pareto optimal solutions at
the end of the optimization run.

Add Global Calculates Global Sensitivities on the meta-model. Section 4.10
Sensitivities
Yl Re-layout stages  Layout the stage boxes according to the defined

dependencies.

Show XML Tree Show the XML Tree for the current settings.

Repair Global repair or modification of an existing run. A local Section 3.5
repair can be done by right-clicking on a Stage or
Sampling.

Clean Clean All: The directory structure created by LS-OPT Section 3.4

and all the files in this directory structure are deleted.

Clean from current iteration [iter]: Removes all
simulation data as well as optimization data from the
specified iteration iter onwards.

Archive LS-OPT  This option collects relevant files and creates a single Section 3.6
Database tar-zipped (on *nix operating systems) file or zipped
(on windows operating systems) file.

DynaStats Opens DynaStats Chapter 15
2 Normal Run Run task Section 3.3.1

Baseline Run Run a single design, sampled at the initial values. Section 3.3.2
[ | Stop Button is only available while LS-OPT is running.

Stops the current optimization and all running jobs.

W Viewer Opens the viewer for post-processing. Chapter 14
an Task Opens Task Dialog. Chapter 4
= Iteration While running LS-OPT, this visualizes the current Section 3.4

running iteration. It is also used to select the current
iteration for restarting or repair.

? Manual Opens the LS-OPT User’s Manual

About Information about LS-OPT
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Table 3-3: Process Boxes

Box Description Reference
Setup Parameters (global set), Global optimization settings, Chapter 7
variable connectivity, resource data.
Sampling Point selection and metamodel settings Chapter 8
Stage Interface to solver such as solver command and input file. ~ Chapter 5
File Transfers Transfer files to a downstream stage. Section 3.2.2
Build Metamodels Same as Sampling Chapter 8
Composites Define composites Chapter 9
Global Sensitivities  Calculate global sensitivities Section 4.10
Optimization Definition of objectives, constraints and optimization Chapter 10
algorithms
Monte Carlo Monte Carlo settings Section 10.5
Termination Criteria  Termination criteria for sequential strategies Chapter 11
Domain Reduction Domain reduction settings for strategy sequential with Section 4.8
domain reduction
Verification Run Perform (specified number of) verification run(s) Section 4.11

3.2.1. Setting up a Process Flow

A process can be constructed for the purpose of running a sequence of dependent simulations. A typical
simple process is a sequence: pre-processor — solver — post-processor which can be constructed by

defining three sequential stages. However, a process of high complexity can also be created. For instance
the flow of the process is allowed to merge and branch. See Figure 3-3.
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Figure 3-3: Setup of a complex optimization problem

The process can be constructed in multiple steps by adding stages and connecting the stages using the
mouse to create dependencies of one stage on another.

On creating a new optimization project, a first stage is generated. Additional stages can be added using the
Add stage option of the + menu in the control bar. A sampling has to be selected to which the new stage is
assigned. By default, the new stage is added in parallel to the already existing stages.

If similar stages are needed for e.g. a multi-case optimization, a stage can be added by using the Clone
option when right-clicking an already defined stage. This creates a new stage with the same definitions as
the original stage. History and response names are updated to ensure uniqueness of names. If the name of

the original stage is found in the original names, it is replaced, otherwise the name of the new stage is
prepended.

The desired dependencies are created as follows, see Figure 3-4:
1. Hover the mouse cursor over the Stage box. A circle appears at the lower edge of the box.

2. Move the mouse cursor to the circle (it should highlight in yellow) and drag the circle to the desired
dependent stage box.
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3. A connection will be created between the two boxes.

LSBYNA Crash Analysis ™
1 par, 2 resps

T&

\ |
%

Y
nETA e v

METi‘gc-at DYNA |—

Figure 3-4: Creating stage dependencies

Connections can be deleted using the small icon located on the connection line. This icon also allows the
definition of inter-stage file operations, Section 3.2.2.

Stages can be deleted by right-clicking on the stage and then selecting the delete function.

The layout of the stage boxes can be controlled by the user. Left-click and hold down on a stage box to
move it freely. For complex process setups, it could be helpful to use the Re-layout Stages option from the
Tools menu in the control bar.

If separate samplings are desired (as is often the case for MDO problems where different variables apply to
different loadcases), new samplings can be added at the origin of each process sequence. Stages can then be
assigned to the relevant samplings.

3.2.2. File Transfers between Stages

L File Transfers 3
Files to be copied from the run directory of FE_Morpher to Map_fiber_to_mesh:
Operation Source File Destination File On Error Delete
[Cop'_-,r e Hbumpermesh.k Hbumpermesh.k |[fai| n |x
[Mwe d Hbumper.inc Hbumper.inc |[fai| W |x
Add ..
oK

Figure 3-5: File transfers between dependent stages
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To use results of upstream stages, LS-OPT allows file transfers between dependent Stages. The File
Transfer dialog is accessible by selecting the dependency icon located on the arrow connecting the stages,
see Figure 3-5 and Table 3-4. The requested file transfers are executed for all the run directories related to
the Stages, e.g. if the dependency is between CRASH and PRE_CRASH, file transfer will be executed
between PRE_CRASH/1.1 and CRASH/1.1, PRE_CRASH/1 .2 and CRASH/1 .2, etc.

Table 3-4: File transfer options between stages

Option Selections Description
Operation Copy Available operations
Move
Link

Copy Recursive

Source File Name of source file
Destination File Name of destination file
On Error fail What to do if operation fails
warn
ignore

3.3. Run LS-OPT
3.3.1. Normal Run

This option runs the selected task.

An incomplete run can be restarted using the current state of the optimization and solver databases.
Completed simulation jobs are recognized by the presence of the finished file in each respective run
directory and the termination status of its contents. The presence of the finished file allows LS-OPT to avoid
a repeat of the simulation for either error or normal terminations. A clean start option is available (See
Section 3.4).

3.3.2. Baseline Run

This feature provides the user with an option to run a single design (often referred to as the baseline design).

The design is sampled at the initial values specified in the Parameter Setup panel, Section 7.1. The
simulations are executed in the Stage sub-directory 1.1 of the respective stage. This option facilitates a
verification of the design, i.e. it allows checking

1. the correct solver command,
2. communication between LS-OPT and the queuing system, if any,
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3. presence of all relevant control cards, database formats,
4. data extraction from simulation results, and
5. validity of responses and histories.

It is therefore recommended to use a single simulation using the “Baseline Run” option as a “dry” run before
launching a full scale optimization run in LS-OPT. A successful baseline run will be recognized as a
complete run, so will not have to be repeated in the full optimization run.

3.4. Restarting — Clean from Current Iteration

If the user wants to restart an existing optimization run from a specified iteration, the “Clean - Clean from
Current Iteration [iter]” feature can be used.

The current iteration is specified by the selection of the iteration number (using up/down arrows) in the
iteration icon located in the control bar. It is important to note that the clean option removes all simulation
data as well as optimization data from the specified iteration onwards.

The task is restarted by selecting “Normal Run” from the run menu.

3.4.1. Augmentation of an existing design

To retain existing (expensive) simulation data in the optimization process, it is advantageous to be able to
augment an existing metamodel with additional sampling points and simulations. In this manner, new
simulations can be added to old simulations to obtain a more accurate metamodel. This is performed by
increasing the number of sampling points in the Sampling dialog and restarting e.g. the metamodel-based
optimization.

When running the optimization, the experimental design table will be augmented, the additional simulations
will be executed, a new metamodel will be constructed and a new predicted optimum will be computed.
Note that if a verification run was previously calculated (e.g. Simulation 2.1), the Clean option Clean from
current iteration [2] should be used before restarting in order to replace the verification run in directory 2.1.

3.5. Repair or modification of an existing job

Several types of repairs and modifications are possible for an existing optimization iteration or a
probabilistic analysis. The repair depends on the status of the LS-OPT database files as described in
Appendix E: Database Files.

Repair tasks can be executed globally or locally on individual Stages or Samplings.
o0 Global repair can be executed using the Repair option under Tools (available in the control bar).

0 Local repair tasks are executed by right clicking on the relevant step (Stage or Sampling) in the main
GUI window.

The available repair tasks are:

0 Add points. Points are added to the existing sampling. This option is only available for the following
sampling types: D-Optimal, space-filling, and Latin Hypercube. The D-Optimal and space-filling
samplings will augment the previously computed points. The Latin Hypercube experimental design
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points will be computed using the number of previously computed points as a seed to the random
number generator. If the database for the experimental design (Experiments_n.csv file for
iteration n) does not exist, new points will be created.

0 Read points. The Experiments_n.csv file is reconstructed from the data in the XPoint
database files in the run directories.

Import results. Import results from a .csv (comma separated variables) file (see Section 8.5.3).
Run Jobs. The stage jobs will be scheduled. Designs previously analyzed will not be analyzed again.

Rerun failed jobs. The jobs that failed to run will be resubmitted. The stage input files used will be
regenerated from the files specified for the respective stage. If multiple stages are defined in the
process chain, all stages will be rerun.

0 Extract Results. The results will be extracted from the runs for all stages. This option also allows the
user to change the responses for an existing iteration or Monte Carlo analysis.

0 Build Metamodels. The metamodels will be built. This option also allows revision of the
metamodels for an existing iteration or Monte Carlo analysis. The “ExtendedResults” file will be
updated. Metamodels can for instance be built from imported user results (see section on Import
results above).

o0 Evaluate Metamodels. Create a table with the error measures of a given set of points (Section 8.5.2)
or create a table (.csv file) with response values interpolated from a metamodel (Section 7.5.1).

0 Optimize. The metamodels are used for metamodel optimization. A new optimum results database is
created. The “ExtendedResults” file will be updated. The optimization history database is deleted so
the history will not be displayed in the Viewer.

Remarks:

1. All the subsequent operations must be explicitly performed for the iteration. For example,
augmenting an experimental design will not cause the jobs to be run, the results to be extracted, or
the metamodels to be recomputed. Each of these tasks must be executed separately.

2. After repair of iteration n, and if the user is conducting an optimization task, verification runs of the
optimized result must be done by switching back to the Metamodel-based optimization task and
specifying the starting iteration (for a clean start) as n+1. If n+1 was a full iteration (not just a
verification run), it also has to be repaired.

3.6. Archive LS-OPT Database

Using the Archive LS-OPT Database option in the Tools menu, the database can be gathered up and
compressed in a file called Isopack.tar.gz (Isopack.zip on Windows) after completing the run.
The packed database is suitable for post-processing on any computer platform.
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P

oF Pack database 3]

[] Include Histories and Responses
[ ] Include Input Deck/Extra Input Files

Additional Files To Pack

Filename

Browse Add manually Delete

Cancel Create Archive

Figure 3-6: Dialog to specify options for archive LS-OPT database

By default, the files generated by LS-OPT in the working directory and the stage and sampling directories
are gathered, the run directories are omitted.

More sophisticated options are available to also gather the history and response files residing in the run
directories and all input files. The history/response files (e.g. history.0, etc.) are required to view history
plots using the DynaStats tool. The inclusion of both histories and input decks results in
Isopack_h_i.tar.gz (Isopack_h_i.zip in Windows).

The history/response files are not required for any of the Viewer functions since this data is available in the
AnalysisResults_n.lIsox fileincluded in the basic archiving selection.

Table 3-5: Archive LS-OPT database options

Option Description
Include Histories and Also gather the history and response files residing in the run
Responses directories. The file produced is Isopack_h.tar.gz

(Isopack_h.zip in Windows). History and response files are
only required for the use of DynaStats.

Include Input Deck/Extra Input ~ Various input files and other files required to run the LS-OPT job
Files seamlessly are added to the packed database file. The file produced
is Isopack_i.tar.gz (Isopack_1i.zip in Windows).

Additional Files to Pack List of additional files to pack. Files may be added by browsing or
manually.
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4. Task Dialog — Selecting a Task
and Strategy

This chapter explains the available design tasks and strategies.

4.1. Task selection

The Task dialog allows the selection of a task and, for an optimization task, the optimization strategy. The
two basic branches are Metamodel-based and Direct optimization methods (Figure 4-1). The method
selections can be made in the GUI using the Show task settings icon in the control bar in the top menu bar of
the main GUI window. The available tasks and options are listed in Table 4-1.

- Task selection =)

Main task
Metamodel based

@ |Optimization

() DOE-study

) Monte Carlo analysis
~ RBDO

Direct simulation

() Optimization

() Monte Carlo analysis

Strategy for Metamodel-based Optimization
@ Single lteration

) Sequential

() Sequential with Domain Reduction (SRSM)
1. Sampling and optimization are done

in a single iteration.
2. Suitable for global design exploration.

[ Global Sensitivities

[] Do verification run

Figure 4-1: Task and Strategy selection
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Table 4-1: Task selection options

Option Description Reference
Metamodel based (1) Optimization ~ Optimization using meta-models Section 4.2
(2) DOE-study DOE study using meta-models Section 4.3
(3) Monte Carlo Monte Carlo analysis using meta-models Section 4.5.2
analysis
(4) RBDO Reliability based design optimization using Section 4.6
meta-models
Direct simulation (5) Optimization  Direct optimization using the Genetic Section 4.4
Algorithm
(6) Monte Carlo Direct Monte Carlo analysis Section 4.5.1
analysis
Strategy for Single Iteration Sampling and optimization are done in a Section 4.7.1
Metamodel based single iteration. Suitable for global design
optimization exploration.
(Available for Main
Task 1 and 4) Sequential Sampling points are added sequentially in ~ Section 4.7.2
the full design space. Suitable for global
design exploration.
Sequential with Sampling points are added sequentially in ~ Section 4.7.3
Domain an adaptive subregion. Metamodel
Reduction optimization is done at each iteration and is
limited to the current subregion. Suitable
for finding a converged solution. Generally
unsuitable for global exploration.
Available for Main ~ Global Option to calculate Global Sensitivitieson  Section 4.10
Task 1, 2, 3, 4. Sensitivities the metamodel.
Available for Main Do verification Run an additional simulation using the Section 4.11
Task 1 and 4 run parameter values of the predicted
optimum. Multiple simulations can be run
for Multi-Objective optimization problems.
Available for global  Create Pareto Option, for Multi-Objective Optimization  Section 4.9
strategies with Optimal Front problems, to create Pareto optimal
multiple objectives. solutions instead of a single optimum.
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4.2. Metamodel based optimization

Metamodel-based optimization is used to create and optimize an approximate model of the design instead of
optimizing the design through direct simulation. The metamodel is thus created as a simple and inexpensive
surrogate of the actual design. Once the metamodel is created it can be used to find the optimum or, in the
case of multiple objectives, the Pareto Optimal Front. The basic steps are as follows:

1. Point selection

2. Run the simulations

3. Build the metamodels

4. Execute the metamodel optimization

4.3. DOE study

A DOE study is also a metamodel-based method used to explore the design space or to calculate
sensitivities. The DOE study has three steps:

1. Point selection
2. Run the simulations
3. Build the metamodels

4.4. Direct optimization

Direct optimization uses only simulation results to find the optimal values using a Genetic Algorithm.

Note that the choice of the Direct Optimization (Direct Genetic Algorithm) may require a large number of
simulations.

4.5. Probabilistic Analysis Tasks

This category of probabilistic tasks deals with the study of the effect of design parameter uncertainties on
the responses. The goal is to obtain the statistics of response variations caused due to the uncertainties in a
given design as well as the probability of failure for that design. Any probabilistic task requires the
definition of random variables associated with distributions (Section 7.1.4). The point selection scheme for a
probabilistic analysis depends on whether it is direct or metamodel-based (Section 12.4, Section 12.5). More
specific details about the available probabilistic analysis tasks are provided in Section 12.4 and Section 12.5
Two probabilistic analysis tasks are currently available in LS-OPT - Direct Monte Carlo Analysis and
Metamodel-based Monte Carlo Analysis.

4.5.1. Direct Monte Carlo Analysis

Sampling is based on the distribution of random variables (Section 12.3). No metamodel is constructed to
perform this task.
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4.5.2. Metamodel-based Monte Carlo Analysis

Sampling is not based on the distribution of random variables (Section 12.3). Statistics are calculated based
on metamodel approximations.

4.6. RBDO/Robust Parameter Design (Probabilistic Optimization Task)

This task allows one to perform an optimization under the effect of uncertainties. Considering the effect of
uncertainties can be important to avoid unforeseen failure of the design due to variations of loading
conditions, manufacturing process etc. In reliability-based design optimization (RBDO), a target probability
of failure (typically small) is defined for the constraints to ensure that the optimal design cannot have a
higher failure probability. In robust design, an optimal design is searched such that it is insensitive to
uncertainties in certain design parameters. More specific details about the available probabilistic analysis
tasks are provided in Section 12.6. The difference with deterministic optimization lies in the definition
variables that are associated with probabilistic distributions, as well as in the definition of objectives (robust
design) and constraints (RBDO).

4.7. Selecting strategies for metamodel-based optimization

In this section different strategies for building a metamodel are discussed. The strategies depend mostly on
whether the user wants to build a metamodel that can be used for global exploration or whether he is only
interested in finding an optimal set of parameters. An important criterion for choosing a strategy is also
whether the user wants to build the metamodel and solve the problem iteratively or whether he has a
"simulation budget"” i.e. a certain number of simulations and just wants to use the budget as effectively as
possible to build a metamodel for improving the design and obtaining as much information about the design
as possible.

There are three available strategies for automating the metamodel-based optimization procedure. These
strategies only apply to the tasks Metamodel-based Optimization and RBDO, Table 4-1. In the GUI, the
strategies are selected in the "Task selection” dialog (Figure 4-1). The available optimization strategies are

1. Single Stage,
2. Sequential and
3. Sequential with Domain Reduction (SRSM).

A strategy selection resets the Sampling Dialog (a warning is given!) with recommended selections for
Metamodel type and Point selection scheme, see Chapter 8 .

The strategies are discussed one by one in the following sections.

4.7.1. Single iteration

In this approach, the experimental design for choosing the sampling points is done only once. The
metamodel selection defaults to Radial Basis Function Networks with Space Filling as the sampling scheme.
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4.7.2. Sequential strategy

In this approach, sampling is done sequentially. A small number of points is typically chosen for each
iteration and multiple iterations can be requested in the “Termination Criteria” dialog, Chapter 11. The
approach has the advantage that the iterative process can be stopped as soon as the metamodels or optimum
points have achieved sufficient accuracy.

The default settings for sampling follow below (see Sampling dialog, Chapter 8):
1. Radial Basis Function networks
2. Space Filling sampling.
3. The first iteration is Linear D-Optimal.
4

. Choose the number of points per iteration to not be less than the default for a linear approximation (
1.5(n+1) +1) where n is the number of variables.

It was demonstrated in Reference [16] that, for Space Filling, the Sequential approach had similar accuracy
compared to the Single Stage approach, i.e. 10 x 30 points added sequentially is almost as good as 300
points. Therefore both the Single Stage and Sequential methods are good for design exploration using a
metamodel. Both these strategies work better with metamodels other than polynomials because of the
flexibility of metamodels such as RBF's to adjust to an arbitrary number of points.

4.7.3. Sequential strategy with domain reduction

This approach is the same as that in section 4.7.2 but, in order to accelerate convergence, the domain
reduction strategy is used to reduce the size of the subregion. During a particular iteration, the subregion is
used to locate new points. This strategy is typically only used for optimization in which the user is only
interested in the final optimal point (such as parameter identification) and not in any global exploration of
the design.

The default domain reduction approach is SRSM which is the original LS-OPT design automation strategy.
It allows the building of a new response surface (typically linear polynomial) in each iteration. The size of
the subregion is automatically adjusted for each iteration (see Section 22.6) and points belonging to previous
iterations are ignored. This method is only suitable for convergence to an optimum, it cannot be used to
construct a Pareto Optimal Front, since this needs a global approximation, and is not recommended for any
other type of design exploration. The method is ideal for system identification (see Section 23.3).

The default settings for sampling are listed below (see Sampling dialog, Chapter 8):
1. Linear polynomial
2. D-optimal sampling
3. Default number of sampling points based on the number of design variables.

4.8. Domain reduction in metamodel-based optimization
The Domain reduction dialog is displayed in Figure 4-2.

Table 4-2 describes the options.
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[ Domain reduction @
RESTART SETTINGS SRSM PARAMETERS

[] Reset to Initial Range on lteration = Proximity Zoom parameter

] Freeze Range from iteration |.':'-'55I (default) |

Oscillation Contraction parameter

|:D.6 (default) |

Panning Contraction parameter

|.1 (default) |

Figure 4-2: Domain reduction dialog

Table 4-2: Restart Settings and Subdomain parameters
Option Description Reference
Reset to Initial Range on Resetting the subdomain range to the initial range for ~ Section 4.8.1
Iteration a specified iteration.
Freeze Range from lteration Freeze the subdomain range from a specified Section 4.8.1

iteration

Panning Contraction parameter .., Section 4.8.2
Oscillation Contraction Yosc Section 4.8.2
parameter
Proximity Zoom parameter Zoom parameter n Section 4.8.2

4.8.1. Changing the behavior of the subdomain

Resetting the subdomain range

It is possible to reset the subregion range to the initial range, e.g. for adding points in the full design space
(or any specified range around the optimum) after an optimization has been conducted. This feature is
typically only used in a restart mode. The GUI option is "Reset to Initial Range on Iteration™ (Figure 4-2).

The point selection of the specified iteration will be conducted in the initial range around the most recent
optimum point. Full adaptivity will be applied again starting with the next iteration.
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Freezing the subdomain range

This feature allows for points to be added without changing the size of the subregion. Adaptivity can be
frozen at a specified iteration number. The GUI option is "Freeze Range from iteration™ (Figure 4-2).

Adaptivity will be applied up to the previous iteration. Therefore the specified iteration and higher will have
the same range (although the region of interest may be panning). The flag is useful for adding points to the
full design space without any changes in the boundaries.

4.8.2. Setting the subdomain parameters*

To automate the successive subdomain scheme for SRSM, the size of the region of interest (as defined by
the range of each variable) is adapted based on the accuracy of the previous optimum and also on the
occurrence of oscillation (see theory in Section 22.6).

The following parameters can be adjusted in the GUI, Figure 4-2. The options are described in Table 4-2
(refer also to Section 22.6). A suitable default has been provided for each parameter and the user should not
find it necessary to change any of these parameters.

4.9. Create Pareto Optimal Front

This option is only available if multiple objectives are defined. If Create Pareto Optimal Front is selected,
multiple Pareto optimal solutions are calculated instead of a single optimum, see Section 22.9.2. If a
metamodel-based method is used, selection limits the available strategy options to the global strategies
Single Stage and Sequential, see Section 4.7.2 and 4.7.3, and resets the optimization algorithm used on the
metamodel to Genetic Algorithm, because this is the only algorithm that has the capability to calculate
Pareto optimal solutions.

4.10. Global sensitivity analysis

While the ANOVA (Analysis of Variance, Section 20.4) is a very popular method to assess the contribution
of different regression terms, Global Sensitivity Analysis (Sobol’s method, based on ANOVA) is widely
used to study the importance of different variables for higher order models. In this method, a function is
decomposed in the sub-functions of different variables such that the mean of each sub-function is zero and
each variable combination appears only once. Then, the variance of each sub-function represents the
variance of the function with respect to that variable combination. The theory of the Sobol’s method is
described in Section 24.7.2. The global sensitivity analysis is carried by selecting the appropriate flag
(Global Sensitivities) in the Task dialog, Figure 4-1. The selection requires the user to specify the number of
Monte-Carlo integration points required to compute sensitivities as suggested by Sobol. The sensitivity
indices are stored in the Sobol_GSA.* XML database file in the work directory.

Remarks:

1. In LS-OPT, global sensitivities are evaluated on the metamodels, hence the accuracy depends on the
quality of the metamodel.
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2. The sensitivities are calculated within the subregion bounds of the variables, i.e. the region adapts
itself to the “important” region in the case of domain reduction strategy. However, additional
sampling constraints are not considered while calculating the sensitivities.

3. The analytical equations are used to compute sensitivities for polynomials and Gaussian radial basis
function metamodels.

4. The composite expressions are always evaluated using the Monte-Carlo integration.

The default number of sampling points for Monte-Carlo integration is 10000. This number should be
increased for better accuracy of sensitivity coefficients.

4.11. Verification runs
After the last full iteration a verification run of the predicted optimal design is executed. This run can also
be omitted if the user is only interested in the prediction of the optimum using the metamodel.

The verification run options can be edited in the GUI either in the Task dialog or using the “Add ...” menu
option in the control bar.

For multi-objective optimization problems, multiple verification runs can be done. A discrete Space Filling
algorithm is used to select Pareto Optimal points which are evenly distributed in the design space.

The number of verification runs can be set in the GUI using the Verification Run box.
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Solver

This chapter describes how to interface LS-OPT with simulation packages, parametric preprocessors or
postprocessors. Standard interfaces as well as interfaces for user-defined executables are discussed.

The main entity discussed here is the Stage dialog which allows the user to define a step in the simulation
process.

5.1. Introduction
Since an executable program is considered to be a key part of the stage definition it is often simply referred
to as the solver. Therefore, in addition to its normal meaning as a program to, for instance, solve a physics

problem, it can also refer to a pre- or postprocessor or any other executable program or script that is
essential to the execution or management of a step within a simulation process.

5.2. General Setup

Figure 5-1 shows the general setup dialog for a Stage in the process. The options are described in Table 5-1.
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Table 5-1: Stage dialog Setup options: General options

Option Description Reference

Package Name The following software package identifiers are available:
LS-DYNA Section 5.3.1
MSC-NASTRAN Section 5.3.2
ANSA Section 5.3.6
LS-INGRID Section 5.3.4
LS-PREPOST Section 5.3.3
HyperMorph Section 5.3.7
TrueGrid Section 5.3.5
META Post Section 5.3.8
User-Defined Section 5.3.9

User-Defined Postprocessor

Section 5.3.10

Command Command to execute the solver. Section 5.2.1
Do not add input file  Prevents LS-OPT from appending a standard input deck name  Section 5.2.1
argument to the execution command during run-time.
Input File Parameterized input file for the preprocessor or solver. The Section 5.2.2
specification of an input file is not required for a user-defined
solver. The parameterization of the input file is explained in
Section 5.2.3.
(n includes) LS-OPT displays the number of include files parsed for Section 5.3.1
parameters and copied to the run directories. A list containing
the include file names is accessible by clicking on the
hyperlink.
Name of standard Default standard input deck name depending on package. This  Section 5.2.1
input deck can be edited in case another file name is required. Changes
are only required in exceptional cases.
Extra input files A list of extra input files can be provided. The files are copied  Section 5.2.2
to the run directories from any user-defined source directory.
Parameter values are substituted by default, but parsing can be
omitted.
LS-DYNA Include files do not have to be specified as they are
automatically and recursively searched by LS-OPT when
LS-OPT Version 5.0 40



CHAPTER 5: Stage Dialog — Defining the Solver

given the name of the main input file.

Model Database ANSA binary database file, typically with the extension .ansa  Section 5.3.6
(ANSA)
Output File HyperMorph: nodal output file produced by Templex Section 5.3.7
(HyperMorph, META: output file used for parsing the history and response Section 5.3.8
HETA) names
Session file (UETA)  File containing information about which results to extract Section 5.3.8
LS-DYNA Advanced interfacing options for LS-DYNA. Section 5.3.1
Advanced Options

& Stage T &

Setup | Parameters | Histories | Responses | File Operations

General

Package Name| LS-DYNA < |

Command[lsg?l_single ” Browse |

[[] Do not add input file argument

Input File [main.k ” Browse |

copies main.k and 2 includes to 1/it.run/| DynaOpt.inp ]
and substitutes parameters

[] Extra input files

LS-DYNA Advanced Options

Execution
Resources
Resource Units per job Global limit Delete

Create new resource

[ |Use Queuing
[] Use LSTCWM proxy

] Environment Variables

Figure 5-1: Stage dialog Setup panel

LS-OPT Version 5.0 41



CHAPTER 5: Stage Dialog — Defining the Solver

5.2.1. Command

The command to execute the solver must be specified. The command depends on the solver type and can be
an executable program or a script. Since a standard input deck name (also called the base file name) is
automatically appended during run-time the solver input file name argument should be omitted by default.
See respective package interface sections for details. In the case of the standard solvers, the appropriate
syntax is automatically used (e.g. 1=DynaOpt.inp for LS-DYNA). The execution command may
include any number of additional arguments.

The base file name can be changed. This is useful when the ouput file of one stage becomes the input of the
dependent stage (see Section 5.8).
Remarks:

1. The command must be specified in one of the following formats:

o0 Browse. If browsing the project directory or a directory relative to the project directory, LS-OPT
automatically prepends the project directory environment ${LSPROJHOME} to the execution
command.

Absolute path, e.g. "/origin/users/john/crash/runmpp"

If the executable is located in a directory which is in the execution path, the command can be
specified using only the name of the respective executable, e.g.:

0 1s971_single

2. Linux: Do not specify the command nohup before the solver command and do not specify the
UNIX background mode symbol &. These are automatically taken into account.

3. Linux: The command name must not be an alias.
4. Windows: A path to a program or file cannot contain any blanks or - (dash) symbols.

5.2.2. Input Files

LS-OPT handles two main types of solver input files, namely
1. the main input file and
2. extrainput files.

LS-OPT converts the input template to an input deck for the preprocessor or solver by replacing the original
parameter values (or labels) with new values determined by the sampling procedure. The specification of an
input file is not required for a user-defined solver.

For LS-DYNA and most of the preprocessor interfaces, LS-OPT automatically searches for include files
specified in the main input file, see Table 5-2. Include files can be specified recursively, i.e. there can be
include file specifications in include files.

Input files are copied to the run directories, parsed to substitute parameter values and renamed. Each stage
type has its own standard input file name, e.g for LS-DYNA, the file is renamed to DynaOpt.inp. For remote
runs, input files are automatically transmitted to a computer cluster.
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A record of the specified input files and parameters is displayed in the GUI but can also be checked in the
Isopt_input file.

Extra input files

Extra files can be added for copying to run directories and substituting variables, Figure 5-2. For remote
runs, extra input files are automatically transmitted to a computer cluster.

The files can be placed in any directory and are copied to the run directories during the setup phase.
Parameters can be specified in the extra files using the native format (e.g. *PARAMETER for LS-DYNA) or
the generic LS-OPT format (<<parameter>>), see Section 5.2.3. LS-OPT will automatically parse the
files for variable names and list them on the Parameters page and in the Setup dialog as constants. The
user can then change them to variables.

If the user wants a file to be copied to the run directories, but not parsed for parameters, parsing can be
switched off using the Skip Parse checkbox. This feature is typically used to move binary files to the run
directories.

Extra input files

Filename Skip Parse Delete
|.extraﬁ|e_f32_l | O x
|:E>-:tra,-'e>-:traﬁ|e_G2_3 | ] x
|.Extra,-'extraﬁ|e_G2_2 | O x

Add file by browsing Add file manually

Figure 5-2: Definition of Extra Input Files

Note that LS-DYNA include files do not have to be specified as extra files, since these are automatically
processed. However, if the wuser has parameters in include files with a relative (e.g.
MyFiles/geometry.inc) or absolute path (/home/jo/LSOPT/MyFiles/Material59.1nc),
these include files must be specified as extra input files in order to force copying to the run directory. The
path option is mainly used to prevent the copying (and hence duplication) of very large files.

*INCLUDE specifications pertaining to extra files should not include any path specifications since the files
are automatically copied to the run directory and will reside together with the main input file.

5.2.3. Parameterization of Input Files

For all stage types, input files can be parameterized using the LS-OPT parameter format, Section 5.2.4. For
the packages listed in Table 5-2, LS-OPT supports native parameters, see the respective package interface
section for details.

LS-OPTui will automatically recognize the native and LS-OPT parameters for the formats indicated in the
table and list them on the Parameters panel, Figure 5-3. Parameters found in input files are also displayed
as ‘Constants’ in the Setup dialog ‘Parameter Setup’ panel. The user can then change these constants to
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variables or dependents. The parameter names cannot be changed in the GUI so, if desired, must be changed
in the original input file(s). A lock icon adjacent to the variable name indicates that the parameter names

were imported from the input or include files.

Table 5-2: Parameters and include files

Native parameters  LS-OPT Parameter Include files
Package recognized in input  Format recognized  recognized in input  Reference
file (see Section 5.2.3) file

LS-DYNA® Yes Yes Yes Section 5.3.1
LS-PREPOST® Yes Yes Yes Section 5.3.3
MSC- Yes Yes No Section 5.3.2
NASTRAN'

ANSA? Yes Yes Yes Section 5.3.6
HyperMorph?® Yes Yes No Section 5.3.7
TrueGrid* No Yes Yes Section 5.3.5
LS-INGRID No Yes Yes Section 5.3.4
User-defined N/A Yes No Section 5.3.9

! Registered Trademark of MSC Software, Inc.
2 BETA CAE Systems S.A.

® Registered Trademark of Altair Engineering, Inc.

* Registered Trademark of XYZ Scientific Applications, Inc.
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™ Stage CRASH &)
Setup | Parameters | Histories Responses | File Operations
Name Found in file(s)
cradle_rails taurus_mod.dyn
cradle_csmbr taurus_mod.dyn
shotgun_inner taurus_mod.dyn
shotgun_outer taurus_mod.dyn
rail_inner taurus_mod.dyn
rail_outer taurus_mod.dyn
aprons taurus_mod.dyn
Add
oK

Figure 5-3: Parameter panel: list of parameters found in stage input files

The “include’ files are also scanned wherever this feature is available making it nonessential to define extra
files. Include files which are specified with a path, eg. “../../car5.k” or
“/home/jim/ex4a/car6 .k’ are not copied to the run directories and no parameter substitutions will be
made in these files. This is solely to prevent unnecessary file proliferation. The user must however ensure
that files, which are to be distributed to remote nodes through a queuing system (see Appendix H.3 ,Remote
job scheduling), do not contain any path specifications. These files are automatically transmitted to the
relevant nodes where the solver will be executed. See also Section 5.3.1.

If parameters are specified in include files with path specifications, these files should be specified as extra
files if the user wants them to be parsed and copied to the run directories, Section 5.2.2.

The LS-OPT parameter format described next is recognized in all types of input files.

5.2.4. The LS-OPT parameter format

LS-OPT provides a generic format that allows the user to substitute parameters in any type of input file. The
parameters or expressions containing parameters must be labeled using the double bracketed format
<<expression:[1]Ffield-width>> in the input file.

The expression field is for a FORTRAN or C type mathematical expression that can incorporate constants,
design variables or dependents. The optional 1 character indicates the integer data type. The field width
specification ensures that the number of significant digits is maximized within the field width limit. The
default field width is 10 (commonly used in e.g. LS-DYNA input files). E.g. a number of 12.3456789123
will be represented as 12.3456789 and 12345678912345 will be represented as 1.23457e13 for a
field-width of 10.

A field width of zero implies that the number will be represented in the “%g” format for real numbers or
“0o0d” format for integers (C language). For real numbers, trailing zeros and a trailing decimal point will
not be printed. This format is not suitable for LS-DYNA as the field width is always limited. Real numbers
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will be truncated if specified as integers, so if rounding is desired the “nearest integer” expression should be
used, e.g. <<nint(expression)>>.

Examples

Inserting the relevant design variable or expression into the preprocessor command file requires that a
preprocessor command such as

create fillet radius=5.0 line 77 line 89

be replaced with

create fTillet radius=<<Radius*25.4:0>> line 77 line 89

where the design variable named Radius is the radius of the fillet and no trailing or leading spaces are
desired. In this case, the radius multiplied by the constant 25.4 is replaced. Any expression can be specified.
An alternative option would be to specify:

create fillet radius=<<Radius scaled:0>> line 77 line 89

while specifying the dependent Radius_scaled as a function of independent variable Radius, such that
Radius_scaled = Radius * 25.4 . This specification is done in the ‘Setup’ dialog.

Similarly if the design variables are to be specified using a Finite Element (LS-DYNA) input deck then data
lines such as
*SECTION_SHELL

1, 10, , 3.000
0.002, 0.002, 0.002, 0.002

can be replaced with

*SECTION_SHELL
1, 10, , 3.000
<<Thickness_3>>,<<Thickness_3>>,<<Thickness_3>>,<<Thickness_3>>

to make the shell thickness a design variable.

An example of an input line in a LS-DYNA structured input file is:

* shfact z-integr printout quadrule

.05.01.0 .0

* thicknl thickn2 thickn3 thickn4 ref.surf

<<Thick 1:10>><<Thick_1:10>><<Thick 1:10>><<Thick 1:10>> 0.0

The field-width specification used above is not required since the default is 10. Consult the relevant User’s
manual for rules regarding specific input field-width limits.

5.2.5. System variables

System variables are internal LS-OPT variables. There are two system variables, namely iterid and
runid. iterid represents the iteration number while runid represents the run number within an
iteration. Hence the name of a run directory can be represented by: iterid.runid. System variables are
useful for using files such as postprocessing files that were already created in an earlier stage, but which are
re-used in the current stage. An LS-DYNA example of using system variables is as follows:

*INCLUDE
../ ../Casel/<<iterid:i10>>_<<runid:i10>>/frontrail .k
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After substitution the second line might become:
../../Casel/1._13/Ffrontrail .k

so that the current stage will always include the file in the corresponding directory in Casel.

The 10 format forces an integer specification (see Section 5.2.4 for a more detailed description).
Unfortunately the feature cannot be used with LS-DYNA *PARAMETER parameters.

In an alternative, simpler approach to achieve similar efficiency, LS-OPT also allows pre-processing as a
first Stage of a process to generate a set of solver input files. This single Stage can be followed by multiple
parallel simulation Stages using the same files. These files are copied from the preprocessing Stage to the
simulation Stages. See Section 3.2.2.

5.3. Package Interfaces

5.3.1. LS-DYNA

The file DynaOpt. inp is created from the LS-DYNA input template file. By default, LS-OPT appends
1=DynaOpt. inp to the solver command. Parameterization of the input file can be done using the LS-OPT
parameter format or the *PARAMETER keyword. Include files in input files are recognized and parsed, see
below for further information.

The LS-DYNA restart command will use the same command line arguments as the starting command line,
replacing the i=input file with r=runrst.

The *PARAMETER format

This is the recommended format. The parameters specified under the LS-DYNA *PARAMETER keyword
are recognized by LS-OPT and will be substituted with a new value for each of the multiple runs. These
parameters should automatically appear in the Parameter list of the GUI upon specification of the solver
input file name. LS-OPT recognizes the “1” and “r” formats for integers and real numbers respectively and
will replace the number in the appropriate format. Note that LS-OPT will ignore the
*PARAMETER_EXPRESSION keyword so it may be used to change internal LS-DYNA parameters
without interference by LS-OPT.

For details of the *PARAMETER format please refer to LS-DYNA User’s Manual.

LS-DYNA include files

The handling (parsing, copying and transmitting) of include files by LS-OPT is automated. The following
rules apply:

1. Include files may also contain parameters and are also parsed and copied (or transmitted) if the
include file is specified in the keyword file without a path, for example:

*INCLUDE

input.k
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2. If a path is specified for an include file, e.g.

*INCLUDE

C:\path\myinputfiles\input.k
the file will not be copied, parsed or transmitted.

3. If the main input file is placed in a subdirectory of the main working directory and is specified with a
relative path, e.g. myinputfiles/input._k, the directory (in this case myinputfiles)
becomes a file environment for any include files which may also be placed in this directory.
Therefore all include files specified without a path will automatically be copied (or transmitted) from
this sub-directory (my inputfi les) to the run directories.

LS-DYNA/MPP

The LS-DYNA MPP (Message Passing Parallel) version can be run using the LS-DYNA option in the
”Stage” dialog of LS-OPTui. The following run command is an example of how an MPP command can be
specified:

mpirun -np 2 Isdynampp
where Isdynampp is the name of the MPP executable.

LS-DYNA Advanced Options

LS-DYNA advanced options are available in the Stage dialog by selecting the LS-DYNA Advanced Options
button, Figure 5-4.

LS-DYNA Options L5-DYNA Advanced Options
Do Basic Check for Missing *DATABASE Cards

[] d3plot compress

[[] d3plot Part Extraction File

[[] d3plot Reference Node File

Reset

Figure 5-4: Stage Setup LS-DYNA advanced options
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Table 5-3: LS-DYNA Advanced Options

Option Description

Do Basic check for Missing Check if the required binout data types and the required nodes and/or
*DATABASE Cards elements are requested in the LS-DYNA input deck. For further
details, see below.

d3plot compress* Compress the d3plot database. All results except displacements,
velocities, and accelerations will be deleted.

d3plot Part Extraction File*  Write the results for a user selected set of parts. A file specifying the
list of parts to be included/excluded is required. The file consists of
multiple lines with a single entry per line. The syntax of the file is:

id includes the part with id,
id1-id2 includes the parts from id1 to id2,

—id excludes the part with id. Only parts included with id or id1-id2
can be excluded.

For example: 5
7-20
-9.

d3plot Reference Node File*  Transforming the results to a local coordinate system specified by
three nodes. The first node is the origin and the other two nodes are
used to define the coordinate systems. The coordinate system moves
with the nodes. A file specified the three nodes consisting of a single
line is required. An example of the possible contents of the file:

1001 1002 1003.

* Remarks
1. Altering the d3plot databases does not work with adaptivity.

2. The *DATABASE_EXTENT_BINARY option in LS-DYNA also allows control over the size of the
d3plot databases

Checking the *DATABASE cards

LS-OPT can perform some basic checks of the *DATABASE cards in the LS-DYNA input deck. The
checks will be done using the input deck of the first run of the first iteration. The items checked are:

1. Whether the required binout data types are requested in the LS-DYNA input deck. For example, if
LS-OPT uses airbag data, then the LS-DYNA deck should contain a *DATABASE_ABSTAT card
requesting binout output.
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2. Whether the required nodes and/or elements are requested in the LS-DYNA output. For example, if
the LS-OPT output request refers to a specific beam, then a * DATABASE_HISTORY_BEAM or a
*DATABASE_HISTORY_BEAM_SET card must exist and refer to the beam in question. Note
that *SET_option_ GENERAL or *SET_option_COLUMN card will not be interpreted and that an
output entity specified using *SET_option_GENERAL or *SET_option_COLUMN may be
flagged incorrectly as missing; switch off the checking in this case.

5.3.2. MSC-NASTRAN® (SOL 103)

The user can interface with the NASTRAN implicit solver (sol 103) for modal analysis by selecting the
MSC-NASTRAN option in the LS-OPTui. The command can either execute a command, or a script. The
substituted input file NastranOpt. inp will automatically be appended to the command or script.
Variable substitution will be performed in the input file (which will be renamed NastranOpt. inp.
The NASTRAN solver is required to generate a ‘N o r m a I’ termination command to standard output
at the end of simulation. This can be done by executing NASTRAN using a script with its last statement
being the command (see remark 2):

echo ’Normal’.

Remarks:

1. The NASTRAN solver must not be run in the batch mode. This can be done by specifying the
"batch=no" option with the NASTRAN command.

2. A’Normal Termina t i o n”statement mustbe issued after finishing the
NASTRAN job. This can be easily done by using the following script as the solver command:

/home/bin/nastran ’batch=no” $1

echo ’ Normal Termination’

3. Design Parameters: The design parameters can be specified using one of the following two options:
o defrepsym: The design variables can be specified using the

defrepsym varname default

statement. The design variable value is accessed using %varname%. The user must be careful to use
the appropriate fieldwidth permitted by NASTRAN. This is the preferred option.

0 The LS-OPT parameter format discussed in Section 5.2.3.

4. Creating the Database: In order to facilitate the creation of appropriate LS-OPT readable database,
the user must include the following DMAP code at the beginning of the input deck.

$ open the binary file
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ASSIGN OUTPUT4="nastEigout.op4” UNIT=39 UNFORMATTED DELETE $ binary
$

$ solver

SOL 103

DIAG 5, 6, 8, 56

$

$ Matrix manipulation

MALTER ~call modefsrs” $ after modes are calculated

LAMX, ,LAMA/LMAT/-1/0 $ convert eigenvalue table to matrix

MPYAD, MAA, PHA,/MTP/1 $ matrix multiplication

OUTPUT4 PHA, LMAT, MTP,,//-1/39///16 $ output desired matrices

The name of the output file (nastEigout.op4)and matrices (PHA, MAA, LMAT, MTP,...) must not
be changed for successful reading of the binary file.

5. Extracting data: To extract NASTRAN modal analysis results, the users must use Nastran-
Frequency type on the response panel instead of FREQUENCY type that is used for LS-DYNA.

5.3.3. LS-PREPOST

The file LsPrepostOpt.inp is created from the LS-PREPOST input template file. LS-OPT
automatically appends “—nographics c=LsPrepostOpt.inp 2> /dev/null > /dev/null” to the
command.

LS-PREPOST input file example with include:

testO1.cfile:

$# LS-PrePost command file created by LS-PREPOST 3.0(Beta) - 31Mar2010(17:08)
$# Created on Apr-06-2010 (13:42:14)

cemptymodel

openc command "‘paraOl.cfile”

genselect target node

occfilter clear

genselect clear

genselect target node

occFilter clear

genselect clear
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meshing boxshell create 0.000000 0.000000 0.000000 &size &size &size &num &num

&num

ac

meshing boxshell accept 1 1 1 boxshell
genselect target node

occfilter clear

refcheck modelclean 9

ac

mesh

save keyword "lsppout"

exit

para0l.cfile

parameter size 1.0
parameter num 2

5.3.4. LS-INGRID

The file ingridopt.inp is created from the LS-INGRID input template file. LS-OPT appends
automatically “i=ingridopt.inp —d TTY” to the command. Only the LS-OPT parameter format is

supported.

5.3.5. TrueGrid

The file TruOpt. inp is created from the TrueGrid input template file. LS-OPT appends automatically
“I=TruOpt.inp"” to the command. Only the LS-OPT parameter format is supported.

The TrueGrid input file requires the line:
write end

at the very end.

5.3.6. ANSA (BETA CAE Systems SA)

General

Package Namel AMNSA

A
'v'

Command |N~JSJ&

DV File |ansa_uariab|e_def.txt

|| Browse |
[] Do not add input file argument

|| Browse |
copies ansa_variable_def txt (0 includes) to Stagel/it. run/| ANSAOpt.inp |
and substitutes parameters
[] Extra input files

|| Browse

Model Database|data_base_name.ansa

Figure 5-5: Stage Setup for ANSA
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1. The ANSA preprocessor can be interfaced with LS-OPT allowing for shape changes to be specified.
Several files must be specified:

2. Command: ANSA executable, typically named ansa.sh. Do not use an alias.

3. DV File: ANSA Design parameter file, typically with the extension .txt or .dat. This file is generated
using ANSA and LS-OPT will read the ANSA design parameter names, types and values from this
file. If LS-OPT already has a design variable with the same name then this variable will be used to
drive the value of the ANSA parameter.

4. Model Database: ANSA binary database, typically with the extension .ansa.

ANSA can produce multiple output files. These files can be used as LS-DYNA input files or include files
(specified under *INCLUDE) in downstream stages. Make sure to specify the output files in the ANSA
optimization task without a path to generate them in the respective run directory.

5.3.7. HyperMorph

General
Package Mame| HyperMorph

<

Command |temp|ex | Browse

[] Do not add input file argument

Input Fle |.input.tpl | Browse

copies input.tpl to Stagel/it.run/ |H yperMorphOpt.inp |
and substitutes parameters

[ | Extra input files

Output File|n0des.include Browse

Figure 5-6: Stage Setup for HyperMorph
1. To allow the specification of shape variables, the geometric preprocessor HyperMorph® has been
interfaced with LS-OPT. Several files must be specified:
2. Command: templex command
3. Input file: At the top, the variables are defined as:

{parameter(DVAR1,""Radius_1",1,0.5,3.0)}
4. Output File: Templex produces a nodal output file, this file can e.g. be used as an include file in a
downstream stage.

The command will enable LS-OPT to execute the following command in the default case:
/origin 2/john/mytemplex/templex input.tpl > nodes.include

or if the input file is specified as in the example:

® Registered Trademark of Altair Engineering, Inc.
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/origin 2/user/mytemplex/templex a.tpl > h.output

Remarks:
1. LS-OPT uses the name of the variable on the DVARI line of the input file:

{parameter(DVAR1,""Radius_1",1,0.5,3.0)}

{parameter(DVAR2,"Radius_2",1,0.5,3.0)}

to replace the variables and bounds at the end of each line by the current values. This name, e.g.
Radius_1 is recognized by LS-OPT and automatically displayed in the ‘Setup’ dialog. The lower and
upper bounds (in this case: [0.5,3.0]) are also automatically displayed. The DVARI designation
is not changed in any way, so, in general there is no relationship between the number or rank of the
variable specified in LS-OPT and the number or rank of the variable as represented by i in DVARI.

5.3.8. uETA (BETA CAE Systems SA)

The uETA interface allows extraction of data from any database it supports, so makes LS-OPT accessible to
interface with any such supported solvers. This allows PETA to read results from the solver database and
place them in a simple text file.

General
Package Name| METAPost

<»

Command |r'-'1ETAP05t | Browse
Session File |sessi0nﬁle.txt | Browse
Output File |METAPost_resuIt5.txt | Browse
Database Fi|e|- N | Browse

Figure 5-7: MetaPost interface

1. Several files must be specified:
2. Command: The uETA executable

3. Session File: The session file containing information about which results to extract. This can be
created interactively using LETA.

4. Output File: This specification is only used for parsing the history and response names (to be
automatically displayed in the GUI) during the LS-OPT setup phase (see below). The output file
(result file) is the name of a file containing those results requested in the input (session) file. This is a
text file so it can be easily parsed. This file has a predetermined format so that LS-OPT can
automatically extract the individual results. The specified path + name is not used during the
optimization run, but only during the setup phase while the user is preparing the LS-OPT input data.
During this phase, the responses are parsed from a baseline result file and automatically displayed in
the "Histories™ and "Responses" pages of the GUI.
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5. Database File: This is the path for finding the solver database. The default "./" means that hETA will
look for the database locally. This specification has no effect during the optimization run as LS-OPT
will always force LETA to look for the solver database locally, e.g. in the run directory Stage_A/1.1.

Setting up an LS-OPT problem:

1. Run pETA and use the session file thus created to create the result file. This is done manually,
separately from the LS-OPT data preparation (an integrated feature might be provided in the future).

2. Open the LS-OPT GUI on the Stage dialog and select METAPost as the package name.

3. Specify the pETA settings in the LS-OPT GUI (see Figure 5-7). The user can browse for the uETA
executable, session file and result file. The result file is the one that was created in the manual step
(Step 1. above). The database path need not be changed.

4. The result file is parsed for history and response names to display in the relevant GUI pages. These
can then be used to complete the optimization problem setup: define composites, objectives and
constraints, etc.

5. After completion of the optimization setup, run LS-OPT.

5.3.9. User-defined program

A user-defined solver or preprocessor can be specified by selecting User-defined in LS-OPTui. The
command can either execute a command, or a script. The substituted input file UserOpt. inp will
automatically be appended to the command or script. Variable substitution will be performed in the input
file (which will be renamed UserOpt. inp). The specification of an input file is optional. In its simplest
form, the prepro own preprocessor can be used in combination with the design point file: XPoint to
read the design variables from the run directory.

If the own solver does not generate a ‘Normal’ termination command to standard output, the solver
command must execute a script that has as its last statement the command:

echo “Normal’.
5.3.10. User-defined post-processor

The postprocessor allows extraction of data from any database it supports, so makes LS-OPT accessible to
interface with any such supported solvers. This allows the postprocessor to read results from the solver
database and place them in a simple text file or files for individual extraction of results.

In the case of user-defined post-processor, the full command needs to be provided, because LS-OPT does
not internally construct the command using the input, database and result files. The output file needs to be
written in the same format as for the puETA package. The format is as follows:

#

RESPONSES

0, Weight, 0.591949043101576
1, StressL, 3.74281176328897
2, StressR, 1.99975762786926
END

#

HISTORY 99 : hisl

0,0
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0.0795849328001081,0.23516125192977
0.159169865600216,0.274354793918065
0.238754798400324,0.31354833590636
0.318339731200433,0.352741877894655
0.397924664000541,0.39193541988295
#

END

#

RESPONSES

END

#

HISTORY 100 : his2

0,0
0.0795849328001081,0.627096671812721
0.159169865600216,0.666290213801015
0.238754798400324,0.705483755789311
0.318339731200433,0.744677297777606
0.397924664000541,0.783870839765901
#

END

Setting up an LS-OPT problem is similar to ptETA, except that User-defined Postprocessor is selected as
the package, and the session file and database path need not be provided as the related information is
available in the command.

It is also possible to run uETA as a user-defined post-processor. In this case, the command provided in
“ful lcommandscript”is:

<metapost_executable> -b -s -foregr <path/sessionfile> '<database_path>"
"<path/result_file>"

Unlike in the case of UETA, the full command is not constructed internally by LS-OPT. Therefore,
metapost_executable, path/sessionfile, database path, and path/result file need to be provided in
fullcommandscript. Because all the information is available in the command, it is not necessary to
provide the input and database files separately in this case.

The output file name must however be specified for the following reason. The output file is parsed for
history and response names to import and display in the relevant GUI pages. These can then be used to
complete the optimization problem setup: define composites, objectives and constraints, etc.
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5.4. Solver Execution

|' = Stage Stagel 2]

Setup ‘ Parameters ‘ Histories I Responses I File Operations ‘

General
Package Name[ LS-DYNA < ]
Command[lsg? 1_single H Browse ]

[] Do not add input file argument

Input File [main.k H Browse ]

copies main.k (0 includes) to Stagel/it.run/| DynaOpt.inp l
and substitutes parameters

[[] Extra input files

LS-DYNA Advanced Options

Execution

Resources

Resource Units per job Global limit Delete

Create new resource

[] Use Queuing
[[] Use LSTCVM proxy

[] Environment Variables

[J Run Jobs in Directery of Stage

Figure 5-8: Stage dialog Setup panel
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Table 5-4: Stage dialog Setup options: Execution options

Option Description Reference
Resources Settings for concurrent processing Section 5.4.1
Use Queuing Interfacing with load sharing facilities to enable running Section 5.4.2

simulation jobs across a network.

Use LSTCVM Enabling LSTCVM, Secure Proxy Server, for distributing Section 5.4.3
proxy solver jobs across a computer cluster.

Environment Environment variables that will be set before executing a Section 5.4.4
Variables solver command.

Run jobs in If multiple stages are defined, the command can be executed in -

Directory of Stage the directory of another stage.

Recover Files List of files to be recovered from remote machine, only Section 5.4.5
available if a queuing system interface is used

5.4.1. Specifying Computing Resources for Concurrent Processing

Multiple resource limits can be defined for each stage. The resource attributes consist of Units per job as
well as the Global limit (see Figure 5-9). This feature is non-dimensional and therefore allows the user to
specify limits on any type of computing resource such as number of processors, disk space, memory,
available licenses, etc.

Example:

A user has 10,000 processors available and wants to execute an optimization run using MPP simulations
requiring 128 CPUs per job. She therefore specifies the units per job as 128 and the global limit as 10,000.
For this same optimization run, the user has 5,000Gb disk space available while using 40 Gb of disk space
per job (which is deleted after the completion of each job). A second resource therefore has to be specified
with attribute values 40 units per job and a global limit of 5,000. The resource setup is shown in Figure 5-9.
The job scheduler will launch jobs that will not exceed any of these two limits.

Resources

Resource Units per job Global limit Delete
DISK_SPACE 40 |/ 5000 E

CPU 128 || 10000 E

Create new resource

Figure 5-9: Definition of Resources for a Stage
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Resources must be defined at the Stage level, but can be viewed in the Resource tab of the Setup dialog (see
Section 7.4). The limits can be changed in either the Stage or Setup dialogs.

Stages can share resources. For instance, as part of an MDO problem, the same resource can be defined for
multiple stages.

When using multiple computer clusters, independent resources are typically defined for each cluster. Jobs
will then be run concurrently on all clusters within the limits defined for each cluster.

A single resource with a default of 1 Units per job and a Global limit of 1 is assumed for each stage at the
beginning of the creation process. The default name is the solver type name. That also implies that if
multiple stages use the same solver type, there will by default be only one resource definition. Resources
can then be added or deleted as desired. To change a resource name, a new resource has to be added and the
old resource deleted.

5.4.2. Interfaces to Queuing Systems

The LS-OPT Queuing Interface interfaces with load sharing facilities (e.g. LSF® or LoadLeveler’) to enable
running simulation jobs across a network. LS-OPT will automatically copy the simulation input files to each
remote node, extract the results on the remote directory and transfer the extracted results to the local
directory. The interface allows the progress of each simulation run to be monitored via LS-OPTui. See
Appendix H.5 for information on how to setup the interface.

® Registered Trademark of Platform Computing Inc.
" Registered Trademark of International Business Machines Corporation
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Table 5-5: Queuing options

Option Description Reference
LSF LSF

PBS PBS®

PBSPRO PBS PRO

SLURM SLURM

AQS AQS

LoadLeveler LoadLeveler

NQE NQE?®

NQS NQSlo

Black-Box Black box Appendix H.7
Honda dedicated queuer Appendix H.8
SGE SGE

User-Defined User Defined Appendix H.7

5.4.3. Using the LSTCVM secure proxy server

Selecting this option enables the interface to use LSTCVM. LSTCVM is a Secure Proxy Server for
distributing solver jobs across a computer cluster, e.g. for running LS-OPT on a Windows machine
controlling solver jobs on a Linux cluster. See Appendix H.10 for information on the installation of
LSTCVM.

® portable Batch System. Registered Trademark of Veridian Systems
® Network Queuing Environment. Registered Trademark of Cray Inc.
0 Network Queuing System
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5.4.4. Environment VVariables

Environment Variables

Name Value Delete

|.DYNA_E><PLICIT | |.fhomefbinf5ulversfmppdyna | %
Add manually Set by browsing Edit browse list

Figure 5-10: Definition of Environment Variables

LS-OPT provides a way to define environment variables that will be set before executing a solver
command. The desired environment variable settings can be specified in the Stage dialog if the Environment
Variables checkbox is selected.

Passing environment variables to stage commands can be a convenient way to control the behavior of a
command. For example, the command might be a script which queues a job on a remote machine; the
environment variable settings might be used by the script to select various queuing options. Or, the
environment variable settings might be passed along through the queuing system to set options for the
remotely executed job, such as license server locations, input file names, whether to run the MPP version of
LS-DYNA, whether to run a single or double precision solver, etc.

Select the button Add manually to define a single environment variable. After selecting this option, a new
line will appear in the Environment Variables list where you can enter the variable name and an arbitrary
value. We do not allow the names of variables to contain anything other than upper- or lower-case letters,
numbers, and underscore (_ ) characters. This guarantees that all environment variable definitions can be
used on all platforms. Variable values are not so limited.

The Set by Browsing option is used to set variables in bulk. This is done by running a user-supplied
program or importing a user-supplied file, see Appendix H: Installing LS-OPT for further information.
Activate the Set by browsing button in order to select from the available executables or files. A selection
list containing all available files and programs will show up.

Selecting a file or executable will directly import all the specified variables into the Environment Variables
list in bulk. In addition to these Browse List variables, a special browse variable is created that should not be
edited. This variable records the program name used to create the Browse List.

NOTE: Strings in the Environment Variables list appearing above the browse line are all part of the Browse
List. Strings that appear below browse are never part of the Browse List. User-defined environment
variables will always follow after the browse variable definition.

Selecting the Edit Browse list button does nothing unless a Browse List has been previously created. If a
valid Browse List is present in the Environment Variables list, then selecting this option will run the original
program that created the Browse List, together with all of the current Browse List options passed as
command line arguments, one per existing environment variable.

Executing the 'Edit Browse List" will cause the original file to be reread, which is convenient for testing
purposes.
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Note: The browse command can ABORT the replacement operation by printing a blank line to the standard
output and immediately terminating. Otherwise the current Browse List may be deleted. If the browse
command abnormally terminates, then an error box will appear with a title bar indicating that the command
failed.

How the browse list is used by LSOPT

The Browse List (indeed, the complete Environment Variables List) is used to set environment variables
before running the solver command specified by LS-OPT. However, if the first variable returned by the
browse command is exe, then a pre-processing command is run before running the actual solver command.
The pre-processing command is the value of the exe variable. The pre-processing command has a command
line

$exe varl=$varl, var2=%var2, ... varN=$%varN

That is, the command executed is the value of the exe variable; additional command line arguments consist
of all Browse List strings with a comma delimiter appended to each intermediate one. (The final argument
is not followed by a comma.)

Note: Such a pre-processing command is always run from within the current LS-OPT Job Directory.
Therefore, any file that the pre-processing command references must be specified by a fully-qualified path
or must be interpreted relative to the current LSOPT Job Directory. So, the LSOPT Stage Directory will
be ".." and the LSOPT Project Directory will be *../.."".

5.4.5. Recovering Output Files

Recover Files

Filename/Filetype Delete
d3plot o=
' binout* x

Add file manually Select file type

Figure 5-11: Database recovery options

This option is only available if a queuing system interface is used, Section 5.4.2. When distributing the
simulation runs, the information needed by LS-OPT is automatically extracted and transferred to the local
node in the form of files response.n and/or history.n.

If the user wants to recover additional data to the local machine to do local post-processing (e.g. using LS-
PREPOQOST), the Recover Files options can be used.

For LS-DYNA, the Select file type option can be used to recover d3plot, d3hsp, binout, d3eigv or eigout
files. Each name is a prefix, so that e.g. d3plot0O1, d3plot02, .. will be recovered when specifying
d3plot.

Any database can be recovered by using the Add file manually option. Each name is a wildcard.

LS-OPT Version 5.0 62



CHAPTER 5: Stage Dialog — Defining the Solver

The requested database files will appear in the local run directory. The details of the recovery procedure is
logged and available in the Job_log file in the run directory on the local machine. Job logs can be viewed
by double-clicking on the Stage LED during or after running. See Section 13.3.

5.5. File Operations

s Stage CRASH =
Setup | Parameters | Histories | Responses | File Operations |
Operation Source File Destination Fle Sequence Cn Error De...
[Cop}r | e Hrigid2 Hrigid Hbefare | ~ Hwam | e |==
[Moue | ' Hcar5.k Hcar.k Hafter | W Hfail | ~ |=
[Link | e Hmain_.k Hmain.k Hbefcre | ~ Hwam | e |==
e | [junk Hafter | ~ Hignore | V| x
Add ...
[ o |

Figure 5-12: File Operations within a Stage run directory

LS-OPT allows file operations between Stages or within a Stage.

The requested Stage file operations are executed for all the run directories related to the Stage, e.g.
CRASH/1.1, CRASH/1.2, etc. Within a Stage run directory, several file operations can be executed on
files previously copied to the run directories or generated by the stage command before or after executing
the stage command. See Figure 5-12 and Table 3-4.

File operations between stages are discussed in Section 3.2.2.
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Table 5-6: File Operations

Option Selections Description
Operation Copy Available operations
Move
Link
Copy Recursive
Delete
Source File Name of source file
Destination File Name of destination file
Sequence before Execute operation before or after executing the stage
after command
On Error fail What to do if operation fails
warn
ignore

5.6. The ‘Nor mal’ termination status

LS-OPT can only detect the solver termination status by reading the information that the solver prints to the
screen (also called standard output or stdout). The LS-DYNA solver type automatically outputs the
phrase ‘N o r m a I’ which LS-OPT detects as a normal termination. If ‘N o r m a I’ is absent,
LS-OPT assumes an error termination status and will not attempt to extract any results from the database.
For all other solvers, the user has the responsibility to write the status to standard output. This can be
accomplished by inserting the solver command into a script in whichthe ‘N o r m a I’ string is written
at the end using a print statement. See also Appendix H.9.1 .

5.7. Managing disk space during run time

As multiple result output sets are generated during a parallel run, the user must be careful not to generate
unnecessary output. The following rules should be considered:

o0 To save space, only those output files that are absolutely necessary should be requested.

o A significant amount of disk space can be saved by judiciously specifying the time interval between
outputs (DT) e.g., in many cases, only the output at the final event time may be required. In this case
the value of DT can be set slightly smaller than the termination time.
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0 The result extraction is done immediately after completion of each simulation run. Database files can
be deleted immediately after extraction using the ‘Delete’ file operation after the solver run (see
Section 5.5).

Database files can also be deleted by using the clean file (see Section 5.7.1).

o If the simulation runs are executed on remote nodes, the responses of each simulation are extracted
on the remote node and transferred to the local run directory.

5.7.1. Using the clean file to delete solver output files

During a sequential approximation procedure, superfluous data can be erased after each run while keeping
all the necessary data and status files (see Section 13.6). For this purpose the user can provide a file named
clean containing the required erase statements such as:

rm -rf d3*

rm -rf elout

rm -rf nodout
rm -rf rcforc

The clean file will be executed immediately after each simulation and will clean all the run directories
except the baseline (first or 1.1) and the optimum (last) runs. Care should be taken not to delete the lowest
level directories or the log files started, finished, response.nor history.n (which must remain
in the lowest level directories). These directories and log files indicate different levels of completion status
which are essential for effective restarting. Each file response .response_number contains the extracted
value for the response: response_number. The essential data is thus preserved even if all solver data files are
deleted. The response_number starts from 0.

Complete histories are similarly kept in history . history_number.

The minimal list to ensure proper restarting is:

XPoint
started
finished
response.0
response.1

ﬁistory-o
history.1

Remarks:
1. The clean file must be created in the work directory.
2. Ifthe clean file is absent, all data will be kept for all the iterations.

3. For remote simulations, the clean file will be executed on the remote machine.
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5.8. Alternative setups for running pre-processors

The easiest way of running a pre-processor is to define a separate stage for the pre-processor and solver and
to make the solver stage dependent on the pre-processor stage. Because the output file of the pre-processor
has to be used as input by the solver, the setup is important. There are at least three ways of setting up a pre-
processor run:

1.
2.

Specify the output file of the pre-processor as an include file of the solver.

Copy the output file to the base file of the solver. E.g. if Isppout is the output file name of the
pre-processor, copy Isppout to DynaOpt.inp which is the standard base file name for the
LS-DYNA solver type. An inter or intra-stage file operation is used for this purpose (see Points 1 to
3 below).

Rename the base file name of the solver to the output file name of the pre-processor (see Section
5.2.1). E.g. if the output file name of the pre-processor is Isppout rename the basefile of the
solver (in this case the LS-DYNA type) from DynaOpt.inp to Isppout. LS-DYNA will then
use E=Isppout as part of the solver command.

It should be noted that both the pre-processor and the solver can be run in the same directory by selecting
the “Run Job in Directory of Stage’ option in the Setup tab of the Stage dialog. They can both be run in the
directory of the pre-processor or the solver.

1.

If they are both run in the pre-processor directory, a copy file operation (Section 5.5) should be
specified in the ‘File Operations’ tab to copy the file after the pre-processor stage.

If they are both run in the solver directory, a copy file operation should be specified in the “File
Operations’ tab to copy the file before the solver stage (Section 5.5).

If they are run in different directories (i.e. their own home directories), an inter-stage copy operation
should be specified (Section 3.2.2).
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This chapter describes the specification of the history or response results to be extracted from the stage
database. A history is a vector or curve data, whereas a response is a scalar value. Responses can be used to
define objectives or constraints (Chapter 10), histories are intermediate entities that can be used to calculate
responses or composites (Chapter 9). Interfaces for result extraction from LS-DYNA and MSC-NASTRAN
output files are available, as well as mathematical expressions, file import, an interface for extraction of
values from ASCII database and a user-defined interface where any program may be used for result
extraction. The dialogs are accessible from the Stage dialog Histories and Responses tab, respectively.

6.1. Defining histories and responses

A history or a response can be defined by using the interfaces in the Histories and Responses tab of the
Stage dialog, respectively, Figure 6-1. To add a new definition, select the respective interface from the list
on the right. The available interfaces are explained in Table 6-1. To edit an already defined history or
response, double-click on the respective entry from the list on the left. Histories and responses may be
deleted using the delete icon on the right of the respective definition.

There are four types of interfaces:

o Standard LS-DYNA or MSC-Nastran result interfaces. This interface provides access to the LS-
DYNA binary databases (d3plot or binout, d3hsp or d3eigv). The interface is an integral part of LS-
OPT.

User specified interface programs. These can reside anywhere. The user specifies the full path.
Mathematical expressions.
0 GenEx. This interface allows the user to extract selected field values from a text file.

The extraction of responses consists of a definition for each response and a single extraction command or
mathematical expression. A response is often the result of a mathematical operation of a response history,
but can be extracted directly using the standard LS-DYNA interface (see Section 6.1.1) or a user-defined
interface.

Each extracted response is identified by a name, Table 6-2, and the settings to be specified using the
respective interface.
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o Stage CRASH =)
Setup | Parameters |Hi5tur‘ie5| Responses | File Operations ‘
History definitions Add new
N1_Vel x  Generic -
NODOUT: x_velocity of node 2061916 USERDEEINED
N2_Vel x| | GENEX
NODOUT: x_wvelocity of node 2061917
- EXPRESSION
N1_Disph * | | FUNCTION
NODOUT: x_displacement of node 2061916
INJURY
N2_Disph x -
= . D d
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Crossplot
N1_Accel x
NODOUT: x_acceleration of node 2061916 L5-DYNA
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Avg_Vvel x | | D3PLOT
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NODOUT |
)
File Histories l

Figure 6-1: Histories definition in the GUI
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Table 6-1: Interfaces for Response and History extraction

Option Description Reference
Generic USERDEFINED Result extraction using any script or Section 6.14
program
GENEX Tool for extracting results from text files  Section 6.13
EXPRESSION Definition of mathematical expressions Section 6.4.1
using previously defined entities
FUNCTION Expressions using previously defined Section 6.4.3
histories
INJURY Injury criteria Section 6.5
MATRIX_EXPRESSION (Response only) Section 6.4.4
Derived Crossplot Crossplot (History only) Section 6.4.1
LS-DYNA  ABSTAT Binout interface Section 6.2.1
BNDOUT Binout interface Section 6.2.1
D3PLOT D3plot interface Section 6.2.3
DBBEMAC Binout interface Section 6.2.1
DBFSI Binout interface Section 6.2.1
DEFORC Binout interface Section 6.2.1
ELOUT Binout interface Section 6.2.1
FLD Metal Forming results (Response only) Section 6.3.2
FREQUENCY D3eigv (Response only) Section 6.2.5
GCEOUT Binout interface Section 6.2.1
GLSTAT Binout interface Section 6.2.1
JNTFORC Binout interface Section 6.2.1
MASS D3hsp interface (Response only) Section 6.2.4
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MATSUM Binout interface Section 6.2.1
NCFORC Binout interface Section 6.2.1
NODOUT Binout interface Section 6.2.1,
NODFOR Binout interface Section 6.2.1
PSTRESS Metal Forming results (Response only) Section 6.3.3
RBDOUT Binout interface Section 6.2.1
RCFORC Binout interface Section 6.2.1
RWFORC Binout interface Section 6.2.1
SBTOUT Binout interface Section 6.2.1
SECFORC Binout interface Section 6.2.1
SPCFORC Binout interface Section 6.2.1
SPHOUT Binout interface Section 6.2.1
SWFORC Binout interface Section 6.2.1
THICK Metal Forming results (Response only) Section 6.3.1

MSC- NAST_FREQUENCY (Response only) Section 6.15

NASTRAN

File Histories Global file histories (History only) Section 6.16

Table 6-2: General History and Response options for all interfaces

Option Description

Name History/Response name

Subcase Integer CASE ID associated with the *CASE parameter in LS-DYNA. This
option is mandatory for disciplines that use the *CASE parameter in LS-
DYNA input files but is not required for other cases. For all other cases,
first/last commands should be used.

Multiplier (Response only) If scaling and/or offsetting of the response is required, the

Offset final response is computed as (the extracted response x Multiplier ) + Offset.
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Not metamodel linked (Response only) In some cases it may be beneficial to create intermediate
responses without associated metamodels, but still part of a metamodel-based
analysis. For example omitting intermediate neural networks will improve
efficiency.

Responses that are not metamodel linked cannot be included directly in
composites, since a composite relies on interpolation from a metamodel.o

6.1.1. Result extraction

Each simulation run is immediately followed by a result extraction to create the history.n and
response.n files for that particular design point. For distributed simulation runs, this extraction process
is executed on the remote machine. The history.n and response.n files are subsequently transferred
to the local run directory. If the extraction on the remote machine is not successful, it is done again on the
local machine. Hence programs and scripts needed for result extraction do not have to be accessible from
the remote machine. These results are stored in the AnalysisResults_n.lIsox database.

6.2. Extracting history and response quantities: LS-DYNA

LS-OPT provides interfaces for history and response result extraction from binout, d3plot, d3hsp and
d3eigv. The user must ensure that the LS-DYNA program will provide the output files required by LS-OPT.

The options for the extraction of LS-DYNA responses and histories are identical, except for the selection
attribute.

Aside of the standard interfaces that are used to extract any particular data item from the database,
specialized responses for metal-forming are also available. The computation and extraction of these
secondary responses are discussed in Section 6.3.

6.2.1. LS-DYNA binout results

All LS-DYNA history and response result extraction options except for D3PLOT, MASS and
FREQUENCY interface with the LS-DYNA binout output. The BINARY flag in the respective
*DATABASE_OPTION card and the desired entity ID in the *DATABASE_HISTORY_OPTION card has
to be set correctly in the LS-DYNA input file.

The response options are an extension of the history options — a history will be extracted as part of the
response extraction.

Results can be extracted for the whole model or a finite element entity such as a node or element. For shell
and beam elements the through-thickness position can be specified as well.

Filtering and averaging options are available for histories and responses.

For responses, the Select attribute has to be specified to extract a scalar value from the curve. The optional
attributes From time and To time can be specified to slice the curve before extracting the requested scalar
value. The defaults are 0 and the end value of the history.

These operations will be applied in the following order: averaging or filtering, and slicing.
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The available results types and components are listed in Appendix A: LS-DYNA Binout Commands and
Appendix B: LS-DYNA Binout Components.

The NODOUT components Deformation and Distance are described in detail in Section 6.2.2.

™ New response )
MName Subcase Multipiler Offset
¥_displ l [ | 1 | |D |

[] Not metamodel-linked

Component Direction

) Coordinate @ X Component
@ Displacement ) ¥ Component
) Velocity () Z Component
) Acceleration () Resultant

| Rotational Displacement
) Rotational Velocity

| Rotational Acceleration

| Deformation

| Distance

IdentifierType 1D

ID ~| |300105 ]

Select From time To time

L JL ]

L4

Maximum Value

Filtering

None -

Cancel oK

Figure 6-2: Response extraction: LS-DYNA NODOUT interface

6.2.2. Kinematics

Additional kinematics such as distances and deformations can be computed directly using NODOUT results
by defining two nodes on the finite element mesh. Kinematics consist of two main quantities:

o0 The distance vector g computed using the differences between the coordinates of the two nodes.

o0 The deformation derived using the difference between the distance vector computed at time t and the
original distance vector (t = 0).

These quantities can be computed in
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o the global coordinate system,

o0 alocal coordinate system or

o local coordinates referred to the global reference frame (t = 0).
The local axes are computed using the convention defined in Section 0 to define the rotation matrix A where
A is a function of time. The quantities are therefore defined as follows.

Table 6-3: Definitions of the kinematics of a displaced rigid body

Frame Distance Deformation
Global d=q u=q-q(0)
Local d'= A®() u'= A®A(H - A©)A(0)
Local in reference d'=ATOADAD  u"=ATOA®BAD -(O)

The orthogonal matrix A(t) is defined by a local coordinate system (x’y’z’ in Figure 6-3) which in turn is
defined by three nodes on the finite element mesh as it displaces over time. Nodes 2 and 3 represent the
local x-axis direction (see Figure 6-3) while Node 1 represents the third node. This is the same convention
as defined in Section 0.

The second and third kinematic categories are both denoted “local” since deformation should be totally
absent for pure rigid body systems.

If the triangles 1-2-3 and 1'-2'-3’ are congruent (i.e. they represent a rigid body), the quantity defined as
Local in reference frame is invariant with respect to the node numbering. E.g. the triplets (1, 2, 3), (2, 3, 1)
or (1, 3, 2) should yield the same value.

To monitor congruence, A Congruence ratio for each history or response is displayed in the job_log (run
directory) or Isopt_output files. The ratio for a node is defined as the ratio of the side length opposite the
node i at time tsna divided by the same quantity applied to the undeformed structure (see equation below).
Three values are therefore printed. The ideal ratio is unity, signifying a perfectly rigid body.

_ |Xi—1(t) _Xifz(t)| i=123
X, 0)-x,0)] T

Kinematic quantities are available as both histories and responses.
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B'

Y,
B

N

bﬂ

A x"

Figure 6-3: Local and global coordinate systems

6.2.3. LS-DYNA d3plot results

The D3PLOT interface is related to the Binout interface. The D3PLOT results differ from the Binout
commands in that a response or history can be collected over a whole part. For example, the maximum
stress can be evaluated in a part or over the whole model. Results can also be extracted for a finite element
entity such as a node or element. For shell and beam elements the through-thickness position can be
specified as well. Element results such as stresses will be averaged in order to create the NODE results.

If the location of extraction is specified by x,y,z coordinates, the quantity will be extracted from the element
nearest to x,y,z at the time of reference state. Only elements included in the *SET_SOLID_GENERAL
element set are considered (only the PART and ELEMENT options).

The response options are an extension of the history options — a history will be extracted as part of the
response extraction. For responses, the Select attribute has to be specified to extract a scalar value from the
curve. The optional attributes From time and To time can be specified to slice the curve before extracting the
requested scalar value. The defaults are 0 and the end value of the history. If the selection must be done over
parts as well, firstly the maximum value will be selected for the part, followed by the selection of the
maximum, minimum, or average over time.

The available results types and components are listed in Appendix C: LS-DYNA D3Plot Commands and
Appendix D: LS-DYNA D3Plot Components.

The LS-PREPOST fringe plot capability can be used for the graphical exploration and troubleshooting of
the data.
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= New response (&)
Name Subcase Multipiler Offset
max_xx_stress l [ | 1 | | 0 |

[] Mot metameodel-linked

Location
® Part O D
() Coordinate
Parts to be included  Ragyits Type  Component
© Al ) Ndw @ xx_stress (O von_mises
© List of parts: @ Stress O yy_stress (O 1st_prin_dev_stress
() Result () zz_stress () 2nd_prin_dev_stress
() Strain () xy_stress () 3rd_prin_dev_stress
) Misc () yz_stress ) max_shear_stress
) FLD () zx_stress ) lst_principal_stress
() Beam () plastic_strain ) 2nd_principal_stress
() pressure () 3rd_principal_stress
Select From time To time

Maximum Value |C

Cancel oK

Figure 6-4: Response extraction from d3plot

D3Plot FLD results

If FLD results are requested then the FLD curve can be specified using (i) the t and n coefficients or (ii) a
curve in the LS-DYNA input deck. The interpretation of the t and n coefficients is the same as in LS-
PREPOST. Note that the THICK, FLD and PSTRESS interface options are an alternative, Section 6.3.

6.2.4. Mass — Interfacing with d3hsp
The MASS response interfaces with the LS-DYNA output file d3hsp. The Mass and related entities, Figure
6-5 and Table 6-4, can be extracted for the whole model or a list of parts.

Values are summed if more than one part is specified (so only the mass value will be correct). However for
the full model (part specification omitted) the correct values are given for all the quantities.
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=

™ New response E)]
Name Subcase Multipiler Offset
e | E | O

[] Mot metamodel-linked

Parts to be included Attribute
1 All Parts Mass -

@ List of parts:

x1001, =1002,

x1003, =1004,
x1005, @

| Cancel || oK

Figure 6-5: Interface for extraction of Mass and related entities from LS-DYNA output d3hsp

Table 6-4: Mass item description

Item Description

Parts to be included  Entity is extracted for the entire model or for the part IDs specified in the list.

Attribute Type of mass quantity:
Mass Mass
Principal Inertias Component 111, 122, 133
Inertia Tensor Component IXX, IXY, IXZ, 1YX, 1YY,
1Yz, 1zX, 12y, 1Z2Z
Mass Center Component X-Coordinate, Y-Coordinate or Z-

Coordinate of mass center

6.2.5. Frequency — Interfacing with d3eigv

The FREQUENCY response interfaces with the LS-DYNA output file d3eigv, Figure 6-6. See Table 6-5 for a
description of the available extraction options.
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Narme Subcase Multipiler Offset
[frequency ] [ " | [1 l [D ]

[ Mot metamodel-linked

Baseline Mode Nurmber
2 l

Modal Qutput Option

@ |Frequency of HﬂdE|
() New Mode Number

() Modal Assurance Criterion

Mode Tracking Status

@ On
) Off

Cancel l [ [a] 4

Figure 6-6: Interface for extraction of frequencies from LS-DYNA output d3eigv
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Table 6-5: Frequency item description

Item Description

Baseline Mode Number  The number (sequence) of the baseline modal shape to be tracked. It cannot
exceed 999. The user must identify which baseline mode is of interest by
viewing the baseline d3eigv file in LS-PrePost.

Modal Output Option Type of modal quantity

Frequency of Mode Frequency of current mode corresponding in
modal shape to baseline mode specified.

New Mode Number Number of current mode corresponding in
modal shape to baseline mode specified.

Modal Assurance Criterion  Modal assurance criterion.
H

{‘Po}: 99

j o)
X o ol Flg TMAC,
i (@) (@0 @)

[
l
o]

Mode Tracking Status ~ Enable or disable mode tracking, see Theory section below

Mode Tracking - Theory

Mode tracking is required during optimization using modal analyses as mode switching (a change in the
sequence of modes) can occur as the optimizer modifies the design variables. In order to extract the
frequency of a specified mode, LS-OPT calculates the modal assurance criterion (MAC). The scalar MAC
value provides the degree of consistency between baseline modal shape and each mode shape of the current
design. The maximum MAC value indicates the mode most similar in shape to the original mode selected.
LS-OPT reads the eigenvectors from the d3eigv files, for calculating the MAC values. The MAC value for

the reference modal vector ¢, and the j™ modal vector of the current design ¢; is calculated as:

H

LM
H H

(o] (@0 [01]"

MAC, =

—_—— =

(6-1)

where H is the Hermitian operator. The MAC value corresponding to the most similar mode can be
extracted using the respective Modal Output Option (see Table 6-5).

In certain cases, the user may be interested in the frequency corresponding to a specific mode number. To
enable this option, the ability to turn mode tracking off is provide. By default this feature is on, but turning it
off enables one to extract the responses corresponding to a specific mode number, irrespective of the mode
shape.

LS-OPT Version 5.0 78



CHAPTER 6: History and Response Results

6.3. Extracting metal forming response quantities: LS-DYNA

Responses directly related to sheet-metal forming can be extracted, namely the final sheet thickness (or
thickness reduction), Forming Limit criterion and principal stress. All the quantities can be specified on a
part basis as defined in the input deck for LS-DYNA. Mesh adaptivity can be incorporated into the
simulation run.

The user must ensure that the d3plot files are produced by the LS-DYNA simulation. Note that the
D3PLOT interface options are an alternative.

6.3.1. Thickness and thickness reduction

Either thickness or thickness reduction can be specified using the THICK interface, Figure 6-7.

- Edit response [
Name Subcase Multipiler Offset
|Thickness_thi_max | | |1 | |D |

] Not metamodel-linked

Parts to be included Reported Value Type Extracted response

~

O All Parts Final shell thickness 2| | Maximum z
@ List of parts:

x3, 0

Cancel oK

Figure 6-7: Thickness or Thickness reduction interface

Table 6-6: THICK options description

Item Description

Parts to be included  Entity is extracted for the entire model or for the parts IDs specified in the list.

Reported Value Final shell thickness
Type Percentage thickness reduction

Extracted response  Minimum, maximum or average computed over all the elements of the selected
parts

6.3.2. FLD constraint

The FLD constraint is shown in Figure 6-8. Two cases are distinguished for the FLD constraint.
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0 The values of some strain points are located above the FLD curve. In this case the constraint is
computed as:

g=d

max

with dpax the maximum smallest distance of any strain point above the FLD curve to the FLD curve.

o All the values of the strain points are located below the FLD curve. In this case the constraint is
computed as:
g=-d

min

with dpin the minimum smallest distance of any strain value to the FLD curve (Figure 6-8).

e

&

<

Constraint Active

g= Omax

&

a) FLD Constraint active
&

Constraint Inactive

g = —dmin

&

b) FLD Constraint inactive
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Figure 6-8: FLD curve — constraint definition

It follows that for a feasible design the constraint should be set so that g(x) < 0.

General FLD constraint

A more general FLD criterion is available if the forming limit is represented by a general curve. Any of the
upper, lower or middle shell surfaces can be considered.
Remarks:

0 A piece-wise linear curve is defined by specifying a list of interconnected points. The abscissae (¢,)

of consecutive points must increase (or an error termination will occur). Duplicated points are
therefore not allowed.

o0 The curve is extrapolated infinitely in both the negative and positive directions of (&,). The first and
last segments are used for this purpose.

0 The computation of the constraint value is the same as shown in Figure 6-8.
The following must be defined for the model and FLD curve:

M Edit response &3]
Mame Subcase Multipiler Offset
FLD1 ] [ |1 | ['3' |

[] Not metamodel-linked

Parts to be included Sampling location

0 All Parts [ Lower surface |$ |
@ List of parts: -

Load curve ID

e

Cancel | | oK

Figure 6-9: Definition of General FLD constraint
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Table 6-7: LS-DYNA General FLD constraint options description

Option Description

Parts to be included  Entity is extracted for the entire model or for the parts 1Ds specified in the list.

Sampling location Lower, middle or upper surface of the sheet

Load curve ID Identification number of a load curve in the LS-DYNA input file. The
*DEFINE_CURVE keyword must be used. Refer to the LS-DYNA User’s
Manual for an explanation of this keyword.

Remarks:

0 The interface program produces an output file FLD curve which contains the & and &, values in
the first and second columns respectively. Since the program first looks for this file, it can be
specified in lieu of the keyword specification. The user should take care to remove an old version of
the FLD_curve if the curve specification is changed in the keyword input file. If a structured input
file is used for LS-DYNA input data, FLD_curve must be created by the user.

0 The scale factor and offset values feature of the *DEFINE_CURVE keyword are not utilized.

6.3.3. Principal stress

Any of the principal stresses or the mean can be computed using the PSTRESS interface. The values are
nodal stresses.

- Edit response [2)
Name Subcase Multipiler Offset
PStress1 J | [1 | o |

[] Not metamodel-linked

Parts to be included Stress value to extract Extracted response

0 All Parts Maximum principal stress | £ Maximum stress
@ List of parts:

%3, 0

Figure 6-10: Principal Stress Interface
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Table 6-8: Principal Stress options description

Item

Description

Parts to be included

Entity is extracted for the entire model or for the parts IDs specified in the list.

Stress value to
extract

Maximum principal stress o1
Second principal stress o)
Minimum principal stress o3
Mean of principal stress (o1 + 02+ 03)3

Extracted response

Minimum, maximum or average computed over all the elements of the selected
parts

6.4. Generic Interfaces for History and Response extraction

6.4.1. Expressions

Mathematical expressions using previously defined entities can be defined here. The expression syntax and
the available mathematical functions are described in .

6.4.2. Crossplot history

A special history function Crossplot is provided to construct a curve g(f) given f(t) and g(t).

(]

&

Name

Subcase

Force_vs_Displ ] l

z(t)

A crossplot will create the history F(z), given F(t) and z(t).
General expressions are allowed.

[Displ

Fit)

lForce

Number of points (blank for default)

]

Figure 6-11: Interface to define a crossplot history
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Additional options are available if the Crossplot is defined using a history Expression, see Appendix F.3
for details.

The options are explained in Table 6-9.

Table 6-9: Description of Crossplot arguments

Option Description Default

() History of abscissa -

F(t) History of ordinate -

Number of points Number of points created in crossplot Smallest of the numbers of points

defining fand g

6.4.3. Function Interface

The functions available for the extraction of response values from previously defined histories are explained
in Appendix F.3.

The History functions are described below.

Derivative history

A special history function Derivative is provided to construct a curve % given f(t),
df (t) —f(x+2h)+8f(x+h)-8f(x—h)+ f(x-2h)
dt 12h
= New history @)

Name Subcase
Der N1_Vel | [

Function History

@ Derivative | M1_Vel <

() Filter

Cancel oK

Figure 6-12: Interface to define derivative history
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Remarks:

0 The derivatives assume a linear, positive abscissa with equal intervals (typically time history).

o Since the derivative approximation is based on a multipoint scheme, it is recommended to avoid
having too few points.

0 The derivatives of the first three and last three points are the same as the third and third last points,

respectively.

Filtered history

A special history function Fi I'ter is provided to construct a filtered curve.

.

[} New history )
Name Subcase
N1_Vel_SAEG0| ] [
Function History
O) Derivative | NLVel ¢
@© Filter Filtering
| SAE Filter =
Frequency Time unit
[55 ] |Sec0nd5 $|
| Cancel | | oK

Figure 6-13: Interface to define a filtered history
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Table 6-10: Description of FilterHistory arguments

Argument name Description

History Pre-defined history

Filtering Filtering type: SAE Filter, Butterworth Filter or Time Average
Frequency Filtering frequency in Hz

Time unit Units of time

Number of points ~ Number of averaging points

6.4.4. Matrix operations

Matrix operations can be performed by initializing a matrix, performing multiple matrix operations, and
extracting components of the matrix as response functions or results. All these operations are defined using
the MATRIX_EXPRESSION interface, Figure 6-14.

i Edit response =)
Mame Subcase Multipiler Offset
M1 ] [

[] Mot metamodel-linked

Matrix-Expression

| Matrix3x3mnit(R1_1,R2_1,R3_1,R4_1,0,0,0,0,0) |

Figure 6-14: Matrix Expression: Initialization of a matrix

There are two functions available to initialize a matrix, namely Matrix3x3Init and Rotate. Both
functions create 3x3 matrices.

The component of a matrix is extracted using the format A.aij (or the 0-based A[i-1][j-1]) e.g.
Strain.a23 (or Strain[1][2]) whereiand j are limited to 1,2 or 3.

The matrix operation A — | (where 1 is the unit matrix) is coded as A-1.
Initializing a matrix

The command to initialize the matrix:
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all a12 a‘l3
a21 a22 a‘23
a3l a32 a33

Matrix3x3Init(all,al2,a13, a21,a22,a23, a31,a32,a33)

where a;; is any previously defined variable (typically a response or result).

Creating a rotation matrix using 3 specified points
The expression is:
Rotate(x1,y1,z1, x2,y2,22, x3,y3,z3)

where the three triplets represent points 1, 2 and 3 in 3-dimensional space respectively.
0 The vector v,3 connecting points 2 and 3 forms the local X direction.
0 Z=VpiXVy
o0 Y=ZxX
The vectors X, Y and Z are normalized to x, y and z which are used to form an orthogonal matrix:

X X X
T=lY, Y, Ys
Z; I3 14

where T'T =1.

6.5. Injury criteria

All of the injury criteria were developed according to the specification in [1].

Injury criteria must be defined as responses, for some criteria, the intermediate histories are also available
for extraction.

6.6. Head Injury Criteria
6.6.1. HIC

See Section 6.11.
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6.7. Neck Criteria
6.7.1. MOC

MOC is the abbreviation for total Moment about Occipital Condyle. The criterion for the Total Moment
calculates the total moment in relation to the moment measurement point.

The Total Moment MOC value for the Upper-Load-Cell is calculated as follows

MOC =M —(D-F)

with  MOC Total moment [Nm]
F Neck axial force resultant [N]
M Neck s-moment resultant [Nm]
D Distance between the force sensor axis and the Condyle axis,

depends on the dummy type, Table 6-12.
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Table 6-11: Options for MOC

Option Description Symbol
Neck Force x Neck axial force resultant F

Neck Moment y Neck s-moment resultant M
Dummy _type Dummy type -
Length unit Length units -

Force unit Force units -

Table 6-12: Input constants for various dummy types

Dummy Type D[m]
Hybrid 111, male 95% 0.01778
Hybrid 111, male 50% 0.01778
Hybrid 111, female 5% 0.01778
Hybrid 111, 10-year 0.01778
Hybrid 111, 6-year 0.01778
Hybrid 111, 3-year 0

Crabi 12, 18 month 0.00584
TNO P1,5 0.0247
Crabi 6 month 0.0102
TNO P 3/4, P3 0

ES-2 0

TNO Q series 0
SID-lIs 0.01778
BioRID 0.01778
WORLDSID 0.0195
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6.7.2. NIC (rear impact)

NIC is the abbreviation for Neck Injury Criterion. LS-OPT calculates the NIC value specified for rear

impact. The NIC value is calculated with the following formula:

NIC =8, - 0-2+ V2 i0e
with a_...=a' —a™ relative x-acceleration
Vrelative = J.arelative

Table 6-13: Options for NIC
Option Description Symbol
Acceleration 1. thorax spine  x-acceleration of first thorax spine a
Acceleration head x-acceleration at the height of the c.0.g. of the head e
Time unit Time units -
Length unit Length units -

6.7.3. Nij (Nce, Ncf, Nte, Ntf)

Nij is the abbreviation for Normalized Neck Injury Criterion and is the four neck criterion Nte (tension-
expression), Ntf (tension-flexion), Nce (compression-extension) and Ncf (compression-flexion).

The Nij value is the maximal value of Nte, Ntf, Nce, Ncf.
The Nij value is calculated with the following formula

NIJ = i+ MOC
I:C C
with F Force at the point of transition from head to neck (t-shear resultant)

F Critical force (depending on dummy type)

C

MOC Total Moment (see MOC, section 6.7.1)

M Critical moment (depending on dummy type)

C
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Table 6-14: Options for Nij arguments

Option Description Symbol
Neck Force x Neck axial force resultant See MOC
Neck Moment y Neck s-moment resultant See MOC
Neck Force z Force at the point of transition from head to neck F
Dummy type Dummy type -

Length unit Length units -

Force unit Force units -

Table 6-15: Input constants for various dummy types

Dummy type Test Fc[N] Fc[N] Mc [Nm] Mc [Nm]
Tension Compression Flexion Extension
Hybrid I11; male 50%  In position 6806 -6160 310 -135
Hybrid I11; female 5% In position 4287 -3880 155 -67
Hybrid I11; female 5%  Out of position 3880 -3880 155 -61
Hybrid I11; 6-year Out of position 2800 -2800 93 -37
Hybrid I11; 3-year Out of position 2120 -2120 68 -27
Hybrid I11; 12 month ~ Out of position 1460 -1460 43 -17

6.7.4. Nkm (Nfa, Nea, Nfp, Nep)

Nkm corresponds to the four neck criteria Nfa (flexion-anterior), Nea (extension-anterior), Nfp (flexion-
posterior) and Nep (extension-posterior).

The Nkm value is calculated with the following formula, [2]:

F@® , MOC()

Nkm(t) = ~

int int

with F Force at the point of transition from head to neck (axial force resultant)
F

int

Critical force
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MOC Total Moment (see MOC, section 6.7.1)

M, Critical moment

Table 6-16: Options for Nkm arguments

Option Description Symbol
Neck Force x Neck axial force resultant F
Neck Moment y Neck s-moment resultant See MOC
Dummy type Dummy type -
Length unit Length units -
Force unit Force units -
Criterion Nfa, Nea, Nfp, Nep -
Table 6-17: Input constants
Criteria Description Value
*_anterior Positive Shear Fiy 845N
* _posterior Negative Shear Fiy -845 N
flexion_* Flexion Min 88.1 Nm
extension_* Extension Mi -47.5 Nm
6.7.5. LNL
LNL is the abbreviation for the Lower Neck Load Index. The LNL value is calculated with the following
formula:
LNL_\/M§+M3 JHFD |F voff]
moment Cshear ‘ Ctension
with M s-Moment resultant

y

M Torsional resultant

X

C.oment Critical moment
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F, s-Shear resultant

F, Axial force resultant
Cqear Critical force

F, t-Shear resultant
Ciension Crritical force

off  offset to include pre-load, depends on dummy position
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Table 6-18: Options for LNL arguments

Option Description Symbol
y Force Axial force resultant F,

x Force s-Shear resultant F.

z Force t-Shear resultant F,

y Moment s-Moment resultant M,

X Moment Torsional resultant M,
Length unit Length units -

Force unit Force units -

Table 6-19: Input constants

Force/Moment Description Value

Crmoment Critical moment 15 [Nm]
Cshear Critical force 250 [N]
Ctension Critical force 900 [N]

6.8. Chest Criteria

6.8.1. Chest compression

Maximum relative rotation multiplied by a constant:

C, max[O(t)]
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Table 6-20: Options for Chest Compression arguments

Option Description Symbol
History relative rotation history o(t)
Dummy type dummy type -

Table 6-21: Input constants for various dummy types

Dummy Type Scaling factor C;
Hybrid I11; male 95% 130.67
Hybrid I11; male 50% -139.0
Hybrid I11; female 5% -87.58
Remarks:

0 The user is responsible for any required filters of the input history.

6.8.2. Viscous criterion (VC)

VC is an injury criterion for the chest area. The VC value [m/s] is the maximum crush of the momentary
product of the thorax deformation speed and the thorax deformation. Both quantities are determined by
measuring the rib deflection (side impact) or the chest deflection (frontal impact). The formula is:

C, dt

LS-OPT Version 5.0 95



CHAPTER 6: History and Response Results

Table 6-22: Options for Viscous Criterion arguments

Argument name Description Symbol
History Thoracic deformation (m) Y(t)
Dummy type Dummy type -

Time unit Time units -
Length unit Length units -

Table 6-23: Input constants for various dummy types

Dummy Type Scaling factor C; Deformation constant C, (m)
Hybrid I11; male 95% 1.3 0.254
Hybrid I11; male 50% 1.3 0.229
Hybrid I11; female 5% 1.3 0.187
BioSID 1.0 0.175
EuroSID-1 1.0 0.140
EuroSID-2 1.0 0.140
SID-lIs 1.0 0.138
Remarks:

o The derivative is computed using the 4" order (template size = 5) finite difference approximation:

i — fi—2 _8fi—1+8fi+l_ f
dt 12h

where h is the time interval between the single measurements.

0 The user is responsible for any required filters of the input history.

6.8.3. Thoracic Trauma Index (TTI)

2 + O(h*)

TTI is the abbreviation for Thoracic Trauma Index (Thorax Trauma Index).

The TTI value is calculated using the following formula:
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A(max.rib) + A(lwr.spine)
2

TTI =

A(max.rib) = max{A(upr.rib), A(lwr.rib)}

with  A(upr.rib)  Maximum y-acceleration of the upper rib
A(lwr.rib) Maximum y-acceleration of the lower rib
A(lwr.spine) Maximum y-acceleration of the lower spine

The result is divided by the gravitational acceleration g (9810mm/s?).

Table 6-24: Options for TTI arguments

Option Description Symbol
Acceleration upper rib y-acceleration of the upper rib A(upr.rib)
Acceleration lower rib y-acceleration of the lower rib A(lwr.rib)
Acceleration lower spine y-acceleration of the lower spine A(lwr.spine)
Time unit Time units -

Length unit Length units -

6.9. Criteria for the Lower Extremities

6.9.1. Tibia Index (TI)

T1 is the abbreviation for the Tibia Index.
The calculation of the TI value in based on the equation

TI=£+
MC

F
FC

M =/(M,)? +(M,)?

with M

xly
M.  Critical bending moment

F Axial compression [KN] (t-shear resultant)

Bending moments [Nm] (torsional resultant, s-moment resultant)
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F. Critical compression force

Table 6-25: Options for T1 arguments

Argument name Description Symbol
Bending moment x Bending moment, torsional resultant M,
Bending moment y Bending moment, s-moment resultant M,
Axial compression z Axial compression, t-shear resultant F
Dummy type Dummy type -
Length unit Length units -

Force unit Force units -

Table 6-26: Input constants for various dummy types

Dummy type Critical bending moment [Nm]  Critical compression force [KN]
Hybrid 111, male 95% 307.0 44.2
Hybrid 111, male 50% 225.0 35.9
Hybrid 111, female 5% 115.0 22.9

6.10. Additional Criteria
6.10.1. A3ms

The smallest resultant acceleration level maintained for 3ms. r,is computed as the level of

r=+%X*+Vy°+7> exceeded for the specified time interval At(3ms). The resulting acceleration level is
divided by the gravitational acceleration, g = 9810mm/s2.
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Table 6-27: Options for a3ms arguments

Argument name Description Symbol

X History x-acceleration history X

y History y-acceleration history y

z History z-acceleration history 4

Time unit Time units -

Length unit Length units -
Remarks:

o0 Yy History () and z History (Z) are optional.

0 The user is responsible for any required filters of the input history.

6.11. LS-DYNA Binout injury criteria

The injury criteria such HIC, HIC(3 nodes), Chest Severity Index, CLIP3m and CLIP3m (3 nodes) can only
be compute for LS-DYNA. The acceleration components for the specified nodes will be extracted from
binout, the magnitude computed, and the injury criteria computed from the acceleration magnitude history.

Note:
0 The length and time units are used to compute the gravity value based on 9.81 m/s?

6.12. REFERENCES

[1] Data Processing Vehicle Safety Work Group - Crash Analysis Criteria Description. Version 2.1.1
Arbeitskreis Messdatenverarbeitung Fahrzeugsicherheit, May 2008.

[2] K.-U.Schmitt, M. Muser, How to calculate the Ny, , Working Group on Accident Mechanics,
Zirich, 2003

6.13. The GenEx application for extracting entities from a text file

GenEx (Generic Extractor) is a tool to create the .g6 file used by LS-OPT to extract responses and
histories. It is included in the LS-OPT distribution as the executable file genex.

6.13.1. The main window

GenEx can be started from the command line by typing genex <filename> or by selecting the Create/Edit
button after selecting GenEx on the Responses or Histories page.
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File Edit
E & O
= Start of File 199. 361 ~ Anchor name:
S
End of File 202 . 364 Crigin:
203. 365
204, 166 Start of File =
205 . 367
206. 368 T
207. 369 Flain search S
208 - 70 Textto search for:
209. 371
210. 372
211. 373
21z, 374
213, 175 Direction
214, 376 #® Forward EBackward
215. 377
216. 378 Match
® Anywhere
Start of line only
End of line anly
nodal point velocities .
Skipover | 0 » matches
node id x-vel y-vel z-vel Relative location:
1 -1.5640E+04 0.0000E+00 0.0000E+00 0.0 .
2 -1.5640E+04 0.0000E+00 0.0000E+00 0.000 i :
3 -1.5640E+04 0.0000E+00 0.0000E+00 0.000 - -
4 -1.5640E+04 0.0000E+00 0.0000E+00 0.0 v
5 -1.5640E+04 0.0000E+00 0.0000E+00 0.00! Column separators
6  -1.5640E+04 0.0000E+00 0.0000E+00 0.000
7 -1.5640E+04 0.0000E+00 0.0000E+00 0.0
8  -1.5640E+04 0.0000E+00 0.0000E+00 0.000
9 -1.5640E+04 0.0000E+00 0.0000E+00 0.000
10 -1.5640E+04 0.0000E+00 0.0000E+00 0.00(a
11 -1.5640E+04 0.0000E+00 0.0000E+00 0.00(¥ Move to start of line
[ 4|

Figure 6-15: GenEXx dialog.
When first starting GenEx, there will be two predefined anchors in the tree on the left, Start of File and
End of File. It is not possible to change or remove these two anchors.

The middle part of the window displays the data file, with symbols for anchors and entities. The current
entity/anchor will be highlighted or have a thin black border around it.

On the right is the dialog box for specifying/selecting options for the currently selected anchor/entity.

Anchors

Anchors describe how to find a certain position in the data file. This can be done with searching for
keywords or with an absolute position.

Entities

An entity is a quantity we want to extract from LS-OPT. Entities describe both what the number should look
like as well as where, relative to the parent, to find it. There are three types of entities, scalar, column and
repeated anchor vectors (see “Options specific for entities” for the difference between them).
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Options

When an anchor or an entity is selected, it is possible to change the options shown in the dialog box. A new
search will be performed whenever an option is changed that requires it. The only exception is the Text to
search for, this requires the user to hit Enter (on the keyboard) to start the new search.

Origin
This is the parent anchor of the anchor/entity.
Column separator

If columns are selected in Relative positions it is possible to change what separates the columns in the input
file.

Options specific for anchors

Type
There are for types of searches. Three of them are keyword-based (search-phrase based).

o0 Plain text: This is the most basic search. It looks for the given text in the file and positions the
anchor in front of the match.

0 Glob search: The glob search main goal is to be able to match strings with the aid of the wild cards,
*'and '?". The asterisk matches any character any number of times and the question mark matches
any character one time.

Example:
*abc

will match any word ending with abc (xxxabc, yyyabc, etc.) and the anchor will be placed
where the match begins ((A)xxxabc, (A)yyyabc).

a’c

will match all three letter words starting with 'a’ and ending with 'c' (axc, abc, etc.) and the
anchor will be placed before the match begins ((A)axc, (A)a5c).

0 Regular expression search: The asterisk * matches the preceding element zero or more times and
the dot . matches any character one time. If letters are put inside brackets this matches any single
character inside the brackets. If a "' is put inside the brackets this means that we should match any
character not inside the brackets.

Examples:

ab*c

matches "ac", "abc", "abbbc", etc.

a.c

matches all three letter strings starting with ‘a’ and ending with'c' (ahc, a8c, aHc, etc.)
[csad]bc
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matches all strings starting with ¢, s, a or d followed by 'bc' (cbc, sbc, abc, and dbc).
[“csad]bc
matches all strings not starting with ¢, s, a or d followed by 'bc' (xbc, 5bc, kbc, etc.).

These can all be combined into a larger regular expression,"[skjfrdzh]*esp[ohjd]n.e" will
match "response” (but also "espdnle” for example).

0 Absolute search: In this search the user positions the anchor simply by telling on which row and in
which column the anchor is located in the file.

Plain text, glob and regular expression search searches for a specific text string. The absolute search
positions the anchor relative to the parent. The glob and regular expression searches are very similar to the
search capabilities in the Perl language or the Unix/Linux scripting language.

Text to search for

This is the text/regular expression/glob to search for.
Direction

Starting from the origin, this is the direction to search in.
Match

This is where on the line the search text will have to match.
Relative Location

When Absolute search is selected, this section will be enabled. Here it is possible to enter the absolute
position of the anchor if known.

Skip over

Since the input file can contain several instances of the search term it is possible to skip some of them to
find the desired position.

Move to start of line

When this is checked the anchor will be positioned at the start of the line, even if it is found somewhere
else.

Options specific for entities

Relative Location

This is the position of the entity, relative to the parent anchor.

Type of entity

Here there are three options, scalar, column vector and repeated anchor vector.
Scalar

The scalar entity is used for extracting responses and it extracts one result.
Column vector

A column vector extracts a column of data.
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Repeated anchor vector

A repeated anchor vector repeats the search of the selected anchor to extract several entities found in
different places in the input file.

Number format
Here it is possible to specify what a number looks like.
Maximum length

The default behavior is that an entity starts at the specified position and ends with a white space. Here it is
possible to specify the length of the entity if this is not the case.

Maximum number of components

When using GenEx to extract histories the default behavior is to keep extracting until a match is not found,
this option limits the number of extracted results.

Anchor to repeat

If the entity type is “repeated anchor vector” this will show a menu with valid anchors. Start of file and End
of file will not be available since they can’t be repeated.

6.13.2. Creating a .g6 file for LS-OPT

First we have to select the input file in which to search. This is done from the File menu: Select input file.
The file will be displayed in the middle window of the application.

Creating an anchor or entity

There are three ways to create anchors or entities. The first is to select the anchor used as parent and then
click on the anchor or entity button in the menu depending on what is needed. This will create a new
uninitiated child. By selecting the new anchor or entity in the tree view on the left side, the options will be
visible on the right side panel.

The second way is to simply make a selection in the text file, right click and select Create Anchor Here or
Create Entity Here. This will create a new child at that position with the currently selected anchor as the
parent anchor. It’s possible to select a column of numbers to create a column vector.

The third option is to make a selection in the text and drag that selection to the anchor we want to use as
parent in the tree.

Creating an . g6 file without an input file

It is possible to create a .g6 file without access to the input file we want to extract from. However, this
requires some knowledge of the file format and syntax.

Editing a . g6 file

From the “File” menu, select “Open GenEXx file”.
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6.13.3. How to use GenEx from LS-OPT for extracting responses

Name Subcase Multipiler Offset

SWEner | [

Input GenEx file

[SWEnergy.gﬁ l l Browse l lCreate,{Edit

Input data file

[chsp l
Entities

[~
Yvelocity H
InternalEnergy ||
EnarmwACNn

Reread entities

Cancel l [ oK

Figure 6-16: Definition of a GenEx Response
From the Responses panel select GENEX as a response. This will open up a dialog showing a few options
related to GenEx .

The first selection to be made is which .g6 file to use. This option provides a list of available entities to
choose from. The entities need to be of the “Scalar” type. It is also possible to edit a file by clicking the
Create/Edit button. If no file name is given the default action is to create a new . g6 file.

Secondly, enter the name of the input data file. LS-OPT looks for the file in the run directory.

6.13.4. An example using GenEx to extract responses

This example explains how to extract a number of responses from the LS-DYNA d3hsp file. Different
search options are employed to demonstrate the various options.

0 Open the GenEx GUI by selecting Create/Edit. Then select d3hsp as the input file by using
File—Select input file. The d3hsp file is displayed in the middle. We are interested in 3 responses at
various cycles and a fourth response to be the last one in the file.

Defining an anchor:
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o Define an anchor with the name Cycle4800_Plain by clicking on the anchor icon or using the
Edit option.

0 Use a plain search to search for the string "dt of cycle 4800". If you want to change the
string in the text box, remember to hit the "Enter" key on the keyboard. The anchor is displayed as a
small anchor icon in the leftmost column of the line that matches the search string. The next step
would be to find the desired field relative to this anchor.

File Edit
E & O
= Start of File average cpu time per mone cycle.... 735 nanoseconds 4 Anchorname:
4 Cycle4B00_Plain average clock time per zome cycle.. 735 panoseconds Cycle4B00_Plain
[x Swener 4737 t 2.9998E-02 dt 7.93E-06 write d3plot file Origin:
L M Start of File
- Cycled4700_Glob E of cycle 4200 is controlled by shell element 37
Type:
= InternalEnergy_Absolute time 5 .04981m-02 ¥P
[x IntemalEnergy TAME BEEP . ettt 7.93994E-06 Plain search =

= End of File kinetic emergy 4.35734E+08 Textto search for:
= LastCval internal energy 8.68588E+07 dt of | 4800
astiycle stonewall snergy T7.65915E+05 wall$# 1 oycle

[x Energy4s00 Stonewall SOErgY...eeseeesonnns 1.55782E+06 wallh 2 Direction

spring and damper SNergy....... 1.00000E-20 ® Forward Backward
system damping E0ergy.......... 0.00000E+00

s8liding interface energy....... -4.56670E+04 Match

external Work.vsorsnsrnnanranss 0.00000E+00 ®) Anywhere

eroded kinetic energy.......... 0.00000E+00 Start of line enly

eroded internal E0ergy......... 0.00000E+00

total BOELgY .- e e nnnns 5.24930E+08 End of line only

total energy / initial energy.. 29.65837E-01

energy ratioc w/o eroded energy. 9.65837TE-01 Skip over | 0 : matches
global ®x velocity.oeee i innns -1.35505E+04 Relative location:

global ¥ velocity .o e e nnnnns -1.62068E+00 -

global = velocity e ew o ranennss 1.31314E-01 < s,

Cpu time per Zome ovcle. .. ieeiia e 0 nanossconds o =

-

average Ccpu time per mone cycle.... 734 nanoseconds

average clock time per zone cycle.. 736 nancseconds Column separators
4263 t 2.0993E-02 dt 7.95E-06 write d3plot file
element 27

dt of cycle 4900 is controlled by shell

Figure 6-17: GenEx dialog; definition of an anchor

Defining an entity:
o Define a new entity SWEner by using the leftmost x-icon or the Edit option.
0 Choose the previously defined anchor as the Origin.

o Find the desired field by searching 6 lines below the anchor, 2 columns across. The desired field is
displayed as highlighted in yellow with a black border. See figure below.
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File Edit
@ O
= Start of File

= Cycled®00_Plain
i
E Yvelocity
hd Cycle4900_RegExp
E Energy4300
4 Cycle4700_Glob
= InternalEnergy_Absolute
E InternalEnergy
End of File

4737 t 2.9998E-02 dt 7.93E-06 write d3plot

dt of cycle 4800 is controlled by shell

L 3.04381E-02
time step 7.93354E-06
kinetic Eenergy . evennsssnnsnnss 4.35754E+08
internal E0ErgyY .. .cenenanaanns 8.68588E+07
stomewall SDErgy...ccecevercanns
stonewall E0ergy ...ccvee e canns 1.55782E+06
spring and damper =nergy 1.00000E-20
system damping energy....... 0.00000E+00D
s5liding interface energy -d.56670E+04
external work...ooeiaiiiiiinnas 0.00000E+00
eroded kinetic EDEIgY .. v enunss 0.00000E+00
erocded intermal Smergy......... 0.00000E+00
total EnmErgy. ... necnennan 5.24930E+08

total energy / initial energy.. 9.65837E-01

energy ratio w/o eroded energy. 2.65837E-01
global ®x velocityieesssssnnnnss -1.35505E+04
global ¥ velocity.ieew s vnnsnnss -1.62068E+00
global = velocity e enransnss 1.31314E-01
cpu time per zome cycle............ (s}
averagje cpu time per mome cycle.... 734
average clock time per zome cycle.. 736

4863 t 3.09399E-02 dt 7.35E-06 write d3plot

Figure 6-18: GenEXx dialog; definition of an entity

file

element

wall$ 1
wall$ 2

nanocseconds
nancseconds
nanoseconds

file

E Entity name:

[SWEner

Crigin:

[ Cycleds00_Plain

Mumber format

SI Decimal separator(s): _
@ Exponent character(s):

Thousands separators:
D D D Space
Relative location:

-
- lines,

columns

-
-

)

Colurmn separators

D Tab D Space
0. 5

EI Cther: :]

|:| Maximum length

:

@ Whitespace

[

o0 Now define a new entity referred to the same anchor Cycle4800_PIlain. This entity is 18 lines
below the anchor and 3 columns across as shown in the Relative location dialog below:

File Edit
E & O
= Start of File
i Cycledd00_Plain
E SWEner
i vciocn|
= Cycled700_Glob
= InternalEnergy_Absclute
E InternalEnergy
= End of File
= LastCycle
E Energy4300

4737 t 2.9998E-02 dt 7.93E-06 write d3plot

dt of

cycle

4800 is controlled by shell

2.045981E-02
7.92994E-06
4.35794E+08

internal EDErgy .. eceecencan 8.68588E+07
stonewall ENErgY ..ceeecensns 7.65915E+05
stonewall Energy . ececcacannns 1.55782E+06
spring and damper SNSrgY ....... 1.00000E-20
system damping E0ergy.......... 0.00000E+00
g8liding interface snergy....... -d.56670E+04
external work.....ioceiiiiiinnns 0.00000E+00D
eroded kinetic eDErgy......eu.. 0.00000E+00D
eroded internal E0ergy......... 0.00000E+00
total EDErgY . s snansssssnnnss 5.24930E+08

9.65837E-01
9.65837E-01

total energy / initial emergy..

energy ratio w/o eroded energy.

global x velocity . ceee e innss -1.35505E+04
global ¥ velocity . wesssssnnanss
global z velocity . ceee i e innns 1.321314E-01
CPU time per Zone o¥Cle.ciaiensassas o
average cpu time per =zone cycle.... 734
average clock time per zome cycle.. 736

AZRT + 2 AEEAR-NT Ar 7 ARR-NA writa AInlar

Figure 6-19: GenEXx dialog; definition of an entity

file

element

wall$ 1
wall# 2

nanoseconds
nanocseconds

nancseconds

Fila

E Entity name:

[ Yvelocity

Crigin:

l Cycle4800_Plain

Mumber format

@ Decimal separator(s): -
|Z| Exponent character(s):

Theousands separators:
D |:| |:| Space
Relative location:

S
-+ lines,

columns

[3 |-

N

Column separators

] Tab [] space
[ ™ 5

SR

|:| Maximum length

:

%] Whitespace

11
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o Define a second anchor using a global search for the string "4700 is controlled". The origin
of this anchor is also the start of the file and the search is forward from that point. Note the anchor
placement on the figure below just before the string "4700 1s controlled".

File Edit
F & O
= Start of File average cpu time per zone cycle.... 734 nanoseconds + Anchor name:
- Cycle4800_Plain average clock time per zone cycle.. 734 pancseconds Cycled700_Glob
[x swEner 4610 t 2.8993E-02 dt 7.91E-06 write d3plot file Crigin:
[x vvelocity Start of File -
- Cycle4700_Glob dt of cycle EDD is controlled by shell element 37
Type:
= InternalEnergy_Absclute time 2.970488- 02 o
[x InternalEnergy EAME BEED «uenennrnnrnnansannns 7.92546E- 06 Glob search ~
- End of File kinetic energy....cveenennnnnas 4.37773E+08
internal ENergy....ceeacasansns 8.52571E+07
v LastCycle o
stonewall ENEergy ....cveenranans 7.65915E+05 wall# 1
[x Energy4s00 stonewall EnErgy...... 1.55782E+06 wall# 2 Direction
spring and damper ener 1.000008E-20 ® Forward Backward
system damping energy. 0.00000E+00
sliding interface energ -4.59854E+04 Match
external work......... P 0.00000E+00 ® Anywhere
ded kineti Vewsssnnnns 0.00000E+00 3
=re instic energy Start of line only
eroded internal ENEXgyY......... 0.00000E+00
L R T 5.25308E+08 End of line enly
total energy / initial energy.. 2.66533E-01
-
energy ratioc w/o eroded energy. 9.66533E-01 Skip over | 0 -~ Matches
global x velocity e esnssnnnnns -1.35898E+04 Relative location:
global ¥ velocity.. e e e nnnn 8.30546E+00 - r
Ines,
global = velocity.. e e e ennnn 1.31277E-01 b
cpu time per monme cycle.. ..o 0 pnanocseconds o -
average cpu time per zone cycle.... 735 nanoseconds v
average clock time per zone cycle.. 735 nanoseconds Column separators

4737 t 2.9998E-02 dt 7.93E-06 write d3plot file

dt of cvcle 4800 is controlled by shell element 37 b’
4 4|

Figure 6-20: GenEx dialog; definition of an anchor

0 Now define an anchor InternalEnergy_Absolute relative to the previous anchor by setting
the origin as Cycle4700_Glob, then searching 5 lines down and one column across. Note the
anchor icon just before the yellow-highlighted number in the figure below.
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File Edit
E & T
= Start of File
- Cycle4800_Plain
E SWEner
E Ywelocity
= Cycle4700_Glob

e InternalEnergy_Absolute

E InternalEnergy
= End of File
B LastCycle
|Z Energy4300

average cpu T1Me PEr ZOOES CVCOLlES....

average clock time per zome cycle..

4610 t 2.8333E-02 dt 7.21E-06 write d3plot

dt of cycle

2.

time step..

7.
kinetic energy.... 4

internal energy.
stonewall energy
stonewall energy
spring and damper energy.......

system damping energy . ...

eroded kinetic energy

eroded internal energy
total EOergy..eeececaacncaacnan
total energy / ipnitial energy..
energy ratio w/o eroded energy.
global x velocity
global v velocity.

global = velocity.

Cpu time per zome c¥cle.....eaen.ans
average cpu time per zone cycle....
average clock time per =mone cycle..

4700 is controlled by

shell

S7048E-02
92546E-06
3T7T3EH0E
532571E+07

-G65915E+05
-55782E+06
.00000E-20
.00000E+00
«539854E+04
-00000E+00
-00000E+00
. 00000E+00
«25308E+08
«66533E-01
.G6533E-01
- 35838E+04
- 30546E+00
. 31277E-01

4737 t 2.9998E-02 dt 7.93E-06 write d3plot

8t of cycle

[ |

Figure 6-21: GenEXx dialog; definition of an anchor

4800 is controlled by

shell

Danoseconas

nanoseconds

file

element

wall# 1
wall# 2

nancseconds
nancseconds
nanocseconds

file

element

E Anchor name:

[ InternalEnergy_Absoclute

Crigin:
a7 [ Cycle4700_Glob | vl
Type:
[ Absolute | S l
Direction

@ Forward O Backward

Match
@ Anywhere

() Start of line only

O End of line only

Skip over C] : matches

Relative location:

-
lines,

columns

Column separators
[] Tab ] Space [%| whitespace

™ 5 O

5 ([
BETlﬂE D O‘ther::]

o Define a new entity InternalEnergy using the InternalEnergy Absolute anchor as
reference point. The desired field is immediately found since the anchor is already at the desired

location.
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File Edit

F @O

= Start of File
= CycledB00_Plain
E SWEner
E Ywelocity
= Cycle4700_Glob
= InternalEnergy_Absclute
g
b End of File
B3 LastCycle
E Energy4200

dt of cycle 4700 is controlled by

LiME. st stenenanasasrasannnnns 2.
o T L = 7.
kinetic energy...ccviinennnnnas 4.
internal ENergy....ceeacasansns

stonewall ENEergy ....cveenranans T
stonewall ENEergy ....cveenranans 1
spring and damper EDEXgY....... 1
system damping EDnergy......o... 0.
8liding interface energy....... -4,
exteromal work. ... viiniiinnnns o
eroded kinetic energy.......... a.
eroded internal EDEYgV.....uo... 0.
total EDergyY .. et snnanannan 5
total energy / initial energy.. g
energy ratioc w/o eroded energy. 2
global x velocity..weeeen e nnns -1.
global v velocity..oieeeinannan 8.
global =z velocity .o iiinenn s 1.

cpu time per monme cycle.. ..o
average cpu time per zone cycle....
average clock time per =mone cycle..
4737 t 2.992BE-02 dt 7.93E-06 wri
dt of cycle

4800 is controlled by

timE. s ettt e s st 3.

Figure 6-22: GenEx dialog; definition of an entity

shell

97042E-02
92546E-06
37773E+08

B.525718+07

65915E+05

-55782E+06
.00000E-20

0000QE+D0D
S59854E+04

-00000E+00D

0000QE+D0D
00000E+00D

-2530BE+08
.G66533E-01
.G66533E-01

35898E+04
30546E+00
31277E-01
o

735

735

te diplot

shell

04981E-02

element

wall# 1
wall# 2

nancseconds
nancseconds

nancseconds

file

element

37

«  Entity name:
InternalEnergy
Crigin:
InternalEnergy_Absclute =
Mumber format
%X Decimal separator(s): | .
X Exponent character(s): |Ee

Theusands separators:

Space
Relative location:
-
0 - lines,
-
o ~ | characters S

Column separators

Maximum length

“+ character(s)
-

0 The next desired entity is the final total energy ratio (i.e. the one in the last cycle in the file). In this
case we will set the reference anchor called LastCycle to be the end of the file (Origin) and
search backwards (Direction).

0 The search string is "total energy" and the regular expression search type is used. The settings
to find the anchor are shown below.
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File Edit
E &0
= Start of File
=~ Cycled4800_Plain
[x swEner
E Wwelocity
i Cycled700_Glob
= InternalEnergy_Absolute
E InternalEnergy
= End of File

-

E Energy4200

Figure 6-23: GenEx dialog; definition of an anchor

0 The entity is found by using LastCycle as the anchor and searching in the sixth column.

s8liding interface energy.......

eroded kinetic energy.
eroded internal E0ergy.........
Ctal EOEIgY.«ececennnrneencnnns

jotul energy / initial enerdg:

energy ratio w/o sroded snergy.
global x veloCilty . ceer o nnnnns
global ¥ wvelocity

global =z velocity.....

LR FWWD OO oK

Ccpu time per Zome oycle. .. .ieieeiaaa.

average cpu time per zome cycle....

average clock time per zone cycle..

-54389E+04
-00000E+0O
-00000E+0OO
-00000E+0OO
«17577E+DS
-52308E-01
-52308E-01
«26595E+04
-14072E+01
-475399E-01

v}
751
762

FOO0 t 4.9819E-02 dt 3.94E-06 write runrsf
T019 t 4.9998E-02 dt 5.95E-06 write diplot
7019 t 5.0008E-02 dt 5.95E-06 write didump0l file

***kkr 4k termination time reached **xrsersx

nancseconds

nancssconds

nancseconds

file
file

7019 t 5.0008E-02 dt 9.95E-06 write d3plot file

Hormal

sEtorage

Memory reguired to complete solution

termimnboatiocn

allocatieon

Additional dynamically allocated memory:

Timimng

infeormatieocn

CPU (seconds)

Initialization ....... 8.0000E-02
Element processing ... 3.3000E+00
EBinary databases «.... 2.1000E-01
ASCII database ....... 6.6000E-01

relative location dialog box below.

Total:

286361

5283

291644

clock (seconds) %Clo:

-4480E-02
.3588E+00
LO776E-01
9649E-01

E Anchor name:

[ LastCycle

Crigin:

End of File

Type:

[ Regular Expression

Text to search for:

[total energy

Direction
() Forward (® Backward

Match

(@ Anywhere

() Start of line only
O End cf line cnly

Skip ower C] : matches

Relative location:

-
» lines,

[ 2

Column separators

L

[%| Move to start of line

See
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File Edit
i
' w O
= Start of File sliding interface energy....... -2.54389E+04 « Entity name:
< Cycle4B00_Plain external Work.....oceeeucenanns 0.00000E+00 Energy4900
eroded kinetic eDErgy . ssssanss 0.00000E+00 .
E SWEner . Crigin:
erocded intermal Smergy......... 0.00000E+00
[x velocity LOTAL EMELTY - v v v veemeeeeaeens 5.17577E+08 LastCycle ~
- Cycled700_Glob total emergy / initial emergy.. F.52308E-01 Mumber format
energy ratio w/o eroded energy. 9.52208E-01 . .
= %| Decimal separator(s): | .
InternalEnergy_Absolute G1lobal % TELDCATY «arrnrrrnnrnes -1.26595E+04 7 )
[x InternalEnergy global ¥ veloCity e eennn 4.14072E+01 %| Exponent character(s): | Ee
- End of File global z velocity.oeeoe i innns 4.47599E-01 Thousands separators:
cpu time per zome cycle............ 0 panocseconds
= LastCycle ) - ~ Space
average cpu time per =zone cyocle.... 751 nanoseconds
E Energy4300 average clock time per zone cycle.. 762 nancseconds Relative location:
-
0 - lines,
7000 t 4.281%E-02 dt 9.94E-06 write runrsf file
7015 t 4.99598E-02 dt 5.95E-06 write d3plot file 5] : columns -

7015 t 5.0008E-02 dt 5.95E-06 write didump0l file
Colurmn separators

Tab Space X Whitespace

*kkwkkkk tormination time reached ##errrss
7015 t 5.0008E-02 dt 5.95E-06 write d3plot file
Cther:

Hormal termination )
Maximum length

+ character(s)
-

sEtorage allocation

Memory reguired to complete solution H 286361
Additional dynamically allocated memory: 5283
Total: 291644

Figure 6-24: GenEx dialog; definition of an entity

This completes the GenEx setup. Save the file.

Now open the Stage dialog on the Responses page and select the GENEX response type on the
right. Open the Input GenEx file. A browse option is available. Importing the file will display the
selected entities in the Entities box.

o0 Select the input data file, namely d3hsp. This file must be available in the run directory during the
LS-OPT run.

0 Select an entity, define a response name at the top of the dialog and hit Ok. The response will appear
in the list on the Responses page.

0 Repeat the procedure for the remaining three response entities.

LS-OPT can now be run and the response entities will be extracted for each simulation run.

6.13.5. An example using ""Repeated anchor vector' to extract histories

In this example we will use GenEx to extract histories of the value for "kinetic energy" in the "glstat™ file
created by LS-DYNA. We first start by creating the anchor dt_of _cycles. This anchor will be the base
for further anchors. With this anchor as parent we now create the KE_anchor to search for the string we
are looking for, in this case "kinetic energy".
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File Edit
& O

= Start of File
- dt_of_cycle
h KE_anchor
[x
End of File

dt of cycle 1 is controlled by shell

e e R R R R R A 0. 00OOOE+0O
time step....... 5.00040E-07
kinetic energy..
internal energy. 7.96128E- 06
stonewall energy 0. DDDOOE+08
spring and damper energy. 1.60000E- 19

joint internal energy....
hourglass energy ........
system damping energy....
sliding interface energy.
external work............
eroded kinetic energy....
eroded internal energy.........
total energy.....ivieaieiiiaan
total energy / initial energy..
energy ratio w/o eroded energy.
global x velocity..............
global y velocity..............
global z velecity..............
time per zone cycle. (nanosec)..

number of shell elements that

reached the minimum time step..
added BaSS ..o covmoms wwvmms swem
percentage increase............
dt of cycle 400 is controlled
e s o R A
time step.......

kinetic energy..
internal energy....
stonewall energy.........
spring and damper energy.
joint internal energy....
hourglass energy ........
system damping energy....
sliding interface energy.
external work............
eroded kinetic energy..........
eroded internal energy.........
total energy.....cco..iiiiaan,

Figure 6-25: GenEx dialog; definition of anentity

0. 000O0E+00
0. 0O0OOE+0O
0. 00OOOE+OO
0. 0000OE+00
0. 000O0E+00
0. 0O0OOE+0O
0. 00OOOE+0O
3.67699E+08
1.00189E+00
1. 00189E+00
1.40547E-02
7.24379E-11

-2.15360E-11

649

0]

5.69522E-03
1.62208E-01

by shell

1.99516E-04
5.00040E-07
3.44904E+08
2.05286E+07
0. 000OOE+00
1. 6OOOOE- 19
3.35910E-02
2.09104E+06
0. 000OOE+00
8.07489E+04
2. 78063E+00
0. 00000E+00
0. 000OOE+0O
3.67604E+08

element 51474

wall# 1

element 1948

wall# 1

[~| Entity name:
H [ke_Entity
Origin:
KE_anchor

<> |

Type of entity

@ Scalar

) Column vector

) Repeated anchor vector
Number format

Decimal separator(s): [

Expenent character(s): |Ee |
Thousands separators:

0.0 . O Space

Relative location:

[o |2/ lines,

EPTE— | )
|34 |2/ | characters

Column separators

|

Maximum horizontal length

[12 [2 characterfs)

Anchor to repeat

@

As seen in the screenshot above, this entity is of the Scalar type and needs to be changed to Repeated
anchor vector. When creating a repeated anchor vector the default value for Anchor to repeat is the parent
of the entity. Since "kinetic energy" appears twice between every dt_of cycle the result is not
what we want yet. In order to skip "eroded Kinetic entity", we pick the grandparent dt_of_cycle anchor

as the one to repeat.

The result of this setup will be that the extractor will find "dt_oFf _cycle", then search forward for
"kinetic energy" and extract the first element of the vector. Then, it will find the next occurrence of
"dt_of_cycle" and repeat, extracting the other elements of the vector.
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File Edit
F &0
¥ i Start of File (2| Entity name:
dt of cycle 1 is controlled by shell element 51474 2 r
¥ o dt_of cycle IKE_E”UW ]
e e R R R R R A 0. 00OOOE+0O
¥ I KE_anchor time step...... ) 5, 00040E - 07 Origin:
E kinetic energy... =
x
. dEf = internal energy.. 7.96128E-06 | KE_anckar ‘]
ndor File stonewall energy... 0.00000E+00 wall# 1 -
spring and damper energy. 1.60000E- 19 _TYF’E GEenEEy
joint internal energy.... 0, DDDODE+0E ) Scalar
hourglass energy ...... 0. DODOOE+0D - I
system damping energy.... 0. DODOOE+08 © Column vector
sliding interface energy. 0, DDDOOE+D0 @)
external work............ 0. DDOOOE+00 @ Repeated anchor vector
eroded kinetic energy.. a. :
eroded internal energy. ...  D.DDDODE+0B Number_ Al —
total energy. s eni nes e 3.67699E+08 Decimal separator(s): |,
total energy / initial energy.. 1. DO189E+DD R
energy ratio w/o eroded energy.  1.0DO1B9E+00 Exponent character(s): |Ee |

global x velocity.............. 1.40547E-02

global y welocity.. 2 7.24379E-11 Thousands separators:
global z velocity.............. -2.15360E-11 O.0O . O Space
time per zone cycle. (nanosec).. 649
Relative location:
rn Rt
number of shell elements that lO Iv‘ lines,
reached the minimum time step.. 0 = ]
|34 |2/ | characters o
FHAEd MASS oo vovsme srw vt s 5.B69522E-03 Column separators
percentage increase............ 1.62208E-01 -
dt of cycle 400 is controlled by shell element 1948

e s o R A 1.99516E-04
time step...... z 5. 00040E-07
kinetic energy... 3.44904E-08 : Maximum horizontal length
internal energy..

3. 053865507

~
stonewall energy......... 0. 0DOPOE+00 wall# 1 |11 Iv‘ character(s)
spring and damper energy. 1. 6O0OOE- 19 :
joint internal energy.... 3.35910E- 02 [J Maximum number of components
hourglass energy ...... 2.09104E+06
system damping energy.... 0. DODOOE+00
sliding interface energy. 8.074B9E+04
external work............ 2. 78063E+00 PME_M
eroded kinetic energy.. 0. ] KE anchor |¢|
eroded internal energy. 0. DODOOE+0D _
total energy........... 3. 67604E+08 [~

Figure 6-26: GenEx dialog; definition of an repeat anchor vector

After we have changed the Anchor to repeat to dt_of_cycle, we will have the correct result. The color
of the other vector elements will be in light yellow with a dotted border.

LS-OPT Version 5.0 113



CHAPTER 6: History and Response Results

File Edit
& O

= Start of File
- dt_of_cycle
h KE_anchor

[Fl KE Entity]|

End of File

CARAVAN MODEL (NCAC vel) (Fully integrated shell)
1s-dyna mpp971sR4.2..53450 dat

dt of cycle 1 is controlled by shell

time. .. ..o 0. 0O0OOE+0O
tame stemo i Sl S R A 5. 00040E-07
kinetic energy........cooiviann
internal energy....... 7.96128E-06
stonewall energy...... 0. 0O0O0E+00
spring and damper energy 1. 6O0BOE- 19

0. 0000OE+00
0. 000O0E+00
0. 0O0OOE+0O
0. 00OOOE+OO
0. 0000OE+00
0. 00000E+00
0. 000OOE+0O
3.67699E+08
1. 00189E+00

joint internal energy..........
hourglass energy ..............
system damping energy..........
sliding interface energy.......
external work................ ..
eroded kinetic energy..........
eroded internal energy.........
total energy................ ...
total energy / initial energy..

energy ratio w/o eroded energy. 1. DO189E+DD

global x velocity 1.40547E-02
global y velocity 7.24379E-11
global z velocity -2.15360E- 11
time per zone cycle. (nanosec).. 649
number of shell elements that

reached the minimum time step.. 0]

added mass.........oiiiiiiian 5.69522E-03
percentage increase............ 1.62208E-01

dt of cycle 400 is controlled by shell

TIme. oo 1.99516E-84
time step. ... ooiiiiai i 5. DOO40E - 07
kinetic energy................. 5. 44904E+08:
internal energy........cooovinns 2,05286E+07
stonewall energy........ 0, DDDOOE+00
spring and damper energy 1. 6O0O0E- 19
joint internal energy... .. 3.35910E-02
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system damping energy.......... 0, DDDOOE+00
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Figure 6-27: GenEx dialog; definition of a history

element 51474

wall# 1

element 1948

wall# 1

We are now finished with the GenEx part and the file can be saved.

@

Entity name:
[ke_Entity

Origin:
KE_anchor

():

Type of entity
() Scalar

) Column vector
@ Repeated anchor vector

Number format

Decimal separator(s): [
Expenent character(s): |Ee |

Thousands separators:
0.0 . O Space

Relative location:
P
[o |Z lines,

| | %]
|34 |2/ | characters

Column separators

|

Maximum horizontal length
[12 | character(s)

[ Maximum number of components

Anchor to repeat
| dt_of _cycle 2|

6.13.6. An example using "Column vector"' to extract histories

Column vectors are useful for extracting vectors in tables. In this example we extract a position vector
generated by a fictitious solver. Just as in the previous example we start with the creation of the entity we
want to be the first. We then change the type to Column vector.

It’s possible to create the vector by selecting a column in GenEx and right click to choose New Entity.
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File Edit
& O

= Start of File
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- Header
E e Time Position Speed
e

End of File 0 3] 16
0.01 . 0.16 15.9018

0.02 0.319018 15.8036

0.03 0.477054 15,7054

0. 04 0. 634108 15,6072

0.05 :0.79018 15.509

0.06 ©0.94527 15.4108

0.07 : 1,09938 15.3126

0.08 L1950 15,2144

0.09 ¢ 1,40465 15,1162

0.1 ©1.55581 15.018

0.11 : 1,70598 14,9198

0.12 ©1,85519 14,8216

0.13 1 2.0034 14.7234

0.14 : 2. 15064 14.6252

0.15 :2,29689 14,527

0.16 12.44216 14,4288

0.17 © 2.58645 14.3306

n.18 ©32.72075 14.2324

0.19 . 2,87208 14,1342

0.2 3,01342 14,6036

0.21 ©3,15378 13.9378

0.22 ©3.29316 13.8396

0.23 :3.43155 13,7414

0,24 o 13,6432

0.25 : 13,545

0.26 13.4468

0.27 13,3486

0.28 13,2504

0.29 13,1522

0.3 13,054

0.31 12,9558

0.32 12.8576

0.33 12,7594

0.34 12.6612

0.35 12.563

0.36 12.4648

0.37 12,3666

0.38 12.2684

0.39 12.1702

0.4 12,072

0.41 11,9738

0.42 11.8756

0.43 11.7774

Figure 6-28: GenEx dialog; definition of a column vector entity

6.13.7. How to extract the histories from LS-OPT

@

Entity name:
[ Position

Origin:
| Header

<

Type of entity
() Scalar

@ Column vector

) Repeated anchor vector

Number format

Decimal separator(s): |

Expenent character(s): |Ee |
Thousands separators:

0.0 . O Space

Relative location:

|2 |~/ lines,

TR | 5]
[11 |2/ | characters

Column separators

Maximum horizontal length

B |2 character(s)

[ Maximum number of components

Anchor to repeat

Using GenEx for extracting histories is very similar to using it for responses. The main difference is that
you have to select two entities to define the history, one for the x-axis and one for the y-axis. It’s possible to
use "Auto increment” for the x-axis, in which case the x-axis values will simply be 0,1,2,3...
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= Edit history =
Name Subcase

Kinetic E [

Input GenEx file

5PONSESEa.gﬁ| | Browse ||Create{Edit

Input data file

Xftime vector Y/value vector

it ebesiusset=~ A
KineticEnergy

Reread entitie5|

| Cancel || oK

Figure 6-29: Interface to define a GenEx History

When creating the entities in GenEx they need to be either Column vector or Repeated anchor vector to
be used for history extraction.

6.14. User-defined interface for extracting results

The user may provide an own extraction routine or any program, e.g. a postprocessor, to get response or
history results. For responses, the command has to output a single floating-point number to standard output.
For histories, the values have to be output to a file LsoptHistory in two columns. The command has to
be specified in the Definition field in the USERDEFINED interface dialog, Figure 6-30.

Examples of the output statement in such a program for response extraction are:
0 The C language:

printf ("%I1f\n", output_value);

or

fprintf (stdout, "%If\n", output value);
0 The FORTRAN language:

write (6,*) output_value
0 The Perl script language:

print “$output_value\n';
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i New response =)
Mame Subcase Multipiler Offset
[Fnrce l [ | 1 | |_D |

[] Mot metamodel-linked

Definition

[Isprepnst c=./. ./get_force -nngraphic5| l

Cancel | | oK |

Figure 6-30: Extracting a Response using a user-defined program

Examples:

1. The user has an own executable program “ExtractForce” which is kept in the directory
$HOME/own/bin. The executable extracts a value from a result output file.

2. The relevant response definition command must therefore be as follows:

$HOME/own/bin/ExtractForce

3. If Perl is to be used to execute the user script DynaFLD2, the command may be:

$LSOPT/perl $LSOPT/DynaFLD2 0.5 0.25 1.833"

4. In this example the post-processor LS-PREPOST is used to produce a history file from the LS-
DYNA database. The LS-PREPOST command file get_force:

open d3plot d3plot

ascii rcforc open rcforc O

ascii rcforc plot 4 Ma-1

xyplot 1 savefile xypair LsoptHistory 1

deletewin 1

quit

produces the LsoptHistory file. See Figure 6-30 for the LS-PREPOST command.

Note : The rcforc history in this example can be obtained more easily by direct extraction (see
Section 6.2.1 and Appendix A.1 : Binout Histories.)

Remark:
1. An alias must not be used for an interface program.
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5. The program should be run in batch mode.
6. The program is called from the run directories. This has to be considered if relative paths are used.

6.15. Nastran Frequency

The Nastran Frequency feature allows the user to extract the frequency, matched mode number or MAC
value from the Nastran database. This interface is similar to the LS-DYNA Frequency interface. Please refer
to Section 6.2.5.

= New response )]
Name Subcase Multipiler Offset
Frequency ] [ | 1 | |':' |

[ Not metamodel-linked

Baseline Mode Number
E

Modal Qutput Option

@ Frequency of Mode
() New Mode Number

() Modal Assurance Criterion

| Cancel || oK

Figure 6-31: Interface for Extraction of Frequencies from Nastran results

6.16. File Histories

A history can be provided in a text file with arbitrary format. Coordinate pairs are found by assuming that
any pair of numbers in a row is a legitimate coordinate pair. History files are typically used to import test
data for parameter identification problems.

File histories are global curves, they are neither sampling nor stage dependent, hence they are not listed in
the Stage dialog history list.
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Defined file histories
[TEEtl ]
Test2 b
Filename
Add new
[TEEtl.txt l[ Browse ]
Preview
Fa'
1.6E+04
x
1.4E+04
x
1.2E+04
be
0.5 1

Figure 6-32: File Histories

File History Text File Example:

Time Displacement
1.2, 143.97

1.4, 156.1

1.7, 923.77
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7. Setup Dialog — Defining the
Variables

This chapter discusses the conversion of parameters defined in input files to design variables of different
types. Graphical features allow the user to view file sources of parameters and the activation or de-
activation of variables for selected samplings.

Resource definitions and other global features are also available in this dialog.

7.1. Parameter Setup

Parameters defined in the input files of the stages are automatically displayed in the Parameter Setup
panel, Figure 7-1. The names of these parameters are not editable, and they cannot be deleted as indicated
by the lock symbol displayed in the Delete column. If only a name and value are specified in the stage input
file, the parameter type is set to Constant by default.

g Problem' global 'setup )
Parameter Setup | Stage Matrix | Sampling Matrix = Resources | Features

[[] Show advanced options
Type Name Starting Minirmurm Maxirmurm Sampling Ty... Delete

[Fontinuous | v | 3 1| 5| &
[continuous | v | 1o 13| 5] 2
E v | 20)values: 15,2.0.25.50 | .. @ v | @
E ~ |:72.5:|Valuesz 1.5,2.0,25,50 |.. @ v &

|

|

|

|

@ v o1 0.1 0.9 &
e — 0
EEEIT — o

10:| &

Constant v

Add...

Figure 7-1: Setup Dialog — Parameter Setup panel in LS-OPTui
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Other attributes such as parameter values or discrete sets defined in the input files are also displayed here,
but can be overridden. The desired parameter type and other appropriate options can also be specified, Table
7-1.

Advanced options, such as initial range, that are not required can be specified by selecting the Show
advanced options checkbox, Table 7-2.

Additional (non-file) parameters, although unusual, can be defined using the Add... button at the bottom of
the panel.
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Table 7-1: Parameter Setup options to be specified for each parameter

Option Description Reference
Type Parameter type:
Continuous Continuous variable -
Constant Constant value Section 7.1.1
Dependent Parameter depending on other parameters  Section 7.1.2
Discrete Discrete variable Section 7.1.3
String Discrete variable using string values Section 7.1.3
Noise Probabilistic variable described by a Section 7.1.4
statistical distribution
Name Parameter name. If the parameter is imported from a stage -
input file, the name is not editable
Starting Initial value of the variable, used in baseline run (1.1) -
Minimum Lower bound of the design space -
Maximum Upper bound of the design space -
Values List of allowable values for discrete and string variable Section 7.1.3
Definition Mathematical expression specifying a dependent parameter Section 7.1.2
Distribution Statistical distribution used to define a probabilistic variable Section 7.1.5
Sampling Type Sampling type for discrete variable: continuous or discrete Section 7.1.3
Table 7-2: Parameter Setup advanced options
Option Description Reference
Init. Range Size of subregion of the design space used in the first iteration ~ Section 7.1.6
Saddle Direction  Saddle direction specification used for worst-case design Section 7.1.7

Table 7-3: Parameter Setup options
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Option Description Reference
Show advanced Shows Init. Range and Saddle Direction option for each Table 7-2
options parameter

Noise Variable
Subregion Size
(in Standard
Deviations)

Bounds are required for noise variables to construct the
metamodels. The bounds are taken to a number of standard
deviations away from the mean; the default being two standard
deviations of the distribution. In general, a noise variable is
bounded by the distribution specified and does not have upper
and lower bounds similar to control variables.

Enforce Variable
Bounds

7.1.1. Constants

Assigning a distribution to a control value may result in
designs exceeding the bounds on the control variables. The
default is not to enforce the bounds.

Each variable above can be modified to be a constant. Constants are used:

1. to define constant values in the input file such as 7, e or any other constant that may relate to the
optimization problem, e.g. initial velocity, event time, integration limits, etc.

2. if native parameters defined in the input file are not to be used as optimization parameters.

3. to convert a variable to a constant. This requires only changing the designation variable to constant
in the command file without having to modify the input template. The number of optimization
variables is thus reduced without interfering with the template files. Variables can also be eliminated
by unchecking them in the Sampling matrix (see Section 7.3)

7.1.2. Dependent variables

Dependent variables are functions of the basic variables and are required to define quantities that have to be
replaced in the input template files, but which are dependent on the optimization variables. They do
therefore not contribute to the size of the optimization problem. Dependents can be functions of dependents.

Dependent variables are specified using mathematical expressions (see Appendix F: Mathematical

Expressions).

The dependent variables can be specified in an input template and will therefore be replaced by their actual

values.
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7.1.3. Discrete and String variables

[ Problem global setup X
Parameter Setup | Stage Matrix = Sampling Matrix | Resources
Type Name Starting Init. Range Minirmumm Maxirmum sampling Ty... Saddle Dire... De..
[Continuous v |tbumper || 3” “ 1|| 5| Minimize | v
[Discrete ~ |.thood | | 1-|Value5: 1,2,3.4,5 [Continuot ~ [Minimize ~
E =
Add ... 2 | x
3 | x oK
4 |=

Add new value

Figure 7-2: Definition of discrete values

For Discrete variables, a list of allowable values has to be specified. This can be done in the Parameter
Setup dialog using the ... button to the right of the Values textfield of the respective parameter, Figure 7-2.
A list opens up showing the already defined values, a textfield to enter a new value appears by selecting the
Add new value button or by using the return key.

For String variables, allowable string values are defined in the same way.

In addition to a list of values, the sampling type has to be specified for discrete variables. By default, the
discrete variables are treated as continuous variables for generating experimental designs. The optimal
values will assume an allowable value. If discrete sampling is selected, all experimental design points use
allowable values. If possible, a continuous sampling is recommended, because it usually leads to a better
distribution of the points within the design space and hence to a better metamodel quality.

7.1.4. Probabilistic VVariables - Noise and Control Variables

Probabilistic variable values, unlike deterministic variables, cannot be stated with absolute confidence. In
other words, there is uncertainty associated with these variables because of which we can only state that
their value will lie within a certain interval with specific level of confidence. This difference makes
probabilistic analysis and optimization much more involved than their deterministic counterparts. Therefore,
a separate chapter (Chapter 12) is dedicated to probabilistic tasks and problem setup.
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Probabilistic variables can either be control variables, whose nominal values are modified during
optimization to get a more suitable design, or noise variables that are not controlled during optimization and
only serve the purpose of introducing uncertainty in the problem. The variable type can be selected in the
Parameter Setup panel (Figure 7-3).

7.1.5. Probabilistic distributions

In order to represent variable uncertainties, they are associated with probabilistic distributions, which are
also part of the Parameter Setup panel when the selected task is probabilistic (Figure 7-3). Several types of
distributions are available in LS-OPT. Further details of how to set up probabilistic variables and
distributions are provided in Chapter 12.

*Zbarrbdo.correct.lsopt- L5-0FT 5.0

el

H ﬁ + /" | 2 M REDO/Robust Parameter Design O C

[oPT IS Problem global setup i & X

Parameter Setup = Stage Matrix  Sampling Matrix =~ Resources Features

Enforce Variable Bounds

Type Name Starting Init. Range Minimum Maximum Distribution Saddle Direct... : Delete
Continuous v | Area 2 4 0.2 4 |area_dist w || Minimize Vo x

Noise v | Base base_dist | w A x

Add...

Figure 7-3: Parameter setup panel for probabilistic tasks

7.1.6. Size and location of initial region of interest (range)
If an initial range is specified, the initial subregion is defined as [starting — range/2, starting + range/2].

Remarks:
1. The full design space is used if the range is omitted.

2. The region of interest is centered on a given design and is used as a sub-space of the design space to
define the experimental design. If the region of interest protrudes beyond the design space, it is
moved without contraction to a location flush with the design space boundary.

7.1.7. Saddle direction: Worst-case design

Worst-case or saddle-point design is defined as a method to minimize (or maximize) the objective function
with respect to some variables, while maximizing (or minimizing) it with respect to the remaining variables
in the variable set. The maximization variables are set using the Maximize option in the Saddle Direction
field of the Parameter Setup panel. The default selection is Minimize.
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7.2. Stage Matrix

- Problem|globallsetup &)

Parameter Setup || Stage Matrix|| sampling Matrix | Resources

H

w1

z
cradle_rails ]
cradle_csmbr [3
shotgun_inner [4
shotgun_outer [
rail_inner ]
rail_outer ]
aprons ]

FFFEFFIFEIF NVH

Legend: [ - Parameter found in file(s) (hover mouse above to see filename(s) (= - Parameter manually added 1 - Parameter defined upstream

oK

Figure 7-4: Stage Matrix
The Stage Matrix provides an overview of the parameters defined in each stage. A parameter influences a

stage if it is defined in a stage input file, manually added to a stage, or defined in an upstream stage.
Hovering the mouse over a file icon shows a list of the files where the respective parameter is defined.

7.3. Sampling Matrix

] Problem global setup )

Parameter Setup | Stage Matrix | Sampling Matrix || Resources

cradle_rails
cradle_csmbr
shotgun_inner
shotgun_outer
rail_inner
rail_outer

NARANAR R A CRASH
A AEEEEEE NH

aprons

Figure 7-5: Sampling Matrix

For multidisciplinary design optimization (MDO) certain variables could be relevant for some but not all
disciplines. In such examples, several samplings (or cases) can be defined and the variables assigned to
some but not all samplings. The assignment of a variable to a sampling can be selected in the Sampling
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Matrix. If a variable is absent in a particular sampling, it assumes the current global value as generated by
the previous iteration for substitution in the input files of the next iteration. The number of variables selected
for a sampling directly affects the number of sampling points (and hence the computational effort) required
for that sampling. Each column is coupled to the Active Variables tab of the respective Sampling Dialog,
Section 8.4.

If a variable has been deselected for all the Samplings, it is treated as a constant value. Therefore the
baseline value will be assumed throughout the optimization. This option can be selected in lieu of explicitly
defining the parameter as a constant.

The sampling matrix cannot be changed between iterations.
See Section 17.5 for an MDO example.

7.4. Resources

Lo Problem global setup [=l

Parameter Setup = Stage Matrix | Sampling Matrix | Resources | Features

Resource Global limit
USERPOST |'12 |
USERDEFINED |'1 |
METAPOST | 1 |
LSDYNA_IMPLICIT [50 |
MOLDFLOW_LICENSE |'33 |
ANSA_LICENSE |'22 |
NASTRAM_LICENSE |'66 |
L5TC_LICENSE |'99 |

The above list is the union of the resources defined in stages

Figure 7-6: Setup — Resources

Resources are defined in the Stage dialogs, but, for convenience, allows editing of the global limits in the
Setup dialog. The Resources tab shows a summary of all resources defined for all the stages, Section 5.4.1.
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7.5. Features

Ll Problem| globallsetup =

Parameter Setup = Stage Matrix | Sampling Matrix = Resources || Features

Evaluate Metamodel
.csv file with variable values

|UserPoint52 Browse

Figure 7-7: Setup — Features

Sampling independent features are available in the Features tab of the Setup dialog, Figure 7-7.

7.5.1. Evaluate Metamodel

The response values of any number of points can be computed using an existing metamodel and written to a
.csv file (file with comma-separated variables that can be read by most spreadsheet programs). The input
data is sampling independent.

There are two simple steps to obtain a table with response data.

1. Browse for the file with the sampling point information using the Evaluate Metamodel option in the
Features tab in the Setup dialog. The file must be in .csv format although spaces, commas or tabs
are allowed as delimiters. The file must contain two header lines. The first header line contains the
variable names. The second header line contains the variable types; in this case "dv" (design
variable) suffices. The variable coordinates are specified as one row for each design point. See
example below.

2. Use the Setup dialog Repair option Evaluate Metamodels.

o Input: Each sampling point file must represent all the variables. LS-OPT checks whether all the
variables defined in the file are represented in the LS-OPT input. Variable order is not important.

o Output: The ExtendedResults output can be found as a META file in the main working
directory, e.g. ExtendedResultsMETAMaster_3.csv. The ExtendedResul ts file has
variable, dependent, response, composite, objective, constraint, multi-objective and constraint
violation values.

o If sampling points are defined before the start of an optimization run, the META file will be
automatically computed for each iteration.
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Example .csv file:
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8. Sampling & Metamodel Dialog

This chapter describes the specification of sampling settings, i.e. the metamodel types, point selection
schemes (design of experiments or DOE), and related options available in the Sampling dialog, Figure 8-1.
The terms point selection and experimental design, are used interchangeably.

s Sampling 1 &)

I Sampling Metamodel Settings l Active Variables Features Constraints

Metamodel Pointselection
@ Polynomial () Full Factorial
) Sensitivity () Linear Koshal
() Feedforward Neural Network () Quadratic Koshal
_ Radial Basis Function Network () Composite
) Kriging @ D-Optimal
_ Support Vector Regression () Monte Carlo
) User-defined () Latin Hypercube
_ Space Filling
Cfrd:—:jr ) User-defined
@ Linear
() Linear with interaction Number of Simulation Points (per lteration per Case)
) Quadratic 5 (default) |
) Elliptic

Set Advanced D-Optimal Options ==

Figure 8-1: Sampling dialog — metamodel and point selection settings
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8.1. Metamodel types

The user can select one of the metamodel types shown in Figure 8-1 and Table 8-1, respectively. The default
selection for the metamodel type and the point selection scheme depends on the choice of task and
optimization strategy, Chapter 4. For the sequential response surface method (SRSM) strategy, the default
choice is the polynomial response surface method (RSM) where response surfaces are fitted to results at
data points using polynomials. For global approximations fitted in the single iteration and sequential
strategies, the radial basis function networks are set as the default approximation models. For all strategies,
the feed-forward neural network, Kriging, Support Vector Regression and user-defined approximation
models are also available. Sensitivity data (analytical or numerical) can also be used for optimization. This
method is more suitable for linear analysis solvers. For details see the sections referred to in Table 8-1.

Table 8-1: Sampling dialog options — Metamodel types

Metamodel Type Description Reference

Polynomial Polynomial approximations up to quadratic order Section 8.1.1

Sensitivity Uses gradients to determine linear metamodels. Section 8.1.2

Feedforward Neural Network  An artificial Neural network with sigmoid basis Section 8.1.3
functions

Radial Basis Function A Neural Network with radial basis functions Section 8.1.3

Network

Kriging A Gaussian process. Form of Bayesian inference. Section 8.1.4

Support Vector Regression Support Vector Regression Section 8.1.5

User-defined Interface for user-defined, dynamically linked Section 8.1.6
metamodel.

8.1.1. Polynomial

When polynomial response surfaces are constructed, the user can select from different approximation
orders. The available options are linear, linear with interaction (linear and off-diagonal terms), elliptic
(linear and diagonal terms) and quadratic, Section 20.1.1. In the Sampling dialog, the approximation order is
set in the Order field, Figure 8-1. Increasing the order of the polynomial results in more terms in the
polynomial, and therefore more coefficients that need to be determined, hence more simulation runs are
needed. The default number of simulation runs is automatically updated for the polynomial type.

The polynomial terms can be used during the variable screening process (see Section 20.4) to determine the
significance of certain variables (main effects) and the cross-influence (interaction effects) between
variables when determining responses. These results can be viewed graphically (Section 14.3.4).

LS-OPT Version 5.0 131



CHAPTER 8: Sampling & Metamodel Dialog

The recommended point selection scheme for polynomial response surfaces uses the D-optimality criterion
(Section 8.3.2).

8.1.2. Sensitivity

In this approach, sensitivities are used to generate linear metamodels. Both analytical and numerical
sensitivities can be used for optimization, Figure 8-2.

-
L P ol

Sampling| 1

@)

Sampling Metamodel Settings l Active Variables Features Constraints

Metamodel

) Polynomial

(@ Sensitivity

) Feedforward Neural Network
) Radial Basis Function Network
) Kriging

_ Support Vector Regression

) User-defined

Sensitivity Type
@ MNumerical

() Analytical

Perturbation relative to design space

|.D.D1 (default)

Figure

8-2: Sampling Dialog: Sensitivity options

Analytical sensitivities

If analytical sensitivities are available, they must be provided for each response in its own file named
Gradient. The values (one value for each variable) in Gradient should be placed on a single line,
separated by spaces.

In the Sampling dialog, the Sensitivity Type must be set to Analytical.

A complete example is given in Section 17.7.
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Numerical sensitivities
To use numerical sensitivities, select Numerical in the Sensitivity Type field in the Sampling dialog and
assign the perturbation as a fraction of the design space, Figure 8-2.

Numerical sensitivities are computed by perturbing n points relative to the current design point x°, where the
j-th perturbed point is:

X/ = Xio +5ij8(XiU — Xi)

0; =0 if i j and 1.0 if i = j. The perturbation constant ¢ is relative to the design space size. The same
value applies to all the variables. The value of ¢ is assumed to be 0.001.

8.1.3. Feedforward Neural networks and radial basis function networks

To apply feedforward neural network or radial basis function approximations, select the appropriate option
in the Metamodel field in the Sampling dialog, see Figure 8-3 and Figure 8-4, respectively. The
recommended Point Selection scheme for feedforward neural networks and radial basis functions is the
space filling method (which is also the default).

FENN Efficiency Options*

Neural Network construction calculation may be time-consuming because of the following reasons:
1. The committee size is large
2. The ensemble size is large.

Committee size. The default committee size as specified above is largely required because the default
number of points when conducting an iterative optimization process is quite small. Because of the tendency
of NN’s to have larger variability when supplied with fewer points, committees are relied on to stabilize the
approximation through averaging. When a large number of points has been simulated however, the
committee size can be reduced to a single neural net by setting Number of Committee Members to 1.

Ensemble size. The ensemble size can be reduced in two ways:
1. Dby exactly specifying the architecture of the ensemble and
2. by providing a threshold to the RMS training error.

The architecture is specified using the Number of Hidden Nodes in Ensemble options. Higher order neural
nets are more expensive to compute.

FFENN efficiency options are available in the Sampling dialog if the Set Efficiency Option button is pressed,
and may be reset to the default settings using the Reset button, Figure 8-3. The available options are
explained in Table 8-2.
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Sampling| L

Sampling Metamodel Settings | Active Variables | Features ‘ Constraints |

Metamodel
) Polynomial

() Sensitivity

@® |Feedforward Neural Network|
() Radial Basis Function Network
() Kriging

() Support Vector Regression

) User-defined

First iteration Linear D-Optimal

Include pts of Previous lterations

Set Efficiency Optiﬂnsl [ Reset

‘Number of Hidden Modes in Ensemb
Lin 1 2 3
4 5 Os O 7

O s o9 O 10
Default = Lin-1-2-3-4-5

Number of Committee Members

[9 (default)

Half Number of Discarded Nets

[O (default)

Pointselection
() Full Factorial
() Latin Hypercube
@ Space Filling
1 User-defined

Number of Simulation Points (per lteration per Case)

[5 (default)

Figure 8-3: Feedforward Neural Network Efficiency Options
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Table 8-2: Feedforward Neural Network Efficiency Options

Option

Description

Number of Hidden Nodes in
Ensemble

Ensemble size from which one will be selected according to
the minimum Generalized Cross Validation (GCV) value
across the ensemble. The default is Lin-1-2-3-4-5.

Number of Committee Members

Because of the natural variability of neural networks (see
Section 21.1.2), the user is allowed to select the number of
members in a neural net committee. To ensure distinct
members, the regression procedure uses new randomly
selected starting weights for generating each committee
member.

Half Number of Discarded Nets

The discard option allows the user to discard committee
members with the lowest mean squared fitting error and
committee members with the highest MSE. This option is
intended to exclude neural nets which are either under- or
over-fitted. The total number of nets excluded is therefore 2
times the specified number. The discard feature is activated
during the regression procedure.

Please refer to Sections 21.3 and 22.5 for recommendations on how to use metamodels.

Advanced RBF options: Basis functions and optimization criterion for RBF*

The performance of the RBFs can significantly vary with the choice of basis function and the optimization
criterion. Two basis functions available for selection are Hardy’s multi-quadrics (HMQ), and Gaussian
RBF. HMQ is often preferred and has therefore been set as the default. The user is also allowed to select the
optimization criterion to be generalized cross-validation error or the pointwise ratio of the generalized cross

validation error, Figure 8-4.

The options are available in the Sampling dialog if the Set Advanced RBF Options button is pressed, and
may be reset to the default settings using the Reset button, Figure 8-4. The available options are described in

Table 8-3.
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Table 8-3: RBF Advanced Options

Option

Description

Option

Description

Transfer Function

Basis function

Hardy’s Multi-Quadrics

gh(xl,...,x,<)=1/1+ir2 IR )

Gaussian

9y (X, X, ) = exp|- 12/ 262

Topology

Selection Criterion

Optimization
criterion

Leave-one-out

Generalized cross-validation
error (PRESS)

GCV-Ratio

Pointwise ratio of the
generalized cross validation
error

Noise variance

Variance of the fitting error

b

Sampling 1

&

Sampling Metamodel Settings

Metamodel

O Polynomial

() Sensitivity

() Feedforward Neural Network
@ Radial Basis Function Network
) Kriging

() Support Vector Regression

) User-defined

First iteration Linear D-Optimal

Include pts of Previous Iterations

Active Variables

Set Advanced RBF Opticnsl | Reset

Transfer Function
@ Hardy's Multi-Quadrics

) Gaussian

Topology Selection Criterion
@ Leave_one_out

() GCV-Ratio

() Noise variance

Features

Pointselection

) Full Factorial

() Latin Hypercube
@ Space Filling

) User-defined

Number of Simulation Points (per Iteration per Case)

Constraints

|5 (default)

Figure 8-4: Radial Basis Function Network Advance Options
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8.1.4. Kriging parameters

o Sampling 1 )
| Sampling Metamodel Settings | Active Variables | Features = Constraints

Metamodel Pointselection

) Polynomial " Full Factorial

) Sensitivity (O Latin Hypercube

() Feedforward Neural Network (@ Space Filling

 Radial Basis Function Network 1 User-defined

@ Kriging

. ) Number of Simulation Points (per lteration per Case)
() Support Vector Regression \

O User-defined |5 (default) |

First iteration Linear D-Optimal

Include pts of Previous lterations

Set Advanced Kriging Options] | Reset

Correlation Function
@ Gaussian

) Exponential

Trend Model

() Constant
@ Linear

) Quadratic

[] Fixed theta for all responses

Figure 8-5: Kriging Advanced Options

The Kriging fit depends on the choice of appropriate correlation function and the trend model, Section 21.2.
Two correlation functions available for selection are Gaussian and exponential. The user can also select
either a constant, linear, or quadratic trend model. The available options are displayed in Table 8-4.
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Table 8-4: Advanced Kriging Options

Option Option

Description

Correlation Function  Gaussian,

Correlation function used in stochastic component of
metamodel function, see Section 21.2.

Exponential
Trend Model Constant, Polynomial component of metamodel function.
Linear . . . .
i The linear trend model requires at least ign point
Quadratic e linear trend model requires at least (n + 2) design points,

a quadratic trend model requires at least W +1

design points, where n is the number of variables.

Fixed theta for all responses

8.1.5. Support Vector Regression

By default, a single set of theta values is fit to all responses,
however the user can also fit individual set of correlation
function parameters (theta) for each response by selecting this
option.

P
b

Sampling 1 @W

i B

| Sampling Metamodel Settings

Metamodel

) Polynomial

() Sensitivity

() Feedforward Neural Network
() Radial Basis Function Networlk
() Kriging

(@ Support Vector Regression

() User-defined

First iteration Linear D-Optimal

Active Variables  Features | Constraints

Include pts of Previous lterations

Pointselection

" Full Factorial

() Latin Hypercube
@ Space Filling

) User-defined

Number of Simulation Points (per lteration per Case)

-5 (default)

Figure 8-6: Metamodel selection Support Vector Regression
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The support vector regression fit depends on the choice of appropriate kernel function (similar to correlation
function), Section 21.3. Two kernel functions available for selection are Gaussian and polynomial. The
available options are displayed in Table 1-5

Table 8-5: Advanced Support Vector Regression Options

Option Option Description
Kernel Function  Gaussian, Basis function used in SVR expansion that maps the input variable
Polynomial space to a high dimensional feature space, see Section 21.3 .

8.1.6. User-defined metamodel*

ad Sampling|1 (2]
| Sampling Metamodel Settings | Active Variables = Features | Constraints

Metamodel Pointselection

() Polynomial ) Full Factorial

() Sensitivity ) Linear Koshal

() Feedforward Neural Network () Quadratic Koshal

() Radial Basis Function Networl ) Composite

() Kriging ) D-Optimal

() Support Vector Regression ) Monte Carlo
@ User-defined () Latin Hypercube
@ Space Filling

Marme
) User-defined

myrmetamodel |

Number of Simulation Points (per lteration per Case)

|:5 (default) |

Figure 8-7: User Defined Metamodel Options

The user-defined metamodel distribution is available for download at
http://ftp.Istc.com/user/lIs-opt/Add On Libraries/.

Please ask LSTC or your local LS-DYNA distributor for the password.

LS-OPT Version 5.0 139


http://ftp.lstc.com/user/ls-opt/Add_On_Libraries/

CHAPTER 8: Sampling & Metamodel Dialog

Building the example

Under Linux, issue the command "make™ while in this directory. Your resulting metamodel is called
umm_avgdistance_linux_i1386.so (or umm_avgdistance_linux_x86 64.so if running
under 64-bit OS).

Under Windows, open usermetamodel .sln in Visual Studio. Open the Build menu, select "Build
solution™. Your resulting metamodel is called umm_avgdistance _win32.dl1

Along with the metamodel binary you also get an executable called "testmodel”. This program can be used
for simple verification of your metamodel. Just give the name of your metamodel as a parameter, i.e.:

testmodel avgdistance

Note that you are not supposed to supply the full .dl1/.so filename as a parameter.

Using the example as a template

If you wish to use the example as a template for your own metamodel, do the following steps (in this
example, your metamodel is called mymetamodel):

Copy avgdistance.* to mymetamodel.*

Replace any occurrence of the string "avgdistance"” with "mymetamodel™ in the following files:
Makefile, mymetamodel.def, mymetamodel.vcproj, Makefile, usermetamodel.sin

Distributable metamodel

When compiled, your metamodel binary will be called something like:
umm_mymetamodel_win32.dl11

or

umm_mymetamodel_linux_i386.dl11

This is the only file that is needed in order to use the metamodel from LS-OPT.

Referring to user-defined metamodels in the Sampling dialog

In order to use a user-defined metamodel for a certain sampling, select the User-defined option in the
metamodel selection in the Sampling dialog and add the metamodel name to the Name textfield, (e.g.
umm_mymetamodel _linux_1386.s0), Figure 8-7.

Note that the name should not include the "umm_" prefix or the platform dependent suffix. LS-OPT will
look for the correct file based upon the current platform. This allows for cross platform operation.

8.2. General Options for Non-Polynomial Metamodels

Additional options available for Feedforward Neural Networks, Radial Basis Functions, Kriging and
Support Vector Regression are summarized in Table 8-5.
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Table 8-5: FFNN, RBF, Kriging and SVR options

Option Description Reference
First iteration Linear Use linear metamodels and the D-optimality point selection 8.2.1
D-Optimal criterion for the first iteration instead of the selected types.
Include pts of The new points for each iteration are selected within the new 8.2.2
previous iterations subregion while considering the locations of points from previous

iterations.

The metamodels are constructed using the new points as well as
points from all previous iterations.

8.2.1. First Iteration Linear D-Optimal

For Feedforward Neural Networks, Radial Basis Functions, Kriging and Support Vector Regression, the
main scheme can be replaced in the first iteration by linear polynomials with D-optimal point selection,
using the “First iteration Linear D-Optimal” option, because

1. D-optimality minimizes the size of the confidence intervals to ensure the most accurate variable
screening, usually done in the first iteration.

2. It addresses the variability encountered with neural networks due to possible sparsity (or poor
placement) of points early in the iterative process, especially in iteration 1, which has the lowest
point density.

8.2.2. Include points of previous iterations

Updating the experimental design involves augmenting an existing design with new points. Updating only
makes sense if the response surface can be successfully adapted to the augmented points such as for neural
nets, Radial Basis Function networks or Kriging surfaces in combination with a space filling scheme.

The new points have the following properties:
1. They are located within the current region of interest.

2. The minimum distance between the new points and between the new and existing points, is
maximized (space filling only).

8.3. Point selection schemes

8.3.1. Overview

Table 8-6 shows the available point selection schemes (experimental design methods). The default point
selection scheme depends on the selected metamodel type, e.g., the D-optimal point selection scheme (basis
type: Full Factorial, 11 points per variable (for n=2)) is the default for linear polynomials, and the space-
filling scheme is the default for the Feedforward Neural Network, Radial Basis Function Network, Support
Vector Regression and Kriging methods.
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Sampling 1
Sampling Metamodel Settings | Active Variables | Features = Constraints
-Metamodel -Pointselection
@ ) Full Factorial
() Sensitivity () Linear Koshal
() Feedforward Neural Network () Quadratic Koshal
) Radial Basis Function Network ) Composite
() Kriging @ D-Optimal
() Support Vector Regression ) Monte Carlo
() User-defined () Latin Hypercube
. () Space F|I.I|ng
) User-defined
@ Linear .
() Linear with interaction Nurmber of Simulation Points (per lteration per Case)
() Quadratic 5 (default) l
() Elliptic
' Set Advanced D-Optimal Options :s-:s-]

Figure 8-8: Point selection schemes
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Table 8-6: Point selection schemes

Point Selection Description Reference
Scheme
Full Factorial - Section 20.2.1
Linear Koshal Saturated design for first order Polynomials Section 20.2.2
Quadratic Koshal Saturated design for quadratic Polynomials Section 20.2.2
Composite Central Composite design Section 20.2.3
D-optimal Design obtained by minimizing the determinant of the moment  Section 8.3.2,
matrix Section 20.2.4
Latin Hypercube Stratified random design Section 8.3.3,
Section 20.2.5
Monte Carlo Random design
Space Filling Design obtained by maximizing the minimum distance between Section 8.3.4,
any two points. Section 20.2.6
Space Filling of Design obtained by maximizing the minimum distance between Section 8.3.5
Pareto Frontier any two points sampled from the Pareto Optimal Frontier.
User-defined - Section 8.3.6

8.3.2. D-Optimal point selection
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Lad Sampling| 1 =)

[ Sampling Metamodel Settings l Active Variables | Features Constraints

Metamodel Pointselection Basis Type
@ Polynomial ) Full Factorial @ Full Factorial
) Sensitivity () Linear Koshal () Latin Hypercube
() Feedforward Neural Networlk () Quadratic Koshal () Space Filling
() Radial Basis Function Network () Composite ) )
§ . _ : Points per Variable
() Kriging (@) D-Optimal i . i ) i
i , i 02 O3 C4 05 06
() Support Vector Regression () Monte Carlo i i i ) i
. ) § : o7 08 O9 O 10@ 11
) User-defined () Latin Hypercube
) Space Filling Reset Basis to Default
Order § :
- ) User-defined
@ Linear
() Linear with interaction Number of Simulation Points (per Iteration per Case)
© Quadratic (5 (default) |
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Set Advanced D-Optimal Options :—::-]

Figure 8-9: D-optimal point selection: advanced options

The D-Optimality design criterion is available for Polynomial and User-defined metamodels and can be
used to select the best (optimal) set of points for a response surface from a given set of points. The basis set
can be determined using any of the other point selection schemes. The default basis experiment for the D-
optimal design is based on the number of variables n. For small values of n, the Full Factorial design is
used, whereas larger n employs a Space Filling method for the basis experiment. The Latin Hypercube
design is also useful to construct a basis experimental design for the D-optimal design for a large number of
variables where the cost of using a Full Factorial design is excessive. E.g. for 15 design variables, the
number of basis points for a 3-level design is more than 14 million.

The basis experiment attributes can be overridden using the Set Advanced D-Optimal Options in the
Sampling Dialog.

The type and order of the metamodel used has an influence on the distribution of the optimal experimental
design. The default number of points selected for the D-optimal design is int(1.5(n + 1)) + 1 for linear,
int(1.5(2n + 1)) + 1 for elliptic, int(0.75(n* + n + 2)) + 1 for interaction, and int(0.75(n + 1)(n + 2)) + 1 for
quadratic. As a result, about 50% more points than the minimum required are generated. If the user wants to
override this number of experiments, this can be done using the respective textfield in the Sampling dialog.

The D-optimal scheme is the recommended point selection scheme for polynomial response surfaces.

8.3.3. Latin Hypercube Sampling

The Latin Hypercube point selection scheme is typically used for probabilistic analysis. Like Monte Carlo
and Space-Filling point selection schemes, it requires a user-specified number of experiments.
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Latin Hypercube Sampling may be used to fit a response surface, but even if the Latin Hypercube design
has enough points to fit a response surface, there is a likelihood of obtaining poor predictive qualities or
near singularity (when fitting polynomials) during the regression procedure. It is therefore better to use the
D—-optimal experimental design for RSM.

For details on the algorithm, see the description of Algorithm 2 in Section 20.2.6.

8.3.4. Space Filling

The Space Filling algorithm maximizes the minimum distance between experimental design points for a
given number of points. For details on the algorithm, see the description of Algorithm 5 in Section 20.2.6.
The only data required is the number of sampling points that has to be specified in the Number of
Simulation Points text field in the Sampling dialog. The default number of points depends on the number of
variables, the metamodel type and also on the task and strategy. Space Filling is suitable for the Radial Basis
Function, Neural Networks, Support Vector Regression as well as Kriging methods (see Section 8.1.3).

8.3.5. Space Filling of Pareto Optimal Frontier

By selecting to create the Pareto Optimal Frontier (POF) as a strategy, a Space Filling algorithm which
applies discrete Space Filling sampling of the POF is available. This sampling method uses the POF created
in the previous iteration as a basis design point set. The distance between the points is maximized and can
also be maximized with respect to previous simulation points by selecting to augment the design points. The
user can specify the number of points required.

How to use the Pareto Optimal Frontier as a basis set for sampling

The following procedure can be followed to conduct simulations based on the POF. It is assumed that the
user has conducted one or more metamodel-based iterations and that the POF has been created based on the
metamodel.

1. Task: If not selected already, select any Sequential strategy in the Task selection dialog.
2. Sampling:
a. Choose to conduct Space Filling of Pareto Frontier as a Sampling option.

b. Choose whether previous simulation points are to be considered in the Space Filling
algorithm (check the box “Include pts of Previous Iterations”).

c. Choose the number of simulation points required using the Number of Simulation Points
textfield. The simulation will stop automatically if the POF basis set is too small.

d. If the number of simulations required differs from the current setting, choose “Do not
augment sampling before iteration” in the Sampling dialog Features tab and set the iteration
number at which you want to restart. For example, if one iteration is already available, set the
starting iteration to 2.

e. Constraints: The constraint values can be adjusted to filter POF points. Select those
constraints which are to be applied as sampling filters as Sampling Constraints in the
Sampling dialog Constraints tab.
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The constraints can be added or changed immediately before the final run, so do not have to be
precise from the very beginning.

Termination Criteria: Increase the iteration limit by 1 assuming only 1 more iteration is to be done.

4. Run: To delete any existing runs which may exist in the current iteration (such as a previous
verification run), choose “Clean from Current Iteration [it]” from the Tools menu and set the current
iteration in the top menu bar.

8.3.6. User-defined point selection

et Sampling 1 =

Sampling Metamodel Settings | Active Variables | Features = Constraints

Metamodel Pointselection

@ Polynomial () Full Factorial

) Sensitivity ) Linear Koshal

) Feedforward Neural Network () Quadratic Koshal

) Radial Basis Function Network () Composite

) Kriging ) D-Optimal

() Support Vector Regression ) Monte Carlo

) User-defined () Latin Hypercube
() Space Filling

O_rde-r @ User-defined

(@ Linear

() Linear with interaction Import file

) Quadratic Sampling.csv| l

() Eliptic

Browse

Figure 8-10: Sampling Dialog: User-defined point selection

The User-defined point selection option allows the user to specify own sampling points. This may be useful
if LS-OPT is used as a process manager. There are two formats supported to import the data, csv (comma
separated variables) and a free format.

Comma separated variables

A user-defined experimental design can be specified in a text file using the .csv (comma separated
variables) format. This allows the user to import a table from a text file with the following keyword-based
format:

"Point","tbumper’,""thood",

sk, tdv, tdvt,
1,3.0000000000000000e+00,1.0000000000000000e+00,
2,5.0000000000000000e+00,1.0000000000000000e+00,
3,1.0000000000000000e+00,1.0000000000000000e+00,
4,1.0000000000000000e+00,5.0000000000000000e+00,
5,5.0000000000000000e+00,5.0000000000000000e+00,
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The two header lines are required. The variable types are design variables (dv), noise variables (nv) or string
variables (st), respectively. The variable names assure that each column is tied to a specific name and will
be displayed as variables in the “Parameter Setup” panel in the Setup dialog. The variable types defined in
the user file will take precedence over other type definitions of the same variable (e.g. from the input files).

The sk variable type can be used to screen out variables. Therefore variables of the sk type will not appear
on the Parameter setup page when importing the file.

This format is convenient for use with Microsoft Excel which allows the export of a .csv text file. The
browser for specifying an input file has a filter for .csv files. This feature is also ideal for setting up an LS-
OPT run with using an exported file of Pareto Optimal points. Such a file can be produced using the Viewer.

Free format

A user-defined experimental design can also be specified in a text file using the following keyword-based
free format:

Iso_numvar 2
Iso_numpoints 3

Iso_varname t_bumper t_hood

Iso_vartype dv nv

This is a comment Iso_point 1.0 2.0
Iso_point 2.0 1.0
Iso_point 1.0 1.0

The keywords (e.g. Iso_numvar) except Iso_vartype are required but can be preceded or followed by any
other text or comments. The variable types are design variables (dv) or noise variables (nv) respectively.
The variable names assure that each column is tied to a specific name and will be displayed as variables in
the Parameter setup pane in the Setup dialog. The variable types defined in the user file will take
precedence over other type definitions of the same variable (e.g. from the input files).

This format is convenient for use with Microsoft Excel which allows the export of a .txt text file. The
browser for specifying an input file has a filter for .txt files.

8.3.7. Replicate experimental points

For direct Monte Carlo analysis, when using stochastic fields, any particular design point can be (re-
)analyzed using different stochastic fields. These are then replicate evaluations of the same design. The
Number of Replicate Simulations can be specified in the Sampling dialog, Figure 8-11. The stochastic field
is controlled using the LS-DYNA® *PERTURBATION and *PARAMETER cards. Note that the RND
(random number seed) field of the card can be set to 0 to allow the field to vary freely, or set to a positive
number to get a specific stochastic field.
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=

& Sampling 1 &3)]

Sampling Metamodel Settings | Active Variables

Pointselection
() Monte Carlo

@ Latin Hypercube

) User-defined

Nurmber of Simulation Points (per Case)

|1EI (default) |

Number of Replicate Simulations

|5 (default is 1) |

Figure 8-11: Sampling Dialog options for direct Monte Carlo Analysis

So, in

the above, the original experimental design has 10 point, hence 50 FEA evaluations will be done. See

also the example in Section 18.1.

8.3.8.

1.

Remarks: Point selection

The database files Experiments _n.csv, AnalysisResults n.lsox and
AnalysisResults_n.csv are synchronous, i.e. they will always have the same experiments
after extraction of results. These files also mirror the result directories for a specific iteration.

Design points that replicate the starting point are omitted during the sampling phase.
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8.4. Active Variables

= Sampling CRASH @

Sampling Metamodel Settings [ Active Variables l Features = Constraints

£l
t2
t3
[]t4
t5
te
[]t1l0
te4
t73

Figure 8-12: Sampling Dialog: Active Variables panel

The Active Variables panel shows a list of all previously defined variables, Figure 8-12. Each variable has a
checkbox that allows the user to select or deselect it for the respective sampling. Deselected variables are
treated as constants using the optimal value of the previous iteration.

The selection in the Active Variables dialog is coupled to the respective column of the Sampling Matrix
shown in the Setup Dialog, Section 7.3.

If a variable has been deselected across all the available samplings it will assume the baseline value over all
iterations. It will therefore effectively be assumed to be a constant.

The active variable selection cannot be changed between iterations.
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8.5. Sampling Features

Sampling 1

Sampling Metamodel Settings = Active Variables | Features | Constraints

[] Approximate Histories
Verify Metamodel using Checkpoints

.csv file with variable and response values

| [orowse

[C] Import User Results

Restart Settings

] |Du not augment sampling before iteration

Figure 8-13: Sampling Features
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Table 8-7: Sampling Features

Feature Description Reference
Approximate Histories Extension of the metamodel concept to curves. Section 8.5.1
Verify Metamodel using Calculate error measures of the metamodel using a Section 8.5.1
Checkpoints given metamodel and set of checkpoints (variables

and response values)

Import User Results Import table of design points (variable and response ~ Section 8.5.3
values)

Do not augment sampling Use larger number of sampling points from a Section 8.5.4

before iteration specified iteration

8.5.1. Approximate histories

Each history curve can be pointwise (at each sampled time-step) approximated using metamodels. These
approximations of the entire history curves in time-domain are called predicted histories. These history
approximations are used to study the influence of changes in the variables as well as for parameter
identification problems. The approximation of histories is enabled by setting the Approximate Histories flag
on the Features page of the Sampling dialog as shown in Figure 8-13. The user can approximate the data
using either linear or quadratic polynomials or by radial basis functions. The approximations are carried out
on the sampling points used for response approximations. While the approximation models for the histories
and responses can be different, the number and location of sampling points remain the same such that all
options for history approximation may not be suitable depending on the number of available data points, for
example, if the response sampling is linear polynomial the number of points sampled would not be
sufficient to approximate the histories using a quadratic polynomial and that option should be avoided. It is
also important to note that approximation of histories may take significantly long as approximations at
thousands of time-steps are carried out.

Remarks:

1. Itis assumed that the each history curve has the same number of time-steps for all points.

2. For sequential strategies, all points sampled so far would be used for creating RBF approximations,
whereas only the points sampled in the current iteration are used for polynomial approximations.

8.5.2. Verify Metamodel using Checkpoints

The error measures of any number of designs (checkpoints) can be evaluated using an existing metamodel.
There are two simple steps to obtaining a table with error data.

Browse for the file with the checkpoint information using the “Verify Metamodel using Checkpoints” option
in the Features tab in the Sampling panel. The file must be in .csv format although spaces, commas or
tabs are allowed as delimiters. The file must contain two header lines. The first header line contains the
variable and response names. The second header line contains the variable and response types; in this case
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"dv" and "rs". The variable coordinates are then specified as one row for each design point. See example
below.

Use the Evaluate Metamodels option from the Tools menu Repair option to run (see Section 3.5).
Cases without checkpoint files will be ignored.

Example of a checkpoints file:

x1, x2, x3, Disp, Acc

dv, dv, dv, rs, rs

1.0, 1.3, 1.2, 123.6, 1278654.7
2.1, 2.2, 639.2, 2444588.1

8.5.3. Importing user-defined analysis results

A table (in text form) of existing analysis results can be used for analysis.

Browse for the file with the analysis results to import using the Import User Results option in the Features
tab in the Sampling panel.

Two header lines are required. The first header line contains the variable names. The second header line
contains the variable types. The following lines contain the variable and response values for each design
point, see example below. The types are defined as described in Table 8-8. The parsing code looks for
double quotes, commas, spaces and/or tabs as delimiters.

Table 8-8: Variable types

Symbol Explanation

dv Design variable

nv Noise variable

rs Response

sk Ignore
Example:

An example of a analysis results file (with 2 simulation points) is:
“varl',"var2","var3","Displacement”, " Intrusion’,"Acceleration”
"dv't,  tdv', nv', 'rs", "rs", "rs"

1.23 2.445 3.456 125.448 897.2 223.0
0.01,2.44,1.1,133.24,244,89,446.6

The steps for importing user-defined analysis result files are as follows:

1. Sampling panel, Features tab: Browse for the text file in the Import User Results textfield. The
browser has a preference for .csv and .txt files. Variables and responses are imported
automatically into the GUI, the responses are added to the first stage of the respective sampling.
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2. Sampling panel. Check that the number of points defined in the sampling panel is the same as the
number of points in the user-provided file. If fewer points are available in the file, LS-OPT will
augment the sampling points and try to run simulations.

3. Sampling pane, right mouse menu. Select "Repair™, "Import results”. This is a critical step to convert
the .csv format to the LS-OPT database format ready for analysis.

4. The user can now choose the type of analysis in the Task dialog.

a. DOE Study: Change to the Metamodel-based DOE Study task and Run. Metamodels will be
created and the Viewer can be used to study the metamodel results.

b. Optimization: Define the Objectives and/or constraints. For RBDO, define the distributions
for the input variables as well as the probability of failure.

Change to the Metamodel-based Optimization or Metamodel-based RBDO task, choose the Single Stage
strategy and Run. An optimization history is created.

8.5.4. Changing the number of points on restart*

The number of points to be analyzed can be changed starting with any iteration. This feature is useful when
the user wants to restart the process with a different (often larger) number of points. This option avoids
adding points in iterations prior to the specified iteration. The feature is sampling-specific, so must be added
to all the sampling definitions.

Example 1:

In the first analysis, the following sampling scheme was specified: a single iteration with 5 D-optimal points
was performed. By default, a single verification run is done in iteration 2.

After the first analysis, the user wants to restart, using 10 points per iteration and 3 iterations in total. Do not
augment sampling before iteration is set to 2. Iterations 2 and 3 will then be conducted with 10 points each
while iteration one will be left intact.

Example 2:

Starting with a single iteration with 5 d-optimal points and restarting with 10 d-optimal points, but now, Do
not augment sampling before iteration is set to 1. Iteration 1 of the restart will be augmented with 5 points
(to make a total of 10), before continuing with 10 points in further iterations.

Note: The user will have to delete the single verification point generated in the first analysis before
restarting the run. For this example, this can be done by using the Run with clean start from current
iteration run option, and setting the current iteration to 2. The restart will then generate a new starting point
for iteration 2 and conduct 10 simulations altogether.

8.6. Sampling Constraints

Sampling constraints are used to specify an irregular design space. An irregular (reasonable) design space
refers to a region of interest that, in addition to having specified bounds on the variables, is also bounded by
arbitrary constraints. This may result in an irregular shape of the design space. This region of interest is thus
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defined by constraint bounds and by variable bounds. The purpose of an irregular design space is to avoid
designs which may prove to be impossible to analyze.

Sampling constraints are defined in the Constraints tab of the Sampling dialog, Figure 8-14. Previously
defined constraints are available for selection in the Add new list, new constraints may be defined using the
Sampling constraint wizard, Figure 8-15, accessible by the Create sampling constraint button.

Only explicit constraints, i.e. constraints that do not require simulations, can be specified for the reasonable
design space. A typical explicit constraint could be a simple inequality relationship between the design

variables.

- Sampling 2 )
Sampling Metamodel Settings | Active Variables = Features | Constraints
Sampling Constraints Add new
REAS1 x Constraints
REAS? «x c3

Create sampling constraintl

Figure 8-14: Definition of Sampling Constraints by selection from list or new creation.

r

[

&

Enter a variable expression and any upper/lower bounds:

[] Lower bound: Expression:

Upper bound:

|x_2-2%y_2 <|o

Name: [REAS] |

Upon clicking "Create", a composite and a constraint will be created.

| Create

| | Cancel

Figure 8-15: Sampling constrain wizard: definition of an expression and bounds
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This specification of the Sampling constraint ensures that the points are selected such that the bounds are
not violated.

Remark:

A reasonable design space can be created using the D-optimal experimental design as well as the Space
Filling experimental design. These are the most commonly used options that accompany the choice of
polynomials, Radial Basis Function Networks, Neural Networks or Kriging as metamodels.
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9. Composite Dialog

Composite functions can be used to combine response surfaces and variables as well as other composites.
The response components can belong to any stage. The objectives and constraints can then be constructed
using the composite functions.

9.1. Introduction

9.1.1. Composite vs. response expressions

There is an important distinction between response expressions and composites. This distinction can have a
major impact on the accuracy of the result. Response expressions are converted to response surfaces after
applying the expression to the results of each sampling point in the design space. Composites, on the other
hand, are computed by combining response surface results. Therefore the response expression will always
be of the same order as the chosen response surface order while the composite can assume any complexity
depending on the formula specified for the composite (which may be arbitrary).

Example

If a response function is defined as f(x, y) = xy and linear response surfaces are used, the response
expression will be a simple linear approximation ax + by whereas a composite expression specified as xy
will be exact.

9.2. Defining Composites

A composite can be defined by using the interfaces in the Composites dialog, Figure 9-1. To add a new
definition, select the respective interface from the list on the right. The available interfaces are explained in
Table 9-1. To edit an already defined composite, double-click on the respective entry from the list on the
left. Composites may be deleted using the delete icon on the right of the respective definition.

Remarks:

1. An objective definition involving more than one response or variable requires the use of a composite
function.

2. In addition to specifying more than one function per objective, multiple objectives can be defined
(see Section 10.2).
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BT Composites =
Composite definition Add new

cl x | | Composites
Standard Composite: Weighted composite with components R1, R2 EXPRESSION
c2 * | | History Match
Standard Composite: Targeted composite with components R2

po g a P Standard
c3 = | | Composite
EXPRESSION: R2/10 standard

Deviation

ca x
EXPRESSION: 2.0% R1 - R2

Figure 9-1: Composites Dialog
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Table 9-1: Composite types

Composite type Description Reference

EXPRESSION Mathematical expression using previously defined entities Section 9.3
Curve Matching Curve matching metrics Section 9.5
Standard Composite ~ Weighted or targeted composites Section 9.4
Standard Deviation Standard deviation of another response or composite Section 9.6

9.3. EXxpression composite

™ Expression composite 3]
Name:

|REAS2 |
Expressian: _
|2%x_2-y_2 |

Figure 9-2: Definition of a Composite Expression

A mathematical expression can be specified for a composite. The composite can therefore consist of
previously defined constants, variables, dependent variables, responses and other composites (see Appendix
F: Mathematical Expressions).

9.4. Standard composite

The Standard composite dialog is displayed in Figure 9-3. First the composite function type has to be
selected, Table 9-2. Then select the Response or Variable components to be used to calculate the composite
from the list on the right. The selected components appear in the list on the left with text fields to specify
weighting and scaling factors and target values, respectively. Selected components can be deleted from the
list by using the delete icon on the left of the entity name.

The composite function types are explained in detail in the following sections, Table 9-2.

Note that each formulation could alternatively be defined as a composite expression, examples are given in
the following sections. Using the Standard Composite interface is convenient in many cases.
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Table 9-2: Standard Composite function types

Composite function type Reference
Weighted Section 9.4.3
MSE Section 9.4.2
Sqrt MSE Section 9.4.1
MNarme for compaosite Composite function type
Intrusion ] | Weighted v |
Composite components Add new
Entity Multiplier Divisor Responses B
Acc_max
x Intru_2 |-l (default is l}|| 1 idefault)l Mass
HIC
% Intru_1 | 1 idefault}” 1 idefault)l )
Variables 4
t_hood
t_bumper
t_grill
t_roof
t_rail_front [ |
t_rail_back
[~]

Figure 9-3: Standard Composite Interface

9.4.1. Targeted composite (square root of MSE)

This is a standard composite in which a target is specified for each response or variable in the Target text
field. The composite is formulated as the ‘distance’ to the target using a Euclidean norm formulation. The
components can be weighted and normalized.
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F= iw{ﬁ} +Z”:a{xi—xi} , (9-1)

j i=1 Zi

where ¢ and y are scale factors (to be specified in the Divisor text fields) and W and o are weight factors
(to be specified in the Multiplier text fields). These are typically used to formulate a multi-objective
optimization problem in which F is the distance to the target values of design and response variables.

In the GUI this type is selected as the Sqrt MSE composite function type.

Name for composite Composite function type

|_F_damage | | sart MSE S

Composite components Add new

Entity Multiplier Divisor Target Responses

_ - » | | Disp2
x intrusion_3 | 1 tdefault}] | 30 (default is 1:'.| | ED] Displ

Acc max

*x intrusion_4 | 1 tdefault}] |:25 (default is 1]!” ISE:]

imtrusion 3

intrusion_4

Variables

tburmper
thood

| Cancel || oK

Figure 9-4: Definition of targeted (Root MSE) composite response in LS-OPTui

A suitable application is parameter identification. In this application, the target values F; are the
experimental results that have to be reproduced by a numerical model as accurately as possible. The scale
factors oj and y; are used to normalize the responses. The second component, which uses the variables, can
be used to regularize the parameter identification problem. Only independent variables can be included. See
Figure 9-4 for an example of a targeted composite response definition. Here, F_damage will be calculated as

£ _ [ intrusions—20 2+[intrusion4—35}2
damage 30 25 '
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The equivalent the expression composite is:
sgrt(((intrusion_3 - 20)/30)**2 + ((intrusion_4 + 35)/25)**2)}

9.4.2. Mean squared error composite

This standard composite is the same as the targeted composite, except that the square root operation is
omitted. This allows for composites to be added to make a larger composite (similar to the vector ordinate-
based Mean squared error composite in Section 9.5.1).

9.4.3. Weighted composite

Weighted response functions and independent variables are summed in this standard composite. Each
function component or variable is scaled (to be specified in the Divisor text fields) and weighted (to be
specified in the Multiplier text fields).

\/ZW LU R (9-2)

O i1 X
These are typically used to construct objectives or constraints in which the responses and variables appear in
linear combination.
An example is given in Figure 9-3.

The equivalent expression composite is
Intru_1 — Intru_2.

Needless to say, this is the preferable way to define this composite.

9.5. Curve Matching Composite
The Curve Matching interface provides two metrics for comparison of a target curve and curves extracted
from simulation runs, Figure 9-5. The options are explained in Table 9-3.

To evaluate these composites, predicted histories (histories approximated by metamodels) are used, see
Section 8.5.1 for details.
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|' || History matching composite =
Name:

MSEL |

Algorithm:
@ Mean Square Error (difference in curve Y values)
() Curve Mapping (size of area between curves)

Target curve:

[Testl | N ] add new file history

Computed curve:

[Fl_\rs_dl ‘ M l

Regression points
@ From target curve

) Fixed number (equidistant, interpolated)

You can convert this composite to an expression for further fine-tuning.

Figure 9-5: History Matching Composite Dialog
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Table 9-3: History Match Composite options

Option Description Reference
Algorithm Curve matching metric to calculate “distance” between target
and computed curve:
0 Mean Square Error (Ordinate-based) Section 9.5.1
o Curve Mapping Section 9.5.2
Target Curve Previously defined File history containing target values.
add new file history If the file history to be used as Target curve is not already Section 6.16

defined, this can be done here.

Computed curve Previously defined history or Crossplot extracted from
simulation results

Regression points Regression points used to calculate composite:
From target curve
Fixed number (equidistant, interpolated)

convert this Use a composite expression to define curve matching metric ~ Appendix F:
composite to an to be able to add further arguments
expression

9.5.1. Ordinate-based Curve Matching

A composite function is provided to compute the Mean Squared Error € for the discrepancy between two

curves:
:_iw {f ;(X) -G, } =%i l:e (x)} ©-3)

p =1 p

It is constructed so that G, , p=1, ..., P are the values on the target curve G and fy(x) the corresponding
components of the computed curve f. fy(x) are represented internally by response surface values. x is the
design vector. s, = max |Gy| , p=1, ..., P. By using the default values, the user should obtain a dimensionless
error € of the order of unity. See Sectlon 23.3.1 for more detail.

Note:

1. Only points within range of both curves are included in Equation (13-3), so P will be automatically
reduced during the -evaluation if there are missing points. A warning is issued in
WARNING_MESSAGE.
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2. The Mean Square Error composite makes use of response surfaces to avoid the nonlinearity
(quadratic nature) of the squared error functional. Thus if the response curve f(x) is linear in terms of
the design variables x, the composite function will be exactly represented.

3. Mean Square Error composites can be added together to make a larger MSE composite (e.g.
for multiple test cases).

4. The simplest target curve that can be defined has only one point.

Ordinate-based Curve Matching should not be used for a non-monotonic abscissa (e.g. as found in
hysteretic behavior) of the target curve. For this purpose, Curve Mapping (Section 9.5.2, Section
23.3.2) is available.

9.5.2. Curve Mapping

In contrast to the Mean Square Error curve-matching metric described in Section 9.5.1, Curve Mapping
incorporates the ordinate and the abscissa into the curve-matching metric Points of the one curve are
mapped onto the second curve and the volume (area) between the two curves is computed. It is therefore
highly suited to matching hysteretic curves. Both curves are normalized internally to adjust the magnitude of
ordinate and abscissa, respectively. Since the curves could be of significantly different length, partial
mapping is done.

Please refer to Section 23.3.2 for the theory of Curve Mapping.

Note:

It is recommended that both curves be filtered before matching to obtain curves which are as noise-free as
possible. This avoids discrepancies in curve length which will affect the result. A general history filtering
feature is available (see Section 0).
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9.6. Standard Deviation Composite

The standard deviation of another response or composite can be specified to be a composite, Figure 9-6. The
dialog shows a list containing all previously defined responses and composites. The one to be used to
calculate the standard deviation has to be selected.

= standard Deviation ]

Name for composite

| Std_Stress |

¥ Stage SOLVER_1
Weight

Composites

Cancel oK

Figure 9-6: Definition of a Standard Deviation composite

The variation of response approximated using response surfaces is computed analytically as documented for
the LS-OPT stochastic contribution analysis, Section 24.7. For neural nets and composites a quadratic
response surface approximation is created locally around the design, and this response surface is used to
compute the robustness. Note that the recursion of composites (the standard deviation of a composite of a
composite) may result in long computational times especially when combined with the use of neural
networks. If the computational times are excessive, then the problem formulation must be changed to
consider the standard deviations of response surfaces.
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Objectives, Constraints and
Algorithms

This chapter describes the specification of objectives and constraints for the design formulation and the
optimization algorithms used for metamodel optimization.

10.1. Formulation of the optimization problem

Multi-criteria optimal design problems can be formulated. These typically consist of the following:
1. Multiple objectives (multi-objective formulation)
2. Multiple constraints.

Mathematically, the problem is defined as follows:

Minimize F(ch,cDZ,,.,,cDN)

subject to

L, <9, <U,

2—g2— 2

L,<g,<U

m m

where F represents the multi-objective function, @, =CDi(x1,x2,...,xn) represent the various objective
functions and g; = gj(xl,xz,..., x, ) represent the constraint functions. The symbols x; represents n design
variables.

In order to generate a trade-off design curve involving objective functions, more than one objective O,
must be specified so that the multi-objective
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F=>0d,. (10-1)

A component function must be assigned to each objective function where the component function can be
defined as a composite function F (see Chapter 9) or a response function f (see Chapter 6).

10.2. Defining objective functions

Objectives are defined in the Objectives tab of the Optimization dialog, Figure 10-1. To define an
objective, select a response or composite from the list on the right, that contains all previously defined
responses and composites. The entity will show up in the list on the left. For each objective, a weight has to
be specified using the Weight text field. If multiple objectives are defined, LS-OPT uses the weights to build
a multi-objective function as described in Section 10.1. The weight applies to each objective as represented
by ax in Equation (11.1). Note that the optimization result depends in the specified weights.

The weights are not used in Multi-Objective Optimization, except to record the scalar multi-objective value.
Additional options are described in Table 10-1.

_ ©ptimization @

Objectives | Constraints | Algorithms

[[] Maximize the Objective Function {instead of minimize)

[[] Create Pareto Optimal Front (Multi-Objective Mode)

Objective components: Add new
Response/Composite Weight Responses B
) i Disp
x Disp_scaled | 1 Edefault)| time to 184
) ) time_to_334
x Mass_scaled | 1 tdefault)|

time_to_max

Integral_0_184
Integral_184_334
Integral_334_max
StagelPulse
Stage2Pulse

Stage3Pulse
Vehicle_Mass_NWVH

Frequency
Mode

Generalized_Mass
Composites

Frequency_scaled

StagelPulse_scaled
Stage2Pulse_scaled | |
Stage3Pulse_scaled [+

o |

Figure 10-1: Objective panel in LS-OPTui Optimization dialog.
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Table 10-1: Objective options

Option Description

Maximize Objective The default is to minimize the objective functions. The program can
Function (instead of however be set to maximize the objective functions.

minimize)

Create Pareto Optimal Front  Pareto optimal solutions are calculated instead of a single optimum.
(Multi-Objective Mode) This option is only available if multiple objectives are defined.

10.3. Defining a constraint

Constraints are defined in the Constraints tab of the Optimization dialog, Figure 10-2. To define a
constraint, select a response or composite from the list on the right, that contains all previously defined
responses and composites. The selected entity will show up in the list on the left. To specify a lower or an
upper bound, select the respective hyperlink and enter the desired value in the text field.

Additionally, for Reliability Based Design Optimization, the probability of exceeding a bound on a
constraint can be set.

Internal constraint scaling can be defined by selecting the Constraint scaling option and defining the
respective scaling factors in the Divisor text field, Section 10.3.1.

For details on the Strict option, see Section 10.3.2.
To delete a constraint definition or a bound, use the respective delete icon.
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Objectives | Constraints | algorithms

Constraint scaling

Optimization censtraints: Add new
Response Lower Bound  Strict Divisor Upper Bound  Strict Divisor Responses
I | |pisp
x Disp_scaled Set lower bound x | l| Od | 1 tdefault)| time to 184
—— ] . . . | | time_to_334
x Frequency_scaled x| 0.9881| [J [0.9881 (defa| * | 10119| O [1.0119 (defa|

time_to_max

Integral_0_184
Integral_184_334
Integral_334_max
StagelPulse

x StagelPulse_scaled x | 1| O | ltdefault)] :! | 1e+30:| O |:le+30tdefat:|

x Stage2Pulse_scaled  x | 1| | | ltdefault)] x | le+30:| Od [le+30tdefat:|

x Stage3Pulse_scaled  x 1| O 1 (default)| x= le+30| [ 1le+30 (defay Stage2Pulse
' Stage3Pulse
Vehicle_Mass_NWH

Freguency
Mode

Generalized_Mass
Composites

Mass_scaled

Figure 10-2: Constraints panel in LS-OPTui
10.3.1. Internal scaling of constraints

Constraints can be scaled internally to ensure normalized constraint violations. This may be important when
having several constraints and an infeasible solution so that when the maximum violation over the defined
constraints is minimized, the comparison is independent of the choice of measuring units of the constraints.
The scale factor s; (to be specified in the respective Divisor test field) is applied internally to constraint j as
follows:

_gj(xL)+Lj <0 gj(x)U—Uj <

S S

0

A logical choice for the selection of s is st =L, and s‘jJ =U ;, so that the above inequalities become

(X
+1<0; gLJJ—()—1SO

i i

_gj(x)
L.
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internally and in the infeasible phase:
9;(x)

—0.(X
g]( )+1Se;——1ﬁe;e20-
L, Ui

10.3.2. Minimizing the maximum response or violation*

Refer to Section 23.1 for the theory regarding strict and slack constraints. To specify hard (strict)
constraints, select the respective Strict checkboxes. Otherwise constraints are soft (slack) constraints.

The purpose of a formulation using strict and slack constraints is to compromise only on the slack
constraints if a feasible design cannot be found.

Remarks:

The objective function is ignored if the problem is infeasible.

The variable bounds of both the region of interest and the design space are always hard.

Soft constraints will be strictly satisfied if a feasible design is possible.

If a feasible design is not possible, the most feasible design will be computed.

o M w D E

If feasibility must be compromised (there is no feasible design), the solver will automatically use the
slackness of the soft constraints to try and achieve feasibility of the hard constraints. However, there
is always a possibility that hard constraints must still be violated (even when allowing soft
constraints). In this case, the variable bounds may be violated, which is highly undesirable as the
solution will lie beyond the region of interest and perhaps beyond the design space. This could cause
extrapolation of the response surface or worse, a future attempt to analyze a design which is not
analyzable, e.g. a sizing variable might have become zero or negative.

6. Soft and strict constraints can also be specified for search methods. If there are feasible designs with
respect to hard constraints, but none with respect to all the constraints, including soft constraints, the
most feasible design will be selected. If there are no feasible designs with respect to hard constraints,
the problem is ‘hard-infeasible’ and the optimization terminates with an error message.

10.4. Algorithms

Optimization algorithms for metamodel-based optimization can be selected in the Algorithms tab of the
Optimization dialog, Figure 10-3.

The core solvers that can be used for metamodel optimization are LFOP, the Genetic Algorithm (GA) and
Adaptive Simulated Annealing (ASA). Hybrid algorithms may also be selected by selecting Switch to
LFOP, namely the Hybrid GA and Hybrid SA. The hybrid algorithms start with the GA and SA to find an
approximate global optimum after which LFOP is used to sharpen the solution. The solution to a hybrid
algorithm will be at least as good as the one provided by the global optimizer (GA and SA).

Hybrid Simulated Annealing is the default.
For each algorithm, advanced settings are available using the respective Show *** Settings button.
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-

@)

Optimization Algorithm
) LFOP

) GA

@ ASA

Switch to LFOP

| Show LFOP Settings |

| Show ASA Settings |

Objectives = Constraints | Algorithms

Figure 10-3: Selecting the optimization algorithm used for the optimization on the metamodel

Table 10-2: Algorithms options

Option Description Reference

LFOP Leapfrog Optimizer Section 10.4.1, Section 22.7
GA Genetic Algorithm Section 10.4.2, Section 22.8
ASA Adaptive Simulated Annealing Section 10.4.3, Section 22.10

Switch to LFOP  Hybrid version

10.4.1. Setting parameters in the LFOPC algorithm*

Section 22.11

The values of the responses are scaled with the values at the initial design. The default parameters in
LFOPC should therefore be adequate. Should the user have more stringent requirements, the following
parameters may be set for LFOPC. These can be set in the GUI if Show LFOP Settings is selected. See

Section 22.7 for the theory of LFOPC.
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Objectives | Constraints ‘ Algorithms ‘

Optimization

Optimization Algorithm-——  Number of Multi-Start Points
@® LFOP ((default) |
O GA

Penalty Parameter mu

[100 (default) l

) ASA

[ Show LFOP Settings ] Penalty Parameter mumax
[10000 (default) l

Convergence Criterion xtol

[19—08 (default) l

Convergence Criterion eg
[le—OS (default) l

Maximum Step Size

[1 (default) l

Maximum Number of Steps

1000 (default) |

Print Contrel Number
[10 (default) l

Reset Defaults

Figure 10-4: LFOP settings
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Table 10-3: LFOPC parameters and default values

Option Parameter Remark

Number of Multi-Start Points Number of Multi-Start Points

Penylty Parameter mu Initial penalty value u

Penalty Parameter mumax Maximum penalty value zmax 1
Convergence Criterion xtol Convergence tolerance & on the step movement 2
Convergence Criterions eg Convergence tolerance & on the norm of the gradient 2
Maximum Step Size Maximum step size & 3
Maximum Number of Steps ~ Maximum number of steps per phase 1
Print Control Number Printing interval 4

Remarks:

1. For higher accuracy, at the expense of economy, the value of x max Can be increased. Since the
optimization is done on approximate functions, economy is usually not important. The maximum
number of steps must then be increased as well.

2. The optimization is terminated when either of the convergence criteria becomes active that is when
IAM)| < &,
or
IVE ()| < &,

3. It is recommended that the maximum step size, o, be of the same order of magnitude as the
“diameter of the region of interest”. To enable a small step size for the successive approximation

scheme, the maximum step size has been defaulted to & = O.OSJZi":l(range)2 .

4. If the Print Control Number = Maximum umber of steps + 1, then the printing is done on step 0 and
exit only. The values of the design variables are suppressed on intermediate steps if the Print Control
Number < 0.

In the case of an infeasible optimization problem, the solver will find the most feasible design within the
given region of interest bounded by the simple upper and lower bounds. If LFOP is selected as a non-hybrid
optimizer, a global solution is attempted by multiple starts from a set of random points.

LS-OPT Version 5.0 173



CHAPTER 10: Optimization Dialog — Objectives, Constraints and Algorithms

10.4.2. Setting parameters in the genetic algorithm*

The default parameters in the GA should be adequate for most problems. However, if the user needs to
explore different methods, the following parameters may be set in the GUI (see Figure 10-5). See Section
22.8 for the theory of the Genetic Algorithm.

[] Switch to LFOP

Population Size

oPT) Optimization =

Objectives | Constraints | Algorithms

Optimization Algorithm Constraint Handling Selection Operator Crossover Type Mutation Distribution
L | Deb ECH ¢| | Tournament ¢ | | SBX ¢| [100 (default) |

@ GA ; ; ) ; i .

B Restart Interval Tourmament Size  Crossover Distribution  Mutation Probability

() ASA

|25 (default) | 2 (defautt | |10 (default) | [0.166667 (defau) |

[100 (default)

l

Number of Generations

[250 (default)

l

| Show GA Settings

Max Repeat Optimmum/Generations Number of Elites Crossover Probability

[D.l (default) ] [2 (default) l [1.0 (default) ]

Reset Defaults

Figure 10-5: GA settings
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Table 10-4: GA parameters and default values

Option

Parameter Remark

Population Size

Population size (always even)

Number of Generations

Number of generations

Selection Operator

Selection operator: Tournament, Roulette, SUS

Tournament Size

Tournament size for tournament selection operator

Elitism

Switch elitism for single objective GA: ON/OFF

Number of Elites

Number of elites passed to next generation

Encoding variable

Type of encoding for a variable: Binary=1, Real=2

Numbits variable

Number of bits assigned to a binary variable

Crossover type

Type of real crossover: SBX, BLX

Crossover probability

Real crossover probability

Alpha value for BLX

Value of a for BLX operator

Crossover distribution

Distribution index for SBX crossover operator

Mutation probability

Mutation probability in real-space

Mutation distribution

Distribution index for mutation operator

Algorithm Subtype

Multi-objective optimization algorithm: NSGA2,
SPEA2

Restart Interval

Frequency of writing restart file. For multi-
objective problems, this parameter governs the
frequency of writing TradeOff files

Max Repeat
Optimum/Generations

Maximum number of generations allowed to repeat
as a fraction of the total number of generations
allowed.

Constraint Handling

Constraint handling types: Deb Efficient
Constraint Handling, Penalty

10.4.3. Setting parameters in the simulated annealing algorithm*
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The adaptive simulated annealing parameters can be modified in the GUI, Figure 10-6. See Section 22.10
for the theory of Adaptive Simulated Annealing.

Objectives ‘ Constraints ‘ Algorithms ‘

-Optimizatien Algorithm-——  Tmin/Tmax (Ratio)

O LFOP | 1e-6 (default) |
O GA Annealing Scale

@ ASA

1000 (default) |

] Switch to LFOP -
Cost-Parameter Anneal Ratio

[ Show ASA Settings J [1.0 (default) ]

Maximum Function Evaluations

10000 (default) |

Function Evaluations/Temp step

[1 (default) ]

Reset Defaults

Figure 10-6: ASA settings
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Table 10-5: ASA parameters and default values

Option Parameter

Tmin/Tmax (Ratio) Ratio of minimum and maximum temperature

Annealing Scale Annealing scale

Cost-Parameter Anneal Ratio Ratio of cost temperature ratio and parameter temperature ratio

Maximum Function Exaluations Maximum number of function evaluations

Runction Evaluations/Temp step  Number of function evaluations at some temperature

10.5. Algorithms for metamodel based Monte Carlo analysis

L Optimization =

Objectives | Constraints || Algorithms

[[] Use Approximation Residuals

Reliability Resolution

| 1e+06 (default)

Figure 10-7: Algorithm Options for Metamodel based Monte Carlo Analysis
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Table 10-6: Algorithm Options for Metamodel based Monte Carlo Analysis

Option Description

Use Approximation Residuals  If noise was found when the metamodel was created, then this noise
may be reproduced whenever the metamodel is used for reliability
computations. This is possible only for the response surfaces and
neural nets. The noise is normally distributed with a zero mean and a
standard deviation computed from the residuals of the least square
fit.

Reliability Resolution The number of Monte Carlo samples to be analyzed can be set by the
user. These samples are evaluated based on the metamodels and not
using the actual solver.
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11. Termination Criteria

This chapter explains termination criteria for iterative tasks.

11.1. Metamodel based methods

The user can specify tolerances on the design change (Ax;), the objective function change (Af) and the
accuracy of the metamodel. The user can also specify whether termination is reached if any one (or
condition), or all (and condition) of these criteria are met, Figure 11-1. The options are described in Table
11-1.

& Termination Criteria )

Tolerance Required for Termination

@ Design AND Objective AND Metamodel Accuracy
) Design OR Objective OR Metamodel Accuracy

Design Change Tolerance

[D.Dl (default is 0.01) |

Objective Function Tolerance

[D.Dl (default is 0.01) |

Response Accuracy Tolerance

[l.DD (default) |

Maximurm number of lterations

5 Z

Figure 11-1: Termination Criteria dialog for metmaodel based optimization, strategy sequential or
sequential with domain reduction
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Table 11-1:Termination Criteria options for metamodel based optimization

Option Parameter Reference
Tolerance Required for Design AND Objective AND Metamodel Accuracy -
Termination Design OR Objective OR Metamodel Accuracy
Design Change Tolerance Tolerance on design accuracy & Section
1111
Obijective Function Tolerance on objective function accuracy & Section
Tolerance 1111
Response Accuracy Tolerance on accuracy of response surface & Section
Tolerance 11.1.2
Maximum number of Maximum Number of Iterations Section
Iterations 11.1.3

11.1.1. Design Change Tolerance and Objective Function Tolerance
The design change termination criterion becomes active if

(8 _ (kD)

<ég

o ;
where x refers to the vector of design variables and d is the size of the design space.
The objective function termination criterion becomes active if

£00 _ g (k)

f D <&

i)

where f denotes the value of the objective function, (k) and (k—1) refer to two successive iteration

numbers.

The use of these termination criteria is recommended for a metamodel based optimization with strategy
sequential with domain reduction. If the AND option is used, make sure that the response accuracy tolerance
value is set to a large value that is always active, e.g. the default of 1. If the OR option is used, set the

response accuracy tolerance to a value that will never be active, e.g. 0.
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11.1.2. Response Accuracy Tolerance

The tolerance on the metamodel accuracy is based on the change of the prediction accuracy measure (square
root of the PRESS error). The measure is divided by the mean of the simulated values used to construct the
response surface unless this mean is zero. The value of the most critical response is used.

The response accuracy tolerance termination criteron becomes active if

50 59 <,

where s; denotes the approximation error of i response characterized by the ratio of square root PRESS
statistics and the mean value of response and, (k) and (k — 1) refer to two successive iteration numbers.

The use of this termination criterion is recommended for the sequential strategy, if the iterative process is
used to improve the quality of the metamodel. Make sure to use the OR option and set the other tolerances
to 0.

11.1.3. Maximum Number of lterations

The maximum number of optimization iterations is specified in the appropriate field in the Termination
Criteria dialog. If previous results exist, LS-OPT will recognize this (through the presence of results files in
the Run directories) and not rerun these simulations. If the termination criteria described above are reached
first, LS-OPT will terminate and not perform the maximum number of iterations.

11.2. Direct Optimization

m  Termination Criteria  |[X]

Termination Criterion

@ Maximurm Functions/Generations
) Fixed Consolidation Ratio

() Consolidation Ratio Change

) Hypervolume Change

Generation gap

|:10 (default) |

Number of generations

|:100 {default) |

Figure 11-2: Termination Criteria dialog for direct optimization

Termination criteria are available for multi-objective optimizers. While the default selection is maximum
number of function evaluations/generations, one can also use consolidation ratio or hypervolume based
metrics to terminate the search as shown in Figure 11-2. The available options are described in Table 11-2.
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Table 11-2: Termination criteria and default values

Item Parameter

Termination Criterion MOO performance metric”: Consolidation Ratio | Variable
Consolidation Ratio | Hypervolume

“No information needed for maximum function criterion

Generation gap Interval to calculate MOO performance metrics

Normalized hypervolume Threshold value for the change in normalized hypervolume
change threshold

Utility fraction cutoff Parameter F defining bound (CR,/F) on the variation in the
consolidation ratio

Consolidation ratio threshold Threshold value of the consolidation ratio

Number of generations Maximum number of generations. If the termination criteria

described above are reached first, LS-OPT will terminate and not
perform the maximum number of generations.
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12. Probabilistic Modeling and
Tasks

This chapter summarizes the specifications for probabilistic problems, such as tasks, variable setup,
constraint definition etc. It also provides additional probabilistic task-specific details of these definitions.
Probabilistic evaluations investigate the effects of uncertainties in the system parameters on the responses.

Based on the uncertainty model and problem specification, the statistics of variation of the system
responses, such as the nominal value of the response, reliability, and extreme values, can be computed. The
results can be viewed using the Viewer. The simulation statistical tools (histogram plot, probability bounds),
scatter, parallel coordinate and correlation plots are pertinent to a pure Monte Carlo (MC) analysis. For a
metamodel-based Monte Carlo evaluation, the Accuracy, Sensitivities, and Stochastic Contribution plots are
relevant in addition to the statistical tools, scatter, and correlation plots.

More background on the probabilistic methods is given in Chapter 24 (the theoretical manual), while
example problems can be found in Chapter 19. The LS-DYNA results can be investigated for possible
bifurcations using DY NAStats described in Chapter 15.

12.1. Probabilistic problem modeling
The definition of a probabilistic problem has several differences and additional features compared to a
deterministic problem. The specifications for introducing probabilistic effects are:

1. Modeling of uncertainties: The source of the variation can be the variation of the design variables
(control variables) as well as the variation of noise variables, whose value is not under the control of
the analyst such as the variation in a load. The variation of the system parameters is described by:

0 Defining a statistical distribution
0 Assigning the statistical distributions to design variables, Section 12.2

2. Definition of the probabilistic task: The available task options are Direct Monte Carlo Analysis,
Metamodel-based Monte Carlo Analysis and RBDO/Robust Parameter Design.

3. Additional task-dependent problem specifications:

o Experimental Design: For Monte Carlo analysis, a suitable sampling strategy based on the
variable statistical distributions is needed. This is not the case in metamodel-based tasks.

0 Objective and constraint: Constraint bounds are used as failure limits for reliability
computations. In the case of RBDO a target failure probability is also needed.
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12.2. Probabilistic distributions

The most common way of describing the randomness or uncertainty of an input is through probabilistic
distributions associated with random variables. The definition of a probabilistic distribution using the
Distribution menu of the Parameter Setup panel in the LS-OPT GUI is presented in Figure 12-1. A
distribution can be defined using “Add new distribution”. It is not required for a distribution to be associated
with a variable. Many design variables can refer to a single distribution. New distribution definitions can be
added and already defined distributions edited by using the Statistical Distribution dialog accessible from
the Distribution menu in the Parameter Setup panel, Figure 12-1. The Distribution menu is also used to
assign a distribution to a parameter. For each distribution, a name has to be specified, and the type selected.
Additional parameters to be specified are described in the following sections for each distribution type.

o= Problem global setup x

Parameter Setup | Stage Matrix | Sampling Matrix | Resources = Features
[J Show advanced options
[] Enforce Variable Bounds
Type Name Starting Minimum Maximum Distribution Delete
| continuous v |[x I 2000 || 1926 | 2120 for X1 ||
[Continuous | v HXZ ” 5" 2“ 8] (none)
| continuous v |[xs I 100 || 44.7|| 159.8) for x2 Edit Delete
[Continuous | v |[xa I 50| 503 | 76.9 || for_X3 Edit Delete

for_X4 Edit Delete
[Continuous | ~ HXS H 50" 21.]"“ 102.2 for_X5 Edit Delete
[Ccmtinuous | v [[xs I 50| 53.7|| 75.9||for_X6 Edit Delete
[Ccmtinuous | v [[x7 I 1| o0.558800|| 3.5002| :Z: i; i g:::::
[Ccmtinuous | v Hxs H 1500" 1465.45“ 1528. 5] for_X10 i elete

for_X11 Edit Delete
[Nmse | v |[xo | for X12 Edit Delete
[Noise ‘ v [[x10 | Add new distribution
[Noise | v |[x11 |
[Noise | v |[x12 ]
Add. .

|
Figure 12-1: Setup Dialog, Parameter Setup: Definition of Probabilistic Distributions
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Beta distribution

The Dbeta distribution is quite versatile as well as bounded by two limits. The shape of the distribution is
described by two parameters g and r, Table 12-1. Swapping the values of g and r produces a mirror image of

the distribution.

- Statistical Distribution

&

Distribution NameldistBeta

|
Type [ Beta |?| . 2 bes
L — a=, =
Lower [2 |
Upper |5 | 0.8 -
q |1 | gq=1r=2 g=2r=1
! |1 | 0.6 —
Preview Mean = 3.5; Std Dev = 0.866 f(x)
0.4 -
0.36
0.35
02
0.34
2 0 |
1.5 . 55
oK X
Figure 12-2: Beta distribution
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Table 12-1: Parameters defining a Beta distribution

Item Description
Lower Lower Bound
Upper Upper Bound

q Shape parameter g
r Shape parameter r

Binomial distribution

The binomial distribution is a discrete distribution describing the expected number of events for an event
with probability p evaluated over n trails, Table 12-2. For n=1, it is the Bernoulli distribution (experiments
with two possible outcomes — success or failure) with probability of success p.

Distribution Name[distBin |
Type | Binomial & |
P 0.1 | 05 -
n E | 045
Preview Mean = 0.3; Std Dev = 0.5196 0.4
0.8 035 -
_ 03+
0.6
% 025 -
k=1
0.4 02—
0.15 -
0.2
o1r
0 p) 0.05 [~
0 | ‘I|—\ | | |
| oK | 0 2 4 6 3 il
x

Figure 12-3: Binomial distribution
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Table 12-2: Parameters defining a Binomial distribution

Item Description
p Probability of event (Success)
n Number of trials

Lognormal distribution

If X is a lognormal random variable with parameters p and o, Table 12-3, the random variable Y = In X has

a normal distribution with mean p and variance °.

ml  Statistical Distribution (/%

Distribution Name[logDist

|
Type l Lognormal |¢ |
Mean [12_3 |
Standard Dev [1.1 |
Mrzamiewd .023e+05; Std Dev = 6.172e+05
3E-06
2.5E-06 1‘\ fix)
2E-06 ‘\
1.5E-06 \
1E-06 \
S5E-OF \‘~_
0
0 2E+06
ook

Figure 12-4: Lognormal distribution
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Table 12-3: Parameters defining a Lognormal distribution

Item Description
Mean Mean value in logarithmic domain
Standard Dev Standard deviation in logarithmic domain

Normal distribution

The normal distribution is symmetric and centered about the mean p with a standard deviation of c.

- Statistical Distribution %)

Distribution NamelnormaIDist

|

Type | Normal o |

Mean [123 |
Standard Dev |1.1 | 0rr
olar

Preview Mean = 12 3; Std Dev =1.1
0.6 -

0.4 |
fla)

0.3 /\ 0z -
[\

ol

0.2
/ \ oos |-
0.1

/ \ 006 —

o -

10 15 oo -

Figure 12-5: Normal Distribution
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Table 12-4: Parameters defining a Normal distribution

Item Description
Mean Mean value
Standard Dev Standard deviation

Truncated normal distribution

The truncated normal distribution is a normal distribution with the values constrained to be within a lower
and an upper bound. This distribution occurs when the tails of the distribution are censored through, for
example, quality control.

m  Statistical Distribution %

Distribution Name[truncNormaI

Type l Truncated Normal |¢

Mean [12.3

m=0 s=2 low=-2 upper=4

Lower [10

l
|
|
Standard Dev |11 |
|
|

Upper [12

f(x)

Preview Mean = 11.3; Std Dewv = 0.4999

1 - B

0.75 =

0.5 / L
0.25 /

0 '/ I

10 12 B

|' oK | ‘% s -6 4 -2 0 2 4 6 8 10

Figure 12-6: Truncated Normal Distribution
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Table 12-5: Parameters defining a truncated Normal distribution

Item

Description

Mean

Mean value

Standard Dev

Standard deviation

Lower

Lower bound on values

Upper

Uniform distribution

Upper bound on values

The uniform distribution has a constant value over a given range.

- Statistical Distribution (&)

Distribution Name[uniDist

-~
w

Type [ Uniform
Lower [1.2
Upper [3.4

l
|
| o5~ 1fib—a)
l

045 -

Preview Mean = 2.3; Std Dev = 0.6351

04 -

035 -

03

025

015

ol

oos

a=2 b=4

Figure 12-7: Uniform Distribution
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Table 12-6: Parameters defining a Uniform distribution

Item Description
Lower Lower bound
Upper Upper bound

User defined distribution

A user-defined distribution is specified by referring to the file containing the distribution data.

The probability density is to be assumed piecewise uniform and the cumulative distribution to be piecewise
linear. Either the PDF or the CDF data can be given:

o PDF distribution: The value of the distribution and the probability at this value must be provided
for a given number of points along the distribution. The probability density is assumed to be
piecewise uniform at this value to halfway to the next value; both the first and last probability must

be zero.

0 CDF distribution: The value of the distribution and the cumulative probability at this value must be
provided for a given number of points along the distribution. It is assumed to vary piecewise

linearly. The first and last value in the file must be 0.0 and 1.0 respectively.

Lines in the data file starting with the character ‘$” will be ignored.

=] Statistical Distribution

&

Type

User File

Preview

Distribution NamelDist_U_P

l User PDF B

|U_PDF.dat Browse

Mean = 11; S5td Dev = 0.2887

10 12

Figure 12-8: User defined distribution
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PDF File
-1000
0020
1030
2000

CDF File
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Table 12-7: Parameters defining a User defined distribution

Item Description

User File Name of file containing the distribution data

Example: User PDF file

$ Demonstration of user defined distribution with
$ piecewise uniform PDF values

$ x PDF
$ First PDF value must be O
-5 0.00000
-2.5 0.11594

0 0.14493

2.5 0.11594
$ Last PDF value must be O
5 0.00000

Example: User CDF file

$ Demonstration of user defined distribution with
$ piecewise linear CDF values

$ x CDF

$ First CDF value must be O
-5 0.00000
-4.5 0.02174
-3.5 0.09420
-2.5 0.20290
-1.5 0.32609
-0.5 0.46377
0.5 0.60870
1.5 0.73913
2.5 0.85507
3.5 0.94928

$ Last CDF value must be 1
1.00000

Weibull distribution

The Weibull distribution is quite versatile — it has the ability to take on various shapes. The probability
density function is skewed to the right, especially for low values of the shape parameter.
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- Statistical Distribution )

Distribution Name[wDist |

Type [ Weibull |C
Scale [2.3 |
Shape [3.1 |

Preview Mean = 2.057; Std Dev = 0.7259 Scale=10

0.5
0.4 / \ flx)
0

Figure 12-9: Weibull distribution

Table 12-8: Parameters defining a Weibull distribution

Item Description
Scale Scale parameter
Shape Shape parameter

12.3. Probabilistic variables

The uncertainty of a probabilistic variable is described by associating it with a statistical distribution. In the
LS-OPT GUI, this is done in the Parameter Setup panel (Section 12.2). The statistical distribution defines
the mean or nominal value and the variation around this nominal value. The nominal value, the probabilistic
counterpart of a deterministic variable, may or may not change during the course of LS-OPT run. This
depends on the task and variable type. The two main probabilistic variable types (Figure 12-10) are:

0 Noise variables: These variables are completely described by the associated probabilistic
distribution. These variables are not controlled at the design and production level, but only at the
analysis level. A probabilistic variable can be defined as a noise variable either because the user
chooses to study the effect of uncertainty around a fixed mean value or because it may not be
possible to control the variable. An example of the later is wind velocity for which a statistical
distribution can be defined from measurements, but one cannot design or control it. A noise variable
will have the nominal value as specified by the distribution, i.e. it follows the distribution exactly.
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o Control variables: Variables that can be controlled in the design, analysis, and production level; for
example: a shell thickness. The nominal value can be adjusted during the design optimization phase
in order to have a more suitable design. The associated distribution only provides the variation
around this nominal value. A probabilistic control variable can be either continuous or discrete. A
discrete variable is a special case of a control variable, in which the nominal value can only be
among the specified list of values. However, due to uncertainty about the discrete nominal value, the
variable can actually have a value that does not belong to the list. In other words the nominal value is
discrete, but the variable value is continuous.

Design Variable Noise Variable

Lower Bound

3 Nominal Value

P(x) P(x)

A Upper Bound J\

X p:4

Allowable range |

Discrete Variable

Nominal Value

AN

L\ X
[— <~
e P
— T
R
==

Figure 12-10: Probabilistic variables. The nominal value of a control variable can be adjusted by the
optimization algorithm between the lower and upper bound; the probabilistic variation of a design
variable is around this nominal value. A noise variable is described completely by the statistical
distribution. A discrete variable, like design variable has a nominal value selected by the optimization
algorithm; the probabilistic variation of the discrete variable is around this nominal value.

P(x)

Allowable values

A variable is declared probabilistic by:
o Creating it as a noise variable or
0 Assigning a distribution to a control variable.
Three associations between probabilistic variables are possible:
o0 Their nominal values are the same but their distributions differ
o Their nominal values and distributions are the same
o0 Their nominal values differ, but they refer to the same distribution.

12.3.1. Setting the nominal value of a probabilistic variable

The specified nominal value is used for a control variable; the associated distribution will be used to
describe the variation around this nominal value. For example: a variable with a nominal value of 7 is
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assigned a normal distribution with u=0 and =2; the values of the variable will be normally distributed
around a nominal value of 7 with a standard deviation of 2.

This behavior is only applicable to control variables; noise variables will always follow the specified
distribution exactly, i.e. they will have the same nominal value and variation as defined for the associated
distribution.

12.3.2. Bounds of a probabilistic variable

The bounds of a control variable are defined by the user (minimum and maximum) like for deterministic
variables. It should be noted, however, that if the nominal value of a variable is close to a bounding value,
then the bound can be exceeded because of the uncertainty (Figure 12-11). This is the case by default, unless
specified otherwise Using “Enforce Variable Bounds” in the Parameter Setup panel.

i
1
1 .
Lower Bound} Nominal value Upper Bound
1

Sx)

i

H Bound exceeded
1

'

: 5

l
l Allowable Range

Figure 12-11: Bounds exceeded due to variable uncertainty

Noise variables are completely defined by their distributions; they are not bounded unless specified in the
associated distribution. Thus no bounds are required in direct Monte Carlo Analysis. However, in a
metamodel-based analysis or optimization, bounds are required even for noise variables to select the
samples for metamodel construction. In such tasks, noise variable bounds are defined as multiples of the
standard deviation (“Noise Variable Subregion Size”, Table 7-3). By default, two standard deviations are
used on either side of the nominal value.

12.4. Monte Carlo analysis

Monte Carlo analysis is used to simulate the uncertainty of variables using random samples based on the
associated distribution.

The Monte Carlo evaluation will:

o0 Select the random sample points according to a user specified strategy and the statistical
distributions assigned to the variables.

o Evaluate the structural behavior at each point.
o0 Collect the statistics of the responses.

The user must specify the experimental design strategy (sampling strategy) to be used in the Monte Carlo
evaluation. The Monte Carlo, Latin Hypercube and space-filling experimental designs are available. The
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experimental design will first be computed in a normalized, uniformly distributed design space and then
transformed to the distributions specified for the design variables.

Only variables with a statistical distribution will be perturbed; all other variables will be considered at their
nominal value.

The following will be computed for all responses:
o Statistics such as the mean and standard deviation for all responses and constraints
0 Reliability information regarding all constraints:
0 The number of times a specific constraint was violated during the simulation
0 The probability of violating the bounds and the confidence region of the probability
o A reliability analysis for each constraint assuming a normal distribution of the response.

The exact value at each point will be used. Defining multiple samplings is not allowed for Monte Carlo
analysis; multiple disciplines must share the same samples.

12.5. Monte Carlo analysis using a metamodel

The Monte Carlo analysis will be done using metamodels — response surfaces, neural networks, Kriging or
SVR - as prescribed by the user. Unlike the direct Monte Carlo method, in which the Monte Carlo samples
are evaluated using the actual stage solvers, this is a two step process:

1. First the metamodels are constructed based on a few samples evaluated using the actual stage
solvers. These samples need not (typically do not) follow the variable statistical distributions.

2. Next, Monte Carlo Samples are randomly generated (typically a large number) based on the variable
statistical distributions. These samples are evaluated using the metamodels. The number of Monte
Carlo points can be set by the user. The default value is 10°. A higher number of samples represents
the underlying distribution more closely, and gives more accurate results provided the metamodel
approximations are accurate.
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| Step 1: Building the Metamodel | | Step 2: Monte Carlo Analysis

Response i | Response . i
[} 1 1

/Ji_f- Tens of FE Analyses i | Millions of samples i

! | |

: A Metamodel!

I 1 1

I 1 -

T . L
i Lower Bound ! Start Value » Upper Bound
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\
1

Design Variable
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Figure 12-12: Metamodel-based Monte Carlo analysis. The method proceed in two steps: firstly a
metamodel is created, and then the Monte Carlo simulation is done using the metamodel and the
statistical distribution of the variable. Note that the metamodel for a design/control variable is
constructed considering the upper and lower bound on the variable and not considering the statistical
distribution. For a noise variable the upper and lower bounds for the creation of the metamodel are
selected considering the statistical distribution.

Metamodel-based probabilistic analysis or optimization is accompanied by the calculation of stochastic
contributions of the variables. It can be useful to know how the variation of each design variable contributes
to the variation of a response. These computations are also known as Stochastic Sensitivity Analysis or
Sobol’s analysis. The stochastic contribution will be printed for all the responses in a metamodel-based
procedure. If no metamodel is available the covariance of the responses with the variables can be
investigated. The stochastic contributions of the variables can also be examined in the Viewer component of
the GUI. The amount of variation due to noise or the residuals from the fitting procedure will be indicated.
This term is taken as zero for composite functions.

The following data will be collected:
o Statistics such as the mean and standard deviation for all responses, constraints, and variables
The reliability information for each constraint:
The number of times a specific constraint was violated during the simulation
The probability of violating the bounds and the confidence region of the probability.

O O O O

Stochastic contributions of variables

12.6. RBDO/Robust parameter design

To find a robust parameter design, use the task RBDO/Robust parameter design, Section 24.8 and Section
24.9, and the strategy Sequential with Domain Reduction, Section 4.7.3.

LS-OPT has a reliability/robustness-based design capability based on the computation of the standard
deviation of any response. The standard deviation of a response is available as a composite and therefore

LS-OPT Version 5.0 197



CHAPTER 12: Probabilistic Modeling and

available for use in a constraint or objective, or in another composite. The theoretical concerns are discussed
in Section 24.8.

The method computes the standard deviation of the responses using the same metamodel as used for the
deterministic optimization portion of the problem using the First Order Second Method (FOSM), Section
24.4.4. No additional FE runs are therefore required for the probabilistic computations.

The method requires very little information additionally to what is required for deterministic optimization.
Specify the following:

o Statistical distributions associated with the design variables
0 Probabilistic bounds on the constraints.

The statistical distributions associated with the design variables are specified in the same manner as for a
Monte Carlo analysis using a metamodel.

Objectives = Censtraints | Algerithms

|| Constraint zcaling
Optimization constraints: Add new

Response Lower Bound Strict P[Resp=<=LowE] Upper Bound Strict P[Resp=UppE] Responses

Composites

®x  RAL x 1 0.158 (defaulti| x le+30 0 (default) Al

x RC2 Set lower bound x -3 0.158 (default i
x CRA2 Set lower bound x -2 0.158 (default i
x CRE1 x 2 0.158 (defaulti| = le+30 0 (default)
% CRC1 x 3 0.158 (defaulti| x le+30 0 (default)

¥ OK

Figure 12-13: Probabilistic constraint definition for RBDO. A target failure probability is defined.

The difference between RBDO and robust design lies in the optimization problem formulation; therefore,
both capabilities are provided under the same task. In RBDO, “safety” of the design is ensured by the
probabilistic bounds on the constraints (target failure probability) while the objective is defined such that it
provides a better “deterministic” design goal (e.g. lowest cost or weight calculated at the variable means of
the design). In robust design, the objective is to provide a design that is least sensitive to slight variations of
the design. This can be achieved by minimizing the standard deviation of the response (Figure 12-14).
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Figure 12-14: An example of objective function for RBDO (top) and robust design (bottom). Standard
deviation is defined as the objective in latter case.

One extra consideration is required to select an experimental design for robust analysis: provision must be
made to study the interaction between the noise and control variables. Finding a robust design requires that

the experimental design considers the x;x; cross-terms (considering variables X; and X; ), while the xf and

xj? terms can be included for a more accurate computation of the variance. An example is given in Section

19.4.
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13. Running the Design Task

This chapter explains simulation job-related information and how to execute a design task from the
graphical user interface as well as monitoring the status of the task and the simulation runs from the GUI.

13.1. Running the design task

After setting up the task, run the design task using Normal Run or Baseline Run from the Run menu ( 4 ) in
the control bar of the main GUI as described in Section 3.3. If needed, previous results can be deleted using

the Clean options in the Tools menu (/'), Section 3.4.

13.2. Analysis monitoring

Setup

B parameters

mdo.iterate.correct.lsopt - L5-OPT 5.0 E][E]E]
I?

Metamodel-based optimization 0@ =

Finish

Y

Domain
reduction

i

Verification
1 design

i

Termination
criteria

|

i

|  core Optimizer

1 ohjective

3 constraints

'@

f

Composites
1 definition

! !

LE-DYNA CRAS H } LE-DYMNA NV H }
6 pars, 5 resps (=] 5 pars, 3 resps [+ ]

| sampling CRASH | sampling NVH
| 3 wvars, 7 d-opt designs 4 vars, 8 d-opt designs

| Build Metamodels | Build Metamodels
5 linear surfaces 3 linear surfaces

Crash-Modal MDO problem (small car). lterative solutior

fhomef/katharina/LSTCloptQA/CLASS EXAMPLES/DESIGN OPTIMIZATIONMOONTERATE/Mdo.iterate.carrect./sop

Figure 13-1: Main GUI while optimization is running
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While running LS-OPT, the status and progress of the task can be visualized in the main GUI, Figure 13-1.

The currently running iteration number is displayed in the control bar at the top ( SRS ). The stage LED of
the currently running task process is highlighted (glows) in yellow while the green “pie” fraction inside the
LED visualizes the solver progress. For the stage LED’s, green and red is used for solverN o r m a 1
and E r r o r terminations, respectively. Double-clicking on a stage LED launches the Progress dialog
described in Section 13.3.

13.3. Job monitoring — the Progress dialog

rr;;i] Progress E]w

Show status for: [CRASH et ] Tools

Job ID/PID Stage lter Ex Status i l View log l
mm-— | Open folder |
32282 CRASH 3 4 Running 0% l Kill l
32664 CRASH 3 5 Running 0% -

[Accelerated kllll

0 CRASH 3 5] Waiting...

0 CRASH 3 7 Waiting... b

Time History
Time Step
Kinetic Energy 2E-05
h,

Internal Energy 1.8E-05 \

Total Energy g— 1.6E-05 \

Energy Ratio n  1.4E-05 \

. W

Global X Velocity £ 1.2E-05 \

Global ¥ Velocity = 1E-05 \

Global Z Velocity ) — |
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Total CPU Time Simulation Time
o T, R Ry P, ""'

Figure 13-2: Progress dialog displaying progress of stage runs
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Table 13-1: Tools for selected run

Tool Description Reference
View log Opens job_log file of selected run Section 13.6
Open folder Opens run directory of selected job -

LS-PREPOST  Opens selected run in LS-PREPOST (LS-DYNA only) -

Kill Kills selected job Appendix 1.2

Accelerated kill Appendix |.2

The progress of the simulation jobs can be displayed for a selected stage or for all stages. If a job is selected
from the list, the tools described in Table 13-1 are enabled.

When using LS-DYNA, the user can also view the progress (time history) of the analysis by selecting one of
the available quantities from the Plot list (Time Step, Kinetic Energy, Internal Energy, etc.), Figure 13-2.

The Progress dialog allows a graphical indication of the job progress with the green horizontal bars linked
to estimated completion time, Figure 13-2. This progress is only available for LS-DYNA jobs. The job
monitoring is also visible when running remotely through a supported job distribution (queuing) system.
The job status is automatically reported at a regular interval.

The text screen output while running both the batch and the graphical version also reports the status as
follows:

JoblD Status PID Remaining

1 Normal termination!

2 Running 8427 00:01:38 (91% complete)
3 Running 8428 00:01:16 (93% complete)
4 Running 8429 00:00:21 (97% complete)
5 Running 8430 00:01:13 (93% complete)
6 Running 8452 00:21:59 (0% complete)
7 Waiting ...

8 Waiting ...

In the batch version, the user may also type control-C to get the following response:

Jobs started

Got control C. Trying to pause scheduler ...
Enter the type of sense switch:

swl: Terminate all running jobs

sw2: Get a current job status report for all jobs
t: Set the report interval

v: Toggle the reporting status level to verbose
stop: Suspend all jobs

cont: Continue all jobs

c: Continue the program without taking any action
Program will resume in 15 seconds if you do not enter a choice switch:

If v is selected, more detailed information of the jobs is provided, namely event time, time step, internal
energy, ratio of total to internal energy, kinetic energy and total velocity.
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13.3.1. Error termination of a solver run

The job scheduler will mark an error-terminated job to avoid termination of LS-OPT. For error-terminated
solver jobs, the progress bars in the GUI are colored in red. Results of abnormally terminated jobs are
ignored, hence they are not used in the optimization, e.g. to construct metamodels. If there are not enough
results to continue, e.g. to construct the approximate design surfaces, LS-OPT will terminate with an
appropriate error message.

13.4. Restarting

Restarting is conducted by selecting the appropriate option from the Run menu ( 4 ) in the control bar
panel of LS-OPTui.

Completed simulation runs will be ignored, while half completed runs will be restarted automatically.
However, the user must ensure that an appropriate restart file is dumped by the solver by specifying its
name and dump frequency.

The following procedure must be followed when restarting a design run:

1. As a general rule, the run directory structure should not be erased. The reason is that on restart, LS-
OPT will determine the status of progress made during a previous run from status and output files in
the directories. Important data such as response values (response.n files), response histories
(history.n files) are kept only in the run directories and may not available elsewhere (with the
exception of the AnalysisResults_n.Isox database in the sampling directory).

2. In most cases, after a failed run, the optimization run can be restarted as if starting from the
beginning. There are a few notable exceptions:

0 A single iteration has been carried out but the design formulation is incorrect and must be
changed. In this case the design formulation must be corrected before re-optimizing Iteration 1

using the Optimize repair function in the Tools (/') menu (see Section 3.5). If histories or
responses are added, the *Extract Results’ repair function in the Tools menu must be used to re-
extract the data.

o Incorrect data was extracted, e.g., for the wrong node or in the wrong direction. In this case, the
user must re-extract the results using the ‘Extract Results’ repair function in the Tools menu after
correcting the response definitions.

o0 The user wants to change the response surface type, but keep the original experimental design. In
this case the user must use the ‘Build Metamodels’ repair function in the Tools menu after
correcting the metamodel type.

After completing the repair functions above, a normal restart can be executed ( 4 ).

Note: A restart will only be able to retain the data of the first iteration if more than one iteration was
completed. The directories of the other higher iterations must be deleted in their entirety. This can be
accomplished by using the ‘Clean from current iteration [iter]’ selection in the Tools menu. Unless
the database was deleted (by, e.g., using the clean file or a ‘Delete’ file operation, see Section 5.6),
no simulations will be unnecessarily repeated, and the optimization procedure will continue.
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3. A restart can be made from any particular iteration by selecting the Clean from current
iteration[iter] option from the Tools menu, see Section 3.4, and selecting the iteration number. The
subdirectories representing this iteration and all higher-numbered iterations will be deleted after
confirmation. Then select a Run option to restart.

4. The number of points can be changed for a restart (see Section 8.5.4).

13.5. Directory structure

When running an optimization, LS-OPT will generate a directory in the work directory for each sampling
and for each stage using the sampling or stage name, respectively. If a sampling and a stage have the same
name, the same directory will be used.

In the stage directories a subdirectory will be created for each simulation.

These sub-directories are named mmm.nnnn, where mmm represents the iteration number and nnnn is a
number starting from 1.

The work directory needs to contain at least the command file.

An example of a subdirectory name, defined by LS-OPT, is side_impact/3.11, where 3.11
represents the design point number 11 of iteration 3. The creation of subdirectories is automatic and the user
only needs to deal with the working directory.

In the case of simulation runs being conducted on remote nodes, a replica of the run directory is
automatically created on the remote machine. The response.n and history.n files will automatically
be transferred back to the local run directory at the end of the simulation run. These are the only files
required by LS-OPT for further processing. More files can be transferred back by using the recover files
options, see Section 5.4.5.

Isopt file, input flles

Work Directory

| output files
---------------------------- Depend :
| Stage database — Stage 2 [«-----1 Stage 1 1«  22PENCENY ] Sampling 1
"""""""""""""" | |
| | | | | | | |
— 11| (12|[13]||14 11 112(|13||14
R/ /
Run directories  Sampling database |
i simulation files, |

| status files, result flles

Figure 13-3 : Directory structure in LS-OPT
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13.6. Log files and status files

Status files started, finished, history.n, response.n and EXIT_STATUS are placed in the run
directories to indicate the status of the solution progress. The directories can be cleaned to free disk space
but selected status files must remain intact to ensure that a restart can be executed if necessary.

A brief explanation is given below.

Table 13-2: Status and log files generated by LS-OPT

File Description

job_log The simulation run/extraction log is saved in that file in the local run
directory.

started The run has been started.

finished The run has been completed. The completion status is given in the file.

response.n Response number n has been extracted.

history.n History number n has been extracted.

EXIT_STATUS

Error message after termination. The user interface LS-OPTui uses the
message in the EXIT_STATUS file as a pop-up message.

Ifop.log

The file contains a log of the core optimization solver solution.

scheduler.debug

This file is generated by the Ischeduler executable and is used for debugging
purposes.

Isopt.debug

Traceback of the solver termination. Used for debugging purposes.
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14. Viewing Results

This chapter describes the post-processing of LS-OPT result data using the Viewer.

14.1. Viewer overview

14.1.1. Plot Selector

Figure 14-1: Plot Selector

To start the Viewer, select the respective icon from the control bar of the main GUI.
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0 Stochastic Analysis.

Depending on the optimization task, the selected options and the database availability, categories are hidden
or plots are disabled.

[=] %]

’w New plot

New plot Simulations Metamodel

lation Matrix Surface

-
2D Interpolator

Accuracy

:'-15’ Parallel Coordinates

Figure 14-2: Plot Selector with additional plot information

Moving the mouse on a plot type gives additional information on the plot, Figure 14-2.

B4 New plot -2

New plot

Placement

Figure 14-3: Selection for placement of new plot in the plot selector

If plots already exist, the placement of the new plot may be specified in the plot selector, Figure 14-3. The
default is to create a new plot. All available options are explained in Table 14-1. For details see Section
14.1.5.

Table 14-1: Plot placement options

Option Description

Create a new plot window

Replace current plot

w1 ] [E:]  Split window and place new plot at the highlighted position

14.1.2. General Plot Options

General plot options are available on the toolbar at the top of the plot window, Figure 14-1. Table 14-2
explains the options.
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B C-2500 pickup truck. RBDO. - LS-OPT Viewer
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Figure 14-4: General options
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Table 14-2: General plot options

Option

Description

New plot

Opens Plot Selector with placement selection for the new plot,
see Section 14.1.1.

X Delete plot

Deletes active plot

Save plot setup

Saves current plot setup to be reused later, see Section 14.1.6.

I} Pointer tool [F1]

Rectangular selection (rubber-banding) in plot or clicking marks
points or curves and opens Point selection window, see Section
14.1.4.

@ Zoom in tool [F2]

Rectangular selection in plot specifies zoom region

©  Zoom out [F3]

Clicking on plot zooms out

@ Reset zoom Resets plot to initial range

B Split vertical Splits plot window vertical, see Section 14.1.5.

[4] Split horizontal Splits plot window horizontal, see Section 14.1.5.

Print Prints the current plot, options see Figure 14-5.

% Save image Saves the current plot, options see Figure 14-5.

By  Visualize relations between If several plots are displayed in the same plot window, this
controls and plots option helps to find each plot’s control panel.

T Point selection window Shows or hides a window that shows the values of all entities for

the selected points in a table. This window shows up
automatically if the point selection changes, see section 14.1.4.
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¥ Save image ‘2

What to save
O All plots

@ Active plat

@ Pixels O

¥ Keep aspect

Text and lines scaling:

Width: 1367 |=

Height g5 =

| Draw background

v oK

B Print =

What to print
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Page Setup
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Image size
—_—

Text and lines scaling

—————
| Draw background

2 Cancel

2 Cancel

Figure 14-5: Options for printing (right) and saving (left) images

14.1.3. Plot Rotation

For all 3D plots, image rotation is performed by holding down the Ctrl key while moving the mouse (same

as LS-PREPOST).

14.1.4. Point Selection

The points on Scatter, TradeOff, Surface, Accuracy, Optimization History and HRV plots, and lines on
PCP, History plots may be selected by clicking on a single point or by selecting several points within a
rectangular box. The selected points are highlighted in the plot and the computed and predicted values of all
entities for the selected points are displayed in a spreadsheet in a separate plot selection window, Figure
14-6. Options for point selection are explained in Table 14-3. Points may also be selected from the list of all

points available in the current plots on the left in the Point selection window.
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Figure 14-6: Point selection window for single (front) and multi (background) point selection
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Table 14-3: Point selection options

Option

Description

Open selected run in LS-
PREPOST

This option is only available for LS-DYNA simulations, if
the d3plot or d3eigv database is available

#= Display histories involved in a This option is only available if MeanSgErr composites are
curve matching composite defined. It is recommended to use the history plot feature
(Section 14.2.4) for comparing histories (including file-
based histories typically used with curve matching).
sr Add to set of selected points Options for new point selection
== Subtract from set of selected
points
= Replace set of selected points
a'2 Toggle set of selected points
(within rectangle)
[2 Export as text file (.csv) The exported file has the format of a user defined sampling

The SOM plot also supports selection. If a cell is selected, all points that are mapped to the selected cell are

displayed in the point selection window.

Point selection is integrated, hence selected points are highlighted in all plots within the same plot window.
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Figure 14-7: Cross-display of selected points
14.1.5. Split Window

To display several plots side by side, there are two basic selections available to split the plot window. (i)
options to split the window horizontally or vertically in the toolbar at the top of the plot window or (ii)
select the new plot together with a placement option for the new plot in the Plot Selector.

If the split window options are used, the same plot is repeated with the same settings which is useful for e.g.,
displaying 3D surface plots for different responses side by side, Figure 14-8.
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Figure 14-8: Example for split option

If split window options are used several times, the plots may become too small, and as much as possible
space on the screen is needed to get a good view. Hence all control panels are detachable or may even be
hidden by pushing the respective button in the toolbar at the top of the plot window, Figure 14-9.

1 Optimizaiion Problem - LS OPT Viewer {alel ix]
e [fle e ME & & O] e | = | e O] e ShOW/hlde
) i = E]
.
Variable "I" vs, Variabis
= et panels
IW - - ': 64
Setup | Ranges | Puints | Fringe | |
[ty XY 2 vee G &1
No entity 2d mods) )
Responses 571
]
. ——
> o484 Sewp | Fomis  Ranges |
g 2 |Enity X|¥iZ|c
g a91 g 5 Ho entiy 2d mods)
£ - Variabies
: 5 " $000
297 o ®O0
i
epsn
0204 =
oA
) —
fo 0172
~0.0762
T 1 etached panels
Enity XY vae @/ |
time .
- Histre
[
pih ®
temp_pih 2
"t )
tamp_flh
s Canstraints  Centarvi force_1h
1 Predicied vk @mm
Omjmn wm_p2h
I e s2h
X X o
1 temp_h hlass
s co 2%
e thick_pIh 0 0803
1o [N a0 thick_@h
riablss nit obi odis ob2 0dz5 oba
[ - - Time: lo.0703 1
|| /e Befehisfenster | m Befahlsfant | L I | Befenistansier hr. 5 | wm Befehistensiar hr 6 | [As)
é A m e [o e 7] LSmPT | kainngdmeredt:. EWERM = e G 3 ot -l Mo Q3 HHe A ez,
= Cu = SURMORT DSPEX  [fbenshche | WA “Optimization Problem’ (Fil < Screen Shot & Optimization Problem - 1< ik Berin
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14.1.6. Save Plot Setup

Window splitting and placement selection of new plots allows complex plot setups. To reuse a plot setup
several times, even across problems, it may be saved. Later you can bring this plot state back by clicking on
the preview in the plot selector, Figure 14-10.

The plot setup is stored in XML format in ~/.LS-OPT Viewer/plotname.plot on Linux machines. On
Windows, the plot setup is stored in Application Data\LS-OPT Viewer in the user’s home directory. The full
path depends on the Windows version and setup, e.g. C:\Documents and Settings\user\Application Data\LS-
OPT Viewer.

The command line option “-I” makes the viewer load a plot setup from a file immediately, without showing
the plot selector. That makes it possible to write a script that generates the plot state XML file and then calls
upon the viewer to display the plots. For more details on command line options, see Section 14.1.7.
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L@Z"- Hyper-Radial Visualization
ﬁ Self-Organizing Maps

Figure 14-10: Plot Selector with previously saved setups
14.1.7. Command line options

The post-processing tool of LS-OPT may be started from the Viewer Panel in LS-OPTui, or the executable
viewer located in the LS-OPT installation directory may be called from the command line:

viewer [-p <str>] [-I <str>] [-h] [--verbose] [com-file]

Table 14-4 explains the command line options.
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Table 14-4: Command line options

Option Description

-p <str>, --show- Open the given plot, valid plot types are

plot=<str>
accuracy Accuracy (Section 14.3.3)
correlation Correlation Bars (Section 14.2.6)
corrmatrix Correlation Matrix (Section 14.2.1)
history Histories — Metamodel (Section 14.3.5)
history_ar Histories — Simulations (Section 14.2.4)
hrv Hyper-Radial Visualization (Section 14.5.3)
interpol 2D Interpolator (Section 14.3.2)
opthist Optimization History (Section 14.4.1)

parallelcoord

Parallel Coordinates — Pareto Optimal Solutions
(Section 14.5.2)

parallelcoord_ar

Parallel Coordinate — Simulations (Section 14.2.3)

scatter Scatter Plots (Section 14.2.2)
sensitivities Sensitivity (Section 14.3.4)
som Self-Orgamizing Maps — Pareto Optimal Solutions
(Section 14.5.4)
statistics Statistical Tools (Section 14.2.5)
stoch Stochastic Contribution (Section 14.6.3)
surface Surface (Section 14.3.1)
tradeoff Tradeoff (Section 14.5.1)
variable Variables (Section 14.4.2)
- <str>, --load- Load plot Setup from file, see section Save Plot Setup
setup=<str>
-h, --help show help message for command line options
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--verbose generate verbose log messages

com-file LS-OPT command file. By default, the viewer loads the LS-OPT database
called Isopt_db

14.1.8. Iteration Panel

Except for the Optimization History plot which displays the iteration history, all plots allow specifications
for the iteration data to be shown. The available options depend on the plot type (see Figure 14-11).

tteration ] lteration %]
10
— . n all
© nem
First: E
' 2
10
Last: —
)
Step: |2 =

Figure 14-11: Iteration Panel- only current iteration (left), all previous/ all iterations (middle), iteration
range and step size (right)

A slider is available to select the current iteration to be plotted. Some plots allow plotting all previous
iterations or all iterations, and the Scatter- and Tradeoff plots also allow the specification of a range and a
step size, e.g. the selection in the right iteration panel in

Figure 14-11 plots iterations 2,4,6,8 and 10.
14.1.9. Ranges

Most plots allow specifications of the ranges for all plotted entities, Figure 14-12.
The default is Auto. In this case, the range is set to the minimal and maximal value to plot.

For surface plots, there are two options for Auto range selection. Auto, Entire design space plots the
surface across the full design space, Auto, region of interest uses only the subregion of the selected
iteration.

If never shrink plot range is selected, the ranges of the previous plot are considered and they are enlarged
if the new plot has values outside that range, see the Neural Net plot displayed in Figure 14-26. This option
is ignored if entities change.

Manual range selection allows the user to specify lower and upper bounds for each plotted entity.
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Figure 14-12: Ranges selections

14.2. Visualization of Simulation Results

14.2.1. Correlation Matrix

The correlation matrix displays 2D scatter plots, histograms and the linear correlation coefficients calculated
from the simulation results of the selected load case for the selected variables, dependents, responses and
composites, Figure 14-13.

Moving the mouse on a scatter plot displays its ranges and marks the respective correlation coefficient with
a yellow border, and vice versa. Row and column entities may be selected separately, hence it’s also
possible to display e.g. only correlation coefficients, Figure 14-14.

By double-clicking on a scatter plot or histogram, the respective plot may be reached, see Section 14.2.2 or
Section 14.2.5, respectively.

The correlation coefficients are color-coded from blue to red. Blue indicates a strong negative correlation,
red a strong positive correlation, whereas grey indicates almost no correlation.
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14.2.2. Scatter Plot

The results of all the simulated points for the selected iterations appear as dots on the scatter plots. This
feature allows the three-dimensional plotting of any three entities. A fourth entity may be displayed using
the color of the points. Other coloring options are explained below. 2D plots can be obtained by selecting
No entity for the z axis. For 3D plots, the image rotation is performed by holding down the Ctrl key while
moving the mouse (same as LS-PREPOST).

To be able to view the results of composite functions spanning two or more disciplines or stage, the same
sampling (Section 23.2) must be selected before starting an analysis. This also implies that the number of
variables must be the same for all the disciplines involved and yields coincident experimental designs.
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Color Entities — 3D Plots

Table 14-5: Color entity options

Selection Description

Feasibility Feasible points are shown in green, infeasible points in red

Previous b/w  The points for the current iteration are shown in green (feasible) or red (infeasible).
Previous points as light grey (feasible) or dark grey (infeasible)

Iterations The iteration sequence is shown using a color progression from blue through red.

Neutral All points are shown in blue

B Optimization Problem . LS.OPT Viewer <25

e ke e ME 8B & IE [ ] b
- - Seatter Plot
g 0 “ariable *if* vs, Variable *nc* vs. Response “temp_p1'
. 2 (Results of terations 2-4)
First: & 264
Last: 4
- 252
Step: 1 :‘-
Jscamer ® 241
| Sewp | Fomis | Ranges
Entity Xj¥|Z|c
Mo sntity (2d mods) 0 0.218
"\"II’FIDH!
[
he 206
]
Dependents
',:d 195
Respanses
L s
temp_pt
wn_f1
tomip_f1 172
force 1
(2_mmj 16
vn_p2
temp_p2 =
okl |
tarp_C 149 £
h":j&
thick
thick_E 137
Obpectmes
Wultsobpecte 1%
< * Manx Constr. Vislalion
= Color enlities
Feasabilty 114
{with previous in biw)
Itaration
Mautral 109
0911
1E+05 A7d
068
0565
45
0333

Figure 14-15: Scatter plot in View panel in LS-OPTui. The 4™ dimension is represented by point color.
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Points Options

Table 14-6: Point options

Selection Description

Analysis Results Plot simulation results (Default for the Scatter Plot)

Pareto Optimal Plot Pareto optimal solutions (Default for the Tradeoff Plot, Section 14.5.1)
Solutions

Use reduced set of Only active for Pareto optimal solutions, plots 100 uniformly distributed
points points selected from the Pareto optimal solutions

14.2.3. Parallel Coordinate Plot

In contrast to the Scatter Plot, the number of dimensions that can be visualized using the Parallel Coordinate
Plot is not restricted. Each dimension is visualized on a vertical axis and each data point is shown as a poly-
line connecting the respective values on the vertical axis, Figure 14-16. The ranges of the entities may be
changed using the sliders at the ends of each vertical axis rendering the points outside the ranges
unselectable. Points within the selected ranges are colored in blue, while the remaining points are colored in
grey. Selected points are colored in purple, if only a single point is selected, the corresponding value for
each entity is displayed in the plot.
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Figure 14-16: Parallel Coordinate Plot with selected point
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Options

Table 14-7: Parallel Coordinat Plot options

Selection Description

Analysis Results Plots simulation results (Default)

Pareto Optimal Solutions  Plots Pareto optimal solutions (Section 14.5.2)

Use reduced set of points  Only active for Pareto optimal solutions; plots 100 points selected from
the Pareto optimal solutions

Select from active points  Selects all points that are not outside the constraints set by the handles, see
Section 14.1.4. Useful for visualizing this set of points in another plot.

14.2.4. History Plot

This plot visualizes history curves based on time data or crossplots obtained from simulations, Figure 14-17.
The coloring options are the same as the point coloring options, see 14.2.2. If histories from files are defined
in the optimization problem, they can be visualized in addition to the simulation curves, Figure 14-18.

The Predicted History option is explained in Section 14.3.5.
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Figure 14-17: History Plot, curves colored by variable
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Options

Table 14-8: History Plot options

Selection Description
Feasible Plot feasible runs
Infeasible Plot infeasible runs
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Figure 14-18: Histories from simulations colored by variable with target curve (File history)

14.2.5. Statistical Tools

The Statistical Tools option offers three types of plots, Histogram, Summary and Bounds.

The feature enables plotting either (i) the simulation results directly or (ii) using the metamodels together
with the statistical distribution of the variables to construct the plots. The simulation results will be read
from the ExtendedResults file of the relevant solver. If the use of the metamodels is selected then a Monte
Carlo simulation using a Latin Hypercube experimental design and the statistical distributions of the
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variables will be conducted on the metamodel to obtain the desired values. The user can control the number
of points in this Monte Carlo simulation.

If desired, the residuals of the metamodel fit can be added to results of the Monte Carlo simulation as a
normal distribution.

For optimization results, an iteration can be selected, while for probabilistic evaluations the default iteration,
iteration 1, will automatically be selected.
Histogram

Histograms of the variables, dependents, responses, and composites are available. The number of histogram
bars may be specified by the user.

The histogram panel is shown in Figure 14-19.
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Figure 14-19: Histogram constructed from simulation results
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Summary

Here, the standard deviation and the mean value for the selected variable, dependent, response or composite
is visualized with the 95% confidence interval in red, Figure 14-20.
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Figure 14-20: Standard deviation and mean value of selected response constructed from simulation
results
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Bounds

The user may specify lower and upper bounds, respectively, for the selected variable, dependent, response
or composite. The probabilities that the entity exceeds the bounds are visualized with 95% confidence

interval in red, Figure 14-21.
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Figure 14-21: Probability of Mass > 0.5 with 95% confidence interval in red constructed from simulation
results
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Histogram Options

Table 14-9:Histogram options

Selection Description

Use Metamodels and Use metamodels and statistical distribution of the input variables to
Distributions construct statistics

Metamodel Points Number of points used for Monte Carlo Simulation on the metamodel to

construct statistics

Add Residuals Add residuals of the metamodel fit (“noise”) to the results of the Monte
Carlo simulation as a normal distribution

Use Opt. Iter. Start Design  Use starting design for iteration to display statistics

14.2.6. Correlation Bars

Both the covariance and the coefficient of correlation of the responses and composites with respect to the
design variables can be displayed, Figure 14-22.

Either the simulated points or the metamodels together with the statistical distribution of the variables can
be used. If a metamodel is used then a Monte Carlo simulation using a Latin Hypercube experimental design
and the statistical distributions of the variables will be conducted on the metamodel to obtain the desired
results. The user can control the number of points in the Monte Carlo simulation.

The plot can be used to estimate the stochastic contribution of an analysis without a metamodel.
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Figure 14-22: Coefficient of Correlation plot with 95% confidence interval in red
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Options

Table 14-10: Correlation Bar options

Selection Description

Correlation Plot correlation coefficient

Covariance Plot covariance

Use Metamodels and Use metamodels and statistical distribution of variables to construct
Distributions statistics

Metamodel Points Number of points used for Monte Carlo Simulation on the metamodel to

construct statistics

Use Opt. Iter. Start Design  Use starting design for iteration to display statistics

14.3. Visualization of Metamodel Results

Metamodel

@ Surface

N
~ = 2D Interpolator
o P

j ~ Accuracy
% Sensitivity

Figure 14-23: Metamodel options
14.3.1. Surface Plot

Two- or three-dimensional cross-sections of the metamodel surfaces and simulation points can be plotted
and viewed from arbitrary angles. The image rotation is performed by holding down the Ctrl key while
moving the mouse (same as LS-PREPOST). The XY, XZ and YZ buttons at the bottom of the panel rotate
the plot to the respective coordinate plane.

The following options are available:
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Setup

The selection of one or two variables and the response or composite function is done here. The sliders allow
changing the variable values for unselected variables (variables not plotted). The slider for the active
variables can be activated by selecting the “Predicted Value” option.
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Table 14-11: Surface Plot Setup options

Selection Description
Gridlines Gridlines are displayed on the surface, Figure 14-24
Isolines Isolines are displayed on the surface, Figure 14-25

Constraints

Constraints are displayed on the surface, Figure 14-27.

Feasible regions are in green, the shade of red shows the
degree of infeasibility (number of violated constraints), the
colored lines in 3D and the + marks in 2D, respectively show
the location where the constraints are exactly met.

Predicted value

The predicted value for the selected variable values is
displayed on the surface, the variable and response values are
displayed in the top left corner, Figure 14-24

Center variable sliders on Optimum

Point plotting options

Variable sliders are set to optimal values of selected iteration

Table 14-12: Surface Plot point plotting options

Selection Description
Feasible Show feasible runs only
Infeasible Show infeasible runs only

Predicted Optimum

Show predicted optimum

Computed Optimum

Show computed optimum

Failed runs on surface

Failed runs such as error terminations are projected to the surface in

grey

Points only

Show only points without surface

Project points to surface

The points are projected on the surface to improve visibility. Future
versions will have a transparency option.

Show Residuals

Shows a black vertical line connecting the computed and predicted
values.
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Point status

Table 14-13: Surface Plot point status options

Selection Description

Feasibility Feasible points are shown in green, infeasible points in red

Previous b/w The points for the current iteration are shown in green (feasible) or
red (infeasible). Previous points as light grey (feasible) or dark grey
(infeasible)

Iterations The iteration sequence is shown using a color progression from blue

through red. See Figure 14-25.

Optimum runs Optimal points are shown in green/red and all other points in white.
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Figure 14-24: Metamodel plot showing feasible (green) and infeasible (red) points. The predicted point is
shown in violet (t_hood =4, t_bumper = 4) with the values displayed at the top left.
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Figure 14-26: Surface plot representing only the region of interest of the fourth iteration.

LS-OPT Version 5.0 236



CHAPTER 14: Viewing Results

—&tresl < 1 O0e+00
—StressR < 1.006+00

X | a | ]

Figure 14-27: Plot showing isolines on the objective function as well as constraint contours and
feasibility. Feasible regions are in green. Shade of red shows degree of infeasibility (number of violated
constraints). Note the legend describing constraints at the top right.
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Figure 14-28: Plot showing isolines and points opposite the “Points” tab.
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Fringe plot options for neural nets

The options are function value or standard deviation of the Neural Net committee values. See Figure 14-29.
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Figure 14-29: Metamodel plot showing standard deviation of the Neural Net committee values.

14.3.2. 2D Interpolator Plot

The Interpolator plot is a tool to display multiple two-dimensional surface plots. All selected responses and
composites are plotted against all selected variables. The default is to display each response against all
variables in a row.
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Options

Table 14-14: 2D Interpolator Plot options

Selection

Description

Constraints

Constraints are displayed on the surface.

Feasible regions are in green, the shade of red shows the
degree of infeasibility (number of violated constraints), the
colored + marks in 2D show the location where the constraints
are exactly met.

Predicted value

The predicted value for the selected variable values is
displayed on the surface (purple line), the variable and
response values are displayed in the panel

Transpose

Allows to display each response against all variables in a
column.
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Figure 14-30: Interpolator Plot with constraints (Feasible regions are in green, shade of red shows
degree of infeasibility (number of violated constraints)) and predicted value (purple line)

14.3.3. Accuracy Plot

The accuracy of the metamodel fit for the selected response or composite is illustrated in a Predicted vs.
Computed plot, Figure 14-31. The results for the metamodel of each iteration are displayed separately using
the slider bar. All points used to approximate the metamodel are displayed, i.e., for linear metamodels, the
points of the current iteration are displayed, whereas for all other metamodels, the points of all previous
iterations are also visualized, Figure 14-31. The error measures are displayed in the heading.
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Options

Table 14-15: Accuracy Plot options

Selection Description

Feasible Plot feasible runs

Infeasible Plot infeasible runs

PRESS statistics PRESS residuals are plotted against computed values
Status (colors) Coloring options for points, see 14.2.2
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Figure 14-31: Computed vs. Predicted plot in View panel in LS-OPTui. The points are color-coded to
represent the feasibility. The largest points represent the most recent iteration.

14.3.4. Sensitivities

The Sensitivities Plot provides visualization of the results of ANOVA and global sensitivity analysis (GSA)
using Sobol’s variance-based sensitivity indices.

LS-OPT Version 5.0 241



CHAPTER 14: Viewing Results

Linear ANOVA

The Analysis of VVariance (ANOVA) (refer to Section 20.4) of the approximation to the experimental design
is automatically performed if a polynomial response surface method is selected. The ANOVA information
can be used to screen variables (remove insignificant variables) at the start of or during the optimization
process. The ANOVA method, a more sophisticated version of what is sometimes termed ‘Sensitivities’ or
‘DOE’, determines the significance of main and interaction effects through a partial F-test (equivalent to
Student’s t-test) [1]. This screening is especially useful to reduce the number of design variables for
different disciplines (see Sections 23.2 (theory) and 17.5 (example)).

If a probabilistic or an RBDO analysis is being done, then the Stochastic Contribution plots (see Section
14.6.3) are recommended.

The ANOVA results are viewed in bar/tornado chart format, Figure 14-32. The Sort option sorts the
ANOVA values by relevance, the sorting doesn’t consider the 90% confidence interval.
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Figure 14-32: Linear ANOVA plot in View panel in LS-OPTui, sorted

GSA/Sobol

A global sensitivity analysis is only performed if Compute global Sensitivities is selected in the Sampling
panel of LS-OPTui, see Section 4.10.

Figure 14-33 displays an example of a global sensitivities plot. Each bar represents the contribution of a
variable to the variance of the respective response (total sensitivity index). The values are normalized such
that the sum of all displayed values is 100%. The values are displayed in the labels. For sorted plots, the
cumulative sensitivity indices of all values in descending order are also displayed in the label.

LS-OPT Version 5.0 242



CHAPTER 14: Viewing Results

Clicking on the chart displays the respective sensitivity values and variances in the plot.

Options

Table 14-16: GSA/Sobol Plot options

Selection Description
Sort Sorts data by relevance
Transpose Sensitivity values are grouped by response/composite

Main contribution

Main contribution is displayed in addition to total contribution

Multi
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Figure 14-33: Sorted global sensitivities of all responses and composites

14.3.5. History Plot

If the Approximate History option is set in the Sampling Panel of LS-OPTui, a database that approximates
the histories for any design point using metamodels is provided, see Section 8.5.1. If Predicted History is
selected, the history evaluated on the metamodel for the selected design point is visualized, Figure 14-35. If
the predicted histories are colored by variable, multiple curves are plotted for equidistant values in the range
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of the selected variable. This visualizes the influence of the selected parameter on the history curve, Figure
14-18.

The center variable sliders on options set the variable sliders to specific values.

Table 14-17: History Plot center variable sliders on - options

Selection — center variable  Description

sliderson ...

Optimum Set variable sliders to optimum of current iteration

Nearest history Set variable sliders to variable values of nearest history, this is the
computed history with design point closest to selected design point for
predicted history

Selected point Set variable sliders to a selected point, e.g. a Pareto optimal solution

Only active if there is only one selected point

B4 Coash Modal MDD problem (small car) - L-0FT Viewsr

O Rl < T - A - 2 O = -
e = : :

8

Setup | Options | Rangas

¥ Fradicted Histary

Enty XIYIC Vike [ HE
(44
ims .
~ Histarios
(CRASH) Lz
disp_h
dispd_h . ap

= Vriablas

bumpar

trool

!

radl —_—
theod )

* Responass

b Composites

# Constramis

» Ohjoctives

* Mutiobiecing

+ Max Constr. Vielation !

thumper

dsp2_h

::::::

Figure 14-34: Predicted Histories colored by variable
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Options

Table 14-18: Predicted History options

Selection Description

Nearest Show computed history with design point closest to selected design
point

Maximal Residual Plot maximal residual

Deviation Residual Plot standard deviation of residuals

Number of predicted Number of plotted curves if histories are colored by variable

curves
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Figure 14-35: Predicted History with nearest history and maximal residual
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14.4. Visualization of Optimization Results

14.4.1. Optimization History

The optimization history of a variable, dependent, response, constraint, objective, multi-objective or the
approximation error parameters of pure responses (not composites or expressions) shows the changes of the
respective values of the optimum over the iterations. For the variables, the upper and lower bounds
(subregion) are also displayed, Figure 14-36. For all the dependents, responses, objectives, constraints and
maximum violation, a black solid line indicates the predicted values, while the red squares represent the
computed values at the starting point of each iteration, Figure 14-37. For constraints, the lower and upper
bound are displayed with a blue and red line, respectively. For the error parameters, only one solid red line
of the optimization history is plotted. RMS, Maximum and R? error indicators are available.

||||||

Core Sohar Pregress

Figure 14-36: Optimization History plot of a variable — variable values (red) and subregions (blue)
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Figure 14-37: Optimization History of a response — computed (red points) and predicted (black) values

14.4.2. Variables Plot

The variables plot visualizes variable values and confidence intervals for *.1 run of the selected iteration in

a range scaled to [0,1], Figure 14-38. Clicking on the charts displays the actual value and the bounds on the
plot.

LS-OPT Version 5.0 247



CHAPTER 14: Viewing Results

W Khiri & Cornell: Respanse Surfaces Design and Analyses: Example Soc, 104 (Meansgin) - 16.0PT Viewer &

e ke e MBE 2B & [E [ ) e e

i ‘” Variable Fiot

&
- Variabie

& THETAY
o THETAZ
U’ TH 3
o THETA4

THETA1
THETA2
THETA3

THETA4

Romark: Chick on chad fo view dafa

Figure 14-38: Variable Plot

14.5. Visualization of Pareto Optimal Solutions

14.5.1. Tradeoff Plot

The Tradeoff plot (Section 22.12.1) functions similar to the Scatter plot, Section 14.2.2, but the default
setting is here to plot Pareto optimal solution data instead of Analysis Result data.
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Figure 14-39: Tradeoff plot

14.5.2. Parallel Coordinate Plot

The Parallel Coordinate Plot (Section 22.12.3) in the Pareto optimal solutions category functions similar to
the Parallel Coordinate Plot described in Section 14.2.3, but here, the default setting is to visualize Pareto
data.
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Figure 14-40: Parallel Coordinate Plot for Pareto optimal solutions with selected point (purple line)
14.5.3. Hyper-Radial Visualization

The hyper-radial visualization reduces multi-dimensional data to a two-dimensional graph by grouping the
objectives and calculating a weighted sum for each group. These values are displayed in two dimensions.

The designer may incorporate his preferences by selecting the weights. The best point with respect to the
selected weights is colored purple in the plot, Figure 14-41.

The theory of hyper-radial visualization is explained in Section 22.12.2.
Grouping

The objectives may be grouped using the 3-state buttons in the Axis column.
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Table 14-19: Hyper-Radial Visualization Grouping options

Selection Description

x Add objective to the group displayed on the x axis

Add objective to the group displayed on the y axis

Ignore objective

Selection of Weights

The weights may be selected using the sliders or the text fields in the Weights column. The selected values
represent the ratio of the weights and are scaled internally such that the sum of the weights is 1.
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Options

Table 14-20: Hyper-Radial Visualization options

Selection Description

Use reduced set of points Plot only reduced set of Pareto optimal solutions

Scale weights Scale weights by range of objectives

Color Entity Color entity for HRV points
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Figure 14-41: Hyper-radial visualization, equal weights, points colored by variable
14.5.4. Self-Organizing Maps

The theory of Self-Organizing Maps (SOM) is explained in Section 22.12.4
Component Selection

By default, component maps of all objectives as well as the D-, U- and C-matrices are displayed. To modify
the plot, select the position in the dynamic grid, Figure 14-42, and slot content, see Section 22.12.4.
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Describe the cell selection behaviour. D-, U-, C- maps. Refer to Section 22.12.4 for an explanation of the
map types.

SOM []
Position for new Obj  Obj Obj Cbj D
[
map U
C

Figure 14-42: Selection of position for SOM
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Figure 14-43: Self-Organizing Map, component plots of objectives and distance measure

Parameter Panel

The advanced user may want to modify some parameters for the training of the SOM. These options are
available in the Parameters panel. Modifications in the Parameter Panel effect retraining of the SOM.
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Table 14-21: Self-Organizing Maps parameters

Selection Description

Training Iterations Number of iterations performed for training of SOM, default depends on
honeycomb dimensions and number of data points

Initial Radius Initial radius used for training of SOM, default depends on honeycomb
dimensions

Honeycomb dimensions Honeycomb dimensions, default 12x9

14.6. Stochastic Analysis
14.6.1. Statistics

See Section 14.2.5.
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Figure 14-44: Histogram constructed using metamodel together with the statistical distribution of the
variables

LS-OPT Version 5.0 254



CHAPTER 14: Viewing Results

Summary

W 2500 pickip frilck. ROD0, -1 5.0PT Viewer

i@ fRle @ BE & & ME [ e

B

Plet type
"1 Histogram

| ® Sumenary
) Bounds

- Vanably
]
2
13
"
15
]
1o
15
173

* Rasponss
H1_digp
N2_disp
Ni_accsl
M2_accal
MASS

Composie: Disp
10000 samples: M&an = 1 Standard Déviation = 0.00388
5% confidence interval in red

St Dev
tima_ta_zars_vel

tirns_to_2000
lirne_te_4000 615
time_ta_maxD =
Intageal_0_200
Integeal_200_400
Intagral_400_max
StageiPuise
StagezPuise
S1ageIPulLs
= Composite
Dxp
Accel
Sealed_Mass
scalad time_to_zero_vel

Mean

scaled_stagel_pulse
scaled_stagel_pulse
scaled_staged_pulse

A Uso Melamodals and Distibutions
Metamodal Paints | 10000

Add Residuals
_| Use Cpt. har. Stan Dasign

0.4 [
value

08

Figure 14-45: Mean value and standard
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deviation constructed using metamodel together with the
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Figure 14-46: Probability of Composite Disp > 1 with 95% confidence interval in red constructed using
metamodel together with the statistical distribution of the variables

14.6.2. Correlation Bars

See Section 14.2.6.
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Figure 14-47: Correlation Bars evaluated on metamodel

14.6.3. Stochastic Contribution
The stochastic contribution of the variables to the variance of the responses and composites (see Section
24.7) can be displayed as a bar chart.

Optionally the user can elect to display the influence of the residuals from the metamodel fit and the effect
of all the variables summed together. Contrasting these two values indicates how well the cause-effect
relationship for the specific response is resolved. If both the residuals and the sum of the contributions are
requested, then a total is displayed that is the sum of the contributions of all the variables as well as the
residuals.

The computations are done using the metamodels and stored in databases for visualization.

Higher order effects, if any, are included in the results plotted. In the Sobol terminology, the total effect as
opposed to the main effect is therefore plotted. See Section 24.7 for the details.

For optimization the stochastic contribution is computed using the optimal design.
The stochastic contribution panel is shown in Figure 14-48.
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Figure 14-48: Stochastic Contribution plot

14.7. References

[1] Myers, R.H. and Montgomery, D.C. Response Surface Methodology. Process and Product
Optimization using Designed Experiments. Wiley, 1995
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15. LS-DYNA Results Statistics

The statistics of the LS-DYNA results can be displayed on the FE model using DynaStats. The statistics of
the LS-DYNA d3plot (or d3eigv) results and LS-OPT history data are computed by LS-OPT for viewing in
LS-PREPOST. These statistics shows:

0 The variation of the LS-DYNA results due to the variation of the design parameters.
0 The variation of the LS-DYNA results due to bifurcations and other stochastic process events.

The d3plot results are computed and displayed for every node or element for every state in the d3plot
database, while the history results are likewise computed and displayed for every time state in the history (in
history.x file).

A more complete list of the statistics that can be computed and visualized is:

1. Statistics of the Monte Carlo data from the LS-DYNA jobs. These are the data from the
experimental designs used. If the experimental design was for a Monte Carlo analysis then the
experimental design reflects the variation of the design variables, but if the experimental design was
for creating a metamodel then the experimental design does not reflect the statistical variation of the
design variables.

2. Statistics of the results considering the variation of the design variables using the approximations
(metamodels) created from the LS-DYNA jobs. It should be noted that these approximations differ
from the ones defined for the responses under “Metamodeling” panel of LS-OPT. In order to display
statistics over the entire LS-DYNA model, several metamodels need to be fitted (for every
element/node). Therefore, only linear and quadratic metamodeling options are available under
DynaStats to make the computation fast. The distributions of the design variables and the
metamodels are used to compute the variation of the responses. If distributions were not assigned to
the design variables, the resulting variation will be zero. The metamodels allow the computations of
the following:

0 The deterministic or parametric variation of the responses caused by the variation of the design
variables.

o Statistics of the residuals from the metamodels created from the LS-DYNA jobs. These residuals
are used to find bifurcations in the structural behavior — the outliers comprise the displacement
changes not associated with a design variable change. See Section 24.6 regarding the
computation of outliers. This is the process variation is associated with structural effects such as
bifurcations and not with changes in the design variable values.

0 The stochastic contribution of a variable can be investigated.
0 A probabilistic safety margin with respect to a bound on the LS-DYNA response can be plotted.
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3.

0 The LS-OPT histories of all the LS-DYNA runs can be plotted.

The correlation of d3plot results or histories with an LS-OPT response can be displayed. This can be
used, for example, to identify the changes in displacements associated with noise in an LS-OPT
response.

15.1. Working with the plots

Select the DynaStats option from the Tools menu of the control bar of the main GUI. The dialog shown in
Figure 15-1 opens up to work with the plots. Utilize the following actions:

(0]

o0 O O O

Create This creates a new plot. Note that this only creates the definition of the plot. The data for the
plot must be generated before it can be displayed. The options are described in the following
sections.

Generate The data for a plot is generated. This is done only once per plot. More than one plot can be
selected to be generated — there is no need to generate plots one-by-one.

Display Plot previously created and generated can be displayed.

Edit A plot can be edited or copied. This may require that the data be re-generated.
Bifurcation A study can be investigated for bifurcations, and the bifurcation can be plotted.
Delete A plot can be deleted.

The plot definitions are stored in a file which allows re-use of a methodology in different studies (see
Section 15.11).

15.2. Creation of a plot

A plot is created in four steps.

15.2.1. Step 1 — Fringe plot or History plot

In the first step, the user has to select whether to create a fringe plot or a history plot, Figure 15-2. Select the
respective image to go to the next step.
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B DYNAstats =)

plastic_strain (not ready to display)

Fringe plot of plastic_strain correlated with tip_x en SOLVER_1 using D3Plot data. Plot on job 1.1, overlaying maximum job
caculated from whole model

history (not ready to dispiay)
History plot of NHist_Y statistics

Create Generate Display Edit Bifurcation Delete

Figure 15-1: Visualization of DYNA results statistics. After plot creation using the wizard, the plot data

must be generated by running LS-OPT. The plot can then be displayed in LS-PREPOST. Existing plots
can be edited, deleted or investigated for a bifurcation.

- Step 1 of 4 =)

Fringe plot - display computed statistics based on
D3Plot data upon the actual elements of the model.

The D3Plot data can also be correlated with a

response or have it's dependency on variables analyzed.

History plot - display history plots from the different
runs in the same plot, or consolidate them using
statistical calculations. Correlation and variable
contribution analysis are available in this mode as well

Cancel

Figure 15-2: First step of DynaStats plot definition creation; selection of plot type
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15.2.2. Step 2 — D3Plot component or History
R ——
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[] Follow coordinates instead of nodes

Imp

Cancel

[ < Previous l [ Next =

Figure 15-3: Second step of DynaStats plot creation; selection of component or history
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Table 15-1: DynaStats Second step options

Option Description Reference

Select D3Plot Statistics are calculated using values of selected component
component to plot

Select history to ~ Statistics are calculated using values of selected history Section 15.7
plot

Select stage to Name of stage

plot

Follow The ID of the part to be mapped has to be specified Section
coordinates 15.10

instead of nodes

FLC curve FLC curve specification (for FLD components) Section
Parameteric 15.10
FLD curve t and n coefficients
Provided curve

Curve ID in the LS-DYNA file of the FLD curve to be used

Correlate Correlation between an LS-OPT response and a D3Plot Section
response component at all states 154.1

Correlate variable  Correlation between an LS-OPT variable and a D3Plot component ~ Section
at all states 15.4.2

15.2.3. Step 3 - Statistics
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- Step 3 of 4 =

Select what to plot

(@ Statistic of D3Plot data

(O Statistic of residuals (errors) in a metamodel of the D3Plot data
() Safety Margin

(_) A single variable's contribution to the D3Plot data

() Which variable contributes the most to the D3Plot data

Select statistic to plot
@ Mean () Std Dev O Max Value ) Min Value
) Range O Max Job ID ) Min Job ID

Select analysis method
@ Use actual FEA results (Monte Carlo)
() Build linear metamodel from FEA Results

() Build guadratic metamodel from FEA results

| Cancel ‘ <Previou5|| MNext =

Figure 15-4: Third step of DynaStats plot definition creation
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Table 15-2: DynaStats Third step options

Option Description Reference
Select what to plot Statistics of D3Plot data
Statistics of residuals (errors) in a metamodel of the D3Plot
data
Safety Margin Section 15.6
A single variable’s contribution to the D3Plot data Section 15.5
Which variable contributes the most to the D3Plot data
Select statistics to plot Section 15.3
Select analysis Use actual FEA results (Monte Carlo) Section
method Build linear metamodel from FEA Results 1531
Build quadratic metamodel from FEA results fgcr;f'gn
Section
15.3.2

15.2.4. Step 4 — Visualization in LS-PREPOST

The user can select the LS-PREPOST plot details in LS-OPT (Figure 15-5). The GUI options will reflect

whether fringe component response or history data is being investigated.

The Job Index field specifies the FE model used for the display of the results. Additionally, the FE models
containing the maximum and the minimum results can be overlayed in order to spot bifurcations as

described in a later section.
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Table 15-3: DynaStats Visualization in LS-PREPOST options

Option Description Reference

Select the iteration to use Iteration number
for the plot

Select the job on which
to plot

Also display model from  Bifurcation investigations Section 15.8

Name for this plot

- Step 40f 4 =)
Select the iteration to use for the plot
1
m
Current iteration: 1
Select the job on which to plot
Imp YS TL z_off |lodDispMillodDispMa  tip_x tip_y tip_z tip_r DispT
1.1
1.2 0.0017 0 1 001 0 4.1 -6.5 -7.3e-06 31 72 1]
1.3 0.0033 0 1 001 0 4.1 -4.6 -7.3e-06 4.1 6.2 1]
1.4 -0.00042 0 1 001 -4.1 0 -4.7 -6.2e-06 -4.1 6.2 9
1.5 0.0027 0 1 001 0 4.1 -5.2 -3.7e-06 4 6.6 1]
Also display model from:
[J Maxirmum job
] Minimum job
Finally, provide a name for this plot for future reference
[y-displacement| l
| Cancel ‘ |-: Previous | | Finish |

Figure 15-5: The statistics viewing options. The statistics will be shown in LS-PREPOST using the FE
model from the LS-DYNA job specified using the Job field. The FE models of the jobs containing the
maximum and minimum values can be overlayed in order to identify bifurcations as described in Section
15.8.
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15.3. Monte Carlo and metamodel analysis
This section gives the options required for the computation of the statistics from a Monte Carlo or a
metamodel based set of LS-DYNA results.

Either the LS-DYNA d3plot results or LS-OPT history results can be analyzed. The resulting output can be
viewed in LS-PREPOST. The results will be in the stage directory with extensions of .statdb and .history.

The statistics are computed for a single stage and a single iteration.

15.3.1. Monte Carlo

The statistics of the responses from a Monte Carlo procedure can be computed. The task will calculate:
1. Statistics of the response
0 Mean value of the response
Standard deviation of the response
Range of the response (maximum minus the minimum value)
Maximum value of the response
Minimum value of the response

ID of the LS-DYNA job where the maximum value occurred. This can be used to indentify the
jobs likely to contain a different bifurcation.

o ID of the LS-DYNA job where the minimum value occurred. This can be used to indentify the
jobs likely to contain a different bifurcation.

©O O O O O

2. The margin of safety (constraint margin) considering (i) a given bound on the response and (ii) the
variation of the response as computed using the Monte Carlo analysis (see also Section 15.6).

15.3.2. Metamodels and residuals
Metamodels (approximations) can be used to predict the statistics of the responses. These metamodels
(approximations) will be computed for all results for all nodes for all time steps.

The metamodels are also useful for separating deterministic variation, caused by the variation of the design
variables, from the process variation. The two types of variation are as shown in Figure 15-6.
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Figure 15-6: Different types of variation that can occur in a structure. The deterministic variation,
predicted using the metamodel, is due to changes in the design variable values. The process variation, not
associated with change in the design variable values, shows up in the residuals of the metamodel fit.

Metamodels are able to distinguish the process variation because, as shown in Figure 15-7, a metamodel can

only predict the effect of the design variables. Process variation, not predictable by the design variables,
becomes residuals.

J Metamodel B
s [Expecred respo

Il Residual
[} _l.r
* K

*.._ FEA Result .-
. FEA Result

Determministic (Parametric) ¥ariation
FEA Response

Design Variable

Figure 15-7: Metamodels can be used to distinguish between changes in the results due to the design
variable changes and changes due to bifurcations.

The metamodel task will calculate:
1. Statistics of the response due to all the variables using the metamodel
0 Mean value of the response
o Standard deviation of the response
0 Range (four standard deviations)
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0 Maximum value (mean plus two standard deviations)
0 Minimum value (mean minus two standard deviations)
2. Statistics of the residuals
0 Mean value of the residuals (always zero)
Standard deviation of the residuals
Range of the residuals (maximum minus the minimum value)
Maximum value of the residuals
Minimum value of the residuals

O O O O O

ID of the LS-DYNA job where the maximum residual occurred. This can be used to indentify the
jobs likely to contain a different bifurcation.

o0 ID of the LS-DYNA job where the minimum residual occurred. This can be used to indentify the
jobs likely to contain a different bifurcation.

Stochastic contribution of each individual variable

4. The margin of safety (constraint margin) considering (i) a given bound on the response and (ii) the
variation of the response as computed using the metamodel (see also Section 15.6).

5. All the computations as specified for the Monte Carlo procedure. The data required for this
computation is read in for the metamodel computations, so very little time is expended computed
these results as well.

The standard deviation of the variation caused by the design variables are computed using the metamodel as
described in Section 24.7. The maximum, minimum, and range are computed using the mean value
plus/minus two standard deviations. The Max Job ID and Min Job ID are not meaningful for the metamodel
results.

The residuals are computed as the difference between the values computed using FEA and the values
predicted using the metamodel (see Section 24.6 for more details).

A linear or a quadratic response surface can be used. The metamodel processing speed is approximately 10°
— 10° finite element nodes a second, where the total nodes to be processed is the number of nodes in the
model times the number of states times the number of jobs. FLD computations, which require the
computation of the principle strains, can be a factor of five slower than computations using the nodal
displacements. The overall speed is dominated by the time required to read the d3plot files from disk;
accessing files over a network will be slow.

15.4. Correlation

15.4.1. Correlation of fringe plots or histories with responses

The correlation of the LS-DYNA results or LS-OPT histories with a response can be computed. This
quantity indicates whether the changes in the responses are associated with the changes in the fringe or
history. Figure 15-8 shows examples of a positive, a negative, and zero correlation. If not enough FE
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evaluations were conducted, the resulting fringe plot can be visually noisy. Thirty or more FE evaluations
may be required. Note that the correlation of history is with respect to a response at a single time instance.

Positive Correlation
Data

Negative Correlation No Correlation

Y Y ~ ]

Figure 15-8 Correlation between X, shown in the upper left corner, and different responses Y. Different
responses Y with a positive, a negative, and no correlation are shown.

15.4.2. Correlation of fringe plots or histories with variables

The correlation of the LS-DYNA results or LS-OPT histories with a variable can also be computed. This
quantity indicates for all the time states whether the changes in a particular variable are associated with the
changes in the D3Plot component or history. The correlation does not necessarily represent uncertainty or
randomness of the variable. For example, even for a deterministic problem, such as a simple parametric or
DOE study without random variables, there can be a non-zero correlation between a variable and a LS-
DYNA response component.
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Figure 15-9: Viewing the correlation between an LS-DYNA response and an LS-OPT response.
Additionally, the correlation between an LS-OPT history and an LS-OPT response can also be viewed.

15.5. Stochastic contribution of a variable

The stochastic contribution of each design variable to the variation of the nodal response can also be plotted
on the model. These results are computed as described in Section 24.7. It is important to note that stochastic
contribution, though closely related, is not the same as sensitivity or correlation. While sensitivity and
correlation can be non-zero for both stochastic and deterministic problems, stochastic contribution of a
deterministic variable is always zero. Stochastic contribution provides the variation of a response due to
randomness of a variable. Thus it depends not only on the relation between the response and the variable
(also studied using sensitivity or correlation), but also the degree of uncertainty in the variable. Higher
randomness of a variable would lead to greater stochastic contribution (assuming non-zero sensitivity).

The most important variable based on stochastic contribution, or rather the variable responsible for the most
variation of the response, can be plotted on the model. Actually, only the index of the variable is displayed
on the model. This index is the same as in the list of variables as shown in the LS-DYNA results statistics
GUI. The importance of stochastic contribution analysis is more significant from the perspective of
uncertainty or probabilistic analysis. The most important variable based on stochastic contribution may not
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necessarily be the most important based on sensitivity analysis, as the latter does not consider the actual

probabilistic distributions of variables.

- Step 3 of 4 =l
Select what to plot
() Statistic of D3Plot data
() Statistic of residuals (errors) in a metamodel of the D3Plot data
() Safety Margin
@ A single variable's contribution to the D3Plot data
() Which variable contributes the most to the D3Plot data
Select the variable to analyse
Imp
¥S
2+ off [~
Select analysis method
L)
() Build linear metamodel from FEA Results
() Build quadratic metamodel from FEA results

Cancel < Previous

Figure 15-10: Viewing the stochastic contribution of a single variable.

15.6. Safety margin

The safety margin as shown in Figure 15-11 can be displayed in three ways:

1. The safety margin — the difference between the bound and mean,

2. The safety margin measured (scaled) in standard deviations (sigmas), and

3. The probability of exceeding the bound.
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f(x) Bound

Figure 15-11: The safety margin is the difference, measured in standard deviations, between the mean
response and the constraint bound on the response.

The bound must therefore be specified when the statistics are computed as shown in Figure 15-12.
Obtaining the safety margin for a different bound requires the generation of a new plot.

The probability of exceeding the bound is computed using the FOSM method (see Section 24.4.4) using the
normal distribution together with the safety margin measured in standard deviations (sigmas). The
computation is therefore done in the six-sigma sense interpretation — the number of sigmas (standard
deviations) is the unit of measure. If a Monte Carlo computation of the probability is desired, then it must be
computed using a response in viewer; if this response was not defined originally then it must be extracted
from the d3plot database: first defining a d3plot response, do a repair/extract, and use Viewer.
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B

Select what to plot
() Statistic of D3Plot data

@ Safety Margin

Select value to plot
() Safety Margin

@ Probability of Failure

Select analysis method
@ Use actual FEA results (Monte Carlo)
(0 Build linear metamodel from FEA Results

() Build quadratic metamodel from FEA results

() Statistic of residuals (errors) in a metamodel of the D3Plot data

(_) A single variable's contribution to the D3Plot data
() Which variable contributes the most to the D3Plot data

Enter desired safety margin Lower|$ bound: |200e+6

(O Safety Margin scaled with response standard deviation

Cancel

< Previous Next >

Figure 15-12: Plotting a safety margin or the probability of failure requires that the bound must be

specified.

15.7. Viewing LS-OPT histories

The LS-OPT histories for all the LS-DYNA runs can be viewed simultaneously. See Figure 15-15 for an
example. In addition, various statistics of LS-OPT histories at all time states can also be viewed. The safety

margin or probability of failure can also be viewed for all time states.
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Step3lofd
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| Cancel |

Select what to plot

() Statistics of histories

(O Statistics of residuals (errors) in a metamodel of the history data
) safety Margin

() How much each variable contribute to the history

@ |The given history for all runs

Select analysis method
@ Use actual FEA results (Monte Carlo)

<= Previous | | Next =

Figure 15-13: Viewing all the LS-OPT histories.
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Figure 15-14: Statistics of an LS-OPT history.

History MHist: All uns

Figure 15-15: The LS-OPT histories of all the LS-DYNA run can be viewed simultaneously.

15.8. Bifurcation investigations

The residuals plots are useful for finding bifurcations. The standard deviation (or range) of the residuals
indicate regions where the changes in displacements are not explained by changes in the design variable
values — it is therefore a plot of the unexpected displacements or ‘surprise factor’. The plots from a Monte
Carlo analysis can also be used to find bifurcations similarly to the residuals from a metamodel-based
Monte Carlo analysis.
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- Step 4 of a =)

Select the iteration to use for the plot

1

Current iteration: 1
Select the job on which to plot
Imp YS TL z_off |lodDispMillodDispMa tip_x tip_y tip_z tip_r DispT
1.1
1.2 0.0017
1.3 0.0033

0.01 0 4.1 -6.5 -7.3e-06 3.1 72
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1.4 -0.00042 001 -4.1 0 -4.7 -6.2e-06 -4.1 6.2
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1.5 0.0027 001 0 4.1 -5.2 -3.7e-06 4 6.6

Also display model from:
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Minimum job

Calculate max/min by looking at
) whole model

@ [node with ID:

Finally, provide a name for this plot for future reference

[Bifurcation at node 789 l

| Cancel ‘ |< Previous | | Finish |

Figure 15-16: Bifurcation options. The bifurcation is found by superimposing the FE models containing
the maximum and minimum results. A node ID associated with the bifurcation may needto be specified
if the extreme values in the model are not caused by the bifurcation.

(oPT IS Create bifurcation plot g &5

COwerlay display model from:

W Maximum job

|2| Minimurm job

Calculate max/min by looking at

* | whole model

node with 1D:

Fnally, provide a name for this plot for future reference
BifurcationOfPlot-1

W 0K @ cancel

Figure 15-17: Options to create Bifurcation Plot for an existing plot.
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15.8.1. Automatic detection

Automatic detection of the LS-DYNA jobs containing the minimum and maximum outlier can be done as
shown in Figure 15-16 and Figure 15-17. The GUI the user must select (i) overlay of the FE models
containing the maximum and minimum results and (ii) whether the global minimum or the minimum at
specific node must be used. Viewing the maximum and minimum job simultaneously allows the bifurcation
to be identified. See Error! Reference source not found. for an example of the resulting LS-PREPOST

plot.

15.8.2. Manual detection

The steps for manual detection are:

1.

2.
3.
4.

Plot displacement magnitude outlier Range to identify location in FE model where the bifurcation
occurred.

Identify job in which maximum value occurred using a Max Job 1D plot
Identify job in which minimum value occurred using a Min Job ID plot
View the location in model for the jobs having the minimum and maximum value.

Recommendations:

o
o

Engineering knowledge of the structure is important.

Look at the x, y, and z components in addition to the displacement magnitude to understand in which
direction the bifurcation occurred; most bifurcations are actually best identified considering a
displacement component.

The history results may be useful to find the time at which a bifurcation occurred.

The correlation between a response and displacements (or histories) indicates if variation of the
displacement is linked to variation of the response.

Look at all of the states in the d3plot database; the bifurcation may be clearer at an earlier analysis
time.
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Residual statistics: stddew(Ndv x_displacement) .
Time = g Fringe Levels

Contours;of 9.931e-01

min=0, at nodex 1
max=0.893056, at node# 11 8.038e-01

y

7.144e-01
Job with statistics fringe plot T
= 6.251e-01 _

5.358e-01 _
4.465e-01 _
3.572e-01 _|
2.679e-01 _
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8.931e-02

Job with maximum result 0.000e+00 |

Job with minimum result

WV

Figure 15-18: Viewing a bifurcation. Plate structure that can buckle either left or right. Three FE models
are shown, and the two distinctly different solution modes are clearly visible. The creation and display of
the plot containing all three models are automated in LS-OPT.

15.9. Displacement magnitude issues*

Approximation of the displacement magnitudes (resultants) introduces some special cases. The magnitude is
defined as the square root of a sum of squares, which is difficult to approximate around the origin,
especially using linear approximations. Figure 15-19 illustrates. The X, y, and z displacement components
do not suffer from this problem.
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Figure 15-19: Displacement approximation scenarios. The displacement magnitude, being always larger
than zero, cannot be approximated accurately around the origin if some of the displacement components
can have a negative value.

Unexpected results may occur even if the displacement magnitude is approximated correctly. The
displacement magnitude is always a positive quantity, which, in addition to the fitting problems, can also
cause problems when computing the coefficient of correlation with a response quantity. Figure 15-20
illustrates two buckling modes of a flange evaluated at two locations in space. The displacement magnitude
variance differs for the two locations though the buckling modes are similar. The variance of the
displacement magnitude will therefore be smaller than what would be found considering the components.
Considering a displacement component will cure this problem, but a displacement component aligned with
the required direction may not always exist.

Buckling Mode 1

Buckling Mode 11

1 ! - - .

\ { Displaced configuration A

i .f Small variance of resultant displacement
i {

1

! {
1 /

i'! :'J
|I ,"

\

=/ Displaced configuration B
Large variance of resultant displacement

Initial configuration

Figure 15-20: The displacement magnitude can depend on the aligment of the flange with the axis. The
buckling will be difficult to spot if it is aligned with the position of the axis. For configuration A, the two
vectors have nearly the same length, while for configuration B, they clearly have different lengths.
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Recommendations:
0 Use the x, y, and z displacement components.

15.10. Metalforming options

Metalforming has some special requirements. It is possible to:

1. Map the results from each iteration to the mesh of the base design. The results will be computed at a
specific spatial location instead of a node (Eulerian system). This is required in metalforming
because:

0 The adaptivitity will result in the different iterations having different meshes.

o Itis more natural in metalforming to consider the results at a specific geometric location than at a
specific node.

This is done only for the work piece. This part must therefore be specified in the LS-OPT input.
More detail is shown in Figure 15-21, Figure 15-22 and Figure 15-23.

2. Specify the FLC curve to be used in the computation of the FLD responses. This can be done by
either specifying the number of a curve in the LS-DYNA input deck or using two parameters similar
to that being used in LS-PREPOST.
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Select D3Flot component to plot Select stage to plot
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Figure 15-21: For metal forming specify that the coordinates instead of the nodes must be followed and
specify the part (blank) for which the results must be mapped.
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Figure 15-22: Interpolation of metal forming results.
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---- Element results on mapped mesh

— Nodal results on mapped mesh

—— Nodal results on base mesh

e [ [ ® [ ® Mapped mesh nodes
® e ® o ® Base mesh nodes

Figure 15-23: Acuracy of of the mapping operation for element results is shown for two cases. For each
case the results are shown as the element centroid results for the original mapped mesh, the element
results averaged at the nodes for the original mapped mesh, and the results mapped to the nodes of the
base mesh. For the first case it can be seen that the mapping accuracy is good if the mesh is sufficiently
fine to consider smoothly varying results. The second case, which occur when yielding occurs in a single
element, indicates a loss of information. But for this second case, the exact numerical value of the
original results is not considered very accurate, so we can consider the mapped results as sufficient as
long as they conserve the prediction of failure. For the second case the numerical values are mesh-
dependent, so the prediction of failure is the quantity that should be mapped to another mesh.

15.11. User-defined statistics*

Although DynaStats provides an interface only for LS-DYNA response components, it also provides a way
to visualize statistics of user-defined results. This requires a script from the user that is run by LS-OPT in
each run directory to calculate the user-defined results for that subdirectory, and eventually the statistics of
all the runs. The steps involved are listed below:

1. Select “Misc, user” as the D3Plot Component in DynaStats Creation Wizard, Section 15.2.2 to
define the required statistic.

2. A script named “dstats_user” needs to be provided by the user. In each subdirectory LS-OPT will
run program “dstats_user -state n” for n ranging from 1 to the total number of states. The program
“dstats_user” must dump a file called “dstats.Ispp” for the particular state being run.

3. LS-OPT will open the file “dstats.Ispp” for every state. The file must be in the same format as
dumped by LS-PrePost output command. The data must be written in “%10d%210f” format as nodal
results. If the results are available as element results, they must first be converted to nodal results
using nodal averaging in LS-PrePost.
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A sample dstats_user python program to dump nodal results from LS-PrePost is given below. In general, the
user can dump results from any program into the file dstats.Ispp.

import sys, o0s

cmp = 9 # Von Mises

state = 1

print "state", state

print "argv', sys.argv

if len(sys.argv) > 2 - state = eval( sys.argv[2] )
print "state'", state

f = open( "lIspp.cmd™, “w
fr.write( "openc d3plot \"d3plot\'\n" )

ff.write( "state %d;\n"%state )

ff.write( "fringe %d\n"%cmp )

ff.write( "pfringe\n"” )

fr.write( "output dstats.lspp %d 1 0 1 0 0 0 0 01 0 0 0 O O\n"%state )
ff.write( "exit\n" )

ff.close( )

os.system( "lIsprepost c=Ispp.cmd” )

If element results are available, they must first be dumped by dstats_user before running additional LS-
PrePost commands to read those results, convert them into nodal outputs, and dump the new results. If the
element results are written to dstats_e.Ispp then the following dstats_user should be modified as follows.

import sys, 0s

cmp = 9 # von mises

state = 1

print "state’, state

print "argv', sys.argv

if len(sys.argv) > 2 : state = eval( sys.argv[2] )
print "state'", state

f = open( "lIspp.cmd™, “w
fr.write( "openc d3plot \"d3plot\'\n" )

ff.write( "'state %d;\n"%state )

ff.write( "fringe %d\n"%cmp )

fr.write( "pfringe\n" )

ff.write( "range avgfrng none\n" )

fF.write( "output dstats e.Ispp %d 1 0 1 0 0001000 0 0 O\n"%state )
# read the file with element data

ff.write( "open userfringe dstats e.lspp 1\n")

ff.write( "fringe 5001\n"")

fr.write( "pfringe\n" )

# write the corresponding file with nodal data

ff.write( "range avgfrng node\n" )

ff.write( "output dstats.Ispp %d 1 0 1 0 0 0 0 01 0 0 O O O\n"%state )
ff.write( "exit\n" )

ff.close( )

os.system( "lsprepost c=Ispp.cmd" )

15.12. Re-use and persistence of an evaluation methodology*

The definitions of the plots are saved in a filed named dynastatplots.xml. Copy this file to the directory
where you want to re-use the definitions. The plots will be available when you restart the LS-OPT GUI. The
plots will have to be re-generated though; note that you can select all of the plots when you generate plots —
there is no need to generate plots one-by-one.
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This chapter provides a brief description of some of the applications of optimization that can be performed
using LS-OPT. It should be read in conjunction with the examples chapters, where the applications are
illustrated with practical examples.

16.1. Parameter ldentification

Parameter identification problems are non-linear inverse problems which can be solved using mathematical
optimization. System parameter identification is a commonly used feature of LS-OPT, especially for the
purpose of calibrating material models.

The procedure consists of minimizing the mismatch between target values and corresponding solver output
values, or between two curves. In the latter case, the two curves typically consist of a two-dimensional
experimental target curve and a computed curve. The computed curve is a variable response, being
dependent on the system parameters, e.g. material constants. It can also be a crossplot, constructed by
combining two time histories such as strain and stress (Section 6.4.2).

The two main essential components of an algorithm designed for system identification are
O optimization algorithm and
O curve matching metric.

16.1.1. Optimization algorithm

The recommended optimization algorithm to be used to solve a parameter identification problem is the
Metamodel-based Optimization with the strategy Sequential with Domain Reduction, Section 4.7.3. Use
linear polynomial metamodels and D-optimal point selection which is the default for the selected task and
strategy, Section 8.3.2.

16.1.2. Matching scalar values

To match scalar values, extract the respective responses from the solver output. Specify a Standard
Composite of type MSE or Sqrt MSE and using these responses as components associated with the
respective target value, Section 9.4. Define this composite as an objective function.
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16.1.3. Curve matching metric

To calculate the mismatch between the target and the computed curve, define a Curve Matching composite,
Section 9.5. There are two curve matching metrics available, Mean Square Error and Curve Mapping. Mean
Square Error is an ordinate-based curve matching metric. Hence if the curve has steep parts or if the
ordinate values are not unique, (the curve is a hysteretic curve), Curve Mapping is the metric of choice.

Because Curve Mapping uses the length of the curve to calculate the mismatch, filtering of the component
history curves is recommended.

16.1.4. Sampling constraints

For parameter identification problems, there are often more restrictions on design variables than just a lower
and an upper bound for each parameter, e.g. there may be a requirement to obtain monotonically increasing
solver input curves. Such constraints can be defined as Sampling Constraints in LS-OPT, Section 8.6.

16.1.5. Parameterization of solver input curves

A common way to parameterize a solver input curve is to use a parameterized analytical function that
represents the characteristic of the curve. Use a program or script as a solver of a preprocessor stage to
calculate the solver input curve depending on parameters.

16.1.6. Viewer

This section describes some postprocessing options commonly used for parameter identification problems.
Further options are described in Chapter 14.

Optimization History

The optimization history plot can be used to check the convergence of the variable values as well as the
decrease of the objective over the iterations. The response optimization history displays computed and
predicted values; hence it can be used to check the quality of the predictions. See Section 14.4.1 for further
information on the optimization history plot.
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Figure 16-1: Optimization history for variables and objective
Sensitivities

If there are parameters that do not converge, the sensitivities plot can be used to see if those parameters are
insensitive. See Section 14.3.4.

Global Sensitivities Plot for MSE
Mean = 0.138112, Total variance = 0.0231182, Noise variance = 0

Yield (100.0% - 100.0%)
YMod (0.0% - 100.0%)
T

0 20 40 60 80 100
% Influence on Composite

Figure 16-2: Global Sensitivities
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History

The history plot (Section 14.2.4) can be used to display the computed curves and the test curve in the same
plot. There are several coloring options for the computed curves, e.g. the curves could be colored by the
objective values (curve matching metric) to see if the curve matching metric works as expected.

Displaying the curves for all iterations, selection the option Only optimal and coloring the curves by
iteration visualized the improvement of the optimal curves over the iterations.
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Figure 16-3: Target and computed curves, only optimal curves are displayed for all iterations

16.2. Sensitivity analysis

Responses can depend on many variables, and the computational effort of an optimization strongly depends
on the number of variables. In most cases, only a few variables are significant.

Sensitivity analysis allows the user to determine the significance of design variables when computing a
selected response. This helps to understand the simulation model and to reduce the design variables used in
an optimization. The least significant ones can be de-selected to reduce the computational effort.

Two sensitivity measures are implemented in LS-OPT: Linear ANOVA and GSA/Sobol.

Both sensitivity measures are global in nature and are evaluated using the metamodel; hence the metamodel
quality is essential to achieve reasonable sensitivity results.
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ANOVA is a linear sensitivity measure, whereas GSA/Sobol is non-linear. Therefore, the results are
comparable for linear metamodels. ANOVA depicts positive or negative influence, whereas GSA/Sobol just
shows the absolute value. An advantage of GSA/Sobol is, that the values are normalized. Hence they can be
summed up to determine the influence of a parameter on multiple responses, on a full load case, or on the
entire optimization problem.

ANOVA is evaluated automatically if metamodels are available, to get GSA/Sobol values, select the Global
Sensitivities option in the Task dialog (Section 4.10) or from the Add menu (Section 3.2).

To perform a sensitivity analysis, a global metamodel approximation should be used. Two approaches are
described in the following sections.

16.2.1. DOE task

A global approximation can be achieved by selecting task DOE, Section 4.3. To get reasonable results,
increase the Number of Simulation Points (per Iteration per Case) to at least 2*(n+1), where n is the number
of variables. The greater the non-linearity of the response functions, the more points are needed to represent
the nonlinearities. Hence the number of points is always a compromise between accuracy and computational
effort.

16.2.2. Sequential

An approach for generating a metamodel to a specified prediction accuracy (using the PRESS metric, see
Section 20.3.5) is to use an iterative method.

Select Metamodel based Optimization for the main task, and the Sequential strategy, Section 4.7.2. Here, the
default Number of Points per lIteration can be used, because points are added sequentially. A nonlinear
metamodel is recommended, e.g. Radial Basis Functions together with the Space Filling point selection
scheme, Section 8.3.4.

An appropriate termination criterion for a sequential approach is Response Accuracy Tolerance, Section
11.1.2. Make sure to use the OR option and set the non-accuracy tolerances to 0. The number of iterations to
be performed is again a compromise between accuracy and computational effort.

16.2.3. Viewer

This section describes some postprocessing options commonly used for a sensitivity analysis. Further
options are described in Chapter 14.

Accuracy

Use the accuracy plot (Section 14.3.3) and the error measures displayed in the title to judge the quality of
the metamodels.
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Metamodeling Accuracy
For Response Function "Acc_max”
Linear: RMS Err = 2.01e+04 (3.05 %), Sqrt PRESS = 4.97e+04 (7.54 %), R-sq = 0.994
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Figure 16-4: Accuracy plot; computed vs. predicted values; error measures are displayed in the title
Sensitivities

The sensitivity measures calculated by LS-OPT, Linear ANOVA and GSA/Sobol can be visualized in the
Sensitivities plot (Section 14.3.4). By default, the values are sorted by significance, hence the ranking of the
parameters can be directly taken from the order in the plots.
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Figure 16-5: ANOVA values for a single response; Sobol values for multiple responses

Interpolator

The Interpolator plot (Section 14.3.2) displays 2D cross-sections of the metamodels in a matrix for selected
responses and variables. Constraints and predicted values for a selected parameter combination can be

visualized on the metamodel.
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Figure 16-6: Interpolator plot: 2D surface plots for variables vs. responses; constraints on the metamodel
and the predicted value for the selected parameter combination are displayed.

16.3. Multidisciplinary Design Optimization (MDO)

MDO is often used because in industry each design group typically has its own simulation tools, design
criteria (constraints) and load cases. A different set of variables, constraints and objectives therefore needs
to be used for each discipline.

The MDO capability in LS-OPT implies that the user has the option of assigning different variables,
sampling types and job specification information to different cases or disciplines. Each case has to be
defined with a unique Sampling (see Section 3.2.1).

Variables can be de-activated Sampling-wise in the Sampling Matrix tab (Setup dialog, Section 7.3). After
each iteration, variables omitted from specific samplings will assume the global value.

It is permissible to eliminate a set of variables across all Samplings, in which event they will remain
constant during the optimization process.

See the examples in Section 17.5 for the command file format.
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16.4. Multi-objective optimization (MOO)

Design objectives are often in conflict. This implies that objectives cannot all be minimized to their single-
objective minima (the so called Utopian solution) at the same time. In the mathematical sense multi-
objective problems therefore have multiple solutions, typically defining a line or a surface in the space
defined by the objectives (i.e. two-dimensional space for two objectives, etc.). In design optimization
terminology such a solution is referred to as a Pareto Optimal Frontier (POF), or trade-off curve or surface.
The POF curve can then be used by designers to choose a unique design which satisfies the needs of all the
disciplines, although it is likely to be a compromise solution.

POF surfaces can be discontinuous.

To activate the POF feature, the option Create Pareto Optimal Front can be selected in the Task or
Optimization dialog, Section 4.9. The option is only available if at least two objectives are defined.

The recommended optimization task and strategy for MOO is Metamodel-based Optimization using the
Single Iteration or Sequential strategies, see Section 4.7.

16.4.1. Direct Genetic Algorithm

To calculate Pareto optimal solutions using the Direct Genetic Algorithm, select Direct simulation
Optimization as main task, Section 4.4.

The advantage of using a direct task is, that is uses only simulation results to find the optimal value, hence
there is no approximation error. The disadvantage is that the number of simulation runs needed to find an
optimal value can be high. Therefore this task can only be used for small models or if sufficient
computational resources are available.

16.4.2. Metamodel-based Genetic Algorithm

To calculate Pareto optimal solutions using a metamodel-based Genetic Algorithm, a global approximation
is recommended. Select Metamodel-based Optimization as the main task, and use the strategy Single
iteration or Sequential together with a nonlinear metamodel, e.g. Radial Basis Functions or FeedForward
Neural Nets.

Because Pareto solutions are often global in nature (spans a significant part of the design space), global
metamodel accuracy is typically required. This may be difficult to achieve with a large number of design
variables. In this case the Direct GA (which will also be expensive) is the only remaining option.

16.4.3. Viewer

Various plot types that are available for the visualization of Pareto optimal solutions described in Section
14.5 can be used to explore those solutions and select the appropriate optimal solution that fits best to the
application.

16.5. Shape Optimization

To implement geometrical parameters in LS-OPT, an interface to a preprocessor has to be used. The
available interfaces, which include a user-defined option, are described in Chapter 5. The process chain to
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be optimized is at least a two-stage process including a preprocessor and a solver, Figure 16-7. Additional
parameters can be defined in the solver input file. The preprocessor output is used as solver input. For LS-
DYNA, the output can be used as an include file, specified in the main input file.

Some pre-processors allow the user to generate multiple output files which can be used in multiple parallel
simulation stages by using a file operation function between the stages (see Section 3.2.2) to copy the
selected pre-processor output files.

The recommended task and strategy for single objective optimization is Metamodel based Optimization and
Sequential with Domain Reduction, Section 4.7.3.

A legacy com file (the input file format used before Version 5) containing a pre- or postprocessor definition
will automatically translate to a multi-stage process.

& *arl.Isopt - LS-OPT 5.0 DR
h h + /" } b/ Metamodel-bas edoptlmuatlcnm- ?

‘ Setup

12 parameters

Sampling a

- 2 wvars, 3 d-opt designs O
’ T

. Domain LS-PREPOST -
Finish _ a_pre
_ reduction 12 pars
Verification Termination criteria L?\ v —
1 design 5 iterations ’ - d
T 2 pars, 1 resp
' Optimization — ! -
— — — Build Metamodels
l 1 objective l 1linear surface
|__ 0 constraints _,|° I, o

Optimization Problem
Mhaomefkatharina/LSTCloptQA/SHAPE PARAMATERIZATION/LSPREPOST/ILARGEARL arl lsap

Figure 16-7: Possible setup for a shape optimization. a_pre interfaces with a preprocessor that generates
the geometry of the model depending on parameters.

16.6. Worst-case design

The default setting in LS-OPT is that all design variables are treated as minimization variables. This means
that the objective function is minimized (or maximized) with respect to all the variables. Maximization
variables are selected in the Setup dialogs Parameter Setup panel (see Figure 16-8) by toggling the
required variables from ‘Minimize’ to ‘“Maximize’ in the Saddle Direction menu. This option is only
available if Show advanced options is selected (Section 7.1.7).
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x|

B Problem global setup
Parameter Setup ‘ Stage Matrix I Sampling Matrix ‘ Resources ‘ Features ‘
& Show advanced options
Type Name Starting Init. Range  Minimum Maximum  Saddle Dire... Delete
|Continuous | v J[Rib_Height I 6| 10]| 5| 20| [Minimize | v |&
|Continuous | v |[Number_Ribs I 3 6( 5[ 15| |winimize | v | @
[Continuous | v “Span I 180 40|| 130|| 180”Minimize | v ]& x
[Continuous | v ]|H->riz->ntal_:.ng|e |[ 30" 15” o” 30”Maximize| v]@
[Dependent | v ]|E:eginning Definition: [-250 - (Span/2) HMinimize | v]@
Dependent | v |[End Definition: |-250 + (span/2) |[winimize | v |@
[Constant | v “E:»a-ginning |[ o] &
|Constant | v J[End I o &
|Constant | v |[Horizontal_angle I 0| &
|Constant | v J[Number_Ribs I o &
[Constant | v “Rib_H»‘:ight |[ o] &)
Add...

oK

Figure 16-8: Parameter definition for a worst-case design optimization
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17.1. Two-bar truss (3 variables)

This example has the following features:

(0]

o O O O

A user-defined solver is used.

Extraction is performed using user-defined scripts.

First- and second-order response surface approximations are compared.
The effect of subregion size is investigated.

The design optimization process is automated.

17.1.1. Description of problem

This example problem as shown in Figure 17-1 has one geometric and two element sizing variables.

-l
|-

v
i
_Y

Figure 17-1: The two-bar truss example
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The problem is statically determinate. The forces on the members depend only on the geometric variable.
Only one load case is considered: F = (Fy,Fy) = (24.8kN, 198.4kN).

There are three design variables: Areal and AreaR, the cross-sectional areas of the bars, and Base, half of
the distance (m) between the supported nodes. The lower bounds on the variables are 0.2cm? and 0.1m,
respectively. The upper bounds on the variables are 4.0cm? and 1.6m, respectively.

The objective function is the weight of the structure

1
f(x)::E(AreaLi—AreaR)Vl—FBase?

The absolute values of the stresses in the members are constrained to be less than 100 MPa,

8 1
-1< =0.124- |1+ B 2( )Sl,
01(x) \/ +Base Areal + Base - Areal

8 1
1< =0124- [1+B 2( — )<1-
<o(x)=0 \/ + Base AreaR Base - AreaR) —

The Perl program 2bar printed below simulating the weight response and stress response respectively is
used as solver. Note the output of the string **'N o r m a 1" so that the completion status may be
recognized.

2bar:

#1/usr/bin/perl

H+

2BAR truss

#
#
# Open output files (database)
# Each response is placed in its own Ffile
#
open(WEIGHT,">Weight');
open(STRESSL , "">StressL™);
open(STRESSR, "">StressR™) ;
#
#--Compute the responses
#
$length = sqrt(l + <<Base>>*<<Base>>);
$cos = <<Base>>/$length;
$sin = 1/$length;
$Weight = (<<ArealL>> + <<AreaR>>) * sqrt(l + <<Base>>*<<Base>>) / 2;
$StressL ( 24.8/%cos + 198.4/3%sin)/<<Areal>>/200;
$StressR (-24.8/%cos + 198.4/%$sin)/<<AreaR>>/200;

#

#--Write results to database

#
print WEIGHT $Weight,'\n";
print STRESSL $StressL,'\n";
print STRESSR $StressR,'\n";

#******************************************

#--Signal normal termination
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#******************************************

print "N o r m a I\n";
#

Since the parameters are defined in 2bar using the LS-OPT parameter format <<>>, the script is defined as
the solver input file, while the solver command is perl, Figure 17-2. The response values are written to
files that are used to define the user-defined responses in LS-OPT, Figure 17-3.

oFF Stage 1 )
Setup | Parameters Histories Responses  File Operations
General
Package Name| User-Defined = |

w

Command[perl ” Browse |

[] Do not add input file argument

Input File [..,fzbar ” Browse |

copies . f2bar to 1/it.run/| UserOpt.inp ]
and substitutes parameters

[[] Extra input files

Execution
Resources

Resource Units per job Global limit Delete
1 1 H2 x

Create new resource

[[] Use Queuing
[[] Use LSTCVM proxy
[] Environment Variables

Figure 17-2: Stage dialog Setup for a user-defined solver. Parameters are specified in the input file using
the LS-OPT parameter format <<>>,
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[orT] Stage 1 E]

Setup I Parameters ‘ Histories | Responses | Fle Operations \

Response definitions Add new
Weight Generic
USERDEFINED: cat Weight USERDEFINED
StressL x GENEX
USERDEFINED: cat StressL

EXPRESSION
StressR *| | FEuNCTION
USERDEFINED: cat StressR

INJURY

MATRIX_EXPRESSION

|'-- Edit response 3
Name Subcase Multipiler Offset
| Weight I [~ [2 | o |

O |N-:]I: metamﬂdel-linked|

Definition

[cat Weight l

concel | [ ox |

GLEUL T
GLS5TAT
NTFORC
MASS
MATSUM
NCFORC

(=]

oK

Figure 17-3: User-defined response definitions

The problem is solved using metamodel based optimization, Figure 17-4. In Sections 17.1.2 to 17.1.4, a
typical semi-automated optimization procedure is illustrated. The last subsection 17.1.5 shows how an
automated procedure can be specified for this example problem.

17.1.2. A first approximation using linear response surfaces

To get a first rough approximation of the problem, a single iteration is run, Figure 17-4.
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Task selection =

i

Main task
Metamodel-based

@ Optimization

() DOE study

(O Monte Carlo analysis

) RBDO/Robust Parameter Design

Direct simulation
() Optimization

) Monte Carlo analysis

Strategy for Metamodel-based Optimization
@ Single lteration

() Sequential

() Sequential with Domain Reduction (SRSM)
1. sampling and optimization are done

in a single iteration.
2. Suitable for global design exploration.

[ Global Sensitivities
Do verification run

Figure 17-4: Task dialog; Selection for a metamodel base optimization using a single iteration.

The parameter setup is defined in the Setup dialog. The type of each parameter is set to continuous. A
design space defined by minimum and maximum and a starting value is then specified for each parameter,

Figure 17-5. The starting values are used for the initial design.

The Sampling dialog, allows for setting the metamodel and point selection, Figure 17-6. To get a first rough
approximation of the problem, the metamodel type is chosen to be a linear polynomial. The default number

of points is automatically adapted to the number of variables and the metamodel type.

&

Ll Problem global'setup

Parameter Setup | Stage Matrix = Sampling Matrix | Resources = Features

| Show advanced options

Type Name Starting Minimum Maximum Delete
[continious [ v |j 03] o1]] 158
» S 4| &

oo~ [ E—
oo || I E— —"

Add

Figure 17-5: Parameter Setup; specification of design space and starting values or all parameters
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=
|

Sampling 1L

sampling Metamodel Settings | Active Variables | Features ‘ Constraints ‘

[

Metamodel

@ Polynomial

) Sensitivity

() Feedforward Neural Network
() Radial Basis Function Network
) Kriging

() Support Vector Regression

) User-defined

-Order
@ Linear

~Point Selection

) Full Factorial

() Linear Koshal

() Quadratic Koshal
) Composite

@ D-Optimal

() Monte Carlo

() Latin Hypercube
() Space Filling

) User-defined

() Linear with interaction

Number of Simulation Points (per Iteration per Case)

() Quadratic

7 (default)

]

) Elliptic

Set Advanced D-Optimal Options ::-:s-l

Figure 17-6: Sampling and Metamodel; Select metamodel type Polynomial with order Linear; use the
defaults for Point Selection and number of points

| Objectives ” Constraints ‘ Algorithms

Optimization

[[] Maximize the Objective Function (instead of minimize)

Objective components: Add new
Response/Composite Weight Responses
StressL

® Weight 1 (default) StressR

Composites

Figure 17-7: Objectives; select the previously defined response Weight from the list on the right.
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Open the Optimization dialog to define the optimization problem. To specify the objective function, select
the previously defined Weight response from the list on the right in the Objectives tab, Figure 17-7. To
define constraints, switch to the Constraints tab and select the previously defined responses StressL and
StressR from the list on the right and enter the respective lower and upper bounds, Figure 17-8.

L Optimization =

Constraints || Algorithms

[[] Constraint scaling

Objectives

Optimization constraints: Add new
Response Lower Bound  Strict Upper Bound  Strict Responses
I S Weight
x StressL x | '1.| U i | 1_| 0 Composites
x StressR x | _1| O x | 1| 0O

Figure 17-8: Constraints; select the respective responses from the list on the right and specify lower and
upper bounds.

Results

The accuracy of the response surfaces can be illustrated by plotting the predicted results vs. the computed
results using the Accuracy plot (Figure 17-9 and Figure 17-10). The error measures RMS, SPRESS and R?2
are displayed in the title of the plot.

The R? values are large. However the prediction accuracy (Sqrt PRESS), especially for the stresses, seems to
be poor, so that either a higher order approximation or a smaller region of interest will be required.

Nevertheless an improved design is predicted with the constraint values (stress) changing from severely
violated approximate values to active constraint, Table 17-1. Due to inaccuracy, the actual constraint values
of the optimum differ, but also the computed constraints are not violated. The weight values have improved
for both computed and predicted. Feasible and infeasible regions in the design space as well as the
computed and predicted optimum are displayed in Figure 17-11.
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Figure 17-9: Accuracy of linear metamodel for response "*Weight™*

Metamodeling Accuracy

Metamodeling Accuracy

For Response Function "Weight"

Linear: RMS Err = 0.46

(14.3 %), Sqrt PRESS = 1.37

~

=2}

]

I

W

Predicted Response Value
LS

=

For Respaonse Function "StressL"

Linear: RMS Err = 1.2

(36.4 %), Sart PRESS = 2.49

]

F

Predicted Response Value
]

4]

ES

Figure 17-10: Accuracy of linear metamodel of responses **StressL'* and **StressR*™*
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@Feasible
H|nfeasible

Metamodeling Accuracy

6
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B Feasible
Bnfeasible

For Response Function "StressR"
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Table 17-1: Comparison of baseline run and optimum (single iteration, linear metamodel)

Baseline Baseline 1. Opt 1. Opt (Predicted)
(Computed) (Predicted) (Computed)

Weight 2.56 2.62 1.53 0.85

StressL 0.73 0.92 0.99

StressR 0.53 -0.41 1.00

Weight

—StressL < 1.00e+00
—StressL > -1.00e+00
—StressR < 1.00e+00
mFeasible

mInfeasible

B Predicted Optimum

B Computed Optimum Feasible
m Computed Optimum Infeasible

Figure 17-11: Surface plot for objective function Weight; constraints are displayed on the metamodel.

17.1.3. Updating the approximation to second order

To improve the accuracy of the metamodels, a second run is conducted using a quadratic approximation.
Switch the metamodel order in the Sampling dialog to quadratic, Figure 17-12. The number of points will

automatically update.
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& Sampling 1 &)
| Sampling Metamodel Settings | Active Variables Features = Constraints
Metamodel Point Selection
@ Polynomial () Full Factorial
) Sensitivity () Linear Koshal
() Feedforward Neural Network () Quadratic Koshal
() Radial Basis Function Network () Composite
() Kriging @ D-Optimal
() Support Vector Regression () Monte Carlo
) User-defined () Latin Hypercube
() Space Filling
Cirdgr ) User-defined
() Linear
() Linear with interaction Number of Simulation Points (per Iteration per Case)
@ |Quadratic |16 (default) |
) Elliptic

|Set Advanced D-Optimal Options :a-:a-|

Figure 17-12: Sampling dialog settings for a quadratic approximation
Results
The approximation results have improved considerably, but the stress approximation is still poor. The fit is

illustrated below in Figure 17-13 and Figure 17-14.

An improved design is predicted with the approximate constraint values (stress) becoming active, Table
17-2. Due to inaccuracy, the actual StressR value of the optimum is infeasible. Feasible and infeasible
regions in the design space as well as the computed and predicted optimum are displayed in Figure 17-15.
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Metamodeling Accuracy
For Response Function "Weight"
Quadratic: RMS Err = 0.0336 (1.17 %), Sqrt PRESS = 0.0963 (3.35 %), R-sq=1

B Feasible
Bnfeasible

~

]

Predicted Response Value
w

[¥]

=

2 4 6
Computed Response Value

Figure 17-13: Accuracy of quadratic metamodel for response "*Weight™

Metamodeling Accuracy Metamodeling Accuracy
For Response Function "StressL" For Response Function "StressR"
Quadratic: RMS Err = 0.808 (20.1 %), Sart PRESS = 2.14 (53.2 %), R-sq = 0.966 Quadratic: RMS Err = 0.664 (38.6 %), Sqrt PRESS = 1.59 (92.2 %), R-sq = 0.951

d BFeasible BFeasible
g ®Infeasible B |nfeasible
10
. 8
o
a [ |
8
&
6
[} @
= =
o o
> Y >
2 a 4
s s N
o A o
@ & o
Q @
(=4 o
5
B [ ] T &
s 2 z &
el L) o
2 o -
o o G
0 & -
L]
2
o 2
-2
10

2 - =]
Computed Response Value Computed Response Value

Figure 17-14: Accuracy of quadratic metamodel of responses "*StressL' and "*StressR™
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Table 17-2: Comparison of baseline run and optimum (single iteration, quadratic metamodel)

Baseline Baseline 1. Opt 1. Opt (Predicted)
(Computed) (Predicted) (Computed)

Weight 2.56 2.54 1.05 1.09

StressL 0.73 0.69 0.86 1.00

—StressL < 1.00e+00
—StressL > -1.00e+00
—StressR < 1.00e+00
dFeasible

H|nfeasible

B Predicted Optimum

B Computed Optimum Feasible
m Computed Optimum Infeasible

Weight

Figure 17-15: Surface plot for objective function weight; constraints are displayed on the metamodel.
17.1.4. Reducing the region of interest for further refinement

It seems that further accuracy can only be obtained by reducing the size of the subregion. In the following
analysis, the current optimum (0.22, 1.86, 0.2) was used as a starting point while the region of interest was
cut in half. The order of the approximation is quadratic. The required modifications are illustrated in Figure
17-16.
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Parameter Setup | Stage Matrix = Sampling Matrix | Resources = Features
o
Type Name Starting Init. Range Minimum Maximum Saddle Dire... Delete

) B S— —
| [ Les 2|( 0.2 4”Minimize | v|@&
| [ 02 2|( 0.2 4”Minimize | v |@&

Add

Figure 17-16: Reducing the design space by specifying an initial range; the starting values are the

optimal values found in the previous approach.

Results

The approximations are significantly improved, Figure 17-17 and Figure 17-18.

Metamodeling Accuracy
For Response Function “"Weight"
Quadratic: RMS Err = 0.00872 (0.482 %), Sqrt PRESS = 0.0227 (1.25 %), R-sq=1

BFeasible
Bnfeasible

w

Y]

Predicted Response Value

=

&
Computed Response Value

Figure 17-17: Accuracy of quadratic metamodel in reduced design space for response "*Weight"*
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Metamodeling Accuracy Metamodeling Accuracy
For Response Function "StressL" For Response Function "StressR"
Quadratic: RMS Err = 0.0719 (5.72 %), Sqgrt PRESS = 0.196 (15.6 %), R-sq = 0.989 Quadratic: RMS Err = 0.46 (43.1 %), Sqrt PRESS = 1.44 (135 %), R-sq = 0.943
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Figure 17-18: Accuracy of quadratic metamodel in reduced design space of responses **StressL" and
""StressR™

The results are displayed in Table 17-3. An improved design is predicted with the approximate constraint
values (stress) becoming active. Due to inaccuracy, the actual constraint values of the optimum are feasible.
This value is now much closer to the value of the simulation result. For the optimal weight value, computed
and predicted is the same.

Feasible and infeasible regions in the design space as well as the computed and predicted optimum are
displayed in Figure 17-19.
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Table 17-3: Comparison of baseline run and optimum (single iteration, quadratic metamodel, reduced
design space)

Baseline Baseline 1. Opt 1. Opt (Predicted)
(Computed) (Predicted) (Computed)

Weight 1.05 1.04 1.12 1.12

StressL 0.86 0.95 0.96 1.00

StressR

—StressL < 1.00e+00
—StressR < 1.00e+00
—StressR > -1.00e+00
mFeasible

HInfeasible

B Predicted Optimum

m Computed Optimum Feasible
m Computed Optimum Infeasible

Weight

Figure 17-19: Surface plot for objective function weight; constraints are displayed on the metamodel.
17.1.5. Automating the design process

This section illustrates the automation of the design process of improving the accuracy of the metamodels
by reducing the design space for both a linear and a quadratic response surface approximation order by
using the strategy: sequential with domain reduction, Figure 17-20. 10 iterations are performed for the linear
approximation, Figure 17-21, with only 5 iterations performed for the more expensive quadratic
approximation.
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(oFT| Task selection

&=

Main task
Metamodel-based

(@ Optimization

() DOE study

() Monte Carlo analysis

() RBEDO/Robust Parameter Design

Direct simulation
() Optimization

) Monte Carlo analysis

Strategy for Metamodel-based Optimization

() Single Iteration

) Sequential

@ Sequential with Domain Reduction (SR5M)

1. Sampling points are added sequentially
in an adaptive subregion.

2. Metamodel optimization is done at each iteration

and is limited to the current subregion.

3. Suitable for finding a converged selution

le.g. system identification).

4. Generally unsuitable for global exploration.

[ Global sensitivities
Do verification run

Figure 17-20: Task dialog; select strategy SRSM to automate the process.

&)

Tolerance Required for Termination

Design Change Tolerance

@ |Design AND Objective AND Metamodel Accuracy
() Design OR Objective OR Metamodel Accuracy

[0.01 (default is 0.01)

Objective Function Tolerance

[0.01 (default is 0.01)

Response Accuracy Tolerance

[1 {default is 1.00)

Maximum number of lterations

10

—
-

Figure 17-21: Termination criteria; select 10 iterations for linear, 5 for quadratic approach
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Results

The final results of the two types of approximations are displayed in Table 17-4. The optimization histories
have been plotted to illustrate convergence in Figure 17-22 and Figure 17-23. Note that the more accurate
but more expensive quadratic approximation converges in about 3 design iterations (48 simulations), while
it takes about 7 iterations (49 simulations) for the objective of the linear case to converge. In general, the
lower the order of the approximation, the more iterations are required to refine the optimum.
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Table 17-4: Summary of final computed results (2-bar truss)

Linear Quadratic

Number of iterations 10 5
Number of simulations 71 81

Areal 1.719 1.788
AreaR 0.304 0.200
Base 0.177 0.173
Weight 1.027 1.008
StressL 1.000 0.971

StressR 0.976
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Figure 17-22: Optimization history of design variables; linear (left) and quadratic (right)
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Weight

StressL

StressR

Figure 17-23:
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Optimization history of responses; linear (left) and quadratic (right)
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17.2. Small car crash (2 variables)

This example has the following features:
0 An LS-DYNA explicit crash simulation is performed.
Extraction is performed using standard LS-DYNA interfaces.
A single iteration optimization using Radial Basis Function networks is performed.
The design optimization process is automated.
A mixed-discrete optimization is performed

©O O O O O

An optimization using the direct genetic algorithm is performed.

17.2.1. Introduction

This example considers the crashworthiness of a simplified small car model. A simplified vehicle moving at
a constant velocity of 15.64m.s™ (35mph) impacts a rigid pole. See Figure 17-24. The thickness of the front
nose above the bumper is specified as part of the hood. LS-DYNA is used to perform a simulation of the
crash for an event duration of 50ms.

Bumper

a) deformed (50ms) b) undeformed

Figure 17-24: Small car impacting a pole
17.2.2. Design criteria and design variables

The objective is to minimize the Head Injury Criterion (HIC) over a 15ms interval of a selected point
subject to an intrusion constraint of 550mm of the pole into the vehicle at 50ms. The HIC is based on the
linear head acceleration and is widely used in occupant safety regulations in the automotive industry as a
brain injury criterion. In summary, the criteria of interest are the following:

0 Head injury criterion (HIC) of a selected point (15ms)
0 Peak acceleration of a chosen point filtered at 60Hz (SAE).
o Component Mass of the structural components (bumper, front, hood and underside)
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0 Intrusion computed using the relative motion of two points

o0 Units are in mm and sec
The design variables are the shell thickness of the car front (thood ) and the shell thickness of the bumper
(tbumper) (see Figure 17-24).

17.2.3. Design formulation

The design formulation is as follows:
Minimize
HIC (15ms) (17-1)
subject to
Intrusion (50ms) < 550mm

The HIC value is defined using the INJURY interface.

The intrusion is measured as the difference between the displacement of nodes 167 and 432. The
displacement curves are extracted using the LS-DYNA NODOUT interface, Figure 17-25. These curves are
evaluated at time t=50ms using response expressions. The intrusion is defined using a composite expression,
Figure 17-27.

The mass is computed using the LS-DYNA MASS interface, Figure 17-26, but not constrained. This is
useful for monitoring the mass changes.
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[x]

]

oPT| Stage 1
Setup @ Parameters | Histories | Responses = File Operations
History definitions Add new
Disp2_his x | | Generic
NODOUT: x_displacement of node 432 USERDEFINED
Displ_his * || GENEX
NODOUT: x_displacement of node 167
EXPRESSION
Acc_his : FUNCTION
NODOUT: x_acceleration of node 167
- — INJURY
Edit history
Derived
Name Subcase
Acc_his ] [ ‘ _ | Crossplot
i LS-DYMNA
Component Direction ABSTAT
() Displacement @ X Component BNDOUT
) Velocity () ¥ Component D3PLOT
@ Acceleration () Z Component DBBEMAC
) Rotational Displacement () Resultant —
) Retational Velocity
) Rotational Acceleration DEFORC
) Deformation ELOUT
() Distance GCEQUT
IdentifierType ID GLSTAT
D ¢| 167 NTFORC
Filtering MATSUM
l SAE Filter C] NCFORC
NODOUT
Frequency Time unit
60.0000 Seconds ] File Histories
[ Cancel ] [ QK J l JQK

Figure 17-25: Definition of response histories using standard LS-DYNA interfaces.
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oPT Stage 1 E]

Setup | Parameters Histories | Responses | File Operations

Response definitions Add new
HIC x Generic
JNJURK' Head Injury Coef, maximum of 15ms, for Acceleration of node USERDEFINED
with 1D 432
GENEX
S EXPRESSION
MASS: Mass of parts 2,3.4 and 5 e
EUNCTION
Disp2 x
EXPRESSION: Disp2_his(0.05) INJURY
i MATRIX_EXPRESSION
Displ x
EXPRESSION: Displ_his(0.05) LS-DYNA
' Edit response )
Name Subcase Multipiler Offset
Mass ][ ‘\,l 1 | [o |

[] Not metamodel-linked

Parts to be included Attribute
) All Parts Mass
@ List of parts:

<

x2, x3, x4, x5, ©

[ Gancal | [ ox |

||NODOUT

<]

Figure 17-26: Definition of responses using standard LS-DYNA interfaces and expressions.
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[orT] Composites [E]
Composite definition Add new
EXPRESSION: Displ - Disp2 EXPRESSION

Curve Matching

Standard
Composite

Standard
Deviation

Expression Composite

Name:

[Intrusicn ]

Expression:
[Displ - Disp2 ]

concel | [ ox |

Figure 17-27: Definition of composite expression using previously defined responses.

17.2.4. Modeling

The simulation is performed using LS-DYNA. An extract from the parameterized input deck is shown
below. The parameterization of the model is done using the *PARAMETER keyword. The cylinder for
impact is modeled as a rigid wall.

*KEYWORD

*PARAMETER
rtbumper,3.0,rthood,1.0

T
o

X

Problem global'setup

|Parameter 59tUp|| Stage Matrix I Sampling Matrix I Resources I Features I

["] Show advanced options

Type Name Starting Minimum Maximum Delete
[Cuntinuuus | ~ “tl)ump»’:r H 3” 1” 5]@
[Continuous | v “tho-)d |[ 1” 1” 5]@

Add

Figure 17-28: Parameter Setup;

A design space of [1; 5] is used for both design variables, Figure 17-28.
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17.2.5. Single iteration run using Radial Basis Functions

As a first step, a single iteration is run using Radial Basis Function networks (RBF). In this manner a non-
linear approximation is created across the whole design space. The approximation can then be used for
sensitivity analysis or optimization.

S Sampling 1 x
| Sampling Metamodel Settings | Active Variables = Features = Constraints

Metamodel Point Selection

) Polynormial () Full Factorial

() Sensitivity () Latin Hypercube

) Feedforward Neural Network @ Space Filling

@ Radial Basis Function Netwaork ) User-defined

() Kriging

MNumlber of Simulation Points (per lteration per Case)

() Support Vector Regression
|2CI (default is 10) |

) User-defined

Set Advanced RBF Options

Figure 17-29: Sampling dialog; Select metamodel RBF, increase the number of points to 20.

Results

The computed vs. predicted HIC and Diisp2 responses are given in Figure 17-30. The corresponding R
value for HIC is 0.998, while the RMS error is 4.61%. For Disp2, the R* value is 0.994, while the RMS
error is 0.353%.
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Metamodeling Accuracy
For Response Function "HIC"

RBF Net: RMS Err = 13.6

Metamodeling Accuracy
Far Response Function "Disp2"

(4.61 %), Sart PRESS = 36.8 (12.4 %), R-sq = 0.988 RBF Net: RMSErr =2.4 (0.353 %), Sart PRESS = 4.63 (0.681 %), R-sq = 0.994

BFeasible

/ Hinfeasible

BFeasible
B |nfeasible -620
600
640 il
500 Fn/}/
2 % 660
E 400 E B/D/
g o g 680
g 300 & g
2 200 - = 4
= / * 720
100 /
o -740
J 200 400 6 -700 -650
Computed Response Value Computed Response Value
Figure 17-30: Computed vs. predicted responses — RBF approximation

Table 17-5: Comparison of baseline run and optimum (single iteration, RFB metamodel)

Baseline Baseline 1. Opt 1. Opt (Predicted)
(Computed) (Predicted) (Computed)
t_hood 1 - 1.60 -
t_bumper 3 - 5 -
HIC 68.03 7151 130.2 134.08
Mass 0.41 041 0.67 0.67
Sensitivities Plot for HIC
with 95% Confidence Interval
thood {
thbumper t
-300 -200 -100 0 100 200 300 abo 500

thood (72.2% - 72.2%)
tbumper (27.8% - 100.0%)

Terms in expansion of HIC

Global Sensitivities Plot for HIC
Mean = 302.744, Total variance = 15677, Noise variance = 464.301

0

10 20 30 40 50 60

% Influence on Response

70

Figure 17-31: Sensitivities plots; ANOVA with 95% confidence interval (top) and GSA (bottom)
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—Intrusion < 5.50e+02
mFeasible

mInfeasible

m Predicted Optimum

HIC

Figure 17-32: Surface plot for objective function HIC with predicted and computed optimum, simulation
points and residuals; constraints are displayed on the surface.
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2.5E+06 18
4.6

2E+06

4.2

L.5E+06

3.8

306

3.4

1E+061Hf -

3.2

Acc_his
w
thood

SE+05-
‘ 2.8

2.6

2.2

-5E+05

-1E+06

-0 0.01 0.02 0.03 0.04 0.05 W7

Figure 17-33: History plot for Acceleration; the curves are color-coded using the value of the variable
thood.

17.2.6. Automated run using linear metamodels

An automated optimization is performed with a linear approximation. Select the strategy Sequential with
domain reduction, Figure 17-34, and switch to the metamodel type Polynomial linear, Figure 17-35. Use the
default number of points per iteration per case.

In the Termination Criteria dialog, set the maximum number of iterations to 8, Figure 17-36.
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Figure 17-34: Task dialog; select Strategy Sequential with Domain Reduction

L Task selection B

Main task
Metamodel-based

) Optimization

) DOE study

Monte Carlo analysis

) RBDO/Robust Parameter Design

Direct simulation
() Optimization
) Monte Carlo analysis

Strategy for Metamodel-based Optimization
() Single Iteration

) Sequential

@ Sequential with Domain Reduction (SRSM)

1. Sampling points are added sequentially
in an adaptive subregion.

2. Metamodel optimization is done at each iteration
and is limited to the current subregion.

3. Suitable for finding a converged solution
le.g. system identification).

4. Generally unsuitable for global exploration.

Global Sensitivities
Number of Points for Integration:
10000 (default) l

Do verification run
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Sampling Metamodel Settings | Active Variables | Features = Constraints

Metamodel Point Selection
@ Polynomial () Full Factorial
() Sensitivity () Linear kKoshal
() Feedforward Neural Network () Quadratic Koshal
() Radial Basis Function Network () Composite
() Kriging @ D-Optimal
() Support Vector Regression () Monte Carlo
() User-defined () Latin Hypercube
N () Space F|I.I|ng
) User-defined
@ Linear
() Linear with interaction MNumlber of Simulation Points (per lteration per Case)
O Quadratic 5 (default) |
() Elliptic

Set Advanced D-Optimal Options :a-:a-l

Figure 17-35: Sampling Dialog; use the default settings for SRSM for metamodel type and order, point
selection scheme and number of points

“Tolerance Required for Termination
@ Design AND Objective AND Metamodel Accuracy
() Design OR Objective OR Metamodel Accuracy

Design Change Tolerance

[0.01 (default) l

Objective Function Tolerance

[0.01 (default) l

Response Accuracy Tolerance

[1.00 (default) l

Maximum number of Iterations

g 8

Figure 17-36: Termination Criteria dialog; select the maximum number of iterations
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Results

It can be seen in Figure 17-37 that the objective function (HIC) and intrusion constraint are approximately
optimized at the 7" iteration. It takes about 8 iterations for the approximated (solid line) and computed
(square symbols) HIC to correspond. The approximation improves through the contraction of the subregion.
As the variable thood never moves to the edge of the subregion during the optimization process, the
heuristic in LS-OPT enforces pure zooming (see Figure 17-38). For tbumper, panning occurs as well due
to the fact that the linear approximation predicts a variable on the edge of the subregion.

Optimization Histary
tor “HIC"

1601+ T I | L

HIC

4
Number of Iterations

Optimization History
for “Intrusion”

575

570+

56511

560+

Intrusion

555+

550+ - - . ] = =

4
Number of Iterations

Figure 17-37: Optimization history of HIC and Intrusion
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Optimization Histary
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35 - e |
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E 2.5 T .
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1.: i//_i ; —
e 1 = 5 1 8
Number of Iterations
Optimization History
for “tbumper”
| ; '
4.5
i = N > 1 e
15 / | \ ") ——a
2 3 L~ | e =t
E | | /
é 2.5 | |
1] i  —
ll i !
e 1 5 1 8
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Figure 17-38: Optimization history of design variables

17.2.7. Mixed-discrete optimization

Mixed discrete optimization is achieved simply by setting the thood variable to be discrete with possible
values of 1.0, 2.0, 3.0, 4.0, and 5.0. The definition of a discrete variable is displayed in Figure 17-39.

Problem|global'setup FE

Parameter Setup ‘ Stage Matrix ‘ Sampling Matrix | Resources ‘ Features |
[] show advanced options
Type Name Starting Minimum Maximum Sampling Ty... Delete
Continuous v ||thumper [ 3“ 1” Sl &
thood Values: 1,2,3,4,5 ‘ - [Continu0L| ~ l@

1 x

L

L

O

s )
Add...

Add new value

Figure 17-39: Parameter Setup dialog; Definition of a discrete variable.
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Results

The design variables histories are shown in Figure 17-41, the optimization histories for the objective HIC
and the constraint Intrusion in Figure 17-40.

Optimization History
for "HIC"

220

200

180

160

140

HIC

120
100

80

3
Number of Iterations

Optimization History
for "Intrusion”

575

570 \
565

560 \

555 \
550 \

545 \\
540
[ |

535
-0 2 3 Z 5 6
Number of Iterations

Intrusion

Figure 17-40: Optimization history of HIC and Intrusion for mixed-discrete optimization
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Optimization History
for "tbumper"

5
4.5
\

tbumper

3
Number of Iterations

Optimization History
for "thood"

thood

3
Number of Iterations
Figure 17-41: Mixed-discrete variable histories.

17.2.8. Optimization using Direct GA simulation

The same problem is solved using a direct GA simulation, Figure 17-42. GA specific settings and advanced
options may beselected in the Optimization dialog, Figure 17-43. For illustration, the population size is
taken as 10 and number of generations is limited to 15. The Stochastic Universal Sampling method is used
as selection operator. Two elite members (Number of Elites) are used in each generation. For real crossover,
SBX operator is used (Crossover Type) with a distribution index of 5 (Crossover Distribution) and
crossover probability of 0.99 (Crossover Probability). The real mutation probability (Mutation Probability)
is 1.0.
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Lol

&

Main task

() Optimization
() DOE study

) RBDO/Robust

Direct simulation
(@ Optimization

Metamodel-based

() Monte Carlo analysis

) Monte Carlo analysis

Parameter Design

Figure 17-42: Task dialog; Direct Genetic algorithm

Lt ol

@

Objectives | Constraints | Algorithms

Optimization Algorithm Constraint Handling

Selection Operator Crossover Type Mutation Distribution

| Deb ECH

-~
£

-
~

| sus | | sBx

| 5 (default is 100)

GA
Restart Interval

Mumber of Elites  Crossover Distribution ~ Mutation Probability

[l (default)

l

[2 (default)

l 1 (default is 0.5)

] [5 (default is 10)

Population Size

Max Repeat Optimum/Generations

l [2Edefault is 0.1} l

l Reset Default5|

[10 (default is 30)

Number of Generations

|15 (default is 100)

Crossover Probability

0.99 (default is 1.0) |

Figure 17-43: Optimization dialog; Specification of advanced GA options

Results

The outcome of the optimization is shown in Figure 17-44 and Figure 17-45. The discrete variable was fixed
at 2 units. The direct GA does not terminate if the optimal result does not change from one iteration to the
next, since the values may still improve. Note that the optimization history treats ‘generation’ as ‘iteration’

to display results.
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Optimization History

for "tbumper"

tbumper
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noNo; ow
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Number of Iterations
Optimization History
for “thood"
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3.5
3 3
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= 2.5
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8
Number of Iterations

Figure 17-44: Optimization history of mixed-discrete variable optimization using direct GA simulation.
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Figure 17-45: Optimization history of HIC and Intrusion
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17.3. Impact of a cylinder (2 variables)

This example has the following features:

(0]

O O O O

(0]

An LS-DYNA explicit impact simulation is performed.

An independent parametric preprocessor is used to incorporate shape optimization.
Extraction is performed using standard ASCII LS-DYNA interfaces.

Second-order response surface approximations are compared using different subregions.
The design optimization process is automated.

Noisy response variables are improved using filtering.

The example in this chapter is modeled on one by Yamazaki [1].

17.3.1. Problem statement

The problem consists of a tube impacting a rigid wall as shown in Figure 17-46. The energy absorbed is
maximized subject to a constraint on the rigid wall impact force. The cylinder has a constant mass of 0.54
kg with the design variables being the mean radius and thickness. The length of the cylinder is thus
dependent on the design variables because of the mass constraint. A concentrated mass of 500 times the
cylinder weight is attached to the end of the cylinder not impacting the rigid wall. The deformed shape at
20ms is shown in Figure 17-47 for a typical design.

\

[

Figure 17-46: Impacting cylinder
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Figure 17-47: Deformed finite element model (time = 20ms)

The optimization problem is stated as:
Maximize Einternal (X11 X2 )| t=0.02
subject to

F WallaI (le Xz)

norm

average < 710000

I(x) = 0.52
27X, X,

where the design variables x; and x, are the radius and the thickness of the cylinder respectively.
Einerma (X)] o0z 1S the objective function and constraint functions F (X)

norm

normal force on the rigid wall and the length of the cylinder, respectively.

aerage N 1(X) are the average

The problem is simulated using LS-DYNA. The following TrueGrid input file including the <<name>>
statements is used to create the FE input deck with the FE model as shown in Figure 17-47. Note that the
design variables have been scaled.

c cyl2 - crush cylinder - constant volume
Isdyna3d keyword
Isdyopts secforc .00002 rwforc .00002 ;
Isdyopts endtim .02 d3plot dtcycl .0001 ; ;
Isdyopts thkchg 2 ;
Isdyopts elout 0.001
Isdyopts glstat 0.001
Isdymats 1 3 rho 2880 shell elfor bt tsti 4

e 71.38e9 pr .33 sigy 102.0e6 etan 0.2855e9 ;
Isdymats 2 20 rho 14.3e6 e 7.138el10 pr .33 cmo con 4 7 shell elfor bt tsti 4;
para

r [<<Radius>>/1000.0]

I [3.0e+l/<<Radius>>/<<Wall_Thickness>>]

h [<<wall_Thickness>>/1000.0]

12 [75.0/<<Radius>>*0.02]

h2 .002

vO 10.
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n .33
pi 3.14159

plane 1 0 0 -.002 0 0 1 .001 ston pen 2. stick ;

sid 1 Isdsi 13 slvmat 1;scoef .4 dcoef .4 sfsps 1.5 ; ; ;

cylinder

-1; 1 60; 1 50 51;

%r

0 360

0 %l [%12+%1]

dom1 11123
X=x+.01*%h*sin(%pi*z*57 .37 (%pi*%r*%r*%h*%h/(12*(1-%n*%n)))**.25))

thick %h

thi ;;2 3; %h2

cbi; ;-30-3;dx1dy1l rx1rylrz1 ;

c interrupt

swi ;; ;1

velocity 0 O [-%vO]

mate 1

mti ;; 2 3; 2

c element spring block

eppb 1 11123

endpart

merge

stp .000001

write

end

17.3.2. A first approximation

In the first iteration, a quadratic approximation is chosen from the beginning. The ASCII database is suitable
for this analysis as the energy and impact force can be extracted from the glstat and rwforc databases
respectively. Five processors are available. The region of interest is arbitrarily chosen to be about half the
size of the design space.

The following LS-OPT command input deck was used to find the approximate optimum solution:

"Cylinder Impact Problem"

$ Created on Thu Jul 11 11:37:33 2002

$

$ DESIGN VARIABLES

$

variables 2

Variable "Radius® 75
Lower bound variable "Radius® 20
Upper bound variable "Radius®™ 100
Range "Radius® 50

Variable “Wall_Thickness® 3
Lower bound variable *Wall _Thickness® 2
Upper bound variable *"Wall_Thickness® 6
Range “Wall_Thickness® 2

solvers 1

responses 2

$

$ NO HISTORIES ARE DEFINED
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DEFINITION OF SOLVER '"RUN1"

&+ H PP

solver dyna960 "RUN1*®

solver command "lIsdyna"
solver input file "trugrdo”
prepro truegrid

prepro command "*/net/src/ultra4_4/common/hp/tg2.1/tg"

prepro input file "cyl2"

$
$ RESPONSES FOR SOLVER ""RUN1"
$

response "Internal_Energy®" 1 0 "DynaASCIl Glstat I_Ener O Timestep"

response "Internal _Energy" quadratic

response "Rigid Wall _Force®™ 1 0 "DynaASCIll rwforc normal 1 ave"

response "Rigid_Wall_Force®™ quadratic
$
$ NO HISTORIES DEFINED FOR SOLVER "RUN1"
$
$
$ OBJECTIVE FUNCTIONS
$
objectives 1
maximize
objective "Internal _Energy” 1
$
$ CONSTRAINT DEFINITIONS
$
constraints 1
constraint “Rigid_Wall_Force*

upper bound constraint "Rigid_Wall_Force® 70000

$

$ EXPERIMENTAL DESIGN

$
Order quadratic
Experimental design dopt
Basis experiment 5toK
Number experiment 10

$

$ JOB INFO

$
concurrent jobs 5
iterate param design 0.01
iterate param objective 0.01
iterate 1

STOP

The curve-fitting results below show that the internal energy is approximated reasonably well whereas the
average force is poorly approximated. The accuracy plots confirm this result (Figure 17-48).

Approximating Response "Internal_Energy" using 10 points (ITERATION 1)

Mean response value = 10686.0081
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RMS error

Maximum Residual

Average Error

Square Root PRESS Residual

790.3291 (7.40%)
1538.9208 (14.40%)
654.4415 (6.12%)
2213.7994 (20.72%)

Variance 1249240.2552
R"2 0.9166
RN2 (adjusted) 0.9166
R"2 (prediction) 0.3453
Determinant of [X]"[X] 1.3973

Approximating Response "Rigid_Wall_Force® using 10 points (ITERATION 1)

Mean response value 121662.9474

RMS error 24730.1732 (20.33%)
Maximum Residual 48569.4162 (39.92%)
Average Error 21111.3307 (17.35%)
Square Root PRESS Residual 75619 .5531 (62.15%)

Variance 1223162932 .2092
RN2 0.8138
RN2 (adjusted) 0.8138
RN2 (prediction) -0.7406
Determinant of [X]"[X] 1.3973

The initial design below shows that the constraint is severely exceeded.
DESIGN POINT

Variable Name Lower Bound Value Upper Bound
———————————————————————————————— o I B
Radius 20 75 100
Wall_Thickness 2 3 6

| Scaled | Unscaled |
|-—mmmmmm oo |-—-mmmmmm oo |
RESPONSE Computed Predicted| Computed Predicted]
____________________________________________________ I__________ e

Rigid_Wall_Force 1.749e+05 1.407e+05] 1.749e+05 1.407e+05]

|

Internal_Energy | 1.296e+04 1.142e+04] 1.296e+04 1.142e+04]
|
|
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Response Surface Accuracy Response Surface Accuracy
For Response Function "Internal_Energy" For Response Function "Rigid_Wall_Force"
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Figure 17-48: Prediction accuracy of Internal Energy and Rigid Wall Force (One Quadratic
iteration)

Despite the relatively poor approximation a prediction of the optimum is made based on the approximation
response surface. The results are shown below. The fact that the optimal Radius is on the lower bound of
the subregion specified (Range = 50), suggests an optimal value below 50.

DESIGN POINT

Variable Name Lower Bound Value Upper Bound
———————————————————————————————— R e I
Radius 20 50 100
Wall_Thickness 2 2.978 6

———————————————————————————————— ] B
RESPONSE FUNCTIONS:

| Scaled | Unscaled |

T - |
RESPONSE | Computed Predicted]| Computed Predicted]
________________________________ I__________ [ [ (P,
Internal_Energy | 7914 8778] 7914 8778]
Rigid_Wall_Force | 4.789e+04 7e+04| 4.789e+04 7e+04]
———————————————————————————————— R I B B ]|

17.3.3. Refining the design model using a second iteration

During the previous optimization step, the Radius variable was reduced from 75 to 50 (on the boundary
of the region of interest). It was also apparent that the approximations were fairly inaccurate. Therefore, in
the new iteration, the region of interest is reduced from [50;2] to [35;1.5] while retaining a quadratic
approximation order. The starting point is taken as the current optimum: (50,2.978). The modified
commands in the input file are as follows:

$
$ DESIGN VARIABLES
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$

variables 2

Variable "Radius® 50
Lower bound variable "Radius®™ 20
Upper bound variable "Radius® 100
Range "Radius® 35

Variable “Wall_Thickness®™ 2.9783
Lower bound variable *"Wall _Thickness® 2
Upper bound variable *"Wall_Thickness® 6
Range “Wall_Thickness® 1.5

As shown below, the accuracy of fit improves but the average rigid wall force is still inaccurate.
Approximating Response "Internal_Energy® using 10 points (ITERATION 1)

Mean response value

RMS error

Maximum Residual

Average Error

Square Root PRESS Residual

8640.2050
526.9459 (6.10%)
890.0759 (10.30%)
388.4472 (4.50%)

1339.4046 (15.50%)

Variance 555344 .0180
RN2 0.9632
R"2 (adjusted) 0.9632
R™2 (prediction) 0.7622
Determinant of [X]"[X] 0.0556

Approximating Response “Rigid_Wall_Force® using 10 points (ITERATION 1)

Mean response value 82483.2224

RMS error 19905.3990 (24.13%)
Maximum Residual 35713.1794 (43.30%)
Average Error 17060.6074 (20.68%)
Square Root PRESS Residual 54209.4513 (65.72%)

Variance 792449819 .5138
RN2 0.8949
R™N2 (adjusted) 0.8949
R™2 (prediction) 0.2204
Determinant of [X]"[X] 0.0556

The goodness of fit diagrams are shown in Figure 17-49.
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Response Surface Accuracy Response Surface Accuracy

For Response Function "Internal_Energy” For Response Function "Rigid_Wall_Force"
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Figure 17-49: Prediction accuracy of Internal Energy and Rigid Wall Force (One Quadratic
iteration)

Nevertheless an optimization is conducted of the approximate subproblem, yielding a much improved
feasible result. The objective function increases to 9575 (9777 computed) whereas the constraint is active at
70 000. The computed constraint is lower at 64 170. However the Wal l_Thickness is now on the upper
bound, suggesting an optimal value larger than 3.728.

DESIGN POINT

Variable Name Lower Bound Value Upper Bound
________________________________ | | [
Radius 20 42.43 100
Wall_Thickness 2 3.728 6

| Scaled | Unscaled |
R |-—-mmmmmmm oo |
RESPONSE | Computed Predicted]| Computed Predicted]
Internal_Energy | 9777 9575] 9777 9575]
Rigid_Wall_Force | 6.417e+04 7e+04] 6.417e+04 7e+04]

———————————————————————————————— i I e B
17.3.4. Third iteration

Because of the large change in the Wall_Thickness on to the upper bound of the region of interest, a
third iteration is conducted, keeping the region of interest the same. The starting point is the previous
optimum:

Variable "Radius® 42.43

Variable "Wall_Thickness® 3.728

The approximation improves as shown below:
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Approximating Response "Internal _Energy" using 10 points (ITERATION 1)

Mean response value

RMS error

Maximum Residual

Average Error

Square Root PRESS Residual

9801.0070
439.8326 (4.49%)
834.5960 (8.52%)
372.3133 (3.80%)

1451.3233 (14.81%)

Variance 386905.5050
RN2 0.9618
R"N2 (adjusted) 0.9618
R"2 (prediction) 0.5842
Determinant of [X]"[X] 0.0131

Approximating Response "Rigid_Wall_Force® using 10 points (ITERATION 1)

Mean response value 81576.0534

RMS error 12169.4703 (14.92%)
Maximum Residual 26348.0687 (32.30%)
Average Error 10539.2275 (12.92%)
Square Root PRESS Residual 37676.3033 (46.19%)

Variance 296192016 .4365
RN2 0.9301
R"2 (adjusted) 0.9301
R"2 (prediction) 0.3303
Determinant of [X]"[X] 0.0131

Because the size of the region of interest remained the same, the curve-fitting results show only a slight
change (because of the new location), in this case an improvement. However, as the optimization results
below show, the design is much improved, i.e. the objective value has increased whereas the approximate
constraint is active. Unfortunately, due to the poor fit of the Rigid_Wal l_Force, the simulation result
exceeds the force constraint by about 10kN (14%). Further reduction of the region of interest is required to
reduce the error, or filtering of the force can be considered to reduce the noise on this response.

DESIGN POINT

Variable Name Lower Bound Value Upper Bound
________________________________ I___________ —_—————e e
Radius 20 36.51 100
Wall_Thickness 2 4.478 6

|
|
Internal_Energy |
|
|

-129e+04 1.075e+04]| 1.129e+04 1.075e+04]

1
Rigid_Wall_Force 8.007e+04 7e+04] 8.007e+04 7e+04]

The table below gives a summary of the three iterations of the step-by-step procedure.
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Table 17-6: Comparison of results (Cylinder impact)

Variable Initial Iteration 1 Iteration 2 Iteration 3
Radius 75 50 42.43 36.51
Wall_thickness 3 2.978 3.728 4.478
Energy (Computed) | 12960 7914 9777 11290
Force (Computed) | 174900 47890 64170 80070

It is apparent that the result of the second iteration is a dramatic improvement on the starting design and a
good approximation to the converged optimum design.

17.3.5. Response filtering: using the peak force as a constraint

Because of the poor accuracy of the response surface fit for the rigid wall force above, it was decided to
modify the force constraint so that the peak filtered force is used instead. Therefore, the previous response
definition for Rigid_Wall_Force is replaced with a command that extracts the maximum rigid wall
force from a response from which frequencies exceeding 300Hz are excluded. The upper bound of the force
constraint is changed to 80000.

response ’Rigid _Wall_Force” "DynaASCIlI RWForc Normal 1 Max SAE 300"
20 iterations are specified with a 1% tolerance for convergence.

As expected, the response histories (Figure 17-50) show that the baseline design is severely infeasible (the
first peak force is about 1.75 x 10° vs. the constraint value of 0.08 x 10°. A steady reduction in the error of
the response surfaces is observed up to about iteration 5. The optimization terminates after 16 iterations,
having reached the 1% threshold for both objective and design variable changes.
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Optimization History Optimization History

For Response "Internal_Energy" For Response "Rigid_Wall_Force"
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Figure 17-50: Optimization history of automated design (filtered force)

The optimization process steadily reduces the infeasibility, but the force constraint is still slightly violated
when convergence is reached. The internal energy is significantly lower than previously:

DESIGN POINT

Variable Name Lower Bound Value Upper Bound
________________________________ | R | [
Radius 20 20.51 100
Wall_Thickness 2 4.342 6

| Scaled | Unscaled |

== ==
RESPONSE | Computed Predicted]| Computed Predicted]
________________________________ I__________ __________I__________ e
Internal_Energy | 8344 8645] 8344 8645]
Rigid_Wall_Force | 8.112e+04 8e+04] 8.112e+04 8e+04]
———————————————————————————————— R I e

Figure 17-51 below confirms that the final design is only slightly infeasible when the maximum filtered
force exceeds the specified limit for a short duration at around 9ms.

LS-OPT Version 5.0 345



CHAPTER 17: Examples — Optimization

©
o

[
o
.

-
o

[+2]
o
-

[3)]
o

S
[=]

Normal Force (E+3)
w
(=]

N
o

-
o

0 0.005 0.01 0.015

Time [sec]

Figure 17-51: Cylinder: Constrained rigid wall force: F(t) < 80000 (SAE 300Hz filtered)

17.4. Sheet-metal forming (3 variables)

A sheet-metal forming example in which the design involves thinning and FLD criteria is demonstrated in
this chapter. The example has the following features:

(0}

©O 0O 0O 0O o o

The maximum of all the design variables is minimized.

Adaptive meshing is used in the finite element analysis.

The binary LS-DYNA database is used.

The example employs the sheet metal forming interface utilities.
Composite functions are used.

An appended file containing extra input is used.

The example utilizes the independent parametric preprocessor, Truegrid™.

17.4.1. Problem statement

The design parameterization for the sheet metal forming example is shown in Figure 17-52.

! Registered Trademark of XYZ Scientific Applications Inc.
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Figure 17-52: Parameterization of cross-section

The FE model is shown in Figure 17-53.

Figure 17-53: Quarter segment of FE model: tools and blank

The design problem is formulated to minimize the maximum tool radius while also specifying an FLD
constraint and a maximum thickness reduction of 20% (thinning constraint). Since the user wants to enforce
the FLD and thinning constraints strictly, these constraints are defined as strict. To minimize the
maximum radius, a small upper bound for the radii has been specified (arbitrarily chosen as a number close
to the lower bound of the design space, namely 1.1). The optimization solver will then minimize the
maximum difference between the radii and their respective bounds. The radius constraints must not be
enforced strictly. This translates to the following mathematical formulation:
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Minimize e
with

15<r, <45
15<r,<45
15<r,<45

subject to

g™ (x)<0.0
At(X) < 20%

rn-11l<e
rn,-11<e
r,-1l<e

e>0.

The design variables ry, r, and r; are the radii of the work piece as indicated in Figure 17-52. At is the
thickness reduction which is positive when the thickness is reduced. The FLD constraint is feasible when
smaller than zero.

17.4.2. First Iteration

The initial run is a quadratic analysis designed as an initial investigation of the following issues:
0 The dependency of the through thickness strain constraint on the radii.
0 The dependency of the FLD constraint on the radii.
0 The location of the optimal design point.

The subregion considered for this study is 2.0 large in ry, r>and rs and is centered about (1.5, 1.5, 1.5)". The
FLD constraint formulation tested in this phase is based on the maximum perpendicular distance of a point
violating the FLD constraint to the FLD curve (see Section 6.3.2).

The LS-OPT command file used to run the problem is:

"Sheet: Minimization of Maximum Tool Radius"

Author "Aaron Spelling"

$ Created on Wed May 29 19:23:20 2002

$

$ DESIGN VARIABLES

$

variables 3

Variable "Radius_1" 1.5
Lower bound variable "Radius_ 1" 1
Upper bound variable "Radius_1" 4.5
Range "Radius_1" 4
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Variable "Radius 2" 1.5
Lower bound variable "Radius 2" 1
Upper bound variable "Radius_2" 4.5
Range "Radius_2" 4
Variable "Radius_3" 1.5
Lower bound variable "Radius 3" 1
Upper bound variable "Radius_3" 4.5
Range "Radius_3" 4
solvers 1
responses 2
$
$ NO HISTORIES ARE DEFINED
$
$
$ DEFINITION OF SOLVER "DYNAL1"
$
solver dyna "DYNAL1-*
solver command "lIsdyna"
solver input file "trugrdo™
solver append File ""ShellSetList"
prepro truegrid
prepro command "/net/src/ultra4_4/common/hp/tg2.1/tg"
prepro input file "m3.tg.opt"

$
$ RESPONSES FOR SOLVER "DYNA1"
$

response "Thinning® 1 O "DynaThick REDUCTION MAX"
response "Thinning® linear
response "FLD" 1 O "DynaFLDg CENTER 1 2 3 90"
response "FLD" linear
$
$ NO HISTORIES DEFINED FOR SOLVER ""DYNA1"
$
$
$ HISTORIES AND RESPONSES DEFINED BY EXPRESSIONS
$
composites 4
composite "Radl® type weighted
composite "Radl® variable "Radius_1" 1 scale 1
composite "Rad2" type weighted
composite "Rad2® variable "Radius_2" 1 scale 1
composite "Rad3" type weighted
composite "Rad3" variable "Radius_3" 1 scale 1
composite "Thinning_scaled® {Thinning/100}
$
$ NO OBJECTIVES DEFINED
$
objectives 0
$
$ CONSTRAINT DEFINITIONS
$
constraints 5
constraint "FLD"
strict
upper bound constraint *"FLD" 0.0
constraint “"Radl®
slack
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upper bound constraint "Radl® 1.1
constraint "Rad2*

upper bound constraint "Rad2® 1.1
constraint "Rad3-

upper bound constraint "Rad3" 1.1
constraint "Thinning_scaled”

strict

upper bound constraint *Thinning_scaled® 0.2

$ EXPERIMENTAL DESIGN

$
Order quadratic
Experimental design dopt
Basis experiment 3toK
Number experiment 16

$

$ JOB INFO

$
concurrent jobs 8
iterate param design 0.01
iterate param objective 0.01
iterate 1

STOP

The file Shel ISetList contains commands for LS-DYNA in addition to the preprocessor output. It is
slotted into the input file. Adaptive meshing is chosen as an analysis feature for the simulation. The FLD
curve data is also specified in this file. The extra commands are:

*DATABASE_BINARY_RUNRSF
70
*DATABASE_EXTENT_BINARY
0, 0, 0,1,0,0,0,1
0, 0, 0, 0, 0,0

$ SLIDING INTERFACE DEFINITIONS

L ZR A

$ TrueGrid Sliding Interface # 1
$

*CONTACT_FORMING_ONE_WAY_SURFACE_TO_SURFACE
$ workpiece vs punch
0.1000000 0.000 0.000
1 2 3 3 1

0.0

$
*CONTACT_FORMING_ONE_WAY_ SURFACE_TO_SURFACE
$ workpiece vs die
1 3 3 3 1

0.1000000 0.000 0.000
0.0

$
*CONTACT_FORMING_ONE_WAY_SURFACE_TO_SURFACE
$ workpiece vs blankholder
1 4 3 3
1 1
0.1000000 0.000 0.000
0.0

$
*CONTROL_ADAPTIVE
$ ADPFREQ  ADPTOL  ADPOPT  MAXLVL TBIRTH TDEATH LCADP I10FLAG

0.100E-03 5.000 2 3 0.000E+00 1.0000000 0 1
$ ADPSIZE  ADPASS IREFLG  ADPENE
0.0000000 1 0 3.0000
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*LOAD_RIGID_BODY

$ rbiID dir IclD scale
2 3 2 1.0000000

*LOAD_RIGID_BODY

$ rblD dir IcID scale
4 3 3 1.0000000

*DEFINE_CURVE
$ FLD curve
90

$
-1,2.083
0,.25
1,.75
*END

The input file (file m3.tg . opt) used to generate the FE mesh in Truegrid is:

c generate LS-DYNA input deck for sheet metal example

Isdyna keyword

Isdyopts endtim .0009 nodout 1.e-6 d3plot dtcycl .0001 ; ;

Isdyopts istupd 1 ;

c Isdymats 1 37 shell elfor bt rho 7.8e-9 e 2.e5 pr .28

c sigy 200. etan 572 er 1.4 ;

Isdymats 2 20 shell elfor bt rho 7.8e-9 e 2.e5 pr .28 shth .1
cmo con 4 7;

Isdymats 3 20 shell elfor bt rho 7.8e-9 e 2.e5 pr .28 shth .1
cmo con 7 7 ;

Isdymats 4 20 shell elfor bt rho 7.8e-9 e 2.e5 pr .28 shth .1
cmo con 4 7;

plane 2 00 01 0 0 .01 symm ;

plane 3 00 001 0 0.01 symm ;

c sid 1 Isdsi al0 slvmat 1;mstmat 2;scoef .1 ; ; ;

c sid 2 Isdsi al0 slvmat 1;mstmat 3;scoef .1 ; ; ;

c sid 3 Isdsi al0 slvmat 1;mstmat 4;scoef .1 ; ; ;

c
Icd 1
0.000000000E+00 0.275600006E+03
0.665699990E-04 0.276100006E+03
0.136500006E-03 0.276700012E+03
0.312799990E+00 0.481799988E+03
0.469900012E+00 0.517200012E+03
0.705600023E+00 0.555299988E+03
c
c die cross-section
para
c
rl <<Radius_1>> c upper radius minimum = 2.
r2 <<Radius_2>> c middle radius minimum = 2.
r3 <<Radius_3>> c lower radius minimum = 2.
load2 -100000
load3 -20000
thl 1.0 c thickness of blank
th3 .00 c thickness of die and punch
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th2 [1.001*%th1]

11 20 c length of draw (5-40)
c

z5 [%11-22]
c Position of workpiece

z4 [%z5+1.001*%th1/2.+%th3/2]
c Position of blankholder

z3 [%z4+1.001*%thl/2.+%th3/2]

nl [25+4.0*%11]

n2 [25+8.0*%11]
Cc part 2

z6 [%z5+4+%th2]

z7 [%z5+%11+4+%th2]
c
c die cross-section

c punch cross-section (closed configuration)
id 2
lod 1 [%th2+%th3]

c punch cross-section (withdrawn configuration)
Id 3 Istl 2 0 [%z5+26]

endpart

cylinder

1 8 35 40 67 76 [76+%nl1] [70+%n1+10]; 1 41 ; -1 ;
001 17. 23. 36. 44. 50. 75. 100.

0. 90.

%z7

thick %th3
mate 2
endpart

cylinder

110 ; 141 ; -1 ;

80. 100.

0. 90.

[%z3]
b00O0O00O0dx1dylrx1ry1lrz1;
thick %th3

mate 4

endpart
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C FxFFxAAxARX part 4 mat 1 workpiece
block

121 ;121 ; -1 ;
0. 100.

0. 100.

[%z4]

thick [%th1]

mate 1

endpart

merge

write

end

The error parameters for the fitted functions are given in the following output (from Isopt_output
file):

Approximating Response "Thinning® using 16 points (ITERATION 1)

Mean response value

RMS error

Maximum Residual

Average Error

Square Root PRESS Residual

27.8994

0.6657 (2.39%)
1.2932 (4.64%)
0.5860 (2.10%)
2.0126 (7.21%)

Variance 1.0130
RN2 0.9913
R™N2 (adjusted) 0.9826
R™2 (prediction) 0.9207
Determinant of [X]"[X] 2231.5965

(722 1 1 | A [ I VA VI |

Approximating Response "FLD" using 16 points (ITERATION 1)

Mean response value

RMS error

Maximum Residual

Average Error

Square Root PRESS Residual

0.0698

0.0121 (17.33%)
0.0247 (35.35%)
0.0103 (14.74%)
0.0332 (47.59%)

Variance 0.0003
RN2 0.9771
R"2 (adjusted) 0.9542
R"2 (prediction) 0.8272
Determinant of [X]"[X] 2231.5965

The thinning has a reasonably accurate response surface but the FLD approximation requires further
refinement. The initial design has the following response surface results which fail the criteria for maximum
thinning, but not for FLD:

DESIGN POINT

Variable Name Lower Bound Value Upper Bound
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Radius_1 1 1.5 4.5
Radius_2 1 1.5 4.5
Radius_3 1 1.5 4.5

CONSTRAINT NAME | Computed | Predicted| Lower | Upper |Viol?
________________________________ I__________ __________I__________ [P [P ——
FLD | 0.09123 0.1006] -1e+30 O] YES
Rad1 | 1.5 1.5] -1e+30 1.1]YES
Rad?2 | 1.5 1.5] -1e+30 1.1]YES
Rad3 1 1.5 1.5] -1e+30 1.1]YES
Thinning_scaled | 0.2957 0.3078] -1e+30 0.2]YES
|

] Computed Violation

|

| I
| Lower | Upper | Lower | Upper |

———————————————————————————————— R e I B

FLD | - 0.09123] - 0.1006]
Radl | - 0.4] - 0.4]
Rad2 | - 0.4] - 0.4]
Rad3 | - 0.4] - 0.4]
Thinning_scaled | - 0.09567] - 0.1078]

I I

As shown below, after 1 iteration, a feasible design is generated. The simulation response of the optimum is
closely approximated by the response surface.

DESIGN POINT

Variable Name Lower Bound Value Upper Bound
———————————————————————————————— R I B
Radius_1 1 3.006 4.5
Radius_2 1 3.006 4.5
Radius_3 1 3.006 4.5

CONSTRAINT NAME | Computed | Predicted] Lower | Upper |Viol?
———————————————————————————————— Rt I B Il
FLD ] -0.04308 -0.03841] -1le+30 Olno
Rad1l | 3.006 3.006] -1e+30 1.1]YES
Rad2 | 3.006 3.006] -1e+30 1.1]YES
Rad3 | 3.006 3.006] -1e+30 1.1]YES
Thinning_scaled | 0.2172 0.2] -1e+30 0.2]no
|

|
———————————————————————————————— R el I [
FLD | - - - - [
Radl | - 1.906] - 1.906]
Rad2 | - 1.906] - 1.906]
Rad3 | - 1.906| - 1.906]
Thinning_scaled | - 0.01718] - - |

|

17.4.3. Automated design

The optimization process can also be automated so that no user intervention is required. The starting design,
lower and upper bounds, and region of interest is modified from the 1 iteration study above.

The input file is modified as follows:
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The variable definitions are as follows:

Variable "Radius_ 1" 1.5
Lower bound variable "Radius_1" 1
Upper bound variable "Radius_1" 4.5
Range "Radius_ 1" 1

Variable "Radius 2" 1.5
Lower bound variable "Radius 2° 1
Upper bound variable "Radius_2" 4.5
Range "Radius 2" 1

Variable "Radius_3" 1.5
Lower bound variable "Radius 3" 1
Upper bound variable "Radius_3" 4.5
Range "Radius_3" 1

The number of D-optimal experiments is reduced because of the linear approximation used:

Order linear
Experimental design dopt
Basis experiment 3toK
Number experiment 7

The optimization is run for 10 iterations:
iterate 10

The optimization history is shown in Figure 17-54 for the design variables and responses:
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Optimization History
"Radius_2"

For Variable

Optimization History
"Radius_1"

For Variable
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Optimization History
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0.12

Optimization History
For Response "FLD"

0.1

0.08

0.06 —+

0.04 —

Response: FLD

0.02 —--

0.04 -

0.02 —-

1
1
P-4 mdmmmd e m A —— = === o
1
1
it el il Helitie e e afintie Baliilie Kt Bl

Number of Iterations

e) Optimization history of response FLD

Figure 17-54: Optimization history of design variables and responses (automated design)

The details of the 10" iteration have been extracted:

DESIGN POINT

Variable Name

Radius_1
Radius_2
Radius_3

Thinning
FLD

Lower Bound Value Upper Bound

1 2.653 4.5

1 2.286 4.5

1 2.004 4.5
|---------- |-------—-- |-------—--
| Scaled | Unscaled |
BT — | -mmmmm oo
| Computed Predicted] Computed Predicted]
— |- R I |
| 19.92 19.6] 19.92 19.6]
] -0.000843 -0.002907] -0.000843 -0.002907]
|

A comparison between the starting and the final values is tabulated below:
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Table 17-7: Comparison of results (Sheet-metal forming)

Variable Start (Computed) Optimal (Predicted) Optimal (Computed)
Thinning 29.57 19.92 19.6

FLD 0.09123 -0.000843 -0.002907

Radius_1 1.5 2.653

Radius_2 1.5 2.286

Radius_3 1.5 2.004

The FLD diagrams (Figure 17-55) for the baseline design and the optimum illustrate the improvement of the
FLD feasibility:

FLD-diagram FLD-diagram

Curve 90 —— Curve 90 ——

08 r 0.8 r

0.6 0.6

04 04 r

Major Strain
Major Strain

02 02 -

-02 ) ) ) 1 -0.2 1 ) ) )
-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1
Minor Strain Minor Strain
Baseline FLD diagram FLD diagram of 10" iteration

Figure 17-55: FLD diagrams of baseline and 10" iteration

A typical deformed state is depicted in Figure 17-56 below.
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Figure 17-56: Deformed state

17.5. Large vehicle crash and vibration (MDO/MOO) (7 variables)

This example has the following features:
0 LS-DYNA is used for both explicit full frontal crash and implicit NVH simulations.

o Multidisciplinary design optimization (MDO) and Multi-objective optimization (MOO) are
illustrated with a realistic full vehicle example.

o0 Extraction is performed using standard LS-DYNA interfaces.
o Complex mathematical response expressions are used.

This example illustrates a realistic application of Multidisciplinary Design Optimization (MDO) and
concerns the coupling of the crash performance of a large vehicle with one of its Noise Vibration and
Harshness (NVH) criteria, namely the torsional mode frequency [2].

17.5.1. FE Modeling

The crashworthiness simulation considers a model containing approximately 30,000 elements of a National
Highway Transportation and Safety Association (NHTSA) vehicle [3] undergoing a full frontal impact. A
modal analysis is performed on a so-called ‘body-in-white’ model containing approximately 18,000
elements. The crash model for the full vehicle is shown in Figure 17-57 for the undeformed and deformed
(time = 78ms) states, and with only the structural components affected by the design variables, both in the
undeformed and deformed (time = 72ms) states, in Figure 17-58. The NVH model is depicted in Figure
17-59 in the first torsion vibrational mode. Only body parts that are crucial to the vibrational mode shapes
are retained in this model. The design variables are all thicknesses or gages of structural components in the
engine compartment of the vehicle (Figure 17-58), parameterized directly in the LS-DYNA input file.
Twelve parts are affected, comprising aprons, rails, shotguns, cradle rails and the cradle cross member
(Figure 17-58). LS-DYNA v.971 is used for both the crash and NVH simulations, in explicit and implicit
modes respectively.
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(@) (b)

Shotgun outer

and inne‘ry

Inner and : '
outer rail Front cradle upper and
lower cross members

(b)

(a)

Figure 17-58: Structural components affected by design variables — a) Undeformed and (b) deformed
(time = 72ms)

““\\\\\“
SRR IWIELY
i \\\\3““\\\\\\\\
BIIR
AN
““}l‘“‘“\\\\\\\\“‘ b

A
-

Figure 17-59: Body-in-white model of vehicle in torsional vibration mode (38.7Hz)
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17.5.2. Design formulation

The formulation is as follows:

Minimize Mass
Minimize Maximum intrusion
subject to

Stage 1 pulse(Xcrash) > 14.51g
Stage 2 pulse(Xcrash) > 17.59¢
Stage 3 pulse(Xcrash) > 20.75¢g
41.38Hz < Torsional mode frequency(Xnvn) < 42.38Hz

The three stage pulses are calculated from the SAE filtered (60Hz) acceleration and displacement of a left
rear sill node in the following fashion:

d;
- J.adx X

2 "Y1 g

Stage i pulse =

k=2.0fori=1, 1.0 otherwise;

with the limits [dy;d,] =[0;184]; [184;334]; [334;Max(displacement)] for i=1,2,3 respectively, all
displacement units in mm and the minus sign to convert acceleration to deceleration. The Stage 1 pulse is
represented by a triangle with the peak value being the value used.

17.5.3. Multi-objective optimization using metamodel-based optimization

The MDO and MOO features are specified as follows:
0 MDO. The two disciplines (crash and NVH) are treated separately.

o0 MOO. Two design objectives (Intrusion and mass) are stated. The GA must be selected (in the
Algorithms panel of the Optimization dialog or in the Task dialog) as metamodel optimizer to obtain
the Pareto optimal front.

Figure 17-60 shows the LS-OPT main GUI window for a multi-disciplinary optimization using metamodels.

For the main task, select a metamodel-based optimization, Figure 17-61. Since Pareto Optimal solutions are
generated, make sure to use a global strategy. To get a good approximation of the whole design space,
choose a non-linear metamodel type, e.g. Radial Basis Functions, Figure 17-62. Since we use the sequential
strategy, the default number of points per iteration per case is appropriate.

The displacements and the acceleration for the crash load case may be evaluated using the standard LS-
DYNA interfaces, whereas more complex expressions are needed to calculate the stage pulses. The Lookup
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function may be used to get the value of t for a specified value of the selected history function, Figure
17-63. Then the stage pulses may be calculated using the Integral function, Figure 17-64.

For the NVH load case, the FREQUENCY interface may be used to extract the frequency and related

responses, Figure 17-65. Make sure that mode tracking is used.

E &+ ~

metamodel.rbf.straightsequential.30.it.Isopt - LS-OPT 5.0

Metarmodel-based optimization @ =

bk

Setup

7 parameters

S[EIE)
?

Finish
Verification Termination criteria
100 designs 30 iterations

|

]

Optimization
|r 2 objectives
|L 4 constraints

LE-DYNA

LS-DYNA
| 7 pars, 2 hists, 11 resps ‘

Sampling Samp
TFwars, 13 sp filling designs
.

P D Ty B

CRASH NVH
7 pars, 5 resps

= /’__.

W

3
Build Metamodels

—
B |
- d

16 rbf surfaces

'

i
Global Sensitivities
10000 points

L

Taurus Full Vehicle MOO : Crash and NVH (Max design - RSM)

Ken Craig

fhome/katharina/L5TCloptQA/USERSMANUAL EXS/TAURUS/MOO/metamoadel.rbf.straightsequential 30.itlsop

Figure 17-60: Main LS-OPT GUI; Metamodel based optimization; two disciplines.
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Main task
Metamodel-based

' Optimization

) DOE study

' Monte Carlo analysis

) RBEDO/Robust Parameter Design

Direct simulation
() Optimization

) Monte Carlo analysis

Create Pareto Optimal Front

Strategy for Metamodel-based Optimization
) Single Iteration

@ Seguential

1. Sampling points are added sequentially
in the full design space.
2. Suitable for global design exploration.

[ Global Sensitivities
Do verification run

Figure 17-61: Task dialog; Calculating Pareto Optimal solutions using a metamodel-base method using
sequential strategy.

i Sampling CRASH =
Sampling Metamodel Settings R P p———
Metamodel Pointselection
) Polynomial O Full Factorial
() Sensitivity () Latin Hypercube

' Feedforward Neural Network

) Space Filling
Radial Basis Function Network

) Space Filling of Pareto Frontier
) User-defined

Kriging

Support Vector Regression

Number of Simulation Points (per Iteration per Case
|\ User-defined (P i !

13 (default)

First iteration Linear D-Optimal

Include pts of Previous Iterations

| Set Advanced REF Options

Figure 17-62: Sampling dialog; use Radial Basis Functions to get a global approximation.
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‘m Edit response =)
Name Subcase Multipiler Offset
time_to_184 | l ‘ \ | 1 | o |

] Mot metamodel-linked

Function History

) Integral XDISP

() Derivative From time  To time
) Min [ l [

) Max
) Initial LEE
) Final 184
() TerminationTime

@ Lookup

) LookupMin

) LookupMax

" caneel | [ ox ]

Figure 17-63: Lookup function; evaluate the value of t for a specified value of the history XDISP

= Edit response |

Name Subcase Multipiler Offset

[InteqraI_D_184 l [ S | [n.-'a l [n.-'a l

] |Nﬂt metamudel-linked|

Expression

[IntegraII[")(ACCELIIt}I".D.time_tu_ls-'l.")(DISF’IIt}I"}I l

Figure 17-64: Response Expression; The stage pulses are calculated using the Integral function.
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Name Subcase Multipiler Offset
Frequency l l 1 | [D |

[ Not metamodel-linked

Baseline Mode Nurmber

2

Modal Output Option
@ Freguency of Mode
() New Mode Number

() Modal Assurance Criterion

Mode Tracking Status

@ On

) Off

Cancel | [ [8] 4

Figure 17-65: Frequency extraction with Mode Tracking

Define the objective and constraint functions in the Optimization dialog. For the objectives, make sure that
the multi-objective mode is selected, Figure 17-66.

BT Optimization @
Objectives | Constraints | Algerithms

[[] Maximize the Objective Function (instead of minimize)

Create Pareto Optimal Front (Multi-Objective Mode)

Objective components: Add new
Response/Composite Responses ~
_ Disp
x Mass_scaled tirme to 184
time_to_334

x Disp_scaled time_to_max

Integral_0_184
Integral_184 334
Integral_334_max

Figure 17-66: Objectives panel; Select Multi-Objective Mode to create Pareto Optimal Front

The constraints are scaled using the target values to balance the violations of the different constraints,
Figure 17-67. This scaling is activated using a single check box and is only important in cases where
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multiple constraints are violated as in the current problem. However, it is a good idea to apply scaling of
constraints as a rule.

nd ‘Optimization [

Objectives | Censtraints | Algorithms

Constraint scaling

Optimization constraints: Add new
Response Lower Bound Strict Divisor Upper Bound  Strict Divisor Responses
x StagelPulse x | 14.512408| O | ld.SletdefauIt)| Set upper bound time to 184
. : . o time_to_334
% Stage2Pulse x | 1}'.586303| O | 17.5863 Edefault)| Set upper bound time to max
, . , .- Integral_0_184
% Stage3Pulse x | 20.?45213| O | 20.7452 Edefault)| Set upper bound
\ / \ ). Integral_184 334
( ) ( v ) ( 7 Integral_334_max
= Frequency x | 41384691 [0 | 41.3847 (default)| = | 42381509| [ [ 423815 (default)|

Disp_scaled

G

Figure 17-67: Constraints panel; Constraints are scaled using the target values. This is the default.

Since the Pareto Optimal solutions are calculated on the metamodel, 100 verification runs are executed after
the last iteration to check the quality of the results, Figure 17-68.

Cad Verification Run [3)
Number of Verification Runs

|:1ElD (default is 1) |

Figure 17-68: Verification Run; 100 verification runs are performed using results of the Pareto Optimal
Front

Results

The LS-OPT viewer provides several tools to visualize Pareto Optimal solutions. Since this example has
two objective functions, the Pareto optimal front obtained for the two cases can be displayed using the
tradeoff plot, Figure 17-69. On the left, the Pareto Optimal solutions obtained from the metamodel are
displayed while the plot on the right visualizes the verification runs. Some of the verification runs are
infeasible due to the approximation error of the metamodel. Figure 17-70 shows the verification runs color-
coded by the maximal constraint violation. For most of the simulations, the violation is almost 0, the highest
constraint violation is 0.03, which is fairly small.

Figure 17-71 show the Self-Organizing maps plot (predicted) for the objective functions, the constraints and
the variables. The conflict of the objectives is clearly visible (a blue cell in “Mass_scaled” corresponds to a
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red cell in “Disp_scaled” and vice versa). The corresponding ranges and influences of the variables can also
be examined.

Figure 17-72 displays the Parallel Coordinate Plot of the predicted Pareto optimal solutions and the
verification runs. This plot is useful to select a run from the various Pareto optimal solutions that best fits
the requirements of the application. Using sliders located at the top and bottom of each vertical axis, the
bounds of the constraints and the ranges of all entities can be interactively modified to narrow down the set
of suitable solutions.

Scatter Plot
Objective "Mass_scaled" vs. Objective "Disp_scaled"

Scatter Plot
Objective "Mass_scaled" vs. Objective "Disp_scaled"

(Results of Iteration 30)

(Results of Iteration 31)

I e BFeasible
% DI:I. BInfeasible
0.98 E 0.98 g
0.96 % 0.96—m
0.94 0.94 ﬁ‘fh
'
0.92 0.92 r—ﬂ.
i 3 |
[1=] [
gl 0.9 5 H‘ 0.9
g g LY
a 0.88 k a 0.88
.\ T
0.86 0.86
0.84 0.84 —‘?—L.,JEEE
0.82 0.82 B
1.2 1.4 a2 1.4
Mass_scaled Mass_scaled

Figure 17-69: Pareto optimal front. Comparison of predicted results (left) and verification runs (right)

Scatter Plot

Objective "Mass_scaled" vs. Objective "Disp_scaled”
(Results of Iteration 31)

I 0.0276
(1]
| |
0.98 u‘ 0.0249
0.96 0.0221
0-94‘4‘ 0.0194
=
0.92
3 L'. m 0.0166
[} I
] 09 ' 00138 2
0 "l ]
=} 0.88
o 0.0111
0.86
0.00829
0.84
0.00553
0.82
0.00276
1.2 1.4
Mass_scaled 0

Figure 17-70: Verification runs color-coded by maximal constraint violation.
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Frequency_scaled StagelPulse_scaled Stage2Pulse_scaled Stage3Pulse_scaled
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Figure 17-72: Parallel Coordinate Plot; Predicted Pareto Optimal solutions (top) and verification runs
(bottom)

17.5.4. Multi-objective optimization using Direct GA simulation

Next, the problem is solved using direct GA simulations, Figure 17-73. The GA options used are displayed
in Figure 17-74. The NSGA-II algorithm (MOEA) was used. Tournament selection operator (Selection
Operator), with a tournament size of four (Tournament Size), was used to remove individuals with low
fitness values. The simulated binary crossover (Crossover Type) and mutation operators were used to create
child populations. The trade-off files were generated at each generation (Restart Interval).
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LT o)

&

Main task

Metamodel-based

() Optimization

() DOE study

) Monte Carlo analysis

) RBDO/Robust Parameter Design

Direct simulation
(@ Optimization

() Monte Carlo analysis

Create Pareto Optimal Front

Figure 17-73: Task dialog; Direct genetic algorithm

b

B

Objectives | Constraints | Algorithms

Optimization Algorithm Algorithm Subtype

Selection Operator Crossover Type Mutation Distribution

| nsGA

-
w

3| | Tournament 3| | SBX

| 100 (default)

@ |GA

Constraint Handling

Tournament Size  Crossover Distribution ~ Mutation Probability

| Deb ECH

2 | [4 (default is 2) ] [10 (default)

Population Size

[160 (default 1s 30)

Nurmber of Elites

] 0.142857 (default)
Crossover Probability

] Restart Interval

[1 (default)

l [2 (default) l [1.0 (default) ]

Number of Generations

[75 (default is 100) |

Max Repeat Optimum/Generations

[0.133333 (default

is 0.1) |

Termination Criterion

() Maximum Functions/Generations
() Fixed Consolidation Ratio

(O Consolidation Ratio Change

@ Hypervolume Change

Normalized Hypervolume Change Threshold

[0.0001 (default) |

Generation Gap

[10 (default) ]

Reset Default5|

Figure 17-74: Options for Genetic Algorithm

Results

The optimization results are displayed in the following figures.

Since this example has two objective functions,
displayed using the tradeoff plot, Figure 17-75.

the Pareto optimal front obtained for the two cases can be
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Figure 17-76 shows the Self-Organizing maps plot for the objective functions, the constraints and the
variables. As in the metamodel-based optimization, the conflict of the objectives is again clearly visible
while the ranges and influences of the variables can be examined.

Figure 17-77 displays the Parallel Coordinate Plot of the Pareto optimal solutions. This plot is useful to
select a run out of the various Pareto optimal solutions that best fits the requirements of the application. As
in the metamodel-based optimization, sliders located at the top and bottom of each vertical axis can be

interactively adjusted to modify the bounds of the constraints and the ranges of all entities. This allows the
user to narrow down the set of suitable solutions.

Tradeoff Plot
Objective "Mass_scaled" vs. Objective "Disp_scaled”
(Results of Iteration 75)

0.98
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Figure 17-75: Tradeoffs between scaled mass and intrusion (displacement).
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Figure 17-77: Parallel coordinate plot of Pareto optimal solutions; results of last generation

Trade-off between the two objectives shows that intrusion can be reduced by increasing the mass. The trade-
off curve clearly illustrates that reduction in intrusion (from 0.81 to 0.988) will require a corresponding
increase in mass (from 0.861 to 1.506). The ranges of the optimal design variables corresponding to the
candidate Pareto optimal front are given in Table 17-8.
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Table 17-8: Ranges of design variables in the final optimal solution set.

Variable Lower Upper
Rail inner 2.27 3.01
Rail outer 0.97 3.04
Aprons 0.97 2.32
Shotgun inner 0.97 2.47
Shotgun outer 1.44 2.40
Cradle cross member 1.00 1.09
Cradle rails 0.96 3.04

17.6. Knee impact with variable screening (11 variables)

(Example by courtesy of Visteon and Ford Motor Company)

This example has the following new features:
0 A sequential optimization is done using a constant region of interest
0 An independent parametric preprocessor is used

0 The minimum of two maxima is obtained in the objective (multi-criteria or multi-objective problem).
The LFOPC metamodel optimization algorithm (the default algorithm) is used for this purpose.

0 A pre-processor is used for shape parameterization.

17.6.1. FE modeling

Figure 17-78 shows the finite element model of a typical automotive instrument panel (IP) [4]. For model
simplification and reduced per-iteration computational times, only the driver's side of the IP is used in the
analysis, and consists of around 25,000 shell elements. Symmetry boundary conditions are assumed at the
centerline, and to simulate a bench component "Bendix" test, body attachments are assumed fixed in all 6
directions. Also shown in Figure 17-78 are simplified knee forms which move in a direction as determined
from prior physical tests. As shown in the figure, this system is composed of a knee bolster (steel, plastic or
both) that also serves as a steering column cover with a styled surface, and two energy absorption (EA)
brackets (usually steel) attached to the cross vehicle IP structure. The brackets absorb a significant portion
of the lower torso energy of the occupant by deforming appropriately. Sometimes, a steering column
isolator (also known as a yoke) may be used as part of the knee bolster system to delay the wrap-around of
the knees around the steering column. The last three components are non-visible and hence their shape can
be optimized. The 11 design variables are shown in Figure 17-79. The three gauges and the yoke cross-
sectional radius are also considered in a separate sizing (4 variable) optimization.
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Figure 17-79: Typical major components of a knee bolster system and definition of design variables.

The simulation is carried out for a 40 ms duration by which time the knees have been brought to rest. It
may be mentioned here that the Bendix component test is used mainly for knee bolster system development;
for certification purposes, a different physical test representative of the full vehicle is performed. Since the
simulation used herein is at a subsystem level, the results reported here may be used mainly for illustration
purposes.
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17.6.2. Design formulation

The optimization problem is defined as follows:

Minimize ( max (Knee_Force_Left, Knee_Force_Right) )

Subject to

Left Knee intrusion < 115mm

Right Knee intrusion < 115mm

Yoke displacement < 85mm

Kinetic Energy

< 1.54e5

Minimization over both knee forces is achieved by constraining them to impossibly low values. The LFOPC
optimization algorithm must be selected since it will therefore always try to minimize the maximum knee
force. The constraints other than the knee forces need to be set to “strict” so that if violations occur, only the
knee forces will be violated. The “Constraints” panel of the GUI is shown below.

File View Task Help

Info | Strategy| Solvers‘ Dist‘ Variables| Sampling ‘ Histories| Responses| Objective Constraints| Algorithms| Run | Viewer| DYNA Stats‘

Response Lower Bound

Upper Bound

L Knee Force |

R_Knee_Force |

| R_Knee_Disp |—inf
| L Knee Disp [-inf
| Yoke_Disp [-inf
| Kinetic_Energy [-inf

Mass |

MaxForce |

Intrusion |

[0 Strict
[J Strict
O Strict
[ Strict

’17 Strict
’17 Strict
’17 Strict
’17 Strict

[0 Move
[J Move
[0 Move
[0 Move

1. Create the Response definitions (Responses Tab).
2. Select Responses to use as Constraints.
3. Enter the Constraint Bounds.

Figure 17-80: Constraints for the knee bolster design problem.

The knee forces have been filtered, SAE 60 Hz, to improve the approximation accuracy.
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17.6.3. Input preparation

Truegrid is used to parameterize the geometry. The section of the Truegrid input file (s7.tg) where the
design variables are substituted, is shown below:

para
wl <<L Flange Width>> C
w2 <<R_Flange_Width>> c
thickl <<L_Bracket_Gauge>>
thick2 <<R_Bracket_Gauge>>
thick3 <<Bolster_gauge>> c
fl <<T_Flange_Depth>> c
2 <<F_Flange_Depth>> c
3 <<B_Flange_Depth>> c
f4 <<Il_Flange _Width>> C

Left EA flange width
Right EA flange width
c Left bracket gauge
c Right bracket gauge
Knee bolster gauge
Left EA Depth Top
Left EA Depth Front
Left EA Depth Bottom
Left EA Inner Flange Width

rl1 <<Yoke_ Radius>> c Yoke bar radius

r2 <<R_Bracket Radius>> c

Oblong hole radius

The LS-OPT input file is shown below for the 11-variable shape optimization case:
S995E33599835I90EITTIEEITIIFEITIIIFIIIIIIEITIIH5355S

Command file "com

seq”’
B R R R R R R S R S R R R S S S SR S SR SR SR SR SR SR SR SR SR SR SR SR SR SR SR SR SR SR SRR SR SRR )

$ Generated using LS-OPT Version 4.1
$
"Knee impact with 11 variables"

$ Created on Fri Jan 8 16:39:08 2010
solvers 1

responses 7

$

$ NO HISTORIES ARE DEFINED
$

$
$ DESIGN VARIABLES
$

variables 11
Variable "L_Bracket Gauge®™ 1.1
Lower bound variable "L_Bracket_Gauge"
Upper bound variable "L_Bracket_Gauge-”
Variable "T_Flange Depth” 28.3
Lower bound variable *"T_Flange Depth*
Upper bound variable "T_Flange_Depth*
Variable "F_Flange_Depth® 27.5
Lower bound variable "F_Flange Depth*
Upper bound variable "F_Flange_Depth*
Variable "B_Flange_Depth® 22.3
Lower bound variable "B _Flange Depth*
Upper bound variable "B_Flange_Depth*
Variable "I1_Flange_Width*® 7.
Lower bound variable "1_Flange Width*
Upper bound variable "I1_Flange_Width*®
Variable "L_Flange_Width® 32.
Lower bound variable "L_Flange_Width*®
Upper bound variable "L_Flange_Width*®
Variable "R_Bracket Gauge 1.1

Lower bound variable "R_Bracket_Gauge"
Upper bound variable "R_Bracket_Gauge®

Variable "R_Flange Width" 32.
Lower bound variable *"R_Flange Width*
Upper bound variable "R_Flange_Width*®
Variable "R_Bracket_Radius® 15.

Lower bound variable "R_Bracket_Radius”

.7
3.

20.
50.

20.
50.

15.
50.

5.
25.

20.
50.

.7
3.

20.
50.

10.

Upper bound variable "R_Bracket Radius® 25.

Variable "Bolster_gauge® 3.5
Lower bound variable "Bolster_gauge®

Upper bound variable "Bolster_gauge” 6.

Variable "Yolk_Radius®™ 4.
Lower bound variable "Yolk_Radius® 2.
Upper bound variable "Yolk_Radius® 8.

PESEISESTISTISTS PSS SESS
$ OPTIMIZATION METHOD
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g$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
Optimization Method SRSM

2$$$$$$gg$$$$$$$$$$$$$$$$$$$$$$$
LVER "1"
g$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$

$ DEFINITION OF SOLVER "1™
$

solver dyna960 "1*
solver
solver
solver
solver

input file "ford7.k"
check output off
compress d3plot off
Pre-processor
truegrid
command "'sleep 90;cp ../../curves .;
input file "s7.tg"

Post-processor
$ NO POSTPROCESSOR SPECIFIED
Metamodeling
solver order RBF
solver RBF transfer Gauss

solver RBF optimize GCV

solver experiment design space_filling
solver number experiments 21

solver update doe

solver alternate experiment 1
Job information
solver concurrent jobs 0
solver queue pbs

prepro truegrid
prepro
prepro

cp

+

$
$ RESPONSES FOR SOLVER "1™
$
response "L_Knee_Force® 0.000153846 0O *"BinoutResponse
1 -side MASTER -select MAX -start_time 0.0000 -filter
response "R_Knee_Force" 0.000153846 0 "‘BinoutResponse
2 -side MASTER -select MAX -start_time 0.0000 -filter

response "L_Knee_Disp® 0.00869565 0 "BinoutResponse -res_type Nodout

MAGNITUDE -id 24897 -select MAX -start_time 0.0000"

response "R_Knee_Disp” 0.00869565 0 "BinoutResponse -res_type Nodout

MAGNITUDE -id 25337 -select MAX -start_time 0.0000"

response "Yoke Disp" 0.0117647 0O "BinoutResponse -res_t