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PREFACE TO VERSION 1 
LS-OPT originated in 1995 from research done within the Department of Mechanical Engineering, 
University of Pretoria, South Africa. The original development was done in collaboration with colleagues in 
the Department of Aerospace Engineering, Mechanics and Engineering Science at the University of Florida 
in Gainesville. 
 
Much of the later development at LSTC was influenced by industrial partners, particularly in the automotive 
industry. Thanks are due to these partners for their cooperation and also for providing access to high-end 
computing hardware. 
 
At LSTC, the author wishes to give special thanks to colleague and co-developer Dr. Trent Eggleston. 
Thanks are due to Mr. Mike Burger for setting up the examples. 
 
Nielen Stander 
Livermore, CA 
August, 1999 
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PREFACE TO VERSION 2 
Version 2 of LS-OPT evolved from Version 1 and differs in many significant regards. These can be 
summarized as follows: 
 

1. The addition of a mathematical library of expressions for composite functions. 
2. The addition of variable screening through the analysis of variance. 
3. The expansion of the multidisciplinary design optimization capability of LS-OPT. 
4. The expansion of the set of point selection schemes available to the user. 
5. The interface to the LS-DYNA binary database. 
6. Additional features to facilitate the distribution of simulation runs on a network. 
7. The addition of Neural Nets and Kriging as metamodeling techniques. 
8. Probabilistic modeling and Monte Carlo simulation. A sequential search method. 

 
As in the past, these developments have been influenced by industrial partners, particularly in the 
automotive industry. Several developments were also contributed by Nely Fedorova and Serge Terekhoff of 
SFTI. Invaluable research contributions have been made by Professor Larsgunnar Nilsson and his group in 
the Mechanical Engineering Department at Linköping University, Sweden and by Professor Ken Craig’s 
group in the Department of Mechanical Engineering at the University of Pretoria, South Africa. The authors 
also wish to give special thanks to Mike Burger at LSTC for setting up further examples for Version 2.  
 
Nielen Stander, Ken Craig, Trent Eggleston and Willem Roux 
Livermore, CA 
January, 2003 
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PREFACE TO VERSION 3 
The development of LS-OPT has continued with an emphasis on the integration with LS-DYNA and LS-
PREPOST and differs from the previous version in the following significant regards: 
 

1. LS-OPT is now available for Microsoft Windows. 
2. Commands have been added to simplify parameter identification using continuous curves of 

measured data. 
3. Stochastic fields have been added to LS-DYNA (Version 971) to provide the capability of modeling 

geometric and shell thickness variability. 
4. Extended visualization of statistical quantities based on multiple runs were implemented by further 

integrating LS-PREPOST. 
5. An internal d3plot interface was developed. 
6. Reliability-Based Design Optimization (RBDO) is now possible using the probability of failure in 

the design constraints. 
7. Neural network committees were introduced as a means to quantify and generalize response 

variability. 
8. Mixed discrete-continuous optimization is now possible. 
9. Parameter identification is enhanced by providing the necessary graphical pre- and postprocessing 

features. Confidence intervals are introduced to quantify the uncertainty of the optimal parameters. 
10. The importation of user-defined sampling schemes has been refined. 
11. Matrix operations have been introduced. 
12. Data extraction can be done by specifying a coordinate (as an alternative to a node, element or part) 

to identify the spatial location. The coordinate can be referred to a selected state. 
13. A simple feature is provided to gather and compress the database for portability. 
14. A utility is provide to both reduce the d3plot file sizes by deleting results and to transform the d3plot 

results to a moving coordinate system. 
15. Checking of LS-DYNA keyword files is introduced as a means to avoid common output request 

problems. 
16. Statistical distributions can be plotted in the distribution panel in the GUI. 
17. A feature is introduced to retry aborted runs on queuing systems. 
18. 3-Dimensional point plotting of results is introduced as an enhancement of metamodel plotting. 
19. Radial basis function networks as surrogate models. 
20. Multi-objective optimization for converging to the Pareto optimal front (direct & metamodel-based). 
21. Robust parameter (Taguchi) design is supported. The variation of a response can be used as an 

objective or a constraint in the optimization process. 
22. Mapping of results to the FE mesh of the base design: the results are considered at fixed coordinates. 

These capabilities allow the viewing of metalforming robustness measures in LS-PREPOST. 
23. The ANSA morpher is supported as a preprocessor. 
24. The truncated normal distribution is supported. 
25. Extra input files can be provided for variable parsing. 
26. A library-based user-defined metamodel is supported. 
27. User-defined analysis results can be imported. 
28. PRESS predictions can be plotted as a function of the computed values. 
29. The DynaStats panel has been redesigned completely (Version 3.4) 
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30. Strategies for metamodel-based optimization are provided as GUI options 
31. An algorithm panel has been added for setting optimization algorithm parameters. 
32. User-defined sampling points can be evaluated using an existing metamodel. 
33. The Adaptive Simulated Annealing algorithm has been added as a core optimization solver. Hybrid 

algorithms such as the Hybrid SA and Hybrid GA have also been added. 
34. Kriging has been updated and accelerated. 
35. Enhancements were made to the Accuracy selection in the viewer by allowing color-coded point 

attributes such as feasibility and iteration number. 
36. The Tradeoff selection has also been enhanced by converting it to a 3-D application with color 

coding for the 4th dimension as well as color status of points for feasibility and iteration number. 
 
As in the past, these developments were strongly influenced by industrial partners, particularly in the 
automotive industry. LS-OPT is also being applied, among others, in metal forming and the identification of 
system and material parameters.  
In addition to long-time participants: Professor Larsgunnar Nilsson (Mechanical Engineering Department, 
Linköping University, Sweden), significant contributions have been made by Dr. Daniel Hilding, Mr. David 
Björkevik and Mr. Christoffer Belestam of Engineering Research AB (Linköping) as well as Dr.-Ing. Heiner 
Müllerschön, Dipl.-Ing. Marko Thiele and Dipl.-Math. Katharina Witowski of DYNAmore GmbH, 
Stuttgart, Germany. 
 
Nielen Stander, Willem Roux and Tushar Goel 
Livermore, CA 
January, 2009 
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PREFACE TO VERSION 4 
The development of LS-OPT has continued with an emphasis on the integration with LS-DYNA and LS-
PREPOST. The main focus of Version 4 has been the development of a new graphical postprocessor as well 
as the improvement of the job scheduling system, especially with regard to scheduling on computer clusters. 
The following features have been added: 
 
Version 4.0: 

1. The Viewer has been redesigned completely to accommodate a multi-window format using a split-
window and detachable window feature. 

2. The Correlation matrix for simulation variables and results has been added.  
3. For visualizing the Pareto Optimal Frontier, Hyper-Radial Visualization and Parallel Coordinate 

plots have been added to the more traditional scatter plot.  Multiple points can be selected to create a 
table of response values. Point highlighting is cross-connected between plot types. 

4. An interface for the METAPost postprocessor has been added. 
5. Topology optimization LS-OPT®/Topology has been added as a separate module. Please refer to the 

LS-OPT/Topology User's Manual. 
6. Many of the features such as the Reliability-Based Design Optimization have been significantly 

accelerated. 
7. The Blackbox queuing system has been streamlined in terms of providing better diagnostics and a 

special queuing system Honda has been added. 
8. The NASTRAN®  interface for frequency extraction and mode tracking has been added. 
 

Version 4.1: 
9. Discrete sampling can be done on a variable by variable basis for most sampling schemes including 

D-Optimality, Space Filling and Full Factorial. 
10. The Space Filling algorithm has been improved for accuracy and speed. 
11. Job scheduling has been significantly improved. Environment variables can be exported through 

queuing systems. 
12. Job data is displayed on the run progress bars with a selection to view the solver log file at any stage 

of the run.  
13. Three injury criteria: a3ms, Chest Compression and Viscous Criterion have been added. 
14. SPH, DBBEMAC and NODFOR groups have been added to the LS-DYNA response interface. 
15. GenEx, the LS-OPT Generic Extractor provides features for extracting entities from text files. This 

allows LS-OPT to be used with any solver code that produces a text database. 
16. Responses can be linked to LS-DYNA cases (*CASE keyword). 
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17. In addition to polynomials, Radial Basis Functions can now be used for parameter identification. 
18. The following features have been added to the Viewer: Self-Organizing Maps (for multi-objective 

optimization), two-dimensional interpolation matrix using metamodels, global sensitivities (Sobol), 
Computed (simulation) and Predicted (metamodel) histories, Parallel Coordinate plot for simulation 
results. 

19. Experiments can be replicated for stochastic fields. Improvements have been made to Stochastic 
Fields (*PERTURBATION) in LS-DYNA. Special coordinate systems have been added. 
*PERTURBATION_MATERIAL has been added for MAT24. 

20. To avoid synchronization errors, the Experiments and AnalysisResults databases have been 
converted to self-contained .csv files. 

21. The Run page has been rationalized. Clean start options are now available for all tasks. 
22. A selected subset of Pareto optimal points can be exported to a standard format. The file can be used 

to schedule the points as simulations. 
Version 4.2: 

23. The algorithm for constrained experimental design has been greatly improved. An optimization 
algorithm was introduced to locate design points within specified constraint bounds. 

24. LSTCVM has been added as a Secure Proxy Server for distributing solver jobs across a computer 
cluster. Running LS-OPT on a Windows machine controlling solver jobs on a Linux cluster is now 
possible. 

25. Individual jobs can be stopped using LSKILLJOB from the LS-OPT GUI. This feature has been 
implemented to kill lagging jobs which tend to hold up the entire optimization run. Accelerated job 
killing is provided as an option. A job can also be flagged for restart. LSTCVM and LSKILLJOB 
combined with LSCHEDULER and other auxiliary programs provide a sophisticated job distribution 
system. 

26. More injury criteria are now available, namely MOC, NNIC, NIC, Nkm, LNLI, TTI and TI. A 3-
node version of the injury criterion Clip3m has been added. 

27. Kinematics for NODOUT-based responses and histories. Includes the calculation of deformation and 
distance in global, local and local-in-reference-frame coordinate systems. 

28. DBFSI (fluid structure interaction) is available in the history and response interfaces. 
29. Curve Mapping has been added to improve the curve matching metric for material identification, 

especially for hysteretic curves, curves with steep sections and cases where only partial test data is 
available. A newly developed Partial Curve Mapping algorithm is used. 

30. Metamodel prediction accuracy based on PRESS error has been added as a stopping criterion for the 
Sequential Response Surface Method (SRSM). 

31. Automatic internal constraint scaling based on the constraint bounds has been added to the GUI. 
This feature ensures that constraint violations are treated equally irrespective of their magnitudes. 

32. The Dominated Hypervolume method as a stopping criterion for multi-objective optimization 
methods (GA). Crowding Distance and Spread of the Pareto Optimal Front can be monitored 
graphically. 
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33. Self-Organizing Maps is available to visualize simulation results. 
34. Refinements have been made to the 2D Metamodel Cross-Section display by adding simulation 

points. The History display was improved by allowing the selection and display of multiple histories. 
There is stronger unification amongst the different types of displays. 

35. LS-OPT database archiving has been expanded to include extra files such as solver input files. 
36. Histories have been added to the GenEx (generic extraction) result extraction feature. In the past, 

only responses could be extracted. 
37. The input file environment can be used to store include files. LS-OPT will in this case automatically 

be able to parse and transmit the files (e.g. to a cluster). 
38. A derivative history function has been added to compute the derivative of a time history, e.g. 

acceleration from velocity. 
39. A general filtering feature for time histories has been added. Filtering has been available for LS-

DYNA-extracted data, but can now be applied to any time history, also those produced using 
expressions or generic extraction. 

Version 4.3 
40. The MAC criterion replaces the Generalized Mass criterion for mode tracking (merged to Version 

4.2). An option to turn off mode tracking was added. 
41. Mode tracking is supported for all versions of LS-DYNA, including LS-DYNA MPP (merged to 

Version 4.2). 
42. Sampling of the Pareto Optimal Front as a sampling option. A Space Filling algorithm, to maximize 

the distance between any two points in the design space, is used. 
43. Option for selecting the number of verification runs for the trade-off curve of multi-objective 

optimization. Space Filling sampling is done to obtain a well-distributed trade-off set. 
44. Head injury criterion (HIC) using three nodes for the different coordinate directions. 
45. Support Vector Regression introduced as a metamodeling type. 
46. User-defined postprocessor option. 0. 

 
The automotive and other industries have again made significant contributions to the development of new 
features in LS-OPT. In addition to long-time participant Professor Larsgunnar Nilsson (Mechanical 
Engineering Department, Linköping University, Sweden), Dr. Daniel Hilding, Mr. David Björkevik and Mr. 
Christoffer Belestam of Engineering Research AB (Linköping) as well as Dr.-Ing. Heiner Müllerschön and 
Dipl.-Math. Katharina Witowski of DYNAmore GmbH, Stuttgart, Germany have made major contributions 
as developers. Dr. Trent Eggleston has recently created LSTCVM and LSKILLJOB and, while working 
with customers, has made vast improvements to solver job scheduling via queuing systems. 
 

Nielen Stander and Anirban Basudhar 
Livermore, CA 

August, 2012 
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PREFACE TO VERSION 5 
The development of LS-OPT has continued with an emphasis on the integration with LS-DYNA. The main 
focus of Version 5 has been the development of a new graphical pre-processor to accommodate design 
processes, in which the design stages are dependent on one another, as well as the improvement of the job 
scheduling system to enable handling of job dependencies. Transparency of the job scheduling process has 
also been improved. The following features have been added: 
 
Version 5.0: 

1. A process consisting of a chain of dependent stages can be analyzed. The process can be defined in 
the form of a flow chart which can merge and branch. Solver stages have been added as a new 
concept and building block for defining a flow chart. 

2. File operations such as deleting and copying between dependent stages are available.   
3. GUI features have been added to easily identify sources of design parameters. 
4. Job monitoring has been enhanced by allowing progress visualization on a stage-by-stage basis. Any 

run directory can be viewed. 
5. Resource definitions have been added to enhance the concurrent job submission capability. 
6. Variables can be de-activated arbitrarily using a table of checkboxes. This avoids the necessity for 

changing variables to constants. 
7. New metal forming failure criteria. 
8. String variables. These variables allow the definition of discrete variables sets with names as might 

be used for include file names. GUI support is provided. 
9. The recovery of databases from remote servers has been added as a GUI feature. 
10. A sorting feature has been added to the Correlation Matrix in the Viewer. The cross-correlations for 

any entity can be sorted. 0. 
 
Version 5.1: 

1. Multilevel optimization. An LS-OPT solver type can be selected to allow the nesting of any LS-OPT 
task. 

2. Parallel Feedforward Neural Networks. This feature allows the concurrent building of multiple 
networks and network ensemble components. FFNN building can also be done remotely, e.g. on a 
cluster. Job monitoring is provided in the GUI. 

3. Significant enhancements have been made to histogram displays in the Viewer. Manual axis control 
is allowed while statistical quantities such as mean and standard deviation as well as constraints are 
depicted. Histogram types have been added. 

4. Subregion-based sensitivity analysis is available using Sobol indices. Multiple subregions can be 
analyzed in the same run and stored for display. Global Sensitivity Analysis can now be activated 
from the GSA icon (as a post-processing function). 
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5. Design categories can be specified for user-selected simulation points. Name, color and type 
attributes can be chosen for each category display. Responses and histories are supported. 

6. Excel is now supported as a solver type on Windows. 
7. A new third party Finite Element solver is now supported. The support includes parameter 

(*PARAMETER) recognition using recursive include files during the problem setup phase. 
8. De-activation of variables in iterative methods. The user can seamlessly deactivate variables at any 

stage of the iterative process. This is useful when performing other tasks such as optimization after 
variable screening. 

9. Metamodel formulae for polynomials and Radial Basis Function Networks can be exported. 
10. Multiple plots are allowed in optimization history displays. All the available entities such as 

variables, responses, etc. can be displayed on the same plot. 
11. Differential Evolution was added as a global metamodel optimizer (unconstrained continuous 

problems only). 
12. Responses and/or histories can be cloned (Stage dialog in GUI). 

 
Version 5.2: 

1. A new integrated progress window has been created to unify Windows and Linux progress 
monitoring. The window features separate tabs for text output and thermometer type progress 
monitoring. Warnings and errors are displayed in a separate tab window. Global progress is 
displayed. The window can be hidden while the older option via the stage dialog LED is still 
available. 

2. Navigation tools are available in the GUI for navigating between levels when using multilevel 
optimization. E.g. the input setup and progress can be accessed with full functionality for lower 
levels by navigating from the start (top) level. 

3. Response variables were created to allow the substitution of simulation results in input files of a 
child stage during a multi-stage process flow. Histories from simulation output can also be 
transferred to LS-DYNA input files as *DEFINE_CURVE data sets. Response and history 
expressions are fully supported. 

4. The generation and display of comparison metamodels. A set of different metamodels based on the 
same set of analysis results can be selected by the user for display. Parallel Neural Networks are also 
available as comparison metamodels. 

5. Histories can be displayed in three dimensions in which the third dimension is a variable. 
6. Reliability statistics, e.g. as a result of direct or metamodel-based Monte Carlo analysis can be 

extracted in a multilevel setup. This allows the setup of, for instance, tolerance optimization or 
robust design problems using the direct Monte Carlo method. Mean values, standard deviation as 
well as the probability of failure are supported for individual constraints as well as globally. 

7. Matlab is supported as a solver type on the Windows platform. 
8. LS-OPT metamodels (DesignFunctions.x file format) can be imported. This is useful for problems in 

which a metamodel has already been constructed. Importing and optimization/Monte Carlo analysis 
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can be executed as a single step to allow for automatic importation preceding the inner level analysis 
of a multi-level optimization. 

9. Parallelization is now automatic for extraction repair. The number of processors available on the 
local machine is automatically detected. 

10. Mode tracking now runs in parallel. 
11. Box plot options are available for histogram displays (reliability analysis). This includes whisker 

type options for min./max., interquartile range, standard deviation and 9%/91%. 
12. The FE postprocessor can be customized. 
13. Encryption features are available to encrypt the LS-OPT (.lsopt) input file. 
14. The efficiency of the Curve Mapping algorithm has been improved. 
15. Features have been added to the GenEx text extraction tool to simplify the selection and extraction 

of histories. 
16. A response file option allows the specification of an output file with a single value that needs to be 

extracted (user-defined response). This feature solves a portability issue by obviating “type” 
(Windows) or “cat” (Linux) commands to write such a file to standard output as is required for user-
defined responses. 

17. Retry and timeout attributes required by the job scheduler to handle abnormal termination can now 
be specified in the GUI. 

18. Special functions for differentiation have been improved. Irregular spacing of the history or crossplot 
curve is allowed. 

19. An image of the flow chart can be saved as a picture file. 
 

As in previous years, the automotive and other industries have made significant contributions to the 
development of new features in LS-OPT. In addition to long-time participant Professor Larsgunnar Nilsson 
(Mechanical Engineering Department, Linköping University, Sweden), Dr. Daniel Hilding, Mr. David 
Björkevik, Mr. Åke Svedin and Mr. Christoffer Belestam of DYNAmore Nordic, Linköping as well as Dr.-
Ing. Heiner Müllerschön and Dipl.-Math. Katharina Witowski of DYNAmore GmbH, Stuttgart, Germany 
have made major contributions as developers. Special thanks go to Katharina for patiently editing and 
managing the manual, a major task in this version. 
Dr. Trent Eggleston redesigned the job scheduler to accommodate the launching and load balancing of jobs 
with dependencies. Thanks also go to Prof. Satoshi Kitayama of Kanazawa University, Japan for providing 
the Differential Evolution algorithm. 
 

Nielen Stander and Anirban Basudhar 
Livermore, CA 

July, 2015
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1. Introduction  

In the conventional design approach, a design is improved by evaluating its response and making design 
changes based on experience or intuition. This approach does not always lead to the desired result, that of a 
‘best’ design, since design objectives are sometimes in conflict, and it is not always clear how to change the 
design to achieve the best compromise of these objectives. A more systematic approach can be obtained by 
using an inverse process of first specifying the criteria and then computing the ‘best’ design. The procedure 
by which design criteria are incorporated as objectives and constraints into an optimization problem that is 
then solved, is referred to as optimal design. 
The state of computational methods and computer hardware has only recently advanced to the level where 
complex nonlinear problems can be analyzed routinely. Many examples can be found in the simulation of 
impact problems and manufacturing processes. The responses resulting from these time-dependent 
processes are, as a result of behavioral instability, often highly sensitive to design changes. Program logic, 
as for instance encountered in parallel programming or adaptivity, may cause spurious sensitivity. Roundoff 
error may further aggravate these effects, which, if not properly addressed in an optimization method, could 
obstruct the improvement of the design by corrupting the function gradients. 
Among several methodologies available to address optimization in this design environment, response 
surface methodology (RSM), a statistical method for constructing smooth approximations to functions in a 
multi-dimensional space, has achieved prominence in recent years. Rather than relying on local information 
such as a gradient only, RSM selects designs that are optimally distributed throughout the design space to 
construct approximate surfaces or ‘design formulae’. Thus, the local effect caused by ‘noise’ is alleviated 
and the method attempts to find a representation of the design response within a bounded design space or 
smaller region of interest. This extraction of global information allows the designer to explore the design 
space, using alternative design formulations. For instance, in vehicle design, the designer may decide to 
investigate the effect of varying a mass constraint, while monitoring the crashworthiness responses of a 
vehicle. The designer might also decide to constrain the crashworthiness response while minimizing or 
maximizing any other criteria such as mass, ride comfort criteria, etc. These criteria can be weighted 
differently according to importance and therefore the design space needs to be explored more widely. 
Part of the challenge of developing a design program is that designers are not always able to clearly define 
their design problem. In some cases, design criteria may be regulated by safety or other considerations and 
therefore a response has to be constrained to a specific value. These can be easily defined as mathematical 
constraint equations. In other cases, fixed criteria are not available but the designer knows whether the 
responses must be minimized or maximized. In vehicle design, for instance, crashworthiness can be 
constrained because of regulation, while other parameters such as mass, cost and ride comfort can be treated 
as objectives to be incorporated in a multi-objective optimization problem. Because the relative importance 
of various criteria can be subjective, the ability to visualize the trade-off properties of one response vs. 
another becomes important. 
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Trade-off curves are visual tools used to depict compromise properties where several important response 
parameters are involved in the same design. They play an extremely important role in modern design where 
design adjustments must be made accurately and rapidly. Design trade-off curves are constructed using the 
principle of Pareto optimality. This implies that only those designs of which the improvement of one 
response will necessarily result in the deterioration of any other response are represented. In this sense no 
further improvement of a Pareto optimal design can be made: it is the best compromise. The designer still 
has a choice of designs but the factor remaining is the subjective choice of which feature or criterion is more 
important than another. Although this choice must ultimately be made by the designer, these curves can be 
helpful by limiting the number of possible solutions. An example in vehicle design is the trade-off between 
mass (or energy efficiency) and safety. 
Adding to the complexity, is the fact that mechanical design is really an interdisciplinary process involving 
a variety of modeling and analysis tools. To facilitate this process, and allow the designer to focus on 
creativity and refinement, it is important to provide suitable interfacing utilities to integrate these design 
tools. Designs are bound to become more complex due to the legislation of safety and energy efficiency as 
well as commercial competition. It is therefore likely that in future an increasing number of disciplines will 
have to be integrated into a particular design. This approach of multidisciplinary design requires the 
designer to run more than one case, often using more than one type of solver. For example, the design of a 
vehicle may require the consideration of crashworthiness, ride comfort, noise level as well as durability. 
Moreover, the crashworthiness analysis may require more than one analysis case, e.g. frontal and side 
impact. It is therefore likely that as computers become more powerful, the integration of design tools will 
become more commonplace, requiring a multidisciplinary design interface. 
Modern architectures often feature multiple processors and all indications are that the demand for 
distributed computing will strengthen into the future. This is causing a revolution in computing as single 
analyses that took a number of days in the recent past can now be done within a few hours. Optimization, 
and RSM in particular, lend themselves very well to being applied in distributed computing environments 
because of the low level of message passing. Response surface methodology is efficiently handled, since 
each design can be analyzed independently during a particular iteration. Needless to say, sequential methods 
have a smaller advantage in distributed computing environments than global search methods such as RSM. 
The present version of LS-OPT also features Monte Carlo based point selection schemes and optimization 
methods. The respective relevance of stochastic and response surface based methods may be of interest. In a 
pure response surface based method, the effect of the variables is distinguished from chance events while 
Monte Carlo simulation is used to investigate the effect of these chance events. The two methods should be 
used in a complimentary fashion rather than substituting the one for the other. In the case of events in which 
chance plays a significant role, responses of design interest are often of a global nature (being averaged or 
integrated over time). These responses are mainly deterministic in character. The full vehicle crash example 
in this manual can attest to the deterministic qualities of intrusion and acceleration pulses. These types of 
responses may be highly nonlinear and have random components due to uncontrollable noise variables, but 
they are not random.  
Stochastic methods have an important purpose when conducted directly or on the surrogate (approximated) 
design response in reliability based design optimization and robustness improvement. This methodology is 
currently under development and will be available in future versions of LS-OPT. 
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1.1. Overview of the manual 
This LS-OPT® manual consists of four main parts.  

I - User’s Manual 
This part guides the user in the use of LS-OPTui, the graphical user interface. 

II - Examples 
Examples are used to illustrate the application of LS-OPT to a variety of practical applications.  

III - Theory 
Fundamentals are provided for the various features in LS-OPT.  

IV - Appendix 
Appendices contain interface features, database file descriptions, a mathematical expression library, a 
Glossary, etc. Two appendices are dedicated to helping the user install LS-OPT. The second of these is more 
advanced and dedicated to remote job scheduling, e.g. using a queuing system. 

1.2. How to read this manual 
Most users will start learning LS-OPT by consulting the User’s Manual section beginning with Chapter 2 
(Getting Started).  
The Examples (Chapters 18 through 20) are included to demonstrate the features and capabilities and can be 
read together with Chapters 2 to 17 to help the user to set up a problem formulation.  
The Theoretical Manual (Chapters 21 through 25) serves mainly as an in-depth reference section for the 
underlying methods.  
The items in the Appendices are included for reference to detail, while the Appendix J:  Document Type 
Definition (DTD) provides an overview of all the features. 
The manual functions as a hypertext document such that links in the manual body can be used for cross-
referencing and will take the reader to the relevant item such as Section 3.2.1, Reference [4] or Figure 22-5 
(just click on any of the afore-mentioned references). Alt+Left Arrow returns to the original reference 
point. 
Sections containing advanced topics are indicated with an asterisk (*). 
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2. Getting Started 

2.1. Installation of LS-OPT 
Refer to Appendix H:  (Installing LS-OPT)  for information on the installation of LS-OPT. 
Table 2-1 describes the LS-OPT execution commands. 

Table 2-1: LS-OPT execution commands 

Command Description 

lsoptui command_file_name Execute the graphical user interface 

lsopt command_file_name LS-OPT batch execution 

lsopt env Check the LS-OPT environment setting. The LS-OPT 
environment is automatically set to the location of the lsopt 
executable. 

viewer command_file_name Execute the graphical postprocessor (also accessible from main 
GUI) 

com2lsopt com.abcde abcde.lsopt Converts a legacy ‘com’ file to a .lsopt file in XML format 

2.2. Name conventions in LS-OPT 

2.2.1. Variable names 

Variables as defined in this section are entities that can be used in mathematical expressions. 
 Variables are identified by their names. A name length is limited to 61 characters. In addition to numbers 
0-9, upper or lower case letters, a name can contain a period (.) and/or an underscore ( _ ). Spaces are not 
allowed.  
The leading character of a variable must be alphabetical. Variables must be given unique names, because 
mathematical expressions can be constructed using various entities in the same formula. 
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2.2.2. Stage and case (sampling) names 

For entities that cannot be used in mathematical expressions, i.e. stage, sampling, distribution 
and resource, the name can also include the characters -+%=. Spaces are not allowed.  

Stage and Sampling names are limited by the software to 1023 characters (no spaces allowed). These names 
are used as sub-directory names, so stricter limits may apply depending on the operating system. 

2.2.3. Environment variable names 

Envvar names may also include -+%.  

2.3. A modus operandi for design using response surfaces 

2.3.1. Preparation for design 

Since the design optimization process is expensive, the designer should avoid discovering major flaws in the 
model or process at an advanced stage of the design. Therefore the procedure must be carefully planned and 
the designer needs to be familiar with the model, procedure and design tools well in advance. The following 
points are considered important:  

1. The user should be familiar with and have confidence in the accuracy of the model (e.g., finite 
element model) used for the design. Without a reliable model, the design would make little or no 
sense. 

2. Select suitable criteria to formulate the design. The responses represented in the criteria must be 
produced by the analyses and be accessible to LS-OPT. 

3. Request the necessary output from the analysis program and set appropriate time intervals for time-
dependent output. Avoid unnecessary output as a high rate of output will rapidly deplete the 
available storage space. 

4. Run at least one simulation using LS-OPT (baseline design). To save time, the termination time of 
the simulation can be reduced substantially. This exercise will test the response extraction 
commands and various other features. Automated response checking is available, but manual 
checking is still recommended. 

5. Just as in the case of traditional simulation it is advisable to dump restart files for long simulations. 
LS-OPT will automatically restart a design simulation if a restart file is available. For this purpose, 
the runrsf file is required when using LS-DYNA as solver. 

6. Determine suitable design parameters. In the beginning, it is important to select many rather than 
few design variables. If more than one discipline is involved in the design, some interdisciplinary 
discussion is required with regard to the choice of design variables. 

7. Determine suitable starting values for the design parameters. The starting values are an estimate of 
the optimum design. These values can be acquired from a present design if it exists. The starting 
design will form the center point of the first region of interest. 

8. Choose a design space. This is represented by absolute bounds on the variables that you have 
chosen. The responses may also be bounded if previous information of the functional responses is 
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available. Even a simple approximation of the design response can be useful to determine 
approximate function bounds for conducting an analysis. 

9. Choose a suitable starting design range for the design variables. The range should be neither too 
small, nor too large. A small design region is conservative but may require many iterations to 
converge or may not allow convergence of the design at all. It may be too small to capture the 
variability of the response because of the dominance of noise. It may also be too large, such that a 
large modeling error is introduced. This is usually less serious as the region of interest is gradually 
reduced during the optimization process.  

10. If the user has trouble deciding the size of the starting range, it should be omitted. In this case the 
full design space is chosen. 

11. Choose a suitable order for the design approximations when using polynomial response surfaces (the 
default). A good starting approximation is linear because it requires the least number of analyses to 
construct. However, it is also the least accurate. The choice therefore also depends on the available 
resources. However, linear experimental designs can be easily augmented to incorporate higher order 
terms.0. 

Before choosing a metamodel, please also consult Sections 22.3 and 23.5. 
After suitable preparation, the optimization process may now be commenced. At this point, the user has to 
decide whether to use an automated iterative procedure (Section 22.3) or whether to firstly perform variable 
screening (through ANOVA or Global Sensitivity Analysis) based on one or a few iterations. Variable 
screening is important for reducing the number of design variables, and therefore the overall computational 
time. Variable screening is illustrated in two examples (see Sections 18.5 and 18.6). 
An automated iterative procedure can be conducted with any choice of approximating function. It 
automatically adjusts the size of the subregion and automatically terminates whenever the stopping criterion 
is satisfied. The feature that reduces the size of the subregion can also be overridden by the user so that 
points are sequentially added to the full design space. This becomes necessary if the user wants to explore 
the design space such as constructing a Pareto Optimal front. If a single optimal point is desired, it is 
probably the best to use a sequential linear approximation method with domain reduction, especially if there 
is a large number of design variables. See also Section 23.5. 
A step-by-step semi-automated procedure can be just as useful, since it allows the designer to proceed more 
resourcefully. Computer time can be wasted with iterative methods, especially if handled carelessly. It 
mostly pays to pause after the first iteration to allow verification of the data and design formulation and 
inspection of the results, including ANOVA and GSA data. In many cases, it takes only 2 to 3 iterations to 
achieve a reasonably optimal design. An improvement of the design can usually be achieved within one 
iteration. 
A suggested step-by-step semi-automated procedure is outlined as follows: 

2.3.2. A step-by-step design optimization procedure 

1. Evaluate as many points as required to construct a linear approximation. Assess the accuracy of the 
linear approximation using any of the error parameters. Inspect the main effects by looking at the 
ANOVA and GSA results. This will highlight insignificant variables that may be removed from the 
problem. An ANOVA/GSA is simply a single iteration run, typically using a linear response surface 
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to investigate main and/or interaction effects. The ANOVA and GSA results can be viewed in the 
post-processor of LS-OPT (see Section 15.3.4). 

2. If the linear approximation is not accurate enough, add enough points to enable the construction of a 
quadratic approximation. Assess the accuracy of the quadratic approximation. Intermediate steps can 
be added to assess the accuracy of the interaction and/or elliptic approximations. Radial Basis 
Functions (Section 22.1.3) can also be used as more flexible higher order functions (They do not 
require a minimum number of points). 

3. If the higher order approximation is not accurate enough, the problem may be twofold: 
o There is significant noise in the design response. 
o There is a modeling error, i.e. the function is too nonlinear and the subregion is too large to 

enable an accurate quadratic approximation. 
In case (3a), different approaches can be taken. Firstly, the user should try to identify the source of 
the noise, e.g. when considering acceleration-related responses, was filtering performed? Are 
sufficient significant digits available for the response in the extraction database (not a problem when 
using LS-DYNA since data is extracted from a binary database)? Is mesh adaptivity used correctly? 
Secondly, if the noise cannot be attributed to a specific numerical source, the process being modeled 
may be chaotic or random, leading to a noisy response. In this case, the user could implement 
reliability-based design optimization techniques as described in Section 25.8. Thirdly, other less 
noisy, but still relevant, design responses could be considered as alternative objective or constraint 
functions in the formulation of the optimization problem.  
In case (3b), the subregion can be made smaller. 
In most cases the source of discrepancy cannot be identified, so in either case a further iteration 
would be required to determine whether the design can be improved. 

4. Optimize the approximate subproblem. The solution will be either in the interior or on the boundary 
of the subregion.0. 

If the approximate solution is in the interior, the solution may be good enough, especially if it is close to 
the starting point. It is recommended to analyze the optimum design to verify its accuracy. If the 
accuracy of any of the functions in the current subproblem is poor, another iteration is required with a 
reduced subregion size. 
If the solution is on the boundary of the subregion the desired solution is probably beyond the region. 
Therefore, if the user wants to explore the design space more fully, a new approximation has to be built. 
The accuracy of the current response surfaces can be used as an indication of whether to reduce the size 
of the new region. 
The whole procedure can then be repeated for the new subregion and is repeated automatically when 
selecting a larger number of iterations initially. 

2.4. Recommended test procedure 
A full optimization run can be very costly. It is therefore recommended to proceed with care. Check that the 
LS-OPT optimization run is set up correctly before commencing to the full run. By far the most of the time 
should be spent in checking that the optimization runs will yield useful results. A common problem is to not 
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check the robustness of the design so that some of the solver runs are aborted due to unreasonable 
parameters which may cause distortion of the mesh, interference of parts or undefinable geometry. 
The following general procedure is therefore recommended: 

1. Test the robustness of the analysis model by running a few (perhaps two or three) designs in the 
extreme corners of the chosen design space. Run these designs to their full term (in the case of time-
dependent analysis). Two important designs are those with all the design variables set at their 
minimum and maximum values. The starting design can be run by selecting Baseline Run from the 
control bar Run menu. 

2. Modify the input to define the experimental design for a full analysis.  
3. For a time dependent analysis or non-linear analysis, reduce the termination time or load 

significantly to test the logistics and features of the problem and solution procedure. 
4. Execute LS-OPT with the full problem specified and monitor the process.0. 

Also refer to Section 2.2. 

2.5. Pitfalls in design optimization 
A number of pitfalls or potential difficulties with optimization are highlighted here. The perils of using 
numerical sensitivity analysis have already been discussed and will not be repeated in detail. 

2.5.1. Global optimality 

The Karush-Kuhn-Tucker conditions govern the local optimality of a point. However, there may be more 
than one optimum in the design space. This is typical of most designs, and even the simplest design problem 
(such as the well known 10-bar truss sizing problem with 10 design variables), may have more than one 
optimum. The objective is, of course, to find the global optimum. Many gradient-based as well as discrete 
optimal design methods have been devised to address global optimality rigorously, but as there is no 
mathematical criterion available for global optimality, nothing short of an exhaustive search method can 
determine whether a design is optimal or not. Most global optimization methods require large numbers of 
function evaluations (simulations). In LS-OPT, global optimality is treated on the level of the approximate 
subproblem through a multi-start method originating at all the experimental design points. If the user can 
afford to run a direct optimization procedure, a Genetic Algorithm (Section 23.8) can be used. 

2.5.2. Noise 

Although noise may evince the same problems as global optimality, the term refers more to a high 
frequency, randomly jagged response than an undulating one. This may be largely due to numerical round-
off and/or chaotic behavior. Even though the application of analytical or semi-analytical design sensitivities 
for ‘noisy’ problems is currently an active research subject, suitable gradient-based optimization methods 
which can be applied to impact and metal-forming problems are not likely to be forthcoming. This is largely 
because of the continuity requirements of optimization algorithms and the increased expense of the 
sensitivity analysis. Although fewer function evaluations are required, analytical sensitivity analysis is 
costly to implement and probably even more costly to parallelize. 
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2.5.3. Non-robust designs 

Because RSM is a global approximation method, the experimental design may contain designs in the remote 
corners of the region of interest which are prone to failure during simulation (aside from the fact that the 
designer may not be remotely interested in these designs). An example is the identification of the parameters 
of a monotonic load curve which in some of the parameter sets proposed by the experimental design may be 
non-monotonic. This may cause unexpected behavior and possible failure of the simulation process. This is 
almost always an indication that the design formulation is non-robust. In most cases poor design 
formulations can be eliminated by providing suitable constraints to the problem and using these to limit 
future experimental designs to a ‘reasonable’ design space (see Section 21.2.8). 

2.5.4. Impossible designs 

The set of impossible designs represents a ‘hole’ in the design space. A simple example is a two-bar truss 
structure with each of the truss members being assigned a length parameter. An impossible design occurs 
when the design variables are such that the sum of the lengths becomes smaller than the base measurement, 
and the truss becomes unassemblable. It can also occur if the design space is violated resulting in 
unreasonable variables such as non-positive sizes of members or angles outside the range of operability. In 
complex structures it may be difficult to formulate explicit bounds of impossible regions or ‘holes’. 

2.5.5. Non-unique designs 

In some cases multiple solutions will give the same or similar values for the objective function. The 
phenomenon often appears in under-defined parameter identification problems. The underlying problem is 
that of a singular system of equations having more than one solution. The symptoms of non-uniqueness are: 

o Different solutions are found having the same objective function values 
o The confidence interval for a non-linear regression problem is very large, signaling a singular system 

For nonlinear regression problems, the user should ensure that the test/target results are sufficient. It could 
be that the data set is large but that some of the parameters are insensitive to the functions corresponding to 
the data. An example is the determination of the Young’s modulus (E) of a material, but having test points 
only in the plastic range of deformation (see example Section 19.1). In this case the response functions are 
insensitive to E and will show a very high confidence interval for E (Section 19.1.4). 
The difference between a non-robust design and an impossible one is that the non-robust design may show 
unexpected behavior, causing the run to be aborted, while the impossible design cannot be synthesized at 
all. 
Impossible designs are common in mechanism design. 

2.6. Setup of a simple optimization problem 

2.6.1. Working directory 

Create a working directory for keeping the main command file, input files and other command files as well 
as the LS-OPT program output. Make sure there are no blanks in the path names. 
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2.6.2. Startup 

Open the graphical user interface of LS-OPT as described in Section 3.1 and enter the required 
specifications to generate an LS-OPT project file to start from, Figure 2-1. Selecting Create will open up the 
main LS-OPT GUI window, Figure 2-2. 

 

Figure 2-1: LS-OPT Startup dialog. Select the working directory, enter a name for the LS-OPT project 
file and a name for the initial sampling and initial stage to generate a new project. 

 

Figure 2-2: The main LS-OPT GUI window visualizes the optimization process flow. Selecting a box 
opens the respective dialog. The stage box (CRASH) can be moved freely using the left mouse button. 
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2.6.3. Task 

Open the Task dialog by selecting the corresponding icon from the control bar ( ). Select the task to run, 
Figure 2-3, e.g. Metamodel-based Optimization with Strategy: Sequential with Domain Reduction, Chapter 
4. The main GUI displays the process flow of the selected task. 

 

Figure 2-3: Task dialog. Select the main task and strategy 

2.6.4. Stage 

Set up the process chain. In the simplest case, a single Stage is required to interface with a solver, e.g. LS-
DYNA. Select the already available Stage box, Figure 2-4. Select the solver Package Name, the solver 
Command and the parameterized Input File, Chapter 5. In more complex cases further stages can be added, 
e.g. for a pre-processor or post-processor. 
Then switch to the Parameters tab to check the parameters found in the solver input file, Figure 2-5.  
Next, switch to the Responses and Histories panel, Figure 2-6, to define results to be extracted from the 
solver output database (to be used as objectives or constraints in the optimization phase), Chapter 6.  
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Figure 2-4: Stage dialog - Setup. Select the solver package name, the command and the solver input file 

 

Figure 2-5: Stage dialog – Parameters. Displays the parameters found in the input file specified in Setup 
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Figure 2-6: Stage dialog - Responses page. Select a response type from the list on the right to add a new 
response definition. 

2.6.5. Setup 

Select the Setup box at the top left of the main GUI, Chapter 8. All parameters that are defined in stage 
input files should automatically be available as constants, Figure 2-7.  
Select the desired variable Types. In most cases Continuous variables are used.  
Then enter the requested values, e.g. the Starting value and Minimum and Maximum values to define the 
design space for a continuous variable. 
Now follow the arrows to the next box in the optimization process flow to define the respective settings and 
options. 
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Figure 2-7: Parameter Setup dialog. Define the parameter type and required values. 

2.6.6. Sampling and Metamodels 

Select the Sampling box, Chapter 9. Select the Metamodel and Point Selection types, or just use the default 
values, Figure 2-8. 
The Build Metamodels box is coupled to the same dialog as the Sampling box. It is displayed at the end of 
the process to correctly represent the optimization process. Hence the Build Metamodels box can be 
skipped. 

 

Figure 2-8: Sampling dialog. Select the metamodel type and point selection scheme. 
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2.6.7. Optimization 

Select the Optimization box, Chapter 11. From the previously defined Responses, select the objectives, 
Figure 2-9.  
Switch to the Constraints tab. From the previously defined Responses, select the constraints and specify 
lower and upper bounds, respectively, Figure 2-10. Use the default setting for the algorithm. 

 

Figure 2-9: Optimization - Objectives. Select the objective components from the list on the right. 

 

Figure 2-10: Optimization - Constraints. Select constraints from the list on the right. Specify lower and 
upper bounds as required. 
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2.6.8. Termination criteria 

Select the Termination criteria box, Chapter 12. Specify the Maximum number of Iterations, e.g. 5 
iterations. Use the default values for the other options.  

 

Figure 2-11: Termination Criteria dialog. Specify the maximum number of iterations 

2.6.9. Run 

After setting up the optimization problem, run the task using the options from the control bar Run menu 
( ), Section 3.3.  
It is recommended to first run a Baseline Run to check if the stage process chain works correctly and the 
results are extracted as expected. Then run the full task using the Normal Run option. 

2.6.10. Viewer 

Use the Viewer (Chapter 15) to evaluate the results by selecting  from the the main GUI window control 
bar. The Viewer provides features to display metamodels and plot simulation results and optimization 
progress. 

2.7. REFERENCES 
[1] Stander, N. Goel, T. Metamodel sensitivity to sequential sampling strategies in crashworthiness 

design. In Proceedings of the 12th AIAA/ISSMO Multidisciplinary Analysis and Optimization 
Conference,Victoria, British Columbia, Canada, Sep 10-12,  2008. 
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This chapter introduces the graphical user interface of LS-OPT. The LS-OPT GUI enables the user to 
construct a simulation process, using a flowchart to define the stage dependencies. The process can then be 
subjected to any of the available analysis tasks such as simulation, optimization, Monte Carlo analysis, etc. 
Using progress bars and LEDs, the GUI also provides a window on the progress of each of the optimization 
steps and simulation stages.  

3.1. LS-OPT user interface (LS-OPTui) 
On Linux, the user interface is launched with the command 
  lsoptui [command_file.lsopt] 

On Windows, the user interface is launched using lsoptui.exe. A command file can be opened directly by 
drag and drop or by double-clicking on the .lsopt filename. 

If the user interface is launched without a command file argument, the Startup Dialog opens up, where the 
user can either define a new LS-OPT project, or select an existing project to open, see Figure 3-1. The 
options are explained in Table 3-1. Otherwise the specified LS-OPT project is opened in the user interface 
(see Figure 3-2). 

Legacy com.abcde files generated with previous LS-OPT versions (4.x and older) can be opened with 
the command 
  lsoptui [com.abcde] 

Saving the GUI contents produces a file abcde.lsopt in .xml format. 

The file abcde.lsopt can also be generated by executing the following command in the command 
prompt: 
  com2xml com.abcde abcde.lsopt 
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Figure 3-1: Startup Dialog of lsoptui 
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Table 3-1: Startup Dialog options 

Option Description Reference 

Working 
Directory 

Directory where the LS-OPT project input files and some of the 
results are stored. 

 

Filename Name of the .xml file that stores the LS-OPT project. The extension 
.lsopt is automatically appended to the selected name. 

 

Problem 
Description 

A description of the problem can be given. This description is 
echoed in the lsopt_input and lsopt_output files, in the 
plot file titles and in the GUI display (table at bottom right). 
(optional) 

 

Author Author information (optional)  

Initial Sampling 
name 

Each LS-OPT project requires at least one Sampling definition. The 
name of the first sampling has to be specified here. A default name is 
provided. 

Chapter 9 

Initial Stage 
name 

Each LS-OPT project requires at least one Stage definition. The 
Stage definition includes the solver type and command as well as the 
main input file name. The name of the first stage has to be specified 
here. A default name is provided. 

Chapter 5  

Create Creates a new LS-OPT project and opens it in the main GUI Section 3.2 

Open recent 
project 

A project from the list of the last ten LS-OPT projects can be 
opened. 

Section 3.2 

Open other 
project … 

Option to open any existing LS-OPT project Section 3.2 

Quit Quit lsoptui  

3.2. The GUI main window 
The flowchart in the main GUI of LS-OPT (Figure 3-2) mimics the process of the selected task, e.g. starting 
from global parameters defined in Setup, through the sampling, the simulation process chain defined by the 
stages and dependencies, the building of meta-models, the metamodel optimization, checking of 
convergence, and domain reduction in one or more loops, and finally the verification run for a meta-model 
based, sequential optimization. Refer to Chapter 4 for details on the available tasks. 
Double clicking on any of the boxes opens the corresponding dialog, where settings can be viewed and 
adjusted. The dialogs and options are explained in the respective chapters, see Table 3-3. 
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The control bar menus are described in Table 3-1. 

 

Figure 3-2: Main LS-OPT GUI window for a setup of a Metamodel-based optimization 

Table 3-2: Main GUI Control Bar options 

Icon Option Description Reference 

 New Opens the Startup Dialog (Figure 3-1) to create a new 
optimization project. 

Section 3.1 

Open Option to open an existing LS-OPT project  

Save Save current project  

Save as … Save current project as …  

Encrypt project Encrypt the project file Section 3.7 

Exit Exit lsoptui  

 Input Open the lsopt_input file  

Output Open the lsopt_output file  
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Summary Report Open the lsopt_report file  

Warnings Open the WARNING_MESSAGE file  

Errors Open the EXIT_STATUS file  

Open project 
folder 

Opens up the working directory  

Other file… Option to open any other text file  

 Add Sampling Add additional Sampling. The name of the sampling 
will be used as the name of a subdirectory used for 
sampling related databases such as 
Experiments_n.csv and 
AnalysisResults_n.lsox. 

Chapter 9 

Add Stage in 
Sampling 

Add additional Stage in selected sampling. The name 
of the stage will be used as the name of a sub-
directory to the working directory. Stage-related 
databases are stored in this directory. 

Chapter 5 

Add Composite Add Composite Chapter 10 

Add Domain 
Reduction 

Use Domain Reduction (same as Sequential with 
Domain Reduction option in Task dialog) 

Section 4.8 

Add Termination 
Criteria 

Switch to sequential Strategy Chapter 12 

Add Verification 
Run 

Run an additional simulation using the parameter 
values of the predicted optimum or Pareto optimal 
solutions at the end of the optimization run. 

 Section 4.11 

Add Global 
Sensitivities 

Calculates Global Sensitivities on the meta-model. Section 4.10 

 Re-layout stages Layout the stage boxes according to the defined 
dependencies. 

 

Show XML Tree Show the XML Tree for the current settings.  

Repair Global repair or modification of an existing run. A 
local repair can be done by right-clicking on a Stage 
or Sampling. 

Section 3.5 

Clean Clean from current iteration [iter]: Removes all Section 3.4 
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simulation data as well as optimization data from the 
specified iteration iter onwards. 
Clean Verification Run: Removes the simulation data 
as well as optimization data of the verification run. 
Clean All: The directory structure created by LS-OPT 
and all the files in this directory structure are deleted. 

Archive LS-OPT 
Database 

This option collects relevant files and creates a single 
tar-zipped (on *nix operating systems) file or zipped 
(on windows operating systems) file. 

Section 3.6 

Save Flowchart 
image 

Saves an png image of the LS-OPT main GUI 
Window 

 

DynaStats Opens DynaStats Chapter 16 

 
 

Normal Run Run task  Section 3.3.1 

Baseline Run Run a single design, sampled at the initial values. Section 3.3.2 

 
 

Stop Button is only available while LS-OPT is running. 
Stops the current optimization and all running jobs. 

 

 Viewer Opens the viewer for post-processing. Chapter 15 

 Task Opens Task Dialog. Chapter 4 

 Iteration While running LS-OPT, this visualizes the current 
running iteration. It is also used to select the current 
iteration for restarting or repair. 

Section 3.4 

 Settings Settings dialog.  Section 3.8 

 Manual Opens the LS-OPT User’s Manual  

About Information about LS-OPT  
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Table 3-3: Process Boxes 

Box Description Reference 

Setup Parameters (global set), Global optimization settings, 
variable connectivity, resource data. 

Chapter 8 

Sampling Point selection and metamodel settings  Chapter 9 

Stage Interface to solver such as solver command and input file. Chapter 5 

File Transfers Transfer files to a downstream stage. Section  3.2.2 

Build Metamodels Same as Sampling Chapter 9 

Composites Define composites Chapter 10 

Global Sensitivities Calculate global sensitivities Section 4.10 

Optimization Definition of objectives, constraints and optimization 
algorithms 

Chapter 11 

Monte Carlo Monte Carlo settings Section 11.5 

Termination Criteria Termination criteria for sequential strategies Chapter 12 

Domain Reduction Domain reduction settings for strategy sequential with 
domain reduction 

Section 4.8 

Verification Run Perform (specified number of) verification run(s) Section 4.11 

3.2.1. Setting up a Process Flow 

A process can be constructed for the purpose of running a sequence of dependent simulations. A typical 
simple process is a sequence: pre-processor → solver → post-processor which can be constructed by 
defining three sequential stages. However, a process of high complexity can also be created. For instance 
the flow of the process is allowed to merge and branch. See Figure 3-3. 
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Figure 3-3: Setup of a complex optimization problem 

The process can be constructed in multiple steps by adding stages and connecting the stages using the 
mouse to create dependencies of one stage on another.  
On creating a new optimization project, a first stage is generated. Additional stages can be added using the 
Add stage option of the  menu in the control bar. A sampling has to be selected to which the new stage is 
assigned. By default, the new stage is added in parallel to the already existing stages.  
If similar stages are needed for e.g. a multi-case optimization, a stage can be added by using the Clone 
option when right-clicking an already defined stage. This creates a new stage with the same definitions as 
the original stage. History and response names are updated to ensure uniqueness of names. If the name of 
the original stage is found in the original names, it is replaced, otherwise the name of the new stage is 
prepended. 
The desired dependencies are created as follows, see Figure 3-4: 

1. Hover the mouse cursor over the Stage box. A circle appears at the lower edge of the box.  
2. Move the mouse cursor to the circle (it should highlight in yellow) and drag the circle to the desired 

dependent stage box. 
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3. A connection will be created between the two boxes. 

 

Figure 3-4: Creating stage dependencies 

Connections can be deleted using the small icon located on the connection line. This icon also allows the 
definition of inter-stage file operations, Section 3.2.2. 
Stages can be deleted by right-clicking on the stage and then selecting the delete function. 
The layout of the stage boxes can be controlled by the user. Left-click and hold down on a stage box to 
move it freely. For complex process setups, it could be helpful to use the Re-layout Stages option from the 
Tools menu in the control bar. 
If separate samplings are desired (as is often the case for MDO problems where different variables apply to 
different loadcases), new samplings can be added at the origin of each process sequence. Stages can then be 
assigned to the relevant samplings. 

3.2.2. File Transfers between Stages 

 

Figure 3-5:  File transfers between dependent stages 
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To use results of upstream stages, LS-OPT allows file transfers between dependent Stages. The File 
Transfer dialog is accessible by selecting the dependency icon located on the arrow connecting the stages, 
see Figure 3-5 and Table 3-4. The requested file transfers are executed for all the run directories related to 
the Stages, e.g. if the dependency is between CRASH and PRE_CRASH, file transfer will be executed 
between PRE_CRASH/1.1 and CRASH/1.1, PRE_CRASH/1.2 and CRASH/1.2, etc. 

Table 3-4: File transfer options between stages 

Option Selections Description 

Operation Copy 
Move 

Available operations 

Source File  Name of source file, wildcards are supported 

Destination File  Name of destination file 

On Error fail 
warn 
ignore 

What to do if operation fails 

3.3. Run LS-OPT 

3.3.1. Normal Run 

This option runs the selected task.  
An incomplete run can be restarted using the current state of the optimization and solver databases. 
Completed simulation jobs are recognized by the presence of the finished file in each respective run 
directory and the termination status of its contents. The presence of the finished file allows LS-OPT to avoid 
a repeat of the simulation for either error or normal terminations. A clean start option is available (See 
Section 3.4). 

3.3.2. Baseline Run 

This feature provides the user with an option to run a single design (often referred to as the baseline design). 
The design is sampled at the initial values specified in the Parameter Setup panel, Section 8.1. The 
simulations are executed in the Stage sub-directory 1.1 of the respective stage. This option facilitates a 
verification of the design, i.e. it allows checking 

1. the correct solver command, 
2. communication between LS-OPT and the queuing system, if any, 
3. presence of all relevant control cards, database formats,  
4. data extraction from simulation results, and 
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5. validity of responses and histories.0. 
It is therefore recommended to use a single simulation using the “Baseline Run” option as a “dry” run before 
launching a full scale optimization run in LS-OPT. A successful baseline run will be recognized as a 
complete run, so will not have to be repeated in the full optimization run. 

3.4. Restarting – Clean from Current Iteration 
If the user wants to restart an existing optimization run from a specified iteration, the Clean - Clean from 
Current Iteration [iter] feature can be used.  
The current iteration is specified by the selection of the iteration number (using up/down arrows) in the 
iteration icon located in the control bar. It is important to note that the clean option removes all simulation 
data as well as optimization data from the specified iteration onwards.  
The task is restarted by selecting Normal Run from the run menu. 

3.4.1. Augmentation of an existing design 

To retain existing (expensive) simulation data in the optimization process, it is advantageous to be able to 
augment an existing metamodel with additional sampling points and simulations. In this manner, new 
simulations can be added to old simulations to obtain a more accurate metamodel. This is performed by 
increasing the number of sampling points in the Sampling dialog and restarting e.g. the metamodel-based 
optimization.  
When running the optimization, the experimental design table will be augmented, the additional simulations 
will be executed, a new metamodel will be constructed and a new predicted optimum will be computed. 
Note that if a verification run was previously calculated (e.g. Simulation 2.1), the Clean option Clean 
Verification Run should be used before restarting in order to replace the verification run in directory 2.1. 

3.5. Repair or modification of an existing job 
Several types of repairs and modifications are possible for an existing optimization iteration or a 
probabilistic analysis. The repair depends on the status of the LS-OPT database files as described in 
Appendix E: Database Files.  
Repair tasks can be executed globally or locally on individual Stages or Samplings.  

o Global repair can be executed using the Repair option under Tools (available in the control bar). 
o Local repair tasks are executed by right clicking on the relevant step (Stage or Sampling) in the main 

GUI window.  
The available repair tasks are: 

o Add points. Points are added to the existing sampling. This option is only available for the following 
sampling types: D-Optimal, space-filling, and Latin Hypercube. The D-Optimal and space-filling 
samplings will augment the previously computed points. The Latin Hypercube experimental design 
points will be computed using the number of previously computed points as a seed to the random 
number generator. If the database for the experimental design (Experiments_n.csv file for 
iteration n) does not exist, new points will be created. 
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o Read points. The Experiments_n.csv file is reconstructed from the data in the XPoint 
database files in the run directories. 

o Import results. Import results from a .csv (comma separated variables) file (see Section 9.5.3). 
o Run Jobs. The stage jobs will be scheduled. Designs previously analyzed will not be analyzed again. 
o Rerun failed jobs. The jobs that failed to run will be resubmitted. The stage input files used will be 

regenerated from the files specified for the respective stage. If multiple stages are defined in the 
process chain, all stages will be rerun. 

o Extract Results. The results will be extracted from the runs for all stages. This option also allows the 
user to change the responses for an existing iteration or Monte Carlo analysis. 

o Rerun Verification Run. The verification run will be resubmitted. 
o Build Metamodels.  The metamodels will be built. This option also allows revision of the 

metamodels for an existing iteration or Monte Carlo analysis. The “ExtendedResults” file will be 
updated. Metamodels can for instance be built from imported user results (see section on Import 
results above). 

o Evaluate Metamodels. Create a table with the error measures of a given set of points (Section 9.5.2) 
or create a table (.csv file) with response values interpolated from a metamodel (Section 8.5.1). 

o Import Metamodels. Imports metamodels from an .xml file (see Section 9.5.4) 
o Calculate Global Sensitivities. Global Sensitivities are recalculated using the metamodels.  
o Optimize. The metamodels are used for metamodel optimization. A new optimum results database is 

created. The “ExtendedResults” file will be updated. The optimization history database is deleted so 
the history will not be displayed in the Viewer. 

Remarks: 
1. All the subsequent operations must be explicitly performed for the iteration. For example, 

augmenting an experimental design will not cause the jobs to be run, the results to be extracted, or 
the metamodels to be recomputed. Each of these tasks must be executed separately. 

2. After repair of iteration n, and if the user is conducting an optimization task, verification runs of the 
optimized result must be done by switching back to the Metamodel-based optimization task and 
specifying the starting iteration (for a clean start) as n+1. If n+1 was a full iteration (not just a 
verification run), it also has to be repaired. 

3.6. Archive LS-OPT Database 
Using the Archive LS-OPT Database option in the Tools menu, the database can be gathered up and 
compressed in a file called lsopack.tar.gz (lsopack.zip on Windows) after completing the run. 
The packed database is suitable for post-processing on any computer platform. 
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Figure 3-6: Dialog to specify options for archiving the LS-OPT database 

By default, the files generated by LS-OPT in the working directory and the stage and sampling directories 
are gathered, the run directories are omitted. 
More sophisticated options are available to also gather the history and response files residing in the run 
directories and all input files. The history/response files (e.g. history.0, etc.) are required to view history 
plots using the DynaStats tool. The inclusion of both histories and input decks results in 
lsopack_h_i.tar.gz (lsopack_h_i.zip in Windows).  

The history/response files are not required for any of the Viewer functions since this data is available in the 
AnalysisResults_n.lsox file included in the basic archiving selection. 

Table 3-5: Archive LS-OPT database options 

Option Description 

Include Histories and 
Responses 

Also gather the history and response files residing in the run 
directories. The file produced is lsopack_h.tar.gz 
(lsopack_h.zip in Windows). History and response files are 
only required for the use of DynaStats. 

Include Input Deck/Extra Input 
Files 

Various input files and other files required to run the LS-OPT job 
seamlessly are added to the packed database file. The file produced 
is lsopack_i.tar.gz (lsopack_i.zip in Windows). 

Additional Files to Pack List of additional files to pack. Files may be added by browsing or 
manually. 
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3.7. Encryption 
The lsopt project file can be encrypted with a password by selecting “Encrypt project” from the file menu. 
Only the project file itself will be encrypted and not any input files defined in stages. The file is encrypted 
using 256-bit AES encryption. 
When selecting “Encrypt project”, a dialog is shown where the encryption password should be entered. 
When clicking OK, the encryption mode is enabled. This can be confirmed by the checkmark next to the 
“Encrypt project” menu item. Note that the project itself is not encrypted on disk until you save it. This is to 
make it possible to save the file under a different filename. The temporary file “lsopt_db” which mirrors the 
lsopt project file but is used by the engine, will also be encrypted on the next run. 
A password needs to be entered when opening an encrypted project file. There is no way to directly run the 
engine on encrypted projects. This needs to be done through the GUI. 
The encryption can be removed by clicking the “Encrypt project” when it’s checked. Remember to save the 
project after this change. 

3.8. Settings 

3.8.1. Simulation postprocessor and text viewer 

Both the simulation (e.g. Finite Element analysis) postprocessor and the text viewer used throughout the LS-
OPT GUI and Viewer can be set. The default settings are LS-PrePost v2 and GenEx which are both 
included in the LS-OPT distribution. The example in Figure 3-7 shows the selection of a late version of LS-
PrePost (FE postprocessor) under the name LSPP_4. 
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Figure 3-7: Dialog to specify FE postprocessor and text viewer settings 
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4. Task Dialog − Selecting a Task 
and Strategy 

This chapter explains the available design tasks and strategies. 

4.1. Task selection 
The Task dialog allows the selection of a task and, for an optimization task, the optimization strategy. The 
two basic branches are Metamodel-based and Direct optimization methods (Figure 4-1). The method 
selections can be made in the GUI using the Show task settings icon in the control bar in the top menu bar of 
the main GUI window. The available tasks and options are listed in Table 4-1. 
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Figure 4-1: Task and Strategy selection 
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Table 4-1: Task selection options 

Option  Description Reference 

Metamodel based (1) Optimization Optimization using meta-models Section 4.2 

(2) DOE-study DOE study using meta-models Section 4.3 

(3) Monte Carlo 
analysis 

Monte Carlo analysis using meta-models Section 4.5.2 

(4) RBDO Reliability based design optimization using 
meta-models 

Section 4.6 

Direct simulation (5) Optimization Direct optimization using the Genetic 
Algorithm 

Section 4.4 

(6) Monte Carlo 
analysis 

Direct Monte Carlo analysis Section 4.5.1 

Strategy for 
Metamodel based 
optimization 
(Available for Main 
Task 1 and 4) 

Single Iteration Sampling and optimization are done in a 
single iteration. Suitable for global design 
exploration. 

Section 4.7.1 

Sequential Sampling points are added sequentially in 
the full design space. Suitable for global 
design exploration. 

Section 4.7.2 

Sequential with 
Domain 
Reduction 

Sampling points are added sequentially in 
an adaptive subregion. Metamodels are 
then constructed using the current iteration 
samples (in the subregion) or using all the 
samples. The optimum solution is located 
based on the metamodels. Suitable for 
finding a converged solution. Generally 
unsuitable for global exploration. 

Section 4.7.3 

Available for Main 
Task 1, 2, 3, 4. 

Global 
Sensitivities 

Option to calculate Global Sensitivities on 
the metamodel. 

Section 4.10 

Available for Main 
Task 1 and  4 

Do verification 
run 

Run an additional simulation using the 
parameter values of the predicted 
optimum. Multiple simulations can be run 
for Multi-Objective optimization problems. 

Section 4.11 

 Import 
metamodel 

Automated Import metamodel on run 
instead of manually importation, 

Section 9.5.4 
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Available for global 
strategies with 
multiple objectives. 

Create Pareto 
Optimal Front 

Option, for Multi-Objective Optimization 
problems, to create Pareto optimal 
solutions instead of a single optimum. 

Section 4.9 

 Baseline Run 
Only 

Batch Mode option to run only the 
Baseline Run 

Section 3.3.2 

4.2. Metamodel based optimization 
Metamodel-based optimization is used to create and optimize an approximate model of the design instead of 
optimizing the design through direct simulation. The metamodel is thus created as a simple and inexpensive 
surrogate of the actual design. Once the metamodel is created it can be used to find the optimum or, in the 
case of multiple objectives, the Pareto Optimal Front. The basic steps are as follows: 

1. Point selection 
2. Run the simulations 
3. Build the metamodels 
4. Execute the metamodel optimization0. 

4.3. DOE study 
A DOE study is also a metamodel-based method used to explore the design space or to calculate 
sensitivities. The DOE study has three steps: 

1. Point selection 
2. Run the simulations 
3. Build the metamodels 

4.4. Direct optimization 
Direct optimization uses only simulation results to find the optimal values using a Genetic Algorithm. 
Note that the choice of the Direct Optimization (Direct Genetic Algorithm) may require a large number of 
simulations. 

4.5. Probabilistic Analysis Tasks 
This category of probabilistic tasks deals with the study of the effect of design parameter uncertainties on 
the responses. The goal is to obtain the statistics of response variations caused due to the uncertainties in a 
given design as well as the probability of failure for that design. Any probabilistic task requires the 
definition of random variables associated with distributions (Section 8.1.5). The point selection scheme for a 
probabilistic analysis depends on whether it is direct or metamodel-based (Section 13.5, Section 13.6). More 
specific details about the available probabilistic analysis tasks are provided in Section 13.5 and Section 13.6 
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Two probabilistic analysis tasks are currently available in LS-OPT - Direct Monte Carlo Analysis and 
Metamodel-based Monte Carlo Analysis. 

4.5.1. Direct Monte Carlo Analysis 

Sampling is based on the distribution of random variables (Section 13.4). No metamodel is constructed to 
perform this task. 

4.5.2. Metamodel-based Monte Carlo Analysis 

Sampling is not based on the distribution of random variables (Section 13.4). Statistics are calculated based 
on metamodel approximations. 

4.6. RBDO/Robust Parameter Design (Probabilistic Optimization Task) 
This task allows one to perform an optimization under the effect of uncertainties. Considering the effect of 
uncertainties can be important to avoid unforeseen failure of the design due to variations of loading 
conditions, manufacturing process etc. In reliability-based design optimization (RBDO), a target probability 
of failure (typically small) is defined for the constraints to ensure that the optimal design cannot have a 
higher failure probability. In robust design, an optimal design is searched such that it is insensitive to 
uncertainties in certain design parameters. More specific details about the available probabilistic analysis 
tasks are provided in Section 13.7. The difference with deterministic optimization lies in the definition 
variables that are associated with probabilistic distributions, as well as in the definition of objectives (robust 
design) and constraints (RBDO). 

4.7. Selecting strategies for metamodel-based optimization 
In this section different strategies for building a metamodel are discussed. The strategies depend mostly on 
whether the user wants to build a metamodel that can be used for global exploration or whether he is only 
interested in finding an optimal set of parameters. An important criterion for choosing a strategy is also 
whether the user wants to build the metamodel and solve the problem iteratively or whether he has a 
"simulation budget" i.e. a certain number of simulations and just wants to use the budget as effectively as 
possible to build a metamodel for improving the design and obtaining as much information about the design 
as possible. 
There are three available strategies for automating the metamodel-based optimization procedure. These 
strategies only apply to the tasks Metamodel-based Optimization and RBDO, Table 4-1. In the GUI, the 
strategies are selected in the "Task selection" dialog (Figure 4-1). The available optimization strategies are 

1. Single Stage, 
2. Sequential and  
3. Sequential with Domain Reduction (SRSM).   

A strategy selection resets the Sampling Dialog (a warning is given!) with recommended selections for 
Metamodel type and Point selection scheme, see Chapter 9 .  
The strategies are discussed one by one in the following sections. 
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4.7.1. Single iteration 

In this approach, the experimental design for choosing the sampling points is done only once. The 
metamodel selection defaults to Radial Basis Function Networks with Space Filling as the sampling scheme. 

4.7.2.  Sequential strategy 

In this approach, sampling is done sequentially. A small number of points is typically chosen for each 
iteration and multiple iterations can be requested in the Termination Criteria dialog, Chapter 12. The 
approach has the advantage that the iterative process can be stopped as soon as the metamodels or optimum 
points have achieved sufficient accuracy. 
The default settings for sampling follow below (see Sampling dialog, Chapter 9):  

1. Radial Basis Function networks 
2. Space Filling sampling. 
3. The first iteration is Linear D-Optimal. 
4. Choose the number of points per iteration to not be less than the default for a linear approximation 

( 1)1(5.1 ++n ) where n is the number of variables.0. 

It was demonstrated in Reference [16] that, for Space Filling, the Sequential approach had similar accuracy 
compared to the Single Stage approach, i.e. 10 × 30 points added sequentially is almost as good as 300 
points. Therefore both the Single Stage and Sequential methods are good for design exploration using a 
metamodel. Both these strategies work better with metamodels other than polynomials because of the 
flexibility of metamodels such as RBF's to adjust to an arbitrary number of points. 

4.7.3. Sequential strategy with domain reduction 

This approach is the same as that in section 4.7.2 but, in order to accelerate convergence, an adaptive 
domain reduction strategy is used to reduce the size of the subregion (see Section 23.6). During a particular 
iteration, the new points are located within a subregion of the design space. This strategy is typically only 
used for optimization in which the user is only interested in the final optimal point and not in any global 
exploration of the design. For example, the method is often used in parameter identification (see 
Section 24.3). This method cannot currently be used to construct a Pareto Optimal Front. 
The default domain reduction approach is sequential response surface method (SRSM), which is the original 
LS-OPT design automation strategy. By default, a linear response surface is used and points belonging to 
previous iterations are ignored.  
The default settings for sampling are listed below (see Sampling dialog, Chapter 9): 

1. Linear polynomial 
2. D-optimal sampling 
3. Default number of sampling points based on the number of design variables. 
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4.8. Domain reduction in metamodel-based optimization 

The Domain reduction dialog is displayed in Figure 4-2.  

Table 4-2 describes the options. 

 

Figure 4-2: Domain reduction dialog 

Table 4-2: Restart Settings and Subdomain parameters 

Option Description Reference 

Reset to Initial Range on 
Iteration 

Resetting the subdomain range to the initial range for 
a specified iteration. 

Section 4.8.1 

Freeze Range from Iteration Freeze the subdomain range from a specified 
iteration 

Section 4.8.1 

Panning Contraction parameter γpan Section 4.8.2 

Oscillation Contraction 
parameter 

γosc Section 4.8.2 

Proximity Zoom parameter Zoom parameter η Section 4.8.2 
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4.8.1. Changing the behavior of the subdomain 

Resetting the subdomain range 

It is possible to reset the subregion range to the initial range, e.g. for adding points in the full design space 
(or any specified range around the optimum) after an optimization has been conducted. This feature is 
typically only used in a restart mode. The GUI option is "Reset to Initial Range on Iteration" (Figure 4-2). 
The point selection of the specified iteration will be conducted in the initial range around the most recent 
optimum point. The subdomain will be adaptively updated again starting with the next iteration. 

Freezing the subdomain range 

This feature allows for points to be added without changing the size of the subregion. Adaptivity can be 
frozen at a specified iteration number. The GUI option is "Freeze Range from iteration" (Figure 4-2). 
The subdomain range will be adaptively updated up to the previous iteration. Therefore the specified 
iteration and higher will have the same range (although the region of interest may be panning). The flag is 
useful for adding points to the full design space without any changes in the boundaries. 

4.8.2. Setting the subdomain parameters*  

To automate the successive subdomain scheme for SRSM, the size of the region of interest (as defined by 
the range of each variable) is adapted based on the accuracy of the previous optimum and also on the 
occurrence of oscillation (see theory in Section 23.6). 
The following parameters can be adjusted in the GUI, Figure 4-2. The options are described in Table 4-2 
(refer also to Section 23.6). A suitable default has been provided for each parameter and the user should not 
find it necessary to change any of these parameters. 

4.9. Create Pareto Optimal Front 
This option is only available if multiple objectives are defined. If Create Pareto Optimal Front is selected, 
multiple Pareto optimal solutions are calculated instead of a single optimum, see Section 23.9.2. If a 
metamodel-based method is used, available strategy options are limited to the global strategies Single Stage 
and Sequential (Section 4.7.2 and 4.7.3). Selection of the Create Pareto Optimal Front option resets the 
optimization algorithm used on the metamodel to Genetic Algorithm, because this is the only algorithm that 
has the capability to calculate Pareto optimal solutions. 

4.10. Global sensitivity analysis 
While the ANOVA (Analysis of Variance, Section 21.4) is a very popular method to assess the contribution 
of different regression terms, Global Sensitivity Analysis (Sobol’s method, based on ANOVA) is widely 
used to study the importance of different variables for higher order models. In this method, a function is 
decomposed into sub-functions of different variables such that the mean of each sub-function is zero and 
each variable combination appears only once. Then, the variance of each sub-function represents the 
variance of the function with respect to that variable combination. The theory of Sobol’s global sensitivity 
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analysis (GSA) method is described in Section 25.7.2. The GSA is carried out by selecting the appropriate 
flag (Global Sensitivities) in the Task dialog or by selecting Add Global Sensitivities from the Add ( ) 
menu in the GUI. The GSA dialog is shown in Figure 4-3. The number of Monte-Carlo integration points 
used to compute sensitivities is 10000 by default, but this number can be changed by the user. Except for the 
linear case, the sensitivities depend on the region of design space under consideration. By default, the 
sensitivities are calculated for the region defined by the variable bounds specified in the Global Setup. 
These sensitivity indices are stored in the Sobol_GSA.iteration XML database files in the work directory. 
Existing GSA results can be repaired by checking on the ‘Overwrite global computations’ box. This may be 
needed, for example, if the metamodel is changed after carrying out an earlier sensitivity analysis; the old 
Sobol_GSA.iteration files are then deleted and recreated based on the new analysis. 

 

Figure 4-3: Global Sensitivities Dialog 

Table 4-3: Global Sensitivities options 

Option Description Reference 

Number of Points for 
Integration 

Number of Monte-Carlo integration points required to 
compute sensitivities 

 

Overwrite global 
computations 

GSA results overwritten for the global region defined 
by the variable bounds in Setup dialog. 

 

Define subregions Define a subregion of the design space for GSA. It is 
possible to have the same bounds as the entire design 
space (e.g. same domain analyzed with different 
metamodels). 

Section 4.10.1 

Remarks: 
1. In LS-OPT, global sensitivities are evaluated on the metamodels. Therefore, the accuracy depends 

on the quality of the metamodel.  
2. Unless a subregion is considered (Section 4.10.1), the sensitivities are calculated for the global 

bounds of the variables. Sampling constraints are not considered while calculating the sensitivities.  
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3. Analytical equations are used to compute sensitivities for polynomials and Gaussian radial basis 
function metamodels. 

4. The composite expressions and subregion sensitivities are always evaluated using the Monte-Carlo 
integration. 

5. The default number of sampling points for Monte-Carlo integration is 10000. This number should be 
increased for better accuracy of sensitivity coefficients.0. 

4.10.1. Sensitivity Analysis in Subregions 

The Global Sensitivities dialog also provides the option to define subregions for GSA (Figure 4-4). The 
sensitivities can be calculated for different variable ranges using this feature, which can be different from 
the bounds specified in the Global Setup. By default, the subregions are created with the same ranges as the 
global design space. The subregion variable ranges can, however, be modified by clicking on Edit, which 
opens up another dialog. The dialog for variable bound definition or the Subregion Dialog is shown in 
Figure 4-5. The definition of a GSA subregion requires a name to be associated with it. The corresponding 
GSA results are stored in Sobol_GSA.RegionName.iteration files in the work directory. 

 

Figure 4-4: Global Sensitivities dialog with subregion definitions 
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Table 4-4: GSA Subregion definition options 

Option Description 

Name Subregion name 

Active GSA is performed for the Subregion (default on) 

Overwrite Existing GSA results deleted (default off). GSA performed again if Active is on  

Edit Open GSA Subregion dialog (Figure 4-5) to define variable bounds of subregion  

All active All subregions active 

All overwrite Overwrite existing GSA results for all subregions 

 

Figure 4-5: GSA Subregion dialog 

Table 4-5: GSA Subregion dialog options 

Option Description 

Name Subregion name 

Active GSA is performed for the subregion (default on) 

Overwrite Existing GSA results deleted (default off). GSA performed again if Active is on  

Bounds Define subregion lower and upper bounds for variables. The global region bounds 
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defined in Setup dialog are used for other variables 

4.11. Verification runs 
After the last full iteration a verification run of the predicted optimal design is executed. This run can also 
be omitted if the user is only interested in the prediction of the optimum using the metamodel.  
The verification run options can be edited in the GUI either in the Task dialog or using the “Add …” menu 
option in the control bar. 
For multi-objective optimization problems, multiple verification runs can be done. A discrete Space Filling 
algorithm is used to select Pareto Optimal points which are evenly distributed in the design space. 
The number of verification runs can be set in the GUI using the Verification Run box (Figure 4-6). 

 

Figure 4-6: Verification Run dialog 
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Solver 

This chapter describes how to interface LS-OPT with simulation packages, parametric preprocessors or 
postprocessors. Standard interfaces as well as interfaces for user-defined executables are discussed.  
The main entity discussed here is the Stage dialog which allows the user to define a step in the simulation 
process. 

5.1. Introduction 
Since an executable program is considered to be a key part of the stage definition it is often simply referred 
to as the solver. Therefore, in addition to its normal meaning as a program to, for instance, solve a physics 
problem, it can also refer to a pre- or postprocessor or any other executable program or script that is 
essential to the execution or management of a step within a simulation process. 

5.2. General Setup 
Figure 5-1 shows the general setup dialog for a Stage in the process. The options are described in Table 5-1. 

Table 5-1: Stage dialog Setup options: General options 

Option Description Reference 

Package Name The following software package identifiers are available:  

 LS-DYNA Section 5.3.1 

LS-INGRID Section 5.3.4 

LS-OPT Section 5.3.9 

LS-PREPOST Section 5.3.3 

ANSA Section 5.3.6 
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Excel Section 5.3.10 

HyperMorph Section 5.3.7 

Matlab Section 5.3.12 

META Post Section 5.3.8 

MSC-NASTRAN Section 5.3.2 

TrueGrid Section 5.3.5 

User-Defined Section 5.3.11 

User-Defined Postprocessor Section 5.3.14 
 

Command Command to execute the solver. Section 5.2.1 

Do not add input 
file argument 

Prevents LS-OPT from appending a standard input deck 
name to the execution command during run-time.  

Section 5.2.1 

Use default 
command 

Path to the solver executable filled in automatically (only 
available for LS-OPT stage). 

Section 5.3.9 

Display graphics Omit the –nographics option in the LS_PrePost 
command for debugging (only available for LS-PrePost 
stage). 

Section 5.3.3 

Input File Parameterized input file for the preprocessor or solver. 
The specification of an input file is not required for a 
user-defined solver. The parameterization of the input 
file is explained in Section 5.2.4.  

Section 5.2.2 

(n includes) LS-OPT displays the number of include files parsed for 
parameters and copied to the run directories. A list 
containing the include file names is accessible by 
clicking on the hyperlink.  

Section 5.3.1 

Name of standard 
input deck 

Default standard input deck name depending on package. 
This can be edited in case another file name is required. 
Changes are only required in exceptional cases. 

Section 5.2.1 

Extra input files A list of extra input files can be provided. The files are 
copied to the run directories from any user-defined 
source directory. Parameter values are substituted by 
default, but parsing can be omitted. 
LS-DYNA Include files do not have to be specified as 

Section 5.2.2 
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they are automatically and recursively searched by LS-
OPT when given the name of the main input file. This 
feature is also supported for certain packages under the 
user-defined solver type (see 5.3.11).  

Model Database 
(ANSA) 

ANSA binary database file, typically with the extension 
.ansa 

Section 5.3.6 

Output File 
(HyperMorph, 
µETA, Matlab) 

HyperMorph: nodal output file produced by Templex Section 5.3.7 

µETA: output file used for parsing the history and 
response names 

Section 5.3.8 

Matlab: output file containing response and history 
definitions 

Section 5.3.12 

Session file (µETA) File containing information about which results to extract Section 5.3.8 

Excel File Input File template for parameterizing and running Excel 
jobs. 

Section 5.3.10 

Do not copy Excel 
file to job folder 

Avoid copying of potentially big Excel input file to each 
run directory and modify the original file instead. Option 
available only if one job is run at a time. 

Section 5.3.10 

Input definitions Parameterization of the Excel input file Section 5.3.10 

LS-DYNA 
Advanced Options 

Advanced interfacing options for LS-DYNA. Section 5.3.1 
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Figure 5-1: Stage dialog Setup panel 

5.2.1. Command 

The command to execute the solver must be specified. The command depends on the solver type and can be 
an executable program or a script. Since a standard input deck name (also called the base file name) is 
automatically appended during run-time the solver input file name argument should be omitted by default. 
See respective package interface sections for details. In the case of the standard solvers, the appropriate 
syntax is automatically used (e.g. i=DynaOpt.inp for LS-DYNA). The execution command may 
include any number of additional arguments. 
The base file name can be changed. This is useful when the output file of one stage becomes the input of the 
dependent stage (see Section 5.8). 

Remarks: 
1. The command must be specified in one of the following formats: 
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o Browse. If browsing the project directory or a directory relative to the project directory, LS-OPT 
automatically prepends the project directory environment ${LSPROJHOME} to the execution 
command. 

o Absolute path, e.g. "/origin/users/john/crash/runmpp" 
o If the executable is located in a directory which is in the execution path, the command can be 

specified using only the name of the respective executable, e.g. "ls971_single" 

2. Linux: Do not specify the command nohup before the solver command and do not specify the 
UNIX background mode symbol &. These are automatically taken into account. 

3. Linux: The command name must not be an alias. 
4. Windows: A path to a program or file cannot contain any blanks or - (dash) symbols. 

5.2.2. Input Files 

LS-OPT handles two main types of solver input files, namely  
1. the main input file and  
2. extra input files. 

LS-OPT converts the input template to an input deck for the preprocessor or solver by replacing the original 
parameter values (or labels) with new values determined by the sampling procedure. The specification of an 
input file is not required for a user-defined solver. 
For LS-DYNA and most of the preprocessor interfaces, LS-OPT automatically searches for include files 
specified in the main input file, see Table 5-2. Include files can be specified recursively, i.e. there can be 
include file specifications in include files. The user-defined stage type also supports these features, but only 
for certain solver types (see 5.3.11). 
Input files are copied to the run directories, parsed to substitute parameter values and renamed. Each stage 
type has its own standard input file name, e.g. for LS-DYNA, the file is renamed to DynaOpt.inp. For 
remote runs, input files are automatically transmitted to a computer cluster. 
A record of the specified input files and parameters is displayed in the GUI but can also be checked in the 
lsopt_input file. 

5.2.3. Extra input files 

Extra files can be added for copying to run directories and substituting variables, Figure 5-2. For remote 
runs, extra input files are automatically transmitted to a computer cluster. 
The files can be placed in any directory and are copied to the run directories during the setup phase. 
Parameters can be specified in the extra files using the native format (e.g. *PARAMETER for LS-DYNA) or 
the generic LS-OPT format (<<parameter>>), see Section 5.2.4. LS-OPT will parse the files for variable 
names if the Parse option is selected. In this case, parameters are listed on the Parameters page and 
imported to the Setup dialog as constants. The user can then change them to variables.  
If the user wants a file to be copied to the run directories, but not parsed for parameters, parsing can be 
skipped by leaving Parse unchecked. This feature is typically used to move binary files to the run 
directories. 
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Extra files are also used in a multi-level setup (Section 5.3.9) to move input files to the lower level. In this 
case, Parse should also be left unchecked to avoid premature substitution at the upper level, before 
processing by the lower level LS-OPT run. 

 

Figure 5-2: Definition of Extra Input Files 

Note that LS-DYNA include files do not have to be specified as extra files, since these are automatically 
processed. However, if the user has parameters in include files with a relative (e.g. 
MyFiles/geometry.inc) or absolute path (/home/jo/LSOPT/MyFiles/Material59.inc), 
these include files must be specified as extra input files in order to force copying to the run directory. The 
path option is mainly used to prevent the copying (and hence duplication) of very large files. Some user-
defined solver types also support this feature (see 5.3.11). 

*INCLUDE specifications pertaining to extra files should not include any path specifications since the files 
are automatically copied to the run directory and will reside together with the main input file. 

5.2.4. Parameterization of Input Files 

For all stage types, input files can be parameterized using the User-defined parameter format, Section 5.2.5. 
For the packages listed in Table 5-2, LS-OPT supports native parameters, see the respective package 
interface section for details. Native parameter types are also supported for certain solvers specified under 
user-defined solver types (see 5.3.11).  
LS-OPTui will automatically recognize the native and User-defined parameters for the formats indicated in 
the table and list them on the Parameters panel, Figure 5-3. Parameters found in input files are also 
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displayed as ‘Constants’ in the Setup dialog ‘Parameter Setup’ panel. The user can then change these 
constants to variables or dependents. The parameter names cannot be changed in the GUI so, if desired, 
must be changed in the original input file(s). A lock icon adjacent to the variable name indicates that the 
parameter names were imported from the input or include files. 

Table 5-2: Parameters and include files 

Package 

Native parameters 
recognized in input 
file 

User-defined 
Parameter Format 
recognized (see 
Section 5.2.4) 

Include files 
recognized in 
input file Reference 

LS-DYNA® Yes Yes Yes Section 5.3.1 

LS-PREPOST® Yes Yes Yes Section 5.3.3 

MSC-NASTRAN1 Yes Yes No Section 5.3.2 

ANSA2 Yes Yes Yes Section 5.3.6 

HyperMorph3 Yes Yes No Section 5.3.7 

Matlab Yes Yes No Section 5.3.12 

TrueGrid4 No Yes Yes Section 5.3.5 

LS-INGRID No Yes Yes Section 5.3.4 

LS-OPT Yes No No Section 5.3.9 

Excel N/A No No Section 5.3.10 

User-defined N/A Yes No Section 5.3.11 

1 Registered Trademark of MSC Software, Inc. 
2 BETA CAE Systems S.A. 
3 Registered Trademark of Altair Engineering, Inc. 
4 Registered Trademark of XYZ Scientific Applications, Inc. 
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Figure 5-3: Parameter panel:  list of parameters found in stage input files 

The ‘include’ files are also scanned wherever this feature is available making it nonessential to define extra 
files. Include files which are specified with a path, e.g. “../../car5.k” or 
“/home/jim/ex4a/car6.k” are not copied to the run directories and no parameter substitutions will be 
made in these files. This is solely to prevent unnecessary file proliferation. The user must however ensure 
that files, which are to be distributed to remote nodes through a queuing system (see Appendix H.3 , 
Remote job scheduling), do not contain any path specifications. These files are automatically transmitted to 
the relevant nodes where the solver will be executed. See also Section 5.3.1. 
If parameters are specified in include files with path specifications, these files should be specified as extra 
files if the user wants them to be parsed and copied to the run directories, Section 5.2.2. 
The User-defined parameter format described next is recognized in all types of input files. 

5.2.5. The User-defined parameter format 

LS-OPT provides a generic format that allows the user to substitute parameters in any type of input file, 
except LS-OPT stage .lsopt input file. The parameters or expressions containing parameters must be labeled 
using the double bracketed format <<expression:[i]field-width>> in the input file.  

The expression field is for a FORTRAN or C type mathematical expression that can incorporate constants, 
design variables or dependents. The optional i character indicates the integer data type. The field width 
specification ensures that the number of significant digits is maximized within the field width limit. The 
default width is 10 (commonly used in e.g. LS-DYNA input files) for numeric fields. E.g. a number of 
12.3456789123 will be represented as 12.3456789 and 12345678912345 will be represented as 
1.23457e13 for a field-width of 10. 

A field width of zero implies that the number will be represented in the “%g” format for real numbers or 
“%ld” format for integers (C language). For real numbers, trailing zeros and a trailing decimal point will not 
be printed. This format is not suitable for LS-DYNA as the field width is always limited. Real numbers will 
be truncated if specified as integers, so if rounding is desired the “nearest integer” expression should be 
used, e.g. <<nint(expression)>>.  
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String parameters are indicated by the character c, <<expression: c field-width>>. For string 
parameters, the default width is the length of the replacement string up to a maximum of 64 characters. A 
field width of zero implies that the entire replacement string is printed (same as not specifying a width). 

Examples 
Inserting the relevant design variable or expression into the preprocessor command file requires that a 
preprocessor command such as 
create fillet radius=5.0 line 77 line 89 

be replaced with 
create fillet radius=<<Radius*25.4:0>> line 77 line 89 

where the design variable named Radius is the radius of the fillet and no trailing or leading spaces are 
desired. In this case, the radius multiplied by the constant 25.4 is replaced. Any expression can be specified. 
An alternative option would be to specify: 
create fillet radius=<<Radius_scaled:0>> line 77 line 89 

while specifying the dependent Radius_scaled as a function of independent variable Radius, such that 
Radius_scaled = Radius * 25.4 . This specification is done in the ‘Setup’ dialog.  
Similarly if the design variables are to be specified using a Finite Element (LS-DYNA) input deck then data 
lines such as 
*SECTION_SHELL 
1, 10, , 3.000 
0.002, 0.002, 0.002, 0.002 

can be replaced with 
*SECTION_SHELL 
1, 10, , 3.000 
<<Thickness_3>>,<<Thickness_3>>,<<Thickness_3>>,<<Thickness_3>> 

to make the shell thickness a design variable. 
An example of an input line in a LS-DYNA structured input file is: 
* shfact z-integr printout quadrule 
.0 5.0 1.0 .0 
* thickn1 thickn2 thickn3 thickn4 ref.surf 
<<Thick_1:10>><<Thick_1:10>><<Thick_1:10>><<Thick_1:10>> 0.0 

The field-width specification used above is not required since the default is 10. Consult the relevant User’s 
manual for rules regarding specific input field-width limits. 

5.2.6. System variables 

System variables are internal LS-OPT variables. There are two system variables, namely iterid and 
runid. iterid represents the iteration number while runid represents the run number within an 
iteration. Hence the name of a run directory can be represented by: iterid.runid. System variables are 
useful for using files such as postprocessing files that were already created in an earlier stage, but which are 
re-used in the current stage. An LS-DYNA example of using system variables is as follows: 
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*INCLUDE 
../../Case1/<<iterid:i0>>.<<runid:i0>>/frontrail.k 

After substitution the second line might become: 
../../Case1/1.13/frontrail.k 

so that the current stage will always include the file in the corresponding directory in Case1.  

The i0 format forces an integer specification (see Section 5.2.5 for a more detailed description). 
Unfortunately the feature cannot be used with LS-DYNA *PARAMETER parameters.  

In an alternative, simpler approach to achieve similar efficiency, LS-OPT also allows pre-processing as a 
first Stage of a process to generate a set of solver input files. This single Stage can be followed by multiple 
parallel simulation Stages using the same files. These files are copied from the preprocessing Stage to the 
simulation Stages. See Section 3.2.2. 

5.2.7. How to avoid copying and parsing an include file 

In some cases files might be very large, but they contain no parameters, so need not be parsed. For very 
large files, this can save a considerable amount of time. The steps are the following: 

1. Unset “Do basic check for missing *DATABASE cards”. 
2. Specify the name of the include file with an absolute path, e.g. “../../largeincludefile.k”. 
3. Specify the exact full pathname of the include file as an extra input file. E.g. if the file was specified 

as “../../largeincludefile.k” in the keyword file, it should also be specified as extra file 
“../../largeincludefile.k”. 

4. Do not select the “Parse” check box for this file. 
It should be noted that if a file is not parsed, include files without paths specified in this file (for the purpose 
of copying to the run directory) cannot be detected. 

5.3. Package Interfaces 

5.3.1. LS-DYNA 

The file DynaOpt.inp is created from the LS-DYNA input template file. By default, LS-OPT appends 
i=DynaOpt.inp to the solver command. Parameterization of the input file can be done using the User-
defined parameter format or the *PARAMETER keyword.  Include files in input files are recognized and 
parsed, see below for further information. 
The LS-DYNA restart command will use the same command line arguments as the starting command line, 
replacing the i=input file with r=runrsf. 

The *PARAMETER format 

This is the recommended format. The parameters specified under the LS-DYNA *PARAMETER keyword 
are recognized by LS-OPT and will be substituted with a new value for each of the multiple runs. These 
parameters should automatically appear in the Parameter list of the GUI upon specification of the solver 
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input file name. LS-OPT recognizes the “i”, “r” and “c” formats for integers, real numbers and strings 
respectively and will replace the number or string in the appropriate format. Note that LS-OPT will ignore 
the *PARAMETER_EXPRESSION keyword so it may be used to change internal LS-DYNA parameters 
without interference by LS-OPT. 

For details of the *PARAMETER format please refer to LS-DYNA User’s Manual. 

LS-DYNA include files 

The handling (parsing, copying and transmitting) of include files by LS-OPT is automated. The following 
rules apply: 

1. Include files may also contain parameters and are also parsed and copied (or transmitted) if the 
include file is specified in the keyword file without a path, for example: 

 *INCLUDE 

 input.k  

2. If a path is specified for an include file, e.g. 

  *INCLUDE 

 C:\path\myinputfiles\input.k 
the file will not be copied, parsed or transmitted. 

3. If the main input file is placed in a subdirectory of the main working directory and is specified with a 
relative path, e.g. myinputfiles/input.k, the directory (in this case myinputfiles) 
becomes a file environment for any include files which may also be placed in this directory. 
Therefore all include files specified without a path will automatically be copied (or transmitted) from 
this sub-directory (myinputfiles) to the run directories. 

LS-DYNA/MPP 

The LS-DYNA MPP (Message Passing Parallel) version can be run using the LS-DYNA option in the 
”Stage” dialog of LS-OPTui. The following run command is an example of how an MPP command can be 
specified: 
mpirun -np 2 lsdynampp 

where lsdynampp is the name of the MPP executable. 

LS-DYNA Advanced Options 

LS-DYNA advanced options are available in the Stage dialog by selecting the LS-DYNA Advanced Options 
button, Figure 5-4. 
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Figure 5-4: Stage Setup LS-DYNA advanced options 

Table 5-3: LS-DYNA Advanced Options 

Option Description 

Do Basic check for Missing 
*DATABASE Cards 

Check if the required binout data types and the required nodes and/or 
elements are requested in the LS-DYNA input deck. For further 
details, see below. 

d3plot compress* Compress the d3plot database. All results except displacements, 
velocities, and accelerations will be deleted. 

d3plot Part Extraction File* Write the results for a user selected set of parts. A file specifying the 
list of parts to be included/excluded is required. The file consists of 
multiple lines with a single entry per line. The syntax of the file is:0. 
id includes the part with id, 
id1-id2 includes the parts from id1 to id2, 
–id excludes the part with id. Only parts included with id or id1-id2 
can be excluded. 
For example:       5 
        7-20 
        -9. 

d3plot Reference Node File* Transforming the results to a local coordinate system specified by 
three nodes. The first node is the origin and the other two nodes are 
used to define the coordinate systems. The coordinate system moves 
with the nodes. A file specified the three nodes consisting of a single 
line is required. An example of the possible contents of the file: 
1001 1002 1003. 

* Remarks 
1. Altering the d3plot databases does not work with adaptivity.  
2. The *DATABASE_EXTENT_BINARY option in LS-DYNA also allows control over the size of the 

d3plot databases. 
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Checking the *DATABASE cards 

LS-OPT can perform some basic checks of the *DATABASE cards in the LS-DYNA input deck. The 
checks will be done using the input deck of the first run of the first iteration. The items checked are: 

1. Whether the required binout data types are requested in the LS-DYNA input deck. For example, if 
LS-OPT uses airbag data, then the LS-DYNA deck should contain a *DATABASE_ABSTAT card 
requesting binout output. 

2. Whether the required nodes and/or elements are requested in the LS-DYNA output. For example, if 
the LS-OPT output request refers to a specific beam, then a *DATABASE_HISTORY_BEAM or a 
*DATABASE_HISTORY_BEAM_SET card must exist and refer to the beam in question. Note 
that *SET_option_GENERAL or *SET_option_COLUMN card will not be interpreted and that an 
output entity specified using *SET_option_GENERAL or *SET_option_COLUMN may be 
flagged incorrectly as missing; switch off the checking in this case. 

5.3.2. MSC-NASTRAN® (SOL 103) 

The user can interface with the NASTRAN implicit solver (sol 103) for modal analysis by selecting the 
MSC-NASTRAN option in the LS-OPTui. The command can either execute a command, or a script. The 
substituted input file NastranOpt.inp will automatically be appended to the command or script. 
Variable substitution will be performed in the input file (which will be renamed NastranOpt.inp. 
The NASTRAN solver is required to generate a ‘N o r m a l’ termination command to standard output 
at the end of simulation. This can be done by executing NASTRAN using a script with its last statement 
being the command (see remark 2): 
echo ’N o r m a l’. 

Remarks: 
1. The NASTRAN solver must not be run in the batch mode. This can be done by specifying the 

'batch=no' option with the NASTRAN command.  

2. A ’N o r m a l  T e r m i n a t i o n’ statement must be issued after finishing the 
NASTRAN job. This can be easily done by using the following script as the solver command: 

#============================================= 

/home/bin/nastran ’batch=no’ $1 

echo ’N o r m a l  T e r m i n a t i o n’ 

#============================================= 

3. Design Parameters: The design parameters can be specified using one of the following two options: 

o defrepsym: The design variables can be specified using the 

defrepsym varname default  

LS-OPT Version 5.2  57 



CHAPTER 5: Stage Dialog − Defining the Solver 

statement. The design variable value is accessed using %varname%. The user must be careful to use 
the appropriate fieldwidth permitted by NASTRAN. This is the preferred option. 
o The User-defined parameter format discussed in Section 5.2.4. 

4. Creating the Database: In order to facilitate the creation of appropriate LS-OPT readable database, 
the user must include the following DMAP code at the beginning of the input deck. 

============================================================ 

$ open the binary file  

ASSIGN OUTPUT4=’nastEigout.op4’ UNIT=39 UNFORMATTED DELETE $ binary  

$ 

$ solver 

SOL 103 

DIAG 5, 6, 8, 56 

$ 

$ Matrix manipulation 

MALTER ’call modefsrs’ $ after modes are calculated 

LAMX,,LAMA/LMAT/-1/0 $ convert eigenvalue table to matrix 

MPYAD, MAA, PHA,/MTP/1 $ matrix multiplication 

OUTPUT4 PHA, LMAT, MTP,,//-1/39///16 $ output desired matrices 

$ 

CEND 

============================================================ 

The name of the output file (nastEigout.op4)and matrices (PHA, MAA, LMAT, MTP,…) must not 
be changed for successful reading of the binary file.  

5. Extracting data: To extract NASTRAN modal analysis results, the users must use Nastran-
Frequency type on the response panel instead of FREQUENCY type that is used for LS-DYNA. 

5.3.3. LS-PREPOST 

The file LsPrepostOpt.inp is created from the LS-PREPOST input template file. LS-OPT 
automatically appends “–nographics c=LsPrepostOpt.inp 2> /dev/null > /dev/null” to the 
command. 
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LS-PREPOST input file example with include: 

test01.cfile: 
$# LS-PrePost command file created by LS-PREPOST 3.0(Beta) - 31Mar2010(17:08) 
$# Created on Apr-06-2010 (13:42:14) 
cemptymodel 
openc command "para01.cfile" 
genselect target node 
occfilter clear 
genselect clear 
genselect target node 
occfilter clear 
genselect clear 
meshing boxshell create 0.000000 0.000000 0.000000 &size &size &size &num &num 
&num 
ac 
meshing boxshell accept 1 1 1 boxshell 
genselect target node 
occfilter clear 
refcheck modelclean 9 
ac 
mesh 
save keyword "lsppout" 
exit 

para01.cfile 
parameter size 1.0 
parameter num 2 

5.3.4. LS-INGRID 

The file ingridopt.inp is created from the LS-INGRID input template file. LS-OPT appends 
automatically “i=ingridopt.inp –d TTY” to the command. Only the User-defined parameter format 
is supported. 

5.3.5. TrueGrid 

The file TruOpt.inp is created from the TrueGrid input template file. LS-OPT appends automatically 
“i=TruOpt.inp" to the command. Only the User-defined parameter format is supported. 

The TrueGrid input file requires the line: 
write end 

at the very end. 
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5.3.6. ANSA (BETA CAE Systems SA) 

 

Figure 5-5: Stage Setup for ANSA 

The ANSA preprocessor can be interfaced with LS-OPT allowing for shape changes to be specified. Several 
files must be specified: 

1. Command: ANSA executable, typically named ansa.sh. Do not use an alias.  
2. DV File: ANSA Design parameter file, typically with the extension .txt or .dat. This file is generated 

using ANSA and LS-OPT will read the ANSA design parameter names, types and values from this 
file. If LS-OPT already has a design variable with the same name then this variable will be used to 
drive the value of the ANSA parameter. 

3. Model Database: ANSA binary database, typically with the extension .ansa.  
ANSA can produce multiple output files. These files can be used as LS-DYNA input files or include files 
(specified under *INCLUDE) in downstream stages. Make sure to specify the output files in the ANSA 
optimization task without a path to generate them in the respective run directory. 

5.3.7. HyperMorph 

 

Figure 5-6: Stage Setup for HyperMorph 
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To allow the specification of shape variables, the geometric preprocessor HyperMorph5 has been interfaced 
with LS-OPT.  Several files must be specified: 

1. Command: templex command 
2. Input file: At the top, the variables are defined as: 

{parameter(DVAR1,"Radius_1",1,0.5,3.0)} 

3. Output File: Templex produces a nodal output file, this file can e.g. be used as an include file in a 
downstream stage. 

The command will enable LS-OPT to execute the following command in the default case: 
/origin 2/john/mytemplex/templex input.tpl > nodes.include 

or if the input file is specified as in the example: 
/origin 2/user/mytemplex/templex a.tpl > h.output 

Remarks: 
1. LS-OPT uses the name of the variable on the DVARi line of the input file:0. 

{parameter(DVAR1,"Radius_1",1,0.5,3.0)} 

{parameter(DVAR2,"Radius_2",1,0.5,3.0)} 

to replace the variables and bounds at the end of each line by the current values. This name, e.g. 
Radius_1 is recognized by LS-OPT and automatically displayed in the ‘Setup’ dialog. The lower and 
upper bounds (in this case: [0.5,3.0]) are also automatically displayed. The DVARi designation 
is not changed in any way, so, in general there is no relationship between the number or rank of the 
variable specified in LS-OPT and the number or rank of the variable as represented by i in DVARi. 

5.3.8. μETA (BETA CAE Systems SA) 

The μETA interface allows extraction of data from any database it supports, so makes LS-OPT accessible to 
interface with any such supported solvers. This allows μETA to read results from the solver database and 
place them in a simple text file. 

5 Registered Trademark of Altair Engineering, Inc. 
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Figure 5-7: MetaPost interface 

Several files must be specified: 
1. Command: The μETA executable 
2. Session File: The session file containing information about which results to extract. This can be 

created interactively using µETA. 
3. Output File: This specification is only used for parsing the history and response names (to be 

automatically displayed in the GUI) during the LS-OPT setup phase (see below). The output file 
(result file) is the name of a file containing those results requested in the input (session) file. This is a 
text file so it can be easily parsed. This file has a predetermined format so that LS-OPT can 
automatically extract the individual results. The specified path + name is not used during the 
optimization run, but only during the setup phase while the user is preparing the LS-OPT input data. 
During this phase, the responses are parsed from a baseline result file and automatically displayed in 
the "Histories" and "Responses" pages of the GUI. 

4. Database File: This is the path for finding the solver database. The default "./" means that μETA will 
look for the database locally. This specification has no effect during the optimization run as LS-OPT 
will always force μETA to look for the solver database locally, e.g. in the run directory Stage_A/1.1. 

Setting up an LS-OPT problem: 
1. Run μETA and use the session file thus created to create the result file. This is done manually, 

separately from the LS-OPT data preparation (an integrated feature might be provided in the future).  
2. Open the LS-OPT GUI on the Stage dialog and select METAPost as the package name. 
3. Specify the μETA settings in the LS-OPT GUI (see Figure 5-7). The user can browse for the μETA 

executable, session file and result file. The result file is the one that was created in the manual step 
(Step 1. above). The database path need not be changed. 

4. The result file is parsed for history and response names to display in the relevant GUI pages. These 
can then be used to complete the optimization problem setup: define composites, objectives and 
constraints, etc. 

5. After completion of the optimization setup, run LS-OPT.0. 
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5.3.9. LS-OPT 

The LS-OPT stage allows one to extract optimized LS-OPT response values, which can then be used in 
another optimization with respect to a different set of variables. The LS-OPT stage can also be used to call a 
reliability task from an optimization task, e.g. for tolerance optimization or a robust design task using the 
direct Monte Carlo method at the lower level.  
The LS-OPT stage simply executes another instance of the LS-OPT software in a nested optimization 
framework. Thus, it allows a user to set up a Multilevel Optimization problem, explained in Section 17.7. 
The LS-OPT stage setup dialog is shown in Figure 5-8.  

 

Figure 5-8: LS-OPT stage interface 

The fields that need to be specified for an LS-OPT stage are as follows. 
1. Command: Like all other solver interfaces, the user needs to provide the command to run LS-OPT. 

There is a Use default command option that automatically fills in the path to the LS-OPT executable 
being used for the setup.   

2. Input file: The input file for an LS-OPT stage is a .lsopt file itself that contains the setup for an inner 
level LS-OPT sub-problem. The file LsoOpt.inp (or a user specified name) is created from the 
LS-OPT input template file. By default, LS-OPT appends LsoOpt.inp to the solver command. 
Parameterization of the input file is done using Transfer Variables (Figure 5-9).  

3. Extra Files: An important aspect to note in the LS-OPT stage setup is the use of extra input files with 
the Parse option unchecked (Figure 5-14). This is important because the input files of the lower 
level(s) need to be passed down from the upper level while not considering the lower level variables 
in the upper level. The details of the directory structure for multilevel problems are presented in 
Section 14.5. 
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LS-OPT input file parameterization 

The LS-OPT input file, i.e. the .lsopt file, is parameterized using Transfer Variables. The transfer variables 
are indicated using type=”iconstant” in the LS-OPT stage input file. Continuous and Discrete variables can 
be set as a Transfer Variables using the LS-OPT GUI (Figure 5-9); these are then considered as constants at 
that level, but can be set as variables in preceding levels. These variables are automatically detected as 
constants by LS-OPT and populate the outer level Global Setup (for which the parameterized .lsopt file is a 
stage input file). The user can either use them as constants in the outer level or set them as variables.  

 

Figure 5-9: Parameterization of inner level LS-OPT setup using Transfer Variables. The values of 
transfer variables are passed down from the upper level(s). 

 

Figure 5-10: Outer level global setup. SIGY and YM are automatically detected in the input file (i.e. inner 
level .lsopt file) and locked as they are Transfer Variables in the inner level.  

Remarks: 
1. The user-defined parameter format <<variable_name>> is not allowed for the LS-OPT stage. 
2. LS-OPT stage responses are extracted using the LSOPT response type (Section 6.16). 

Navigating to view lower level setups and progress 

Because of the complex recursive nature of a multilevel setup, simple navigation options are provided so 
that lower level setups can be inspected or edited recursively starting at the main (upper level) setup. During 
runtime, job progress can also be viewed recursively starting at the main progress window. 
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1. The Open button opposite the Input file text box allows the user to navigate down to the next level 
and will display the GUI for inner.lsopt, see Figure 5-8.  

2. While a multilevel run is in progress, the user can also navigate to display the progress of a selected 
lower level job by clicking on the LS-OPT button in the progress dialog. Lower level job progress 
can also be monitored using the View log button to display the text output, see Figure 5-11.  

 

Figure 5-11: Progress window for the LS-OPT stage. Selecting the LS-OPT button for the selected job 
displays the LS-OPT GUI for that job which allows the user to monitor a lower level optimization run.  

5.3.10. Excel 

An Excel stage can be used as a solver or a post-processor. It can be seen as being similar to any other 
solver, with the main differences lying in its parameterization and in the response and history definitions. 
Because the results need to be computed for several samples within an LS-OPT task, the Excel input file 
needs to be parameterized. This is achieved using Input definitions specified in the Stage dialog itself. These 
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inputs may correspond to a single Excel cell or a group of cells in the input file, and are substituted for each 
sample (Figure 5-12). 

 

Figure 5-12: Excel stage interface 

The attributes used for Input definitions are Sheet, Cell, Type, Value and Fill Direction. The details are 
given below. 

1. The Sheet and Cell options direct LS-OPT to a unique location within the Excel document. A Cell 
can be assigned using the Excel row-column format (i.e. by typing A2, B4 etc). If cell names have 
been already defined in the parsed Excel document, LS-OPT displays all the existing names as a list 
under Cell option and the required cell can be selected directly. The displayed names under Cell 
option can also correspond to an array of Excel cells, used to assign LS-OPT histories.   

2. Type and Value options are used to link LS-OPT design parameters, histories and responses with 
corresponding fields of the parsed Excel document. There are four different options within Type - 
Parameter, Responses, History and User-Defined.  
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o Parameter is used to link the global LS-OPT parameters defined in Setup dialog to the specified 
cells of the Excel document. When Parameter is selected as type, all the global LS-OPT 
parameters defined in Setup dialog are listed under the Value option.  

o Response as a parameter type facilitates the use of LS-OPT responses defined in previous stages 
as input parameter for the current Excel stage. A list of responses defined in the previous stages 
is displayed under Value option and the user can select which response has to be written to the 
Excel document. 

o History as a type allows LS-OPT to input histories obtained from previous stages to the Excel 
document.  

o User-defined option as a type can be used to write histories and responses of previous stages to 
the Excel document using a command. For example the command ‘type response.0’ will write 
the value present in file response.0 of previous stage, to the Excel document; provided a file 
transfer operation is defined to transfer the file response.0 from previous stage directories to the 
run directories of current Excel stage directory.  

3. Fill Direction specifies how the history values are written to the Excel fields i.e. in Vertical or 
Horizontal directions. 

If the Global limit for Execution Resources is set to 1, the option ‘Do not copy Excel file to job folder’ is 
available in the Excel stage setup dialog. If the option is checked on then the original Excel input file 
template is modified for each sample analysis. This avoids copying of the (potentially large) input file to 
each run directory. All the possible combinations of Input definitions are illustrated in Figure 5-12. These 
are also listed below. 

1. The first input definition in Figure 5-12 shows a parameter x1 defined in Setup dialog of main GUI 
(also populated under Value option), has been assigned a cell A3 in Sheet1 of Excel document 
data.xlsx.  

2. Similarly, if a user has assigned a name to the cell using Name Manager within Excel, all the Sheet 
specific cell names are populated as a list. In the second input definition, Param2 is a name defined 
to a cell in Sheet1 which is assigned to parameter x2 using Value option.    

3. The third input definition writes the response Stage1_out_resp obtained from previous stage to the 
cell Stage2_in_resp1 of the Excel document data.xlsx.  

4. The fourth input definition writes the history Stage1_out_hist obtained from previous stage to an 
array of Excel fields defined with name Stage2_in_hist in Sheet2 of data.xlsx in Vertical direction.  

5. The last input definition shows a response obtained from previous stage (where response.2 is the file 
with response value) is being written to a cell with name Stage2_in_resp2 of Sheet2 using User-
defined option. This option allows writing values available in the output files of previous stages to 
the Excel document. .  

5.3.11. User-defined program 

A user-defined solver or preprocessor can be specified by selecting User-defined in LS-OPTui. The 
command can either execute a command, or a script. The substituted input file UserOpt.inp will 
automatically be appended to the command or script. Variable substitution will be performed in the input 
file (which will be renamed UserOpt.inp). The specification of an input file is optional. In its simplest 
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form, the prepro own preprocessor can be used in combination with the design point file: XPoint to 
read the design variables from the run directory. 

If the own solver does not generate a ‘Normal’ termination command to standard output, the solver 
command must execute a script that has as its last statement the command:  
echo ‘N o r m a l’. 

5.3.12. Matlab 

A Matlab stage can be specified by selecting MATLAB as the package name in the stage setup dialog of 
LS-OPTui (Figure 5-13).  

 

Figure 5-13: Matlab stage interface 

The input file is a Matlab script consisting of the variable definitions using the input function in Matlab 
(e.g. variable1 = input(‘description of the variable’);). LS-OPT parses the input 
file and identifies the variable name. It then replaces the input function with a value during the run. 
Before replacement, the input file is copied to subdirectories under the stage directory. The default name for 
the copied file is MatlabOpt.m. It should be noted that this file must have the suffix .m. The Matlab input 
file must write the histories and responses in the METAPost format described in 5.3.14. In addition, it must 
write the termination status, as shown below, using  try-catch and diary. 
Try 
  % Definition of variables x1 and x2 
  x1 = input('x1-'); 
  x2 =input('x2:'); 
   
  % Computation of response(s) and histories  
  s = x1+x2; 
  h = [0 s;1 s+1;2 s+4;3 s+9]; 
 
  % Write responses and histories to MatlabOutput file 
  fid = fopen('MatlabOutput','w'); 
  fprintf(fid,'#\n'); 
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  fprintf(fid,'RESPONSES\n'); 
  % response 1 
  fprintf(fid,'%d, %s, %f\n',0,'s',s); 
  fprintf(fid,'END\n'); 
  fprintf(fid,'#\n'); 
  % history 1 
  t=1:size(h,1); 
  fprintf(fid,'HISTORY 99: h\n'); 
  for i=1:size(h,1) 
    fprintf(fid,'%f, %f\n',t(i),h(i)); 
  end 
  fprintf(fid,'END\n');fprintf(fid,'#\n'); 
  ChkClose=fclose(fid); 
 
  % Write Normal termination status 
  diary matstatus; 
  disp('N o r m a l   t e r m i n a t i o n'); 
  diary off 
catch 
  % Write error termination status 
  diary matstatus; 
  disp('E r r o r   t e r m i n a t i o n'); 
  diary off; 
end 
exit 

An output file also needs to be provided in the stage dialog that contains the response and history 
definitions. LS-OPT automatically populates the histories and responses to be extracted based on the 
definitions in this file (See Section). The output file must have the same format as METAPost. 

5.3.13. Third Party solvers 

LS-OPT supports certain popular Finite Element Analysis solvers under the User-defined solver type. For 
these solver types all the syntax rules (e.g. recursive include files, parameter keywords, etc.) associated with 
the input file are obeyed so that parameters can automatically be imported to the LS-OPT setup dialog.  
LS-OPT recognizes the solver type by initially parsing the first line of the main input file. This line should 
be a comment line which contains the name of the package it represents. 
Special response interfaces are not available, but response and history extraction are supported using  

o GenEx (Chapter 7) 
o the user-defined post-processor (5.3.14)  
o commercially available post-processors supported by LS-OPT (see e.g. 5.3.8). 

5.3.14. User-defined post-processor 

The postprocessor allows extraction of data from any database it supports, so makes LS-OPT accessible to 
interface with any such supported solvers. This allows the postprocessor to read results from the solver 
database and place them in a simple text file or files for individual extraction of results. 
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In the case of user-defined post-processor, the full command needs to be provided, because LS-OPT does 
not internally construct the command using the input, database and result files. The output file needs to be 
written in the same format as for the μETA package. The format is as follows: 
# 
RESPONSES 
0, Weight, 0.591949043101576 
1, StressL, 3.74281176328897 
2, StressR, 1.99975762786926 
END 
# 
HISTORY 99 : his1 
0,0 
0.0795849328001081,0.23516125192977 
0.159169865600216,0.274354793918065 
0.238754798400324,0.31354833590636 
0.318339731200433,0.352741877894655 
0.397924664000541,0.39193541988295 
# 
END 
# 
RESPONSES 
END 
# 
HISTORY 100 : his2 
0,0 
0.0795849328001081,0.627096671812721 
0.159169865600216,0.666290213801015 
0.238754798400324,0.705483755789311 
0.318339731200433,0.744677297777606 
0.397924664000541,0.783870839765901 
# 
END 

Setting up an LS-OPT problem is similar to μETA, except that User-defined Postprocessor is selected as 
the package, and the session file and database path need not be provided as the related information is 
available in the command. 
It is also possible to run μETA as a user-defined post-processor. In this case, the command provided in 
“fullcommandscript” is: 

<metapost_executable> -b -s -foregr <path/sessionfile> "<database_path>" 
"<path/result_file>" 

Unlike in the case of μETA, the full command is not constructed internally by LS-OPT. Therefore, 
metapost_executable, path/sessionfile, database_path, and path/result_file need to be provided in 
fullcommandscript. Because all the information is available in the command, it is not necessary to 
provide the input and database files separately in this case.  
The output file name must however be specified for the following reason. The output file is parsed for 
history and response names to import and display in the relevant GUI pages. These can then be used to 
complete the optimization problem setup: define composites, objectives and constraints, etc. 
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5.4. Solver Execution 

 

Figure 5-14: Stage dialog Setup panel 
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Table 5-4: Stage dialog Setup options: Execution options 

Option Description Reference 

Resources Settings for concurrent processing Section 5.4.1 

Use Queuing Interfacing with load sharing facilities to enable running 
simulation jobs across a network. 

Section 5.4.2 

Use LSTCVM 
proxy 

Enabling LSTCVM, Secure Proxy Server, for distributing 
solver jobs across a computer cluster. 

Section 5.4.3 

Environment 
Variables 

Environment variables that will be set before executing a 
solver command. 

Section 5.4.4 

Run jobs in 
Directory of Stage 

If multiple stages are defined, the command can be executed in 
the directory of another stage.  

- 

Recover Files List of files to be recovered from remote machine, only 
available if a queuing system interface is used 

Section 5.4.5 

Advanced execution 
options 

Options related to retry of job submissions for  
A b n o r m a l Termination 

Section 5.4.6 

5.4.1. Specifying Computing Resources for Concurrent Processing 

Multiple resource limits can be defined for each stage. The resource attributes consist of Units per job as 
well as the Global limit (see Figure 5-15). This feature is non-dimensional and therefore allows the user to 
specify limits on any type of computing resource such as number of processors, disk space, memory, 
available licenses, etc.  

Example: 
A user has 10,000 processors available and wants to execute an optimization run using MPP simulations 
requiring 128 CPUs per job. She therefore specifies the units per job as 128 and the global limit as 10,000. 
For this same optimization run, the user has 5,000Gb disk space available while using 40 Gb of disk space 
per job (which is deleted after the completion of each job). A second resource therefore has to be specified 
with attribute values 40 units per job and a global limit of 5,000. The resource setup is shown in Figure 
5-15. The job scheduler will launch jobs that will not exceed any of these two limits. 
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Figure 5-15: Definition of Resources for a Stage 

Resources must be defined at the Stage level, but can be viewed in the Resource tab of the Setup dialog (see 
Section 8.4 ). The limits can be changed in either the Stage or Setup dialogs. 
Stages can share resources. For instance, as part of an MDO problem, the same resource can be defined for 
multiple stages. 
When using multiple computer clusters, independent resources are typically defined for each cluster. Jobs 
will then be run concurrently on all clusters within the limits defined for each cluster. 
A single resource with a default of 1 Units per job and a Global limit of 1 is assumed for each stage at the 
beginning of the creation process. The default name is the solver type name. That also implies that if 
multiple stages use the same solver type, there will by default be only one resource definition. Resources 
can then be added or deleted as desired. To change a resource name, a new resource has to be added and the 
old resource deleted. 

Remark 
A resource definition related to e.g. the number of processors to be used for a simulation run does not 
replace the specification of the number of processors as a command line option or in the command script. 
The resource definitions are only used to calculate the number of jobs that are submitted concurrently.  

5.4.2. Interfaces to Queuing Systems 

The LS-OPT Queuing Interface interfaces with load sharing facilities (e.g. LSF6
 or LoadLeveler7) to enable 

running simulation jobs across a network. LS-OPT will automatically copy the simulation input files to each 
remote node, extract the results on the remote directory and transfer the extracted results to the local 
directory. The interface allows the progress of each simulation run to be monitored via LS-OPTui. See 
Appendix H.5  for information on how to setup the interface. 

6 Registered Trademark of Platform Computing Inc. 
7 Registered Trademark of International Business Machines Corporation 
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Table 5-5: Queuing options 

Option Description Reference 

LSF LSF  

PBS PBS8  

PBSPRO PBS PRO  

SLURM SLURM  

AQS AQS  

LoadLeveler LoadLeveler  

NQE NQE9  

NQS NQS10  

Black-Box Black box Appendix H.7  

Honda dedicated queuer Appendix H.8  

SGE SGE  

User-Defined User Defined Appendix H.7  

5.4.3. Using the LSTCVM secure proxy server 

Selecting this option enables the interface to use LSTCVM. LSTCVM is a Secure Proxy Server for 
distributing solver jobs across a computer cluster, e.g. for running LS-OPT on a Windows machine 
controlling solver jobs on a Linux cluster. See Appendix H.11 for information on the installation of 
LSTCVM. 

8 Portable Batch System. Registered Trademark of Veridian Systems 
9 Network Queuing Environment. Registered Trademark of Cray Inc. 
10 Network Queuing System 
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5.4.4. Environment Variables 

 

Figure 5-16: Definition of Environment Variables 

LS-OPT provides a way to define environment variables that will be set before executing a solver 
command. The desired environment variable settings can be specified in the Stage dialog if the Environment 
Variables checkbox is selected. 
Passing environment variables to stage commands can be a convenient way to control the behavior of a 
command. For example, the command might be a script which queues a job on a remote machine; the 
environment variable settings might be used by the script to select various queuing options. Or, the 
environment variable settings might be passed along through the queuing system to set options for the 
remotely executed job, such as license server locations, input file names, whether to run the MPP version of 
LS-DYNA, whether to run a single or double precision solver, etc.  
Select the button Add manually to define a single environment variable. After selecting this option, a new 
line will appear in the Environment Variables list where you can enter the variable name and an arbitrary 
value. We do not allow the names of variables to contain anything other than upper- or lower-case letters, 
numbers, and underscore ( _ ) characters. This guarantees that all environment variable definitions can be 
used on all platforms. Variable values are not so limited. 
The Set by Browsing option is used to set variables in bulk. This is done by running a user-supplied 
program or importing a user-supplied file (see Appendix H: Installing LS-OPT for further information). 
Activate the Set by browsing button in order to select from the available executables or files. A selection 
list containing all available files and programs will show up. 
Selecting a file or executable will directly import all the specified variables into the Environment Variables 
list in bulk. In addition to these Browse List variables, a special browse variable is created that should not be 
edited. This variable records the program name used to create the Browse List. 
NOTE: Strings in the Environment Variables list appearing above the browse line are all part of the Browse 
List. Strings that appear below browse are never part of the Browse List. User-defined environment 
variables will always follow after the browse variable definition. 
Selecting the Edit Browse list button does nothing unless a Browse List has been previously created. If a 
valid Browse List is present in the Environment Variables list, then selecting this option will run the original 
program that created the Browse List, together with all of the current Browse List options passed as 
command line arguments, one per existing environment variable.  
Executing the 'Edit Browse List' will cause the original file to be reread, which is convenient for testing 
purposes.  
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Note: The browse command can ABORT the replacement operation by printing a blank line to the standard 
output and immediately terminating. Otherwise the current Browse List may be deleted. If the browse 
command abnormally terminates, then an error box will appear with a title bar indicating that the command 
failed. 

How the browse list is used by LS-OPT 

The Browse List (indeed, the complete Environment Variables List) is used to set environment variables 
before running the solver command specified by LS-OPT. However, if the first variable returned by the 
browse command is exe, then a pre-processing command is run before running the actual solver command. 
The pre-processing command is the value of the exe variable. The pre-processing command has a command 
line  
$exe var1=$var1, var2=$var2, ... varN=$varN 

That is, the command executed is the value of the exe variable; additional command line arguments consist 
of all Browse List strings with a comma delimiter appended to each intermediate one. (The final argument 
is not followed by a comma.) 
Note: Such a pre-processing command is always run from within the current LS-OPT Job Directory. 
Therefore, any file that the pre-processing command references must be specified by a fully-qualified path 
or must be interpreted relative to the current LS-OPT Job Directory. So, the LS-OPT Stage Directory 
will be ".." and the LS-OPT Project Directory will be "../..". 

5.4.5. Recovering Output Files 

 

Figure 5-17: Database recovery options 

This option is only available if a queuing system interface is used, Section 5.4.2. When distributing the 
simulation runs, the information needed by LS-OPT is automatically extracted and transferred to the local 
node in the form of files response.n and/or history.n. 

If the user wants to recover additional data to the local machine to do local post-processing (e.g. using LS-
PREPOST), the Recover Files options can be used. 
For LS-DYNA, the Select file type option can be used to recover d3plot, d3hsp, binout, d3eigv or eigout 
files. Each name is a prefix, so that e.g. d3plot01, d3plot02, … will be recovered when specifying 
d3plot. 
Any database can be recovered by using the Add file manually option. Each name is a wildcard. 
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The requested database files will appear in the local run directory. The details of the recovery procedure is 
logged and available in the job_log file in the run directory on the local machine. Job logs can be viewed 
by double-clicking on the Stage LED during or after running. See Section 14.3. 

5.4.6. Advanced Execution Options 

 

Table 6: Advanced execution options 

Option Description Reference 

Abnormal retry timeout Submission script timeout (seconds) Appendix H.9.1  

Abnormal retry count Number of retries if submission fails Appendix H.9.1  

Queuer timeout Time LS-OPT will wait for the wrapper to 
connect, otherwise it sets an abnormal 
termination status. 

Appendix H.9.2  

5.5. File Operations 

 

Figure 5-18: File Operations within a Stage run directory 

LS-OPT allows file operations between Stages or within a Stage.  
The requested Stage file operations are executed for all the run directories related to the Stage, e.g. 
CRASH/1.1, CRASH/1.2, etc. Within a Stage run directory, several file operations can be executed on 
files previously copied to the run directories or generated by the stage command before or after executing 
the stage command. See Figure 5-18 and Table 3-4. 
File operations between stages are discussed in Section 3.2.2. 
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Table 5-7: File Operations 

Option Selections Description 

Operation Copy 
Move 
Delete 

Available operations 

Source File  Name of source file 

Destination File  Name of destination file, wildcards are supported 

Sequence before 
after 

Execute operation before or after executing the stage 
command 

On Error fail 
warn 
ignore 

What to do if operation fails 

5.6. The ‘N o r m a l’ termination status 
LS-OPT can only detect the solver termination status by reading the information that the solver prints to the 
screen (also called standard output or stdout). The LS-DYNA solver type as well as late versions of 
ANSA automatically outputs the phrase ‘N o r m a l’ which LS-OPT detects as a normal termination. 
If ‘N o r m a l’ is absent, LS-OPT assumes an error termination status and will not attempt to extract 
any results from the database. For all other solvers, the user has the responsibility to write the status to 
standard output. This can be accomplished by inserting the solver command into a script or program in 
which the ‘N o r m a l’ string is written at the end using a print statement. See also Appendix H.9 . 

5.7. Managing disk space during run time 
As multiple result output sets are generated during a parallel run, the user must be careful not to generate 
unnecessary output. The following rules should be considered: 

o To save space, only those output files that are absolutely necessary should be requested. 
o A significant amount of disk space can be saved by judiciously specifying the time interval between 

outputs (DT) e.g., in many cases, only the output at the final event time may be required. In this case 
the value of DT can be set slightly smaller than the termination time. 

o The result extraction is done immediately after completion of each simulation run. Database files can 
be deleted immediately after extraction using the ‘Delete’ file operation after the solver run (see 
Section 5.5).   

o Database files can also be deleted by using the clean file (see Section 5.7.1). 
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o If the simulation runs are executed on remote nodes, the responses of each simulation are extracted 
on the remote node and transferred to the local run directory. 

5.7.1. Using the clean file to delete solver output files 

During a sequential approximation procedure, superfluous data can be erased after each run while keeping 
all the necessary data and status files (see Section 14.6). For this purpose the user can provide a file named 
clean (clean.bat on Windows) containing the required erase statements such as 
rm -rf d3* 
rm -rf elout 
rm -rf nodout 
rm -rf rcforc 

on Linux or 
del d3* 
del elout 
del nodout 
del rcforc 

on Windows, respectively. 

The clean file will be executed immediately after each simulation and will clean all the run directories 
except the baseline (first or 1.1) and the optimum (last) runs. Care should be taken not to delete the lowest 
level directories or the log files started, finished, response.n or history.n (which must 
remain in the lowest level directories). These directories and log files indicate different levels of completion 
status which are essential for effective restarting. Each file response.response_number contains the 
extracted value for the response: response_number. The essential data is thus preserved even if all solver 
data files are deleted. The response_number starts from 0. 

Complete histories are similarly kept in history.history_number. 

The minimal list to ensure proper restarting is: 
XPoint 
started 
finished 
response.0 
response.1 
. 
. 
history.0 
history.1 
. 
. 

Remarks: 

1. The clean file must be created in the work directory. 

2. If the clean file is absent, all data will be kept for all the iterations.  

3. For remote simulations, the clean file will be executed on the remote machine. 

LS-OPT Version 5.2  79 



CHAPTER 5: Stage Dialog − Defining the Solver 

5.8. Alternative setups for running pre-processors  
The easiest way of running a pre-processor is to define a separate stage for the pre-processor and solver and 
to make the solver stage dependent on the pre-processor stage. Because the output file of the pre-processor 
has to be used as input by the solver, the setup is important. There are at least three ways of setting up a pre-
processor run: 

1. Specify the output file of the pre-processor as an include file of the solver.  

2. Copy the output file to the base file of the solver. E.g. if lsppout is the output file name of the 
pre-processor, copy lsppout to DynaOpt.inp which is the standard base file name for the 
LS-DYNA solver type. An inter or intra-stage file operation is used for this purpose. 

3. Rename the base file name of the solver to the output file name of the pre-processor (see Section 
5.2.1). E.g. if the output file name of the pre-processor is lsppout rename the basefile of the 
solver (in this case the LS-DYNA type) from DynaOpt.inp to lsppout. LS-DYNA will then 
use i=lsppout as part of the solver command. 

It should be noted that both the pre-processor and the solver can be run in the same directory by selecting 
the ‘Run Job in Directory of Stage’ option in the Setup tab of the Stage dialog. They can both be run in the 
directory of the pre-processor or the solver. 
If they are both run in the pre-processor directory, a copy file operation (Section 5.5) should be specified in 
the ‘File Operations’ tab to copy the file after the pre-processor stage. 
If they are both run in the solver directory, a copy file operation should be specified in the ‘File Operations’ 
tab to copy the file before the solver stage (Section 5.5). 
If they are run in different directories (i.e. their own home directories), an inter-stage copy operation should 
be specified (Section 3.2.2). 0. 
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This chapter describes the specification of the history or response results to be extracted from the stage 
database. A history is a vector or curve data, whereas a response is a scalar value. Responses can be used to 
define objectives or constraints (Chapter 11), histories are intermediate entities that can be used to calculate 
responses or composites (Chapter 10). Interfaces for result extraction from LS-DYNA and MSC-
NASTRAN output files are available, as well as mathematical expressions, file import, an interface for 
extraction of values from ASCII database and a user-defined interface where any program may be used for 
result extraction. The dialogs are accessible from the Stage dialog Histories and Responses tab, 
respectively. 

6.1. Defining histories and responses 
A history or a response can be defined by using the interfaces in the Histories and Responses tab of the 
Stage dialog, respectively, Figure 6-1. To add a new definition, select the respective interface from the list 
on the right. The available interfaces are explained in Table 6-1. To edit an already defined history or 
response, double-click on the respective entry from the list on the left. Histories and responses may be 
deleted using the delete icon on the right of the respective definition.  
There are five types of interfaces: 

o Standard LS-DYNA, MSC-Nastran or LSOPT result interfaces. These interfaces provide access to 
the LS-DYNA binary databases (d3plot or binout, d3hsp or d3eigv), the Nastran and LSOPT 
database, respectively. The interfaces are an integral part of LS-OPT.  

o User specified interface programs. These can reside anywhere. The user specifies the full path. 
o Mathematical expressions. 

o GenEx. This interface allows the user to extract selected field values from a text file.o 

o Excel. 
The extraction of responses consists of a definition for each response and a single extraction command or 
mathematical expression. A response is often the result of a mathematical operation of a response history, 
but can be extracted directly using the standard LS-DYNA interface (see Section 6.1.1) or a user-defined 
interface. 
Each extracted response is identified by a name, Table 6-2, and the settings to be specified using the 
respective interface. 
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Figure 6-1: Histories definition in the GUI 

Table 6-1: Interfaces for Response and History extraction 

Option Description Reference 

Generic USERDEFINED Result extraction using any script or 
program 

Section 6.13 

FILE Result extraction from a text file 
(responses only) 

Section 6.14 

GENEX Tool for extracting results from text files Chapter 7 
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EXCEL Result extraction from an Excel document Section 6.17 

EXPRESSION Definition of mathematical expressions 
using previously defined entities 

Section 6.4.1 

FUNCTION Expressions using previously defined 
histories 

Section 6.4.3 

INJURY Injury criteria Section 6.5 

MATRIX_EXPRESSION  (Response only) Section 6.4.4 

Derived Crossplot Crossplot (History only) Section 6.4.1 

LS-DYNA ABSTAT Binout interface Section 6.2.1 

BNDOUT Binout interface Section 6.2.1 

D3PLOT D3plot interface Section 6.2.3 

DBBEMAC Binout interface Section 6.2.1 

DBFSI Binout interface Section 6.2.1 

DEFORC Binout interface Section 6.2.1 

ELOUT Binout interface Section 6.2.1 

FLD Metal Forming results (Response only) Section 6.3.2 

FREQUENCY D3eigv interface (Response only) Section 6.2.5 

GCEOUT Binout interface Section 6.2.1 

GLSTAT Binout interface Section 6.2.1 

JNTFORC Binout interface Section 6.2.1 

MASS D3hsp interface (Response only) Section 6.2.4 

MATSUM Binout interface Section 6.2.1 

NCFORC Binout interface Section 6.2.1 

NODOUT Binout interface Section 
6.2.1,  

NODFOR Binout interface Section 6.2.1 
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PSTRESS Metal Forming results (Response only) Section 6.3.3 

RBDOUT Binout interface Section 6.2.1 

RCFORC Binout interface Section 6.2.1 

RWFORC Binout interface Section 6.2.1 

SBTOUT Binout interface Section 6.2.1 

SECFORC Binout interface Section 6.2.1 

SPCFORC Binout interface Section 6.2.1 

SPHOUT Binout interface Section 6.2.1 

SWFORC Binout interface Section 6.2.1 

THICK Metal Forming results (Response only) Section 6.3.1 

MSC-
NASTRAN 

NAST_FREQUENCY Frequency, matched mode number or 
MAC value (Response only) 

Section 6.15 

LS-OPT LSOPT Optimized inner level variables, responses, 
composites, objective functions, 
constraints, histories and reliability 
statistics 

Section 
6.16.2, 
Section 
6.16.1 

LSOPT_STATISTICS Statistical values produced by a Monte 
Carlo analysis (Response only) 

Section 
6.16.3 

File Histories Global file histories (History only) Section 6.19 

Copy Copy the selected History/Response  

Paste Paste a previously copied 
History/Response, also possible between 
stages. The next free number is 
automatically appended to the name. 
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Table 6-2: General  History and Response options for all interfaces 

Option Description 

Name History/Response name 

Subcase Integer CASE ID associated with the *CASE parameter in LS-DYNA. This 
option is mandatory for disciplines that use the *CASE parameter in LS-
DYNA input files but is not required for other cases. For all other cases, 
first/last commands should be used. 

Multiplier 
Offset 

(Response only) If scaling and/or offsetting of the response is required, the 
final response is computed as (the extracted response × Multiplier ) + Offset.  

Not metamodel linked (Response only) Sometimes it is beneficial to create intermediate responses 
without associated metamodels, although the task is metamodel-based. This 
promotes efficiency. Responses that are not metamodel linked cannot be 
included directly in composites, as composites rely on metamodel-based 
calculations. 

Dump formula file (Response only) Dump metamodel formula to file 
formula_dump_responsename.iteration in the working directory. 

DEFINE_CURVE (History only) *DEFINE_CURVE definition of history 

6.1.1. Result extraction 

Each simulation run is immediately followed by a result extraction to create the history.n and 
response.n files for that particular design point. For distributed simulation runs, this extraction process 
is executed on the remote machine. The history.n and response.n files are subsequently transferred 
to the local run directory. If the extraction on the remote machine is not successful, it is done again on the 
local machine. Hence programs and scripts needed for result extraction do not have to be accessible from 
the remote machine. These results are stored in the AnalysisResults_n.lsox database. 

6.1.2. Creating a history file with an LS-DYNA *DEFINE_CURVE keyword 

The DEFINE_CURVE selection allows the creation of an LS-DYNA include file (e.g. his.k) with the 
*DEFINE_CURVE keyword and history data. The LCID, which represents the load curve ID required by 
LS-DYNA, should be entered in the appropriate text box. See e.g. Figure 6-11. 

6.2. Extracting history and response quantities: LS-DYNA 
LS-OPT provides interfaces for history and response result extraction from binout, d3plot, d3hsp and 
d3eigv. The user must ensure that the LS-DYNA program will provide the output files required by LS-OPT. 
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The options for the extraction of LS-DYNA responses and histories are identical, except for the selection 
attribute.  
Aside of the standard interfaces that are used to extract any particular data item from the database, 
specialized responses for metal-forming are also available. The computation and extraction of these 
secondary responses are discussed in Section 6.3.  

6.2.1. LS-DYNA binout results  

All LS-DYNA history and response result extraction options except for D3PLOT, MASS and 
FREQUENCY interface with the LS-DYNA binout output. The BINARY flag in the respective 
*DATABASE_OPTION card and the desired entity ID in the *DATABASE_HISTORY_OPTION card has 
to be set correctly in the LS-DYNA input file. Note that the LS-DYNA executable is interpreted as a single 
process (SMP) by LS-OPT, hence the default binary flag value 0 is not supported. 
The response options are an extension of the history options – a history will be extracted as part of the 
response extraction. 
Results can be extracted for the whole model or a finite element entity such as a node or element. For shell 
and beam elements the through-thickness position can be specified as well. 
Filtering and averaging options are available for histories and responses. 
For responses, the Select attribute has to be specified to extract a scalar value from the curve. The optional 
attributes From time and To time can be specified to slice the curve before extracting the requested scalar 
value. The defaults are 0 and the end value of the history. 
These operations will be applied in the following order: averaging or filtering, and slicing. 
The available results types and components are listed in Appendix A:   LS-DYNA Binout Commands and 
Appendix B:  LS-DYNA Binout Components. 
The NODOUT components Deformation and Distance are described in detail in Section 6.2.2. 
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Figure 6-2: Response extraction: LS-DYNA NODOUT interface 

6.2.2. Kinematics 

Additional kinematics such as distances and deformations can be computed directly using NODOUT results 
by defining two nodes on the finite element mesh. Kinematics consist of two main quantities: 

o The distance vector q computed using the differences between the coordinates of the two nodes.  
o The deformation derived using the difference between the distance vector computed at time t and the 

original distance vector (t = 0). o 

These quantities can be computed in  
o the global coordinate system,  
o a local coordinate system or  

o local coordinates referred to the global reference frame (t = 0). o  

The local axes are computed using the convention defined in Section 0 to define the rotation matrix A where 
A is a function of time. The quantities are therefore defined as follows. o 
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Table 6-3: Definitions of the kinematics of a displaced rigid body 

Frame Distance Deformation 

Global  qd =  )0(qqu −=  

Local )()(' tt qAd =  )0()0()()(' qAqAu −= tt  

Local in reference )()()0(" tt qAAd T=  )0()()()0(" qqAAu T −= tt  

The orthogonal matrix A(t) is defined by a local coordinate system (x’y’z’ in Figure 6-3) which in turn is 
defined by three nodes on the finite element mesh as it displaces over time. Nodes 2 and 3 represent the 
local x-axis direction (see Figure 6-3) while Node 1 represents the third node. This is the same convention 
as defined in Section 0.  
The second and third kinematic categories are both denoted “local” since deformation should be totally 
absent for pure rigid body systems. 
If the triangles 1-2-3 and 1′-2′-3′ are congruent (i.e. they represent a rigid body), the quantity defined as 
Local in reference frame is invariant with respect to the node numbering. E.g. the triplets (1, 2, 3), (2, 3, 1) 
or (1, 3, 2) should yield the same value. 
To monitor congruence, A Congruence ratio for each history or response is displayed in the job_log (run 
directory) or lsopt_output files. The ratio for a node is defined as the ratio of the side length opposite the 
node i at time tfinal divided by the same quantity applied to the undeformed structure (see equation below). 
Three values are therefore printed. The ideal ratio is unity, signifying a perfectly rigid body. 

3,2,1,
)0()0(
)()(
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tt
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Kinematic quantities are available as both histories and responses. 
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Figure 6-3: Local and global coordinate systems 

6.2.3. LS-DYNA d3plot results  

The D3PLOT interface is related to the Binout interface. The D3PLOT results differ from the Binout 
commands in that a response or history can be collected over a whole part. For example, the maximum 
stress can be evaluated in a part or over the whole model. Results can also be extracted for a finite element 
entity such as a node or element. For shell and beam elements the through-thickness position can be 
specified as well. Element results such as stresses will be averaged in order to create the NODE results. 
If the location of extraction is specified by x,y,z coordinates, the quantity will be extracted from the element 
nearest to x,y,z at the time of reference state. Only elements included in the *SET_SOLID_GENERAL 
element set are considered (only the PART and ELEMENT options). 

The response options are an extension of the history options – a history will be extracted as part of the 
response extraction. For responses, the Select attribute has to be specified to extract a scalar value from the 
curve. The optional attributes From time and To time can be specified to slice the curve before extracting the 
requested scalar value. The defaults are 0 and the end value of the history.  
If the selection must be done over parts as well, the maximum, minimum or average can be selected for the 
part, followed by the selection of the maximum, minimum, or average over time.  
The available results types and components are listed in Appendix C:  LS-DYNA D3Plot Commands and 
Appendix D:  LS-DYNA D3Plot Components. 
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The LS-PREPOST fringe plot capability can be used for the graphical exploration and troubleshooting of 
the data. 

 

Figure 6-4: Response extraction from d3plot 

D3Plot FLD results 

If FLD results are requested then the FLD curve can be specified using (i) the t and n coefficients or (ii) a 
curve in the LS-DYNA input deck. The interpretation of the t and n coefficients is the same as in LS-
PREPOST. Note that the THICK, FLD and PSTRESS interface options are an alternative, Section 6.3.  

6.2.4. Mass – Interfacing with d3hsp 

The MASS response interfaces with the LS-DYNA output file d3hsp. The Mass and related entities, Figure 
6-5 and Table 6-4, can be extracted for the whole model or a list of parts. 
Values are summed if more than one part is specified (so only the mass value will be correct). However for 
the full model (part specification omitted) the correct values are given for all the quantities. 
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Figure 6-5: Interface for extraction of Mass and related entities from LS-DYNA output d3hsp 

Table 6-4: Mass item description 

Item Description 

Parts to be included Entity is extracted for the entire model or for the part IDs specified in the list. 

Attribute Type of mass quantity: 

Mass Mass 

Principal Inertias Component I11, I22, I33 

Inertia Tensor Component IXX, IXY, IXZ, IYX, IYY, 
IYZ, IZX, IZY, IZZ 

Mass Center Component X-Coordinate, Y-Coordinate or Z-
Coordinate of mass center 

6.2.5. Frequency – Interfacing with d3eigv 

The FREQUENCY response interfaces with the LS-DYNA output file d3eigv, Figure 6-6. See Table 6-5 for a 
description of the available extraction options. 
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Figure 6-6: Interface for extraction of frequencies from LS-DYNA output d3eigv 

Table 6-5: Frequency item description 

Item Description 

Baseline Mode Number The number (sequence) of the baseline modal shape to be tracked. It cannot 
exceed 999. The user must identify which baseline mode is of interest by 
viewing the baseline d3eigv file in LS-PrePost. 

Modal Output Option Type of modal quantity 

Frequency of Mode Frequency of current mode corresponding in 
modal shape to baseline mode specified. 

New Mode Number Number of current mode corresponding in 
modal shape to baseline mode specified. 

Modal Assurance Criterion Modal assurance criterion. 

max
j

{φ0}H {φj }{φj}H {φ0}
{φ0}H {φ0}{φj}H {φj}

= max
j

MAC j  

Mode Tracking Status Enable or disable mode tracking, see Theory section below 
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Mode Tracking - Theory 

Mode tracking is required during optimization using modal analyses as mode switching (a change in the 
sequence of modes) can occur as the optimizer modifies the design variables. In order to extract the 
frequency of a specified mode, LS-OPT calculates the modal assurance criterion (MAC). The scalar MAC 
value provides the degree of consistency between baseline modal shape and each mode shape of the current 
design. The maximum MAC value indicates the mode most similar in shape to the original mode selected. 
LS-OPT reads the eigenvectors from the d3eigv files, for calculating the MAC values. The MAC value for 
the reference modal vector 0ϕ  and the thj  modal vector of the current design jj  is calculated as: 

 MACj=
{φ0}H {φj}{φj}H {φ0}
{φ0}H {φ0}{φj }H {φj}     (6-1) 

where H is the Hermitian operator. The MAC value corresponding to the most similar mode can be 
extracted using the respective Modal Output Option (see Table 6-5).  
In certain cases, the user may be interested in the frequency corresponding to a specific mode number. To 
enable this option, the ability to turn mode tracking off is provide. By default this feature is on, but turning it 
off enables one to extract the responses corresponding to a specific mode number, irrespective of the mode 
shape. 

6.3. Extracting metal forming response quantities: LS-DYNA 
Responses directly related to sheet-metal forming can be extracted, namely the final sheet thickness (or 
thickness reduction), Forming Limit criterion and principal stress. All the quantities can be specified on a 
part basis as defined in the input deck for LS-DYNA. Mesh adaptivity can be incorporated into the 
simulation run. 

The user must ensure that the d3plot files are produced by the LS-DYNA simulation. Note that the 
D3PLOT interface options are an alternative.  

6.3.1. Thickness and thickness reduction 

Either thickness or thickness reduction can be specified using the THICK interface, Figure 6-7. 
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Figure 6-7: Thickness or Thickness reduction interface 

Table 6-6: THICK options description 

Item Description 

Parts to be included Entity is extracted for the entire model or for the parts IDs specified in the list. 

Reported Value 
Type 

Final shell thickness 
Percentage thickness reduction 

Extracted response Minimum, maximum or average computed over all the elements of the selected 
parts 

6.3.2. FLD constraint 

The FLD constraint is shown in Figure 6-8. Two cases are distinguished for the FLD constraint. 
o The values of some strain points are located above the FLD curve. In this case the constraint is 

computed as: 

maxdg =   

with dmax the maximum smallest distance of any strain point above the FLD curve to the FLD curve. 
o All the values of the strain points are located below the FLD curve. In this case the constraint is 

computed as: 

mindg −=  

with dmin the minimum smallest distance of any strain value to the FLD curve (Figure 6-8). 
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Constraint Active 
 
 g = dmax 

 e1 

 e2 

 d1 

 d2 

 d3 

 
a) FLD Constraint active 

Constraint Inactive 
 
 g = –dmin 

 e1 

 e2 

 d1 

 d2 

 d3 

 
b) FLD Constraint inactive 

Figure 6-8: FLD curve – constraint definition 

It follows that for a feasible design the constraint should be set so that g(x) < 0. 

General FLD constraint 

A more general FLD criterion is available if the forming limit is represented by a general curve. Any of the 
upper, lower or middle shell surfaces can be considered. 
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Remarks: 

o A piece-wise linear curve is defined by specifying a list of interconnected points. The abscissae ( 2ε ) 
of consecutive points must increase (or an error termination will occur). Duplicated points are 
therefore not allowed. 

o The curve is extrapolated infinitely in both the negative and positive directions of ( 2ε ). The first and 
last segments are used for this purpose. 

o The computation of the constraint value is the same as shown in Figure 6-8.o o 

The following must be defined for the model and FLD curve: 

 

Figure 6-9: Definition of General FLD constraint 

Table 6-7: LS-DYNA General FLD constraint options description 

Option Description 

Parts to be included Entity is extracted for the entire model or for the parts IDs specified in the list. 

Sampling location Lower, middle or upper surface of the sheet 

Load curve ID Identification number of a load curve in the LS-DYNA input file. The 
*DEFINE_CURVE keyword must be used. Refer to the LS-DYNA User’s 
Manual for an explanation of this keyword. 

Remarks: 

o The interface program produces an output file FLD_curve which contains the e1 and e2 values in 
the first and second columns respectively. Since the program first looks for this file, it can be 
specified in lieu of the keyword specification. The user should take care to remove an old version of 
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the FLD_curve if the curve specification is changed in the keyword input file. If a structured input 
file is used for LS-DYNA input data, FLD_curve must be created by the user. 

o The scale factor and offset values feature of the *DEFINE_CURVE keyword are not utilized.o 

6.3.3. Principal stress 

Any of the principal stresses or the mean can be computed using the PSTRESS interface. The values are 
nodal stresses. 

 

Figure 6-10: Principal Stress Interface 

Table 6-8: Principal Stress options description 

Item Description 

Parts to be included Entity is extracted for the entire model or for the parts IDs specified in the list. 

Stress value to 
extract 

Maximum principal stress σ1 

Second principal stress σ 2 

Minimum principal stress σ 3 

Mean of principal stress (σ1 + σ 2 + σ 3)/3 

Extracted response Minimum, maximum or average computed over all the elements of the selected 
parts 
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6.4. Generic Interfaces for History and Response extraction 

6.4.1. Expressions 

Mathematical expressions using previously defined entities can be defined here. The expression syntax and 
the available mathematical functions are described in Appendix F: . 

6.4.2. Crossplot history 

A special history function Crossplot is provided to construct a curve g(f) given f(t) and g(t). 

 

Figure 6-11: Interface to define a crossplot history 

The DEFINE_CURVE selection allows an LS-DYNA include file (e.g. his.k) with the *DEFINE_CURVE 
keyword and history data to be created. LCID represents the load curve ID required by LS-DYNA. 
The options are explained in Table 6-9. 
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Table 6-9: Description of Crossplot arguments 

Option Description Default 

z(t) History of abscissa - 

F(t) History of ordinate - 

Number of points Number of points created in crossplot Smallest of the numbers of points  
defining  f and g  

From time Begin time Largest t0-value of F and z  

To time End time Smallest tP-value of F and z, 

6.4.3. Function Interface 

The functions available for the extraction of response values from previously defined histories are explained 
in Appendix F.3 .  
The History functions are described below. 

Derivative history 

A special history function DerivativeHistory is provided to construct a curve 
dt

tdf )( given f(t). Finite 

difference weights based on a 3-point template are used for the calculation [3]. The grid spacing of the 
reference history can be arbitrary.  

 

Figure 6-12: Interface to define derivative history 

Remarks: 
o Since the derivative approximation is based on a multipoint scheme, it is recommended to avoid 

having too few points in the history. 
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o Irregular grid spacing is automatically supported. 

Filtered history 

A special history function Filter is provided to construct a filtered curve. 

 

Figure 6-13: Interface to define a filtered history 

Table 6-10: Description of FilterHistory arguments 

Argument name Description 

History Pre-defined history 

Filtering Filtering type: SAE Filter, Butterworth Filter or Time Average 

Frequency Filtering frequency in Hz 

Time unit Units of time 

Number of points Number of averaging points 

6.4.4. Matrix operations 

Matrix operations can be performed by initializing a matrix, performing multiple matrix operations, and 
extracting components of the matrix as response functions or results. All these operations are defined using 
the MATRIX_EXPRESSION interface, Figure 6-14. 
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Figure 6-14: Matrix Expression: Initialization of a matrix 

There are two functions available to initialize a matrix, namely Matrix3x3Init and Rotate. Both 
functions create 3×3 matrices.  

The component of a matrix is extracted using the format A.aij (or the 0-based A[i-1][j-1]) e.g. 
Strain.a23 (or Strain[1][2]) where i and j are limited to 1,2 or 3.  

The matrix operation A – I (where I is the unit matrix) is coded as A-1. 

Initializing a matrix 

The command to initialize the matrix: 

















333231

232221

131211

aaa
aaa
aaa

 

is: 

Matrix3x3Init(a11,a12,a13,  a21,a22,a23,  a31,a32,a33) 

where aij is any previously defined variable (typically a response or result).  

Creating a rotation matrix using 3 specified points 

The expression is: 

Rotate(x1,y1,z1,  x2,y2,z2,  x3,y3,z3) 

where the three triplets represent points 1, 2 and 3 in 3-dimensional space respectively.  
o The vector v23 connecting points 2 and 3 forms the local X direction.  
o Z = v23 × v21  
o Y = Z × X  

The vectors X, Y and  Z are normalized to x , y  and z  which are used to form an orthogonal matrix: 
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where  𝑇𝑇𝑇𝑇 = 𝐼𝐼.  

6.5. Injury criteria 
All of the injury criteria were developed according to the specification in [1].  
Injury criteria must be defined as responses, for some criteria, the intermediate histories are also available 
for extraction. 

6.6. Head Injury Criteria 

6.6.1. HIC 

See Section 6.11. 

6.7. Neck Criteria 

6.7.1. MOC 

MOC is the abbreviation for total Moment about Occipital Condyle. The criterion for the Total Moment 
calculates the total moment in relation to the moment measurement point. 
The Total Moment MOC value for the Upper-Load-Cell is calculated as follows 

)( FDMMOC ⋅−=  

with MOC  Total moment [Nm] 

 F   Neck axial force resultant [N] 
 M   Neck s-moment resultant [Nm] 
 D   Distance between the force sensor axis and the Condyle axis, 
depends on the dummy type, Table 6-12. 
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Table 6-11: Options for MOC 

Option Description Symbol 

Neck Force x Neck axial force resultant F 

Neck Moment y Neck s-moment resultant M 

Dummy_type Dummy type - 

Length unit Length units - 

Force unit Force units - 

Table 6-12: Input constants for various dummy types 

Dummy Type D[m] 

Hybrid III, male 95% 0.01778 

Hybrid III, male 50% 0.01778 

Hybrid III, female 5% 0.01778 

Hybrid III, 10-year 0.01778 

Hybrid III, 6-year 0.01778 

Hybrid III, 3-year 0 

Crabi 12, 18 month 0.00584 

TNO P1,5 0.0247 

Crabi 6 month 0.0102 

TNO P 3/4, P3 0 

ES-2 0 

TNO Q series 0 

SID-IIs 0.01778 

BioRID 0.01778 

WORLDSID 0.0195 
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6.7.2. NIC (rear impact) 

NIC is the abbreviation for Neck Injury Criterion. LS-OPT calculates the NIC value specified for rear 
impact. The NIC value is calculated with the following formula: 

22.0 relativerelative vaNIC +⋅=  

with TI Head
relative x xa a a= −  relative x-acceleration 

 ∫= relativerelative av
  

Table 6-13: Options for NIC 

Option Description Symbol 

Acceleration 1. thorax spine x-acceleration of first thorax spine TI
xa  

Acceleration head x-acceleration at the height of the c.o.g. of the head Head
xa  

Time unit Time units - 

Length unit Length units - 

6.7.3. Nij (Nce, Ncf, Nte, Ntf) 

Nij is the abbreviation for Normalized Neck Injury Criterion and is the four neck criterion Nte (tension-
expression), Ntf (tension-flexion), Nce (compression-extension) and Ncf (compression-flexion).  
The Nij value is the maximal value of Nte, Ntf, Nce, Ncf. 
The Nij value is calculated with the following formula 

cc M
MOC

F
FNIJ +=

 

with F  Force at the point of transition from head to neck (t-shear resultant) 

 cF   Critical force (depending on dummy type) 

 MOC  Total Moment (see MOC, section 6.7.1) 

 cM  Critical moment (depending on dummy type) 
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Table 6-14: Options for Nij arguments 

Option Description Symbol 

Neck Force x Neck axial force resultant See MOC 

Neck Moment y Neck s-moment resultant See MOC 

Neck Force z Force at the point of transition from head to neck F 

Dummy type Dummy type - 

Length unit Length units - 

Force unit Force units - 

Table 6-15: Input constants for various dummy types 

Dummy type Test FC [N] 
Tension 

FC [N] 
Compression 

MC [Nm] 
Flexion 

MC [Nm] 
Extension 

Hybrid III; male 50% In position 6806 -6160 310 -135 

Hybrid III; female 5% In position 4287 -3880 155 -67 

Hybrid III; female 5% Out of position 3880 -3880 155 -61 

Hybrid III; 6-year Out of position 2800 -2800 93 -37 

Hybrid III; 3-year Out of position 2120 -2120 68 -27 

Hybrid III; 12 month Out of position 1460 -1460 43 -17 

6.7.4. Nkm (Nfa, Nea, Nfp, Nep) 

Nkm corresponds to the four neck criteria Nfa (flexion-anterior), Nea (extension-anterior), Nfp (flexion-
posterior) and Nep (extension-posterior). 
The Nkm value is calculated with the following formula, [2]: 

intint

)()()(
M

tMOC
F

tFtNkm +=
 

with F  Force at the point of transition from head to neck (axial force resultant) 

 intF  Critical force 
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 MOC  Total Moment (see MOC, section 6.7.1) 

 intM  Critical moment 

Table 6-16: Options for Nkm arguments 

Option Description Symbol 

Neck Force x Neck axial force resultant F 

Neck Moment y Neck s-moment resultant See MOC 

Dummy type Dummy type - 

Length unit Length units - 

Force unit Force units - 

Criterion Nfa, Nea, Nfp, Nep - 

Table 6-17: Input constants 

Criteria Description Value 

*_anterior Positive Shear Fint  845 N 

*_posterior Negative Shear Fint -845 N 

flexion_* Flexion Mint 88.1 Nm 

extension_* Extension Mint -47.5 Nm 

6.7.5. LNL 

LNL is the abbreviation for the Lower Neck Load Index. The LNL value is calculated with the following 
formula: 

tension

z

shear

xy

moment

xy

C
offF

C
FF

C
MM

LNL +
+

+
+

+
=

2222

 

with yM   s-Moment resultant 

 xM   Torsional resultant 

 momentC  Critical moment 
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 xF   s-Shear resultant 

 yF   Axial force resultant 

 shearC   Critical force 

 zF   t-Shear resultant 

 tensionC   Critical force 

 off   offset to include pre-load, depends on dummy position 

Table 6-18: Options for LNL arguments 

Option Description Symbol 

y Force Axial force resultant 
yF  

x Force s-Shear resultant 
xF  

z Force t-Shear resultant zF  

y Moment s-Moment resultant 
yM  

x Moment Torsional resultant 
xM  

Length unit Length units - 

Force unit Force units - 

Table 6-19: Input constants 

Force/Moment Description Value 

Cmoment Critical moment 15 [Nm] 

Cshear Critical force 250 [N] 

Ctension Critical force 900 [N] 
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6.8. Chest Criteria 

6.8.1. Chest compression 

Maximum relative rotation multiplied by a constant: 

)]([max1 tC
t

Θ
 

Table 6-20: Options for Chest Compression arguments 

Option Description Symbol 

History relative rotation history )(tΘ  

Dummy type dummy type - 

Table 6-21: Input constants for various dummy types 

Dummy Type Scaling factor C1 

Hybrid III; male 95% 130.67 

Hybrid III; male 50% -139.0 

Hybrid III; female 5% -87.58 

Remarks: 

o The user is responsible for any required filters of the input history.o 

6.8.2. Viscous criterion (VC) 

VC is an injury criterion for the chest area. The VC value [m/s] is the maximum crush of the momentary 
product of the thorax deformation speed and the thorax deformation. Both quantities are determined by 
measuring the rib deflection (side impact) or the chest deflection (frontal impact). The formula is: 

1

2

( )min ( )C dY tY t
C dt

−
 

LS-OPT Version 5.2  108 



CHAPTER 6: History and Response Results 

Table 6-22: Options for Viscous Criterion arguments 

Argument name Description Symbol 

History Thoracic deformation (m) Y(t) 

Dummy type Dummy type - 

Time unit Time units - 

Length unit Length units - 

Table 6-23: Input constants for various dummy types 

Dummy Type Scaling factor C1 Deformation constant C2 (m) 

Hybrid III; male 95% 1.3 0.254 

Hybrid III; male 50% 1.3 0.229 

Hybrid III; female 5% 1.3 0.187 

BioSID 1.0 0.175 

EuroSID-1 1.0 0.140 

EuroSID-2 1.0 0.140 

SID-IIs 1.0 0.138 

Remarks:  
o The derivative is computed using the 4th order (template size = 5) finite difference approximation: 

)(
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where h is the time interval between the single measurements. 

o The user is responsible for any required filters of the input history.o 

6.8.3. Thoracic Trauma Index (TTI) 

TTI is the abbreviation for Thoracic Trauma Index (Thorax Trauma Index). 
The TTI value is calculated using the following formula: 
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2
).().(max spinelwrAribATTI +

=
 

)}.(),.(max{).(max riblwrAribuprAribA =  

with ).( ribuprA  Maximum y-acceleration of the upper rib 

 ).( riblwrA  Maximum y-acceleration of the lower rib 

 ).( spinelwrA  Maximum y-acceleration of the lower spine 

The result is divided by the gravitational acceleration g (9810mm/s²). 

Table 6-24: Options for TTI arguments 

Option Description Symbol 

Acceleration upper rib y-acceleration of the upper rib ).( ribuprA  

Acceleration lower rib y-acceleration of the lower rib ).( riblwrA  

Acceleration lower spine y-acceleration of the lower spine ).( spinelwrA  

Time unit Time units - 

Length unit Length units - 

6.9. Criteria for the Lower Extremities 

6.9.1. Tibia Index (TI) 

TI is the abbreviation for the Tibia Index. 
The calculation of the TI value in based on the equation 

CC F
F

M
MTI +=

 

22 )()( yx MMM +=  

with yxM /  Bending moments [Nm] (torsional resultant, s-moment resultant) 

 CM  Critical bending moment 

 F  Axial compression [kN] (t-shear resultant) 
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 CF  Critical compression force 

Table 6-25: Options for TI arguments 

Argument name Description Symbol 

Bending moment x Bending moment, torsional resultant 
xM  

Bending moment y Bending moment, s-moment resultant 
yM  

Axial compression z Axial compression, t-shear resultant F  

Dummy type Dummy type - 

Length unit Length units - 

Force unit Force units - 

Table 6-26: Input constants for various dummy types 

Dummy type Critical bending moment [Nm] Critical compression force [kN] 

Hybrid III, male 95% 307.0 44.2 

Hybrid III, male 50% 225.0 35.9 

Hybrid III, female 5% 115.0 22.9 

6.10. Additional Criteria 

6.10.1. A3ms 

The smallest resultant acceleration level maintained for 3ms. tr∆ is computed as the level of 
222 zyxr  ++=  exceeded for the specified time interval t∆ (3ms). The resulting acceleration level is 

divided by the gravitational acceleration, g = 9810mm/s². 
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Table 6-27: Options for a3ms arguments 

Argument name Description Symbol 

x History x-acceleration history x  

y History y-acceleration history y  

z History z-acceleration history z  

Time unit Time units - 

Length unit Length units - 

Remarks: 

o y History ( y ) and z History ( z ) are optional. 

o The user is responsible for any required filters of the input history.o 

6.11. LS-DYNA Binout injury criteria 
The injury criteria such HIC, HIC (3 nodes), Chest Severity Index, CLIP3m and CLIP3m (3 nodes) can only 
be compute for LS-DYNA. The acceleration components for the specified nodes will be extracted from 
binout, the magnitude computed, and the injury criteria computed from the acceleration magnitude history. 

Note: 

o The length and time units are used to compute the gravity value based on 9.81 m/s2o 

6.12. The GenEx tool for extracting responses and histories from a text file. 
The GenEx tool is described in Chapter 11. 

6.13. User-defined interface for extracting results 
The user may provide an own extraction routine or any program, e.g. a postprocessor, to get response or 
history results. For responses, the command has to output a single floating-point number to standard output. 
For histories, the values have to be output to a file LsoptHistory in two columns. The command has to 
be specified in the Definition field in the USERDEFINED interface dialog, Figure 6-15. 
Examples of the output statement in such a program for response extraction are: 

o The C language: 

printf ("%lf\n", output_value); 
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or 

fprintf (stdout, "%lf\n", output_value); 

o The FORTRAN language: 

write (6,*) output_value 

o The Perl script language: 

print "$output_value\n"; 

 

Figure 6-15: Extracting a Response using a user-defined program 

Examples: 

1. The user has an own executable program ”ExtractForce” which is kept in the directory 
$HOME/own/bin. The executable extracts a value from a result output file.  

2. The relevant response definition command must therefore be as follows: 

$HOME/own/bin/ExtractForce 

3. If Perl is to be used to execute the user script DynaFLD2, the command may be: 

$LSOPT/perl $LSOPT/DynaFLD2 0.5 0.25 1.833" 

4. In this example the post-processor LS-PREPOST is used to produce a history file from the LS-
DYNA database. The LS-PREPOST command file get_force: 

open d3plot d3plot 

ascii rcforc open rcforc 0 

ascii rcforc plot 4 Ma-1 

xyplot 1 savefile xypair LsoptHistory 1 

deletewin 1 
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quit 

produces the LsoptHistory file. See Figure 6-15 for the LS-PREPOST command. 

Note : The rcforc history in this example can be obtained more easily by direct extraction (see 
Section 6.2.1 and  Appendix A.1 : Binout Histories.) 

Remark: 
1. An alias must not be used for an interface program. 
2. The program should be run in batch mode. 
3. The program is called from the run directories. This has to be considered if relative paths are used. 0. 

6.14. Response file 
This is also a user-defined option, typically used in conjunction with a user-defined solver type. An output 
filename can be specified for extracting a single response output value. The user must write the calculated 
response value to the specified file during the simulation. The default for the filename is the name of the 
response. Figure 6-16 shows the dialog. 

 

Figure 6-16: Dialog for extracting a response value from a file 

6.15. Nastran Frequency 
The Nastran Frequency feature allows the user to extract the frequency, matched mode number or MAC 
value from the Nastran database. This interface is similar to the LS-DYNA Frequency interface. Please refer 
to Section 6.2.5. 
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Figure 6-17: Interface for Extraction of Frequencies from Nastran results 

6.16. Extraction of LS-OPT entities 

6.16.1. LS-OPT responses 

The LS-OPT stage is used in the context of multilevel optimization, which involves running an inner level 
optimization within an outer level optimization. Each outer level sample evaluation, i.e. LS-OPT stage 
evaluation, involves an inner optimization. The results of these evaluations consist of entities that are 
optimized with respect to the inner level variables, which can be defined by the user as responses for the 
outer level LS-OPT setup.  
The response dialog of the LS-OPT stage type provides the option to define an LSOPT response, which lists 
the available entities optimized in the inner level. These entities can be the optimized inner level variables or 
the corresponding optimized responses, composites, objective functions or constraints (Figure 6-19). It is 
also possible to extract responses at any specific inner level iteration by clicking the ‘Iteration’ radio button 
and providing the required iteration number.  
Since the inner level can also be a Monte Carlo analysis, statistical values such as standard deviation, mean 
and probability of failure are available in the LSOPT_STATISTICS interface. 
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Figure 6-18: Main dialog for the extraction of LS-OPT stage responses. A special category (LSOPT 
STATISTICS) is available for statistical results produced by a Monte Carlo analysis. 

LS-OPT Version 5.2  116 



CHAPTER 6: History and Response Results 

 

Figure 6-19: Dialog for the extraction of LS-OPT optimal response results 

6.16.2. LS-OPT histories 

Figure 6-20 depicts the dialog for defining an LS-OPT history. Optimal histories produced by an 
optimization run can be extracted and converted to an LS-DYNA *DEFINE_CURVE keyword file. This file 
can then be inserted into a subsequent stage analysis as an include file. Multiple *DEFINE_CURVE data 
sets can be dumped in the same file.  
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Figure 6-20: Dialog for defining an LS-OPT history. The DEFINE_CURVE option has been selected to 
produce an LS-DYNA keyword file. 

6.16.3. LS-OPT reliability statistics 

Reliability statistics is a special category of the LS-OPT solver type responses which represent statistical 
values produced by a Monte Carlo analysis (direct or metamodel-based). Values can be extracted for global 
statistics (see Figure 6-21) or for individual entities such as constraints (see Figure 6-22), variables, 
dependents, responses and composites. 

 

Figure 6-21: Dialog for extraction of global statistics produced by a Monte Carlo analysis 

LS-OPT Version 5.2  118 



CHAPTER 6: History and Response Results 

 

Figure 6-22: Dialog for extraction of constraint statistics produced by a Monte Carlo analysis 

6.17. Excel 
The histories and responses specific to Microsoft Excel can be defined using EXCEL option listed under 
Generic history and responses interfaces. The cells and/or array of cells of an Excel document can be 
defined as LS-OPT histories or responses and hence can also be utilized as design objective/constraints 
based on analysis Task.  
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                        (a)                                                            (b) 

Figure 6-23: Microsoft Excel (a) History and (b) Response interface  

Figure 6-23 shows the interface for defining Excel histories and responses. The options are described in 
Table 6-28. 

Table 6-28: Description of Excel History and Response options 

Option   Description    

File   Excel document for extraction  

Worksheet  Worksheets of the Excel document are listed  

X/time range This field lists all the Excel names defined for cells and cell arrays. 
The name corresponding to the abscissa values of the history 
(typically time) should be selected. If auto increment is used, a 
positive integer sequence of length equal to the number of Y values 
is used starting from 1 (1, 2, 3…).  

Y/value range Lists all the cell names assigned to array of cells used for ordinate 
values of the histories.  

Value cell  Excel cell assigned to response value.  

6.18. Matlab 
The histories and responses for a Matlab stage, Section 5.3.12, are defined in an output file specified in the 
stage setup dialog. The output file has the same format as for a METAPost or a User-defined stage, Section 
5.3.14. Upon specifying an appropriate file, LS-OPT automatically populates the history and response 
dialogs. The response/history name cannot be edited manually, as only the responses and histories defined 
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in the Matlab input files are allowed. Thus the effort associated with manual definition is avoided while 
avoiding errors at the same time.  

 

Figure 6-24: Matlab response dialog.  The response name cannot be edited manually. 

6.19. File Histories 
A history can be provided in a text file with arbitrary format. Coordinate pairs are found by assuming that 
any pair of numbers in a row is a legitimate coordinate pair. History files are typically used to import test 
data for parameter identification problems. 
File histories are global curves. They are neither sampling nor stage dependent; hence they are not listed in 
the Stage dialog history list. 
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Figure 6-25: File Histories 

File History Text File Example: 
Time   Displacement 
1.2,   143.97 
1.4,   156.1 
1.7,   923.77 

6.20. REFERENCES 
[1] Data Processing Vehicle Safety Work Group  -  Crash Analysis Criteria Description. Version 2.1.1 
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7. GenEx: Extracting responses 
and histories from a text file 

A user may choose to use a non-LS-DYNA solver for his application in which case the only elegant option, 
except for using commercial extraction tools (see e.g. Section 5.3.8), is to use a special graphical tool for 
identifying and extracting response values and history vectors from an output text file containing the 
analysis results. This chapter describes the use of the GenEx tool for extracting responses (scalars) and 
histories (vectors) from such a text file. GenEx is included in the LS-OPT distribution as the executable file 
genex and can be activated from the Responses or Histories dialog. 

7.1. The main window 

GenEx can be started from the command line by typing genex <filename> or by selecting the Create/Edit 
button after selecting GenEx on the Responses or Histories page. 
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Figure 7-1: GenEx dialog. 

When first starting GenEx, there will be two predefined anchors in the tree on the left, Start of File and 
End of File. It is not possible to change or remove these two anchors. 
The middle part of the window displays the data file, with symbols for anchors and entities. The current 
entity/anchor will be highlighted or have a thin black border around it. 
On the right is the dialog box for specifying/selecting options for the currently selected anchor/entity. 

Anchors 

Anchors describe how to find a certain position in the data file. This can be done with searching for 
keywords or with an absolute position.  

Entities 

An entity is a quantity we want to extract from LS-OPT. Entities describe both what the number should look 
like as well as where, relative to the parent, to find it. There are three types of entities, scalar, column and 
repeated anchor vectors (see Section Options specific for entities 
 for the difference between them). 
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Options 

When an anchor or an entity is selected, it is possible to change the options shown in the dialog box. A new 
search will be performed whenever an option is changed that requires it. The only exception is the Text to 
search for, this requires the user to hit Enter (on the keyboard) to start the new search.  

Table 7-1: Options 

Option Description 

Origin This is the parent anchor of the anchor/entity. 

Column separator If columns are selected in Relative positions it is possible to change what 
separates the columns in the input file. 

 

Options specific for anchors 

Table 7-2: Options specific for anchors 

Option Description 

Type There are four types of searches. Three of them are keyword-based 
(search-phrase based). 
Plain text: This is the most basic search. The search looks for the given 
text in the file and positions the anchor in front of the match. 
Glob search: The main goal of the glob search is to be able to match the 
strings with the aid of the wild cards, '*' and '?'. The asterisk matches 
any character any number of times and the question mark matches any 
character one time. 

Regular expression search: The asterisk * matches the preceding 
element zero or more times and the dot . matches any character one 
time. If letters are put inside brackets this matches any single character 
inside the brackets. If a '^' is put inside the brackets this means that we 
should match any character not inside the brackets. 
Absolute search: In this search the user positions the anchor simply by 
specifying the row and the column at which the anchor should be 
positioned in the file. 

Text to search for This is the text/regular expression/glob to search for. 

Direction Starting from the origin, this is the direction to search in. 
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Match This is where on the line the search text will have to match. 

Relative Location When Absolute search is selected, this section will be enabled. Here it is 
possible to enter the absolute position of the anchor if known. 

Skip over Since the input file can contain several instances of the search term it is 
possible to skip some of them to find the desired position. 

Move to start of line When this is checked the anchor will be positioned at the start of the line, 
even if it is found somewhere else. 

 

Examples:  

Glob search 

*abc  

will match any word ending with abc (xxxabc, yyyabc, etc.) and the anchor will be placed 
where the match begins ((A)xxxabc, (A)yyyabc). 

a?c 

will match all three letter words starting with 'a' and ending with 'c' (axc, a5c, etc.) and the 
anchor will be placed before the match begins ((A)axc, (A)a5c). 

Regular expression search 

ab*c 

matches "ac", "abc", "abbbc", etc. 

a.c 

matches all three letter strings starting with 'a' and ending with'c' (ahc, a8c, aHc, etc.) 

[csad]bc 

matches all strings starting with c, s, a or d followed by 'bc' (cbc, sbc, abc, and dbc). 

[^csad]bc 

matches all strings not starting with c, s, a or d followed by 'bc' (xbc, 5bc,  kbc, etc.). 

These can all be combined into a larger regular expression,"[skjfrdzh]*esp[ohjd]n.e" will 
match "response" (but also "espdn1e" for example). 

 
Plain text, glob and regular expression search searches for a specific text string. The absolute search 
positions the anchor relative to the parent.  The glob and regular expression searches are very similar to the 
search capabilities in the Perl language or the Unix/Linux scripting language. 
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Options specific for entities 

Table 7-3: Options specific for entities 

Option Description 

Relative Location This is the position of the entity relative to the parent anchor 

Type of entity Here there are three options, scalar, column vector and 
repeated anchor vector 

Scalar The scalar entity is used for extracting responses and it 
extracts one result 

Column vector A column vector extracts a column of data 

Repeated anchor vector A repeated anchor vector repeats the search of the selected 
anchor to extract several entities found in different places in 
the input file 

Number format Here it is possible to specify what a number looks like 

Maximum length The default behavior is that an entity starts at the specified 
position and ends with a white space. Here it is possible to 
specify the length of the entity if this is not the case. 

Maximum number of components When using GenEx to extract histories the default behavior 
is to keep extracting until a match is not found, this option 
limits the number of extracted results 

Stopping anchor An anchor can be defined as a stopping criterion if the 
number of components of a column vector is unknown 

Anchor to repeat If the entity type is “repeated anchor vector” this will show a 
menu with valid anchors. Start of file and End of file will 
not be available since they cannot be repeated. 

7.2. Creating a .g6 file for LS-OPT 

First we have to select the input file in which to search. This is done from the File menu: Select input file. 
The file will be displayed in the middle window of the application. 

Creating an anchor or entity 

There are three ways to create anchors or entities. The first is to select the anchor used as parent and then 
click on the anchor or entity button in the menu depending on what is needed. This will create a new 
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uninitiated child. By selecting the new anchor or entity in the tree view on the left side, the options will be 
visible on the right side panel. 
The second way is to simply make a selection in the text file, right click and select Create Anchor Here or 
Create Entity Here. This will create a new child at that position with the currently selected anchor as the 
parent anchor. It is also possible to select a column of numbers from the text file to create a column vector. 
The column entity uses white space as the delimiter. 
The third option is to make a selection in the text and drag that selection to the anchor we want to use as 
parent in the tree. 

Creating a .g6 file without an input file 

It is possible to create a .g6 file without access to the input file we want to extract from. However, this 
requires some knowledge of the file format and syntax. 

Editing a .g6 file 

From the “File” menu, select “Open GenEx file”. 
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7.3. How to use GenEx from LS-OPT for extracting responses 

 

Figure 7-2: Definition of a GenEx Response 

From the Responses panel select GENEX as a response. This will open up a dialog showing a few options 
related to GenEx . 

The first selection to be made is which .g6 file to use. This option provides a list of available entities to 
choose from. The entities need to be of the “Scalar” type. It is also possible to edit a file by clicking the 
Create/Edit button. If no file name is given the default action is to create a new .g6 file.  

Secondly, enter the name of the input data file from which the responses are to be extracted. LS-OPT will 
look for this file in each of the run directory. 

7.3.1. An example using GenEx to extract responses 

This example explains how to extract a number of responses from the LS-DYNA d3hsp file. Different 
search options are employed to demonstrate the various options. 

o Open the GenEx GUI by selecting Create/Edit. Then select d3hsp as the input file by using 
File→Select input file. The d3hsp file is displayed in the middle. We are interested in 3 responses at 
various cycles and a fourth response to be the last one in the file. 

Defining an anchor:  
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o Define an anchor with the name Cycle4800_Plain by clicking on the anchor icon or using the 
Edit option.  

o Use a plain search to search for the string "dt of cycle    4800". If you want to change the 
string in the text box, remember to hit the "Enter" key on the keyboard. The anchor is displayed as a 
small anchor icon in the leftmost column of the line that matches the search string. The next step 
would be to find the desired field relative to this anchor. 

 

Figure 7-3: GenEx dialog; definition of an anchor 

Defining an entity:  

o Define a new entity SWEner by using the leftmost x-icon or the Edit option.  

o Choose the previously defined anchor as the Origin.  
o Find the desired field by searching 6 lines below the anchor, 2 columns across. The desired field is 

displayed as highlighted in yellow with a black border. See figure below. 
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Figure 7-4: GenEx dialog; definition of an entity 

o Now define a new entity referred to the same anchor Cycle4800_Plain. This entity is 18 lines 
below the anchor and 3 columns across as shown in the Relative location dialog below: 

 

Figure 7-5: GenEx dialog; definition of an entity 

o Define a second anchor using a global search for the string "4700 is controlled". The origin 
of this anchor is also the start of the file and the search is forward from that point. Note the anchor 
placement on the figure below just before the string "4700 is controlled".  
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Figure 7-6: GenEx dialog; definition of an anchor 

o Now define an anchor InternalEnergy_Absolute relative to the previous anchor by setting 
the origin as Cycle4700_Glob, then searching 5 lines down and one column across. Note the 
anchor icon just before the yellow-highlighted number in the figure below. 
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Figure 7-7: GenEx dialog; definition of an anchor 

o Define a new entity InternalEnergy using the InternalEnergy_Absolute anchor as 
reference point. The desired field is immediately found since the anchor is already at the desired 
location. 

 

Figure 7-8: GenEx dialog; definition of an entity 
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o The next desired entity is the final total energy ratio (i.e. the one in the last cycle in the file). In this 
case we will set the reference anchor called LastCycle to be the end of the file (Origin) and 
search backwards (Direction).  

o The search string is "total energy" and the regular expression search type is used. The settings 
to find the anchor are shown below. 

 

Figure 7-9: GenEx dialog; definition of an anchor 

o The entity is found by using LastCycle as the anchor and searching in the sixth column. See 
relative location dialog box below. 

LS-OPT Version 5.2  134 



CHAPTER 7: GenEx: Extracting responses and histories from a text file 

 

Figure 7-10: GenEx dialog; definition of an entity 

o This completes the GenEx setup. Save the file. 
o Now open the Stage dialog on the Responses page and select the GENEX response type on the 

right. Open the Input GenEx file. A browse option is available. Importing the file will display the 
selected entities in the Entities box.  

o Select the input data file, namely d3hsp. This file must be available in the run directory during the 
LS-OPT run. 

o Select an entity, define a response name at the top of the dialog and hit Ok. The response will appear 
in the list on the Responses page.  

o Repeat the procedure for the remaining three response entities. o 

LS-OPT can now be run and the response entities will be extracted for each simulation run. 

7.4. Extracting histories 

7.4.1. An example using "Repeated anchor vector" to extract histories 

In this example we will use GenEx to extract histories of the value for "kinetic energy" in the "glstat" file 
created by LS-DYNA. We first start by creating the anchor dt_of_cycles. This anchor will be the base 
for further anchors. With this anchor as parent we now create the KE_anchor to search for the string we 
are looking for, in this case "kinetic energy".  
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Figure 7-11: GenEx dialog; definition of an entity 

As seen in the screenshot above, this entity is of the Scalar type and needs to be changed to Repeated 
anchor vector. When creating a repeated anchor vector the default value for Anchor to repeat is the parent 
of the entity. Since "kinetic energy" appears twice between every dt_of_cycle the result is not 
what we want yet. In order to skip "eroded kinetic entity", we pick the grandparent dt_of_cycle anchor 
as the one to repeat. 

The result of this setup will be that the extractor will find "dt_of_cycle", then search forward for 
"kinetic energy" and extract the first element of the vector. Then, it will find the next occurrence of  
"dt_of_cycle" and repeat, extracting the other elements of the vector. 
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Figure 7-12: GenEx dialog; definition of an repeat anchor vector 

After we have changed the Anchor to repeat to dt_of_cycle, we will have the correct result. The color 
of the other vector elements will be in light yellow with a dotted border. 
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Figure 7-13: GenEx dialog; definition of a history 

We are now finished with the GenEx part and the file can be saved. 

7.4.2. An example using "Column vector" to extract histories 

Column vectors are useful for extracting vectors in tables. In this example we extract a position vector 
generated by a fictitious solver. Just as in the previous example we start with the creation of the entity we 
want to be the first. We then change the type to Column vector. 
It’s possible to create the vector by selecting a column in GenEx and right click to choose New Entity. 

LS-OPT Version 5.2  138 



CHAPTER 7: GenEx: Extracting responses and histories from a text file 

 

Figure 7-14: GenEx dialog; definition of a column vector entity 

7.4.3. How to extract the histories from LS-OPT 

Using GenEx for extracting histories is very similar to using it for responses. The main difference is that 
you have to select two entities to define the history, one for the x-axis and one for the y-axis. It’s possible to 
use "Auto increment" for the x-axis, in which case the x-axis values will simply be 0,1,2,3… 
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Figure 7-15: Interface to define a GenEx History 

When creating the entities in GenEx they need to be either Column vector or Repeated anchor vector to 
be used for history extraction. 

7.5. Small car crashworthiness example using GenEx to extract 
histories/responses from data files 
Refer to Section 18.9 for the GenEx example. 
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8. Setup Dialog − Defining the 
Variables 

This chapter discusses the conversion of parameters defined in input files to design variables of different 
types. Graphical features allow the user to view file sources of parameters and the activation or de-
activation of variables for selected samplings. 
Resource definitions and other global features are also available in this dialog. 

8.1. Parameter Setup 
Parameters defined in the input files of the stages are automatically displayed in the Parameter Setup 
panel, Figure 8-1. The names of these parameters are not editable, and they cannot be deleted as indicated 
by the lock symbol displayed in the Delete column. If only a name and value are specified in the stage input 
file, the parameter type is set to Constant by default. The default starting value is 0. 

 

Figure 8-1: Setup Dialog – Parameter Setup panel in LS-OPTui 

LS-OPT Version 5.2  141 



CHAPTER 8: Setup Dialog − Defining the Variables 

Other attributes such as parameter values or discrete sets defined in the input files are also displayed here, 
but can be overridden. The desired parameter type and other appropriate options can also be specified, Table 
8-1.  
Advanced options, such as initial range, that are not required can be specified by selecting the Show 
advanced options checkbox, Table 8-2.  
Additional (non-file) parameters, although unusual, can be defined using the Add button at the bottom of the 
panel. 

Table 8-1: Parameter Setup options to be specified for each parameter 

Option Description Reference 

Type Parameter type:   

Continuous Continuous variable - 

Constant Constant value Section 8.1.1 

Dependent Parameter depending on other parameters Section 8.1.2 

Discrete Discrete variable Section 8.1.3 

String Discrete variable using string values Section 8.1.3 

String Constant Constant using string values Section 8.1.1 

Transfer Variable Parameter treated as variable at upper 
level and constant at lower level (multi-
level optimization) 

Section 8.1.4 

Transfer String 
Variable 

Transfer Variable using string values Section 8.1.4 

Response 
Variable 

Variable which inherits the value of a 
response 

Section 8.1.5 

Noise Probabilistic variable described by a 
statistical distribution 

Section 8.1.5 

Name Parameter name. If the parameter is imported from a stage 
input file, the name is not editable 

- 

Starting Initial value of the variable, used in baseline run (1.1) - 

Minimum Lower bound of the design space - 
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Maximum Upper bound of the design space - 

Values List of allowable values for discrete and string variable Section 8.1.3 

Definition Mathematical expression specifying a dependent parameter Section 8.1.2 

Distribution Statistical distribution used to define a probabilistic variable Section 8.1.7 

Sampling Type Sampling type for discrete variable: continuous or discrete Section 8.1.3 

Edit Input 
Parameter 
References 

Set the relation of a transfer variable with another variable Section 8.1.4 

Table 8-2: Parameter Setup advanced options 

Option Description Reference 

Init. Range Size of subregion of the design space used in the first iteration  Section 8.1.8 

Saddle Direction Saddle direction specification used for worst-case design Section 8.1.9 

Table 8-3: Parameter Setup options 

Option Description Reference 

Show advanced 
options 

Shows Init. Range and Saddle Direction option for each 
parameter 

Table 8-2 

Noise Variable 
Subregion Size  
(in Standard 
Deviations) 

Bounds are required for noise variables to construct the 
metamodels. The bounds are taken to a number of standard 
deviations away from the mean; the default being two standard 
deviations of the distribution. In general, a noise variable is 
bounded by the distribution specified and does not have upper 
and lower bounds similar to control variables. 

- 

Enforce Variable 
Bounds 

Assigning a distribution to a control value may result in 
designs exceeding the bounds on the control variables. The 
default is not to enforce the bounds. 

- 

8.1.1. Constants 

Each variable above can be modified to be a constant. A constant can be a number or a string. Constants are 
used: 

LS-OPT Version 5.2  143 



CHAPTER 8: Setup Dialog − Defining the Variables 

1. to define constant values in the input file such as p, e or any other constant that may relate to the 
optimization problem, e.g. initial velocity, event time, integration limits, etc. 

2. if native parameters defined in the input file are not to be used as optimization parameters.  
3. to convert a variable to a constant. This requires only changing the designation variable to constant 

in the command file without having to modify the input template. The number of optimization 
variables is thus reduced without interfering with the template files. Variables can also be eliminated 
by unchecking them in the Sampling matrix (see Section 8.3)0. 

8.1.2. Dependent variables 

Dependent variables are functions of the basic variables and are required to define quantities that have to be 
replaced in the input template files, but which are dependent on the optimization variables. They do 
therefore not contribute to the size of the optimization problem. Dependents can be functions of dependents. 
Dependent variables are specified using mathematical expressions (see Appendix F: Mathematical 
Expressions). 
The dependent variables can be specified in an input template and will therefore be replaced by their actual 
values. 

8.1.3. Discrete and String variables  

 

Figure 8-2: Definition of discrete values 
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For Discrete variables, a list of allowable values has to be specified. This can be done in the Parameter 
Setup dialog using the … button to the right of the Values textfield of the respective parameter, Figure 8-2. 
A list opens up showing the already defined values, a textfield to enter a new value appears by selecting the 
Add new value button or by using the return key.  
For String variables, allowable string values are defined in the same way. The string values are internally 
treated as integers in LS-OPT. The mapping of these integer values and the actual strings is stored in the 
StringVar.lsox database in the work directory. 
In addition to a list of values, the sampling type has to be specified for discrete variables. By default, the 
discrete variables are treated as continuous variables for generating experimental designs. The optimal 
values will assume an allowable value. If discrete sampling is selected, all experimental design points use 
allowable values. If possible, a continuous sampling is recommended, because it usually leads to a better 
distribution of the points within the design space and hence to a better metamodel quality. 

8.1.4. Transfer variables 

Transfer variables are used in the context of multilevel optimization (see Section 5.3.9). These variables are 
sampled in one of the levels, but these sample values are passed down to the lower levels where these are 
treated as constants. Transfer variables can be referenced by preceding higher levels or by other variables in 
the same level. Within the same level, a transfer variable can be the starting value or the lower/upper bound 
for another variable (Figure 8-3). 

 

Figure 8-3: Input Parameter References. Transfer Variable t73 is set as the starting value for t3. 

8.1.5. Response variables 

Response variables are used to define variables which inherit the values of responses. The main purpose is 
to allow substitution of response values in input files. The response must be calculated in an ancestor of the 
stage in which the substitution is done. 
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1. The main parameter setup allows the user to link a parameter to a response (See Figure 8-6). This 
selection causes the selected parameter value to be replaced by a response value defined in an 
ancestor stage. The transferred response value is substituted into the input file(s) of stages 
downstream where the parameters are defined. 

2. The response value to be linked can be any response value which was directly extracted from the 
solver database or a mathematical expression involving any variables, dependents, histories or 
responses defined in any parent stages.  

3. Response variables can be transferred between any two stages of a particular thread. They do not 
need to be consecutive as long as the response is defined in a stage which comes before the stage 
where the substitution is done. 

4. A specific response can be linked to any number of parameters. 
5. Response variables are not independent design variables, so have no effect on the sampling. 

Example 
The example is explained using the series of figures below. The optimization consists of an outer loop with 
three stages. The first stage is also an optimization loop which calibrates a parameter YMod to produce 
YMod_OPT. The second stage uses the optimized YMod_OPT as a constant parameter but optimizes a 
second variable Yield to produce Yield_OPT.  
After the first two stages, YMod_OPT and Yield_OPT are converted using mathematical expressions and 
then transferred as material constants to a vehicle simulation stage. The outer loop optimizes the vehicle 
design variables tbumper and thood.  
Figure 8-4 through Figure 8-11 show various parts of the problem setup. 
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Figure 8-4: LS-OPT Problem multilevel setup. The first two stages (YMOD_OPT) and (YIELD_OPT) are 
sublevel optimization stages. YMOD_OPT produces an optimal material parameter YMod_OPT and 
converts it to YMod_OPT_EXPR using an expression. This value is transferred to the parameter 
YModRV defined as an input parameter to the YIELD_OPT stage. The YIELD_OPT stage therefore uses 
this value as a constant but optimizes a second variable Yield to produce Yield_OPT which is then 
converted to Yield_OPT_EXPR. Both YMod_OPT_EXPR and Yield_OPT_EXPR are then transferred to 
the SIMULATION stage as input parameters. The outer loop depicted here optimizes over design 
variables tbumper and thood to minimize vehicle intrusion. 
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Figure 8-5: Response output definition for Stage YMOD_OPT. 

 

Figure 8-6: The main parameter setup (clicking green box at top left of Figure 8-4) to define two 
response-variables YModRV and YieldRV. These respectively link to YMod_OPT_EXPR and 
Yield_OPT_EXPR produced by the parent optimization stages. The parameters tbumper and thood are 
optimization variables used in the outer loop. 
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Figure 8-7: Input parameters for the YMOD_OPT stage. YMod is an optimization variable defined in this 
stage while YieldC is a constant. 

 

Figure 8-8: Response output definition for Stage YMOD_OPT. 
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Figure 8-9: Input parameters for the YIELD_OPT stage. Yield is an optimization variable defined in this 
stage. YModRV is a response-variable replaced by YMod_OPT_EXPR (see Figure 8-6 for definition). 

 

Figure 8-10: Response output definition for Stage YIELD_OPT. 
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Figure 8-11: Job log of SIMULATION stage of the example (the display represents the pre-processor 
phase prior to simulation). Note the linking of the two parameters to responses. 

8.1.6. Probabilistic Variables - Noise and Control Variables 

Probabilistic variable values, unlike deterministic variables, cannot be stated with absolute confidence. In 
other words, there is uncertainty associated with these variables because of which we can only state that 
their value will lie within a certain interval with specific level of confidence. This difference makes 
probabilistic analysis and optimization much more involved than their deterministic counterparts. Therefore, 
a separate chapter (Chapter 13) is dedicated to probabilistic tasks and problem setup. 
Probabilistic variables can either be control variables, whose nominal values are modified during 
optimization to get a more suitable design, or noise variables that are not controlled during optimization and 
only serve the purpose of introducing uncertainty in the problem. The variable type can be selected in the 
Parameter Setup panel (Figure 8-12). 

8.1.7. Probabilistic distributions 

In order to represent variable uncertainties, they are associated with probabilistic distributions, which are 
also part of the Parameter Setup panel when the selected task is probabilistic (Figure 8-12). Several types of 
distributions are available in LS-OPT. Further details of how to set up probabilistic variables and 
distributions are provided in Chapter 13. 
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Figure 8-12: Parameter setup panel for probabilistic tasks 

8.1.8. Size and location of initial region of interest (range) 

If an initial range is specified, the initial subregion is defined as [starting – range/2, starting + range/2]. 

Remarks: 
1. The full design space is used if the range is omitted. 
2. The region of interest is centered on a given design and is used as a sub-space of the design space to 

define the experimental design. If the region of interest protrudes beyond the design space, it is 
moved without contraction to a location flush with the design space boundary.0. 

8.1.9. Saddle direction: Worst-case design 

Worst-case or saddle-point design is defined as a method to minimize (or maximize) the objective function 
with respect to some variables, while maximizing (or minimizing) it with respect to the remaining variables 
in the variable set. The maximization variables are set using the Maximize option in the Saddle Direction 
field of the Parameter Setup panel. The default selection is Minimize. 
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8.2. Stage Matrix 

 

Figure 8-13: Stage Matrix 

The Stage Matrix provides an overview of the parameters defined in each stage. A parameter influences a 
stage if it is defined in a stage input file, manually added to a stage, or defined in an upstream stage. 
Hovering the mouse over a file icon shows a list of the files where the respective parameter is defined. 

8.3. Sampling Matrix 

 

Figure 8-14: Sampling Matrix 

For multidisciplinary design optimization (MDO) certain variables could be relevant for some but not all 
disciplines. In such examples, several samplings (or cases) can be defined and the variables assigned to 
some but not all samplings. The assignment of a variable to a sampling can be selected in the Sampling 
Matrix. If a variable is absent in a particular sampling, it assumes the current global value as generated by 
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the previous iteration for substitution in the input files of the next iteration. The number of variables selected 
for a sampling directly affects the number of sampling points (and hence the computational effort) required 
for that sampling. Each column is coupled to the Active Variables tab of the respective Sampling Dialog, 
Section 9.4. 
Clicking the Reset button reassigns the variables to the samplings as defined in the input files. 
If a variable has been deselected for all the Samplings, it is treated as a constant value. Therefore the 
baseline value will be assumed throughout the optimization. This option can be selected in lieu of explicitly 
defining the parameter as a constant. 
The sampling matrix can be changed between iterations. Variables detected as insensitive in the first or any 
other iteration could be switched off for the following iterations. 
See Section 18.5 for an MDO example. 

8.4. Resources 

 

Figure 8-15: Setup – Resources 

Resources are defined in the Stage dialogs, but, for convenience, allows editing of the global limits in the 
Setup dialog. The Resources tab shows a summary of all resources defined for all the stages, Section 5.4.1. 
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8.5. Features 

 

Figure 8-16: Setup – Features 

Sampling independent features are available in the Features tab of the Setup dialog, Figure 8-16. 

8.5.1. Evaluate Metamodel 

The response values of any number of points can be computed using an existing metamodel and written to a 
.csv file (file with comma-separated variables that can be read by most spreadsheet programs). The input 
data is sampling independent. 
There are two simple steps to obtain a table with response data. 

1. Browse for the file with the sampling point information using the Evaluate Metamodel option in the 
Features tab in the Setup dialog. The file must be in .csv format although spaces, commas or tabs 
are allowed as delimiters. The file must contain two header lines. The first header line contains the 
variable names. The second header line contains the variable types; in this case "dv" (design 
variable) suffices. The variable types “nv” (noise variable), “dc” (discrete variable) or “st” (string 
variable) can also be used and will achieve the same result (see also Appendix E.3.1 ). It should be 
noted that the entry for a string variable is the corresponding mapped integer value that can be found 
in the file StringVar.lsox. The variable coordinates are specified as one row for each design point. 
See example below. 

2. Use the Setup dialog Repair option Evaluate Metamodels.0. 
o Input: Each sampling point file must represent all the variables. LS-OPT checks whether all the 

variables defined in the file are represented in the LS-OPT input. Variable order is not important. 

o Output: The ExtendedResults output can be found as a META file in the main working 
directory, e.g. ExtendedResultsMETAMaster_3.csv. The ExtendedResults file has 
variable, dependent, response, composite, objective, constraint, multi-objective and constraint 
violation values. 
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o If sampling points are defined before the start of an optimization run, the META file will be 
automatically computed for each iteration. 

Example .csv file: 
x1 x2 x3 
dv dv dv 
1.0 2.0 3.0 
2.0 3.0 4.0 
4.1 6.2 3.3 
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9. Sampling & Metamodel Dialog 

This chapter describes the specification of sampling settings, i.e. the metamodel types, point selection 
schemes (design of experiments or DOE), and related options available in the Sampling dialog, Figure 9-1. 
The terms point selection and experimental design, are used interchangeably. 

 

Figure 9-1: Sampling dialog – metamodel and point selection settings 

9.1. Metamodel types 
The user can select one of the metamodel types shown in Figure 9-1 and Table 9-1, respectively. The default 
selection for the metamodel type and the point selection scheme depends on the choice of task and 
optimization strategy, Chapter 4. For the sequential response surface method (SRSM) strategy, the default 
choice is the polynomial response surface method (RSM) where response surfaces are fitted to results at 
data points using polynomials. For global approximations fitted in the single iteration and sequential 
strategies, the radial basis function networks are set as the default approximation models. For all strategies, 
the feed-forward neural network, Kriging, Support Vector Regression and user-defined approximation 
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models are also available. Sensitivity data (analytical or numerical) can also be used for optimization. This 
method is more suitable for linear analysis solvers. For details see the sections referred to in Table 9-1. 

Table 9-1: Sampling dialog options – Metamodel types 

 

Metamodel Type Description Reference 

Polynomial Polynomial approximations up to quadratic order Section 9.1.1 

Sensitivity Uses gradients to determine linear metamodels.  Section 9.1.2 

Feedforward Neural Network An artificial Neural network with sigmoid basis 
functions 

Section 9.1.3 

Radial Basis Function 
Network 

A Neural Network with radial basis functions  Section 9.1.3 

Kriging A Gaussian process. Form of Bayesian inference. Section 9.1.4 

Support Vector Regression Support Vector Regression Section 9.1.5 

User-defined Interface for user-defined, dynamically linked 
metamodel.  

Section 9.1.6 

9.1.1. Polynomial 

When polynomial response surfaces are constructed, the user can select from different approximation 
orders. The available options are linear, linear with interaction (linear and off-diagonal terms), elliptic 
(linear and diagonal terms) and quadratic, Section 21.1.1. In the Sampling dialog, the approximation order is 
set in the Order field, Figure 9-1. Increasing the order of the polynomial results in more terms in the 
polynomial, and therefore more coefficients that need to be determined, hence more simulation runs are 
needed. The default number of simulation runs is automatically updated for the polynomial type. 
The polynomial terms can be used during the variable screening process (see Section 21.4) to determine the 
significance of certain variables (main effects) and the cross-influence (interaction effects) between 
variables when determining responses. These results can be viewed graphically (Section 15.3.4). 
The recommended point selection scheme for polynomial response surfaces uses the D-optimality criterion 
(Section 9.3.2). 

9.1.2. Sensitivity 

In this approach, sensitivities are used to generate linear metamodels. Both analytical and numerical 
sensitivities can be used for optimization, Figure 9-2. 

LS-OPT Version 5.2  158 



CHAPTER 9: Sampling & Metamodel Dialog 

 

Figure 9-2: Sampling Dialog: Sensitivity options 

Analytical sensitivities 

If analytical sensitivities are available, they must be provided for each response in its own file named 
Gradient. The values (one value for each variable) in Gradient should be placed on a single line, 
separated by spaces. 
In the Sampling dialog, the Sensitivity Type must be set to Analytical. 
A complete example is given in Section 18.7. 

Numerical sensitivities 

To use numerical sensitivities, select Numerical in the Sensitivity Type field in the Sampling dialog and 
assign the perturbation as a fraction of the design space, Figure 9-2. 
Numerical sensitivities are computed by perturbing n points relative to the current design point x0, where the 
j-th perturbed point is: 

)(0
iLiUiji

j
i xxxx −+= εδ  

0=ijδ  if ji ≠  and 1.0 if ji = . The perturbation constant ε  is relative to the design space size. The same 
value applies to all the variables. The value of ε is assumed to be 0.001. 
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9.1.3. Feedforward Neural networks and radial basis function networks 

To apply feedforward neural network or radial basis function approximations, select the appropriate option 
in the Metamodel field in the Sampling dialog, see Figure 9-3 and Figure 9-6, respectively. The 
recommended Point Selection scheme for feedforward neural networks and radial basis functions is the 
space filling method (which is also the default), Section 9.3.4. 

FFNN Efficiency Options* 

Neural Network construction calculation may be time-consuming because of the following reasons: 
1. The committee size is large 
2. The ensemble size is large.0. 

Committee size. The default committee size as specified above is largely required because the default 
number of points when conducting an iterative optimization process is quite small. Because of the tendency 
of NN’s to have larger variability when supplied with fewer points, committees are relied on to stabilize the 
approximation through averaging. When a large number of points has been simulated however, the 
committee size can be reduced to a single neural net by setting Number of Committee Members to 1. 
Ensemble size. The ensemble size can be reduced in two ways:  

1. by exactly specifying the architecture of the ensemble and 
2. by providing a threshold to the RMS training error. 0. 0. 

The architecture is specified using the Number of Hidden Nodes in Ensemble options. Higher order neural 
nets are more expensive to compute. 
FFNN efficiency options are available in the Sampling dialog if the Set Efficiency Option button is pressed, 
and may be reset to the default settings using the Reset button, Figure 9-3. The available options are 
explained in Table 9-2. 
Please refer to Sections 22.3 and 23.5 for recommendations on how to use metamodels. 
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Figure 9-3: Feedforward Neural Network Efficiency Options 

Table 9-2: Feedforward Neural Network Efficiency Options 

Option Description 

Number of Hidden Nodes in 
Ensemble 

Ensemble size from which one will be selected according to 
the minimum Generalized Cross Validation (GCV) value 
across the ensemble. The default is Lin-1-2-3-4-5.  

Number of Committee Members Because of the natural variability of neural networks (see 
Section 22.1.2), the user is allowed to select the number of 
members in a neural net committee. To ensure distinct 
members, the regression procedure uses new randomly 
selected starting weights for generating each committee 
member. 

Half Number of Discarded Nets The discard option allows the user to discard committee 
members with the lowest mean squared fitting error and 
committee members with the highest MSE. This option is 
intended to exclude neural nets which are either under- or 
over-fitted. The total number of nets excluded is therefore 2 
times the specified number. The discard feature is activated 
during the regression procedure. 
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Execution options for FFNN calculation (Parallel Builder) 

FFNNs can be solved concurrently. Select the Parallel Builder option in the Settings tab to enable the 
Execution tab. 
The Parallel Builder involves the application of the job scheduler to treat each response and each member of 
a neural network ensemble as a job to be run in parallel. The committee (which constitutes a particular 
ensemble member and which is solved using a serial Monte Carlo analysis) is solved serially. Figure 9-4 
shows the dialog. The main features are as follows: 

1. Job monitoring is available by clicking on the LED on the Metamodel box of the main dialog (see 
Figure 9-5). All the features that apply to the monitoring of simulations (except LS-PrePost) are also 
available for FFNN calculation. 

2. Remote computation is supported, so if a cluster setup is available for e.g. LS-DYNA jobs, the 
FFNN solution setup may only involve a few special settings. 

 

Figure 9-4: Dialog for Parallel FFNN builder 
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Figure 9-5: Job progress display for parallel FFNNs 

Advanced RBF options: Basis functions and optimization criterion for RBF* 

The performance of the RBFs can significantly vary with the choice of basis function and the optimization 
criterion. Two basis functions available for selection are Hardy’s multi-quadrics (HMQ), and Gaussian 
RBF. HMQ is often preferred and has therefore been set as the default. The user is also allowed to select the 
optimization criterion to be generalized cross-validation error or the pointwise ratio of the generalized cross 
validation error, Figure 9-6.  
The options are available in the Sampling dialog if the Set Advanced RBF Options button is pressed, and 
may be reset to the default settings using the Reset button, Figure 9-6. The available options are described in 
Table 9-3. 
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Table 9-3: RBF Advanced Options 

Option Description Option Description 

Transfer Function Basis function Hardy’s Multi-Quadrics ( ) ( )./1,..., 22
1 hKh rxxg σ+=  

Gaussian ( ) [ ].2/exp,..., 22
1 hKh rxxg σ−=  

Topology 
Selection Criterion 

Optimization 
criterion 

Leave-one-out Generalized cross-validation 
error (PRESS) 

GCV-Ratio Pointwise ratio of the 
generalized cross validation 
error 

Noise variance Variance of the fitting error 

 

Figure 9-6: Radial Basis Function Network Advance Options 
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9.1.4. Kriging parameters 

 

Figure 9-7: Kriging Advanced Options 

The Kriging fit depends on the choice of appropriate correlation function and the trend model, Section 22.2. 
Two correlation functions available for selection are Gaussian and exponential. The user can also select 
either a constant, linear, or quadratic trend model. The available options are displayed in Table 9-4. 
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Table 9-4: Advanced Kriging Options 

Option Option Description 

Correlation Function Gaussian, 
Exponential 

Correlation function used in stochastic component of 
metamodel function, see Section 22.2. 

Trend Model Constant, 
Linear, 
Quadratic 

Polynomial component of metamodel function. 

The linear trend model requires at least )2( +n  design points, 

a quadratic trend model requires at least 1
2

)2)(1(
+

++ nn
 

design points, where n is the number of variables. 

Fixed theta for all responses By default, a single set of theta values is fit to all responses, 
however the user can also fit individual set of correlation 
function parameters (theta) for each response by selecting this 
option. 

9.1.5. Support Vector Regression 

The support vector regression fit depends on the choice of appropriate kernel function (similar to correlation 
function), Section 22.3. Two kernel functions available for selection are Gaussian and polynomial. The 
available options are displayed in Table 9-5. 

Table 9-5: Advanced Support Vector Regression Options 

Option Option Description 

Kernel Type Gaussian, 
Polynomial 

Basis function used in SVR expansion that maps the input variable 
space to a high dimensional feature space, see Section 22.3 . 

 

Figure 9-8: Metamodel selection Support Vector Regression 
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9.1.6. User-defined metamodel* 

 

Figure 9-9: User Defined Metamodel Options 

The user-defined metamodel distribution is available for download at 
http://ftp.lstc.com/user/ls-opt/Add_On_Libraries/.  

Please ask LSTC or your local LS-DYNA distributor for the password. 

Building the example 

Under Linux, issue the command "make" while in this directory. Your resulting metamodel is called 
umm_avgdistance_linux_i386.so (or umm_avgdistance_linux_x86_64.so if running 
under 64-bit OS). 

Under Windows, open usermetamodel.sln in Visual Studio. Open the Build menu, select "Build 
solution". Your resulting metamodel is called umm_avgdistance_win32.dll 

Along with the metamodel binary you also get an executable called "testmodel". This program can be used 
for simple verification of your metamodel. Just give the name of your metamodel as a parameter, i.e.: 
testmodel avgdistance 

Note that you are not supposed to supply the full .dll/.so filename as a parameter. 

Using the example as a template 

If you wish to use the example as a template for your own metamodel, do the following steps (in this 
example, your metamodel is called mymetamodel): 
Copy avgdistance.* to mymetamodel.* 
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Replace any occurrence of the string "avgdistance" with "mymetamodel" in the following files: 
Makefile, mymetamodel.def, mymetamodel.vcproj, Makefile, usermetamodel.sln 

Distributable metamodel 

When compiled, your metamodel binary will be called something like: 
umm_mymetamodel_win32.dll 

or 
umm_mymetamodel_linux_i386.dll 

This is the only file that is needed in order to use the metamodel from LS-OPT. 

Referring to user-defined metamodels in the Sampling dialog 

In order to use a user-defined metamodel for a certain sampling, select the User-defined option in the 
metamodel selection in the Sampling dialog and add the metamodel name to the Name textfield, (e.g. 
umm_mymetamodel_linux_i386.so), Figure 9-9.  

Note that the name should not include the "umm_" prefix or the platform dependent suffix. LS-OPT will 
look for the correct file based upon the current platform.  This allows for cross platform operation. 

9.2. General Options for Non-Polynomial Metamodels 
Additional options available for Feedforward Neural Networks, Radial Basis Functions, Kriging and 
Support Vector Regression are summarized in Table 9-6. 

Table 9-6: FFNN, RBF, Kriging and SVR options 

Option Description Reference 

First iteration Linear 
D-Optimal 

Use linear metamodels and the D-optimality point selection 
criterion for the first iteration instead of the selected types. 

9.2.1 

Include pts of 
previous iterations 

The new points for each iteration are selected within the new 
subregion while considering the locations of points from previous 
iterations.  
The metamodels are constructed using the new points as well as 
points from all previous iterations.  

9.2.2 

Parallel Builder Only FFNN, calculates metamodels in parallel 9.1.3 
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9.2.1. First Iteration Linear D-Optimal 

For Feedforward Neural Networks, Radial Basis Functions, Kriging and Support Vector Regression, the 
main scheme can be replaced in the first iteration by linear polynomials with D-optimal point selection, 
using the “First iteration Linear D-Optimal” option, because 

1. D-optimality minimizes the size of the confidence intervals to ensure the most accurate variable 
screening, usually done in the first iteration. 

2. It addresses the variability encountered with neural networks due to possible sparsity (or poor 
placement) of points early in the iterative process, especially in iteration 1, which has the lowest 
point density. 0. 

9.2.2. Include points of previous iterations 

Updating the experimental design involves augmenting an existing design with new points. Updating only 
makes sense if the response surface can be successfully adapted to the augmented points such as for neural 
nets, Radial Basis Function networks or Kriging surfaces in combination with a space filling scheme.  
The new points have the following properties: 

1. They are located within the current region of interest. 
2. The minimum distance between the new points and between the new and existing points, is 

maximized (space filling only). 0. 

9.3. Point selection schemes 

9.3.1. Overview 

Table 9-7 shows the available point selection schemes (experimental design methods). The default point 
selection scheme depends on the selected metamodel type, e.g., the D-optimal point selection scheme (basis 
type: Full Factorial, 11 points per variable (for 2=n )) is the default for linear polynomials, and the space-
filling scheme is the default for the Feedforward Neural Network, Radial Basis Function Network, Support 
Vector Regression and Kriging methods. 

LS-OPT Version 5.2  169 



CHAPTER 9: Sampling & Metamodel Dialog 

 

Figure 9-10: Point selection schemes 
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Table 9-7: Point selection schemes 

Point Selection 
Scheme 

Description Reference 

Full Factorial - Section 21.2.1 

Linear Koshal Saturated design for first order Polynomials Section 21.2.2 

Quadratic Koshal Saturated design for quadratic Polynomials  Section 21.2.2 

Composite Central Composite design Section 21.2.3 

D-optimal Design obtained by minimizing the determinant of the moment 
matrix 

Section 9.3.2, 
Section 21.2.4 

Latin Hypercube Stratified random design  Section 9.3.3, 
Section 21.2.5 

Monte Carlo Random design  

Space Filling Design obtained by maximizing the minimum distance between 
any two points. 

Section 9.3.4, 
Section 21.2.6 

Space Filling of 
Pareto Frontier 

Design obtained by maximizing the minimum distance between 
any two points sampled from the Pareto Optimal Frontier. 

Section 9.3.5 

User-defined - Section 9.3.6 
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9.3.2. D-Optimal point selection 

 

Figure 9-11: D-optimal point selection: advanced options 

The D-Optimality design criterion is available for Polynomial and User-defined metamodels and can be 
used to select the best (optimal) set of points for a response surface from a given set of points. The basis set 
can be determined using any of the other point selection schemes. The default basis experiment for the D-
optimal design is based on the number of variables n. For small values of n, the Full Factorial design is 
used, whereas larger n employs a Space Filling method for the basis experiment. The Latin Hypercube 
design is also useful to construct a basis experimental design for the D-optimal design for a large number of 
variables where the cost of using a Full Factorial design is excessive. E.g. for 15 design variables, the 
number of basis points for a 3-level design is more than 14 million. 
The basis experiment attributes can be overridden using the Set Advanced Options in the Sampling Dialog. 
The type and order of the metamodel used has an influence on the distribution of the optimal experimental 
design. The default number of points selected for the D-optimal design is int(1.5(n + 1)) + 1 for linear, 
int(1.5(2n + 1)) + 1 for elliptic, int(0.75(n2 + n + 2)) + 1 for interaction, and int(0.75(n + 1)(n + 2)) + 1 for 
quadratic. As a result, about 50% more points than the minimum required are generated. If the user wants to 
override this number of experiments, this can be done using the respective textfield in the Sampling dialog. 
The D-optimal scheme is the recommended point selection scheme for polynomial response surfaces.  
The D-optimal scheme is repeatable, but a random number seed can be provided to create different sets of 
random points, Section 9.3.7. 

9.3.3. Latin Hypercube Sampling 

The Latin Hypercube point selection scheme is typically used for probabilistic analysis. Like Monte Carlo 
and Space-Filling point selection schemes, it requires a user-specified number of experiments. 
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Latin Hypercube Sampling may be used to fit a response surface, but even if the Latin Hypercube design 
has enough points to fit a response surface, there is a likelihood of obtaining poor predictive qualities or 
near singularity (when fitting polynomials) during the regression procedure. It is therefore better to use the 
D–optimal experimental design for RSM. 
For details on the default algorithm, see the description of Algorithm 2 in Section 21.2.6. Other latin 
hypercube algorithms may be selected using the advanced options, Table 9-8. 
All latin hypercube algorithms are repeatable, but a random number seed can be provided to create different 
sets of random points, Section 9.3.7. 

Table 9-8: Latin Hypercube advanced options 

Option Description Reference 

Generalized 'Generalized' LHS design with random pairing Section 21.2.5 

Central Point 'Central point' Latin Hypercube Sampling (LHS) design with 
random pairing 

Section 21.2.5 

9.3.4. Space Filling 

The default Space Filling algorithm maximizes the minimum distance between experimental design points 
for a given number of points. For details on the algorithm, see the description of Algorithm 5 in Section 
21.2.6. Other space filling approaches may be selected using the advanced options, Table 9-9. The only data 
required is the number of sampling points that has to be specified in the Number of Simulation Points text 
field in the Sampling dialog. The default number of points depends on the number of variables, the 
metamodel type and also on the task and strategy. Space Filling is suitable for the Radial Basis Function, 
Neural Networks, Support Vector Regression as well as Kriging methods (see Section 9.1.3). 
All space filling algorithms are repeatable, but a random number seed can be provided to create different 
sets of random points, Section 9.3.7. 
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Table 9-9: Space Filling advanced options 

Option Description Reference 

Maximin distance Given an arbitrary design (and a set of fixed 
points), randomly moves the points so as to 
optimize the maximin distance criterion using 
simulated annealing. 

Section 21.2.5 

Maximin LHD permute Given an LHS design, permutes the values in each 
column of the LHS matrix so as to optimize the 
maximin distance criterion taking into account a 
set of existing (fixed) design points. This is done 
using simulated annealing. Fixed points influence 
the maximin distance criterion, but are not 
allowed to be changed by Simulated Annealing 
moves. 

Section 21.2.5 

Maximin LHD subinterval Given an LHS design, moves the points within 
each LHS subinterval preserving the starting LHS 
structure, optimizing the maximin distance 
criterion and taking into consideration a set of 
fixed points. 

Section 21.2.5 

 

9.3.5. Space Filling of Pareto Optimal Frontier 

By selecting to create the Pareto Optimal Frontier (POF) as a strategy, a Space Filling algorithm which 
applies discrete Space Filling sampling of the POF is available. This sampling method uses the POF created 
in the previous iteration as a basis design point set. The distance between the points is maximized and can 
also be maximized with respect to previous simulation points by selecting to augment the design points. The 
user can specify the number of points required. 

How to use the Pareto Optimal Frontier as a basis set for sampling 

The following procedure can be followed to conduct simulations based on the POF. It is assumed that the 
user has conducted one or more metamodel-based iterations and that the POF has been created based on the 
metamodel. 

1. Task: If not selected already, select any Sequential strategy in the Task selection dialog. 
2. Sampling: 

a. Choose to conduct Space Filling of Pareto Frontier as a Sampling option. 
b. Choose whether previous simulation points are to be considered in the Space Filling 

algorithm (check the box “Include pts of Previous Iterations”). 
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c. Choose the number of simulation points required using the Number of Simulation Points 
textfield. The simulation will stop automatically if the POF basis set is too small. 

d. If the number of simulations required differs from the current setting, choose “Do not 
augment sampling before iteration” in the Sampling dialog Features tab and set the iteration 
number at which you want to restart. For example, if one iteration is already available, set the 
starting iteration to 2, Section 9.5.4. 

e. Constraints: The constraint values can be adjusted to filter POF points. Select those 
constraints which are to be applied as sampling filters as Sampling Constraints in the 
Sampling dialog Constraints tab, Section 9.6.  

The constraints can be added or changed immediately before the final run, so do not have to be 
precise from the very beginning. 

3. Termination Criteria: Increase the iteration limit by 1 assuming only 1 more iteration is to be done. 
4. Run: To delete any existing runs which may exist in the current iteration (such as a previous 

verification run), choose “Clean from Current Iteration [it]” from the Tools menu and set the current 
iteration in the top menu bar.0. 

9.3.6. User-defined point selection 

 

Figure 9-12: Sampling Dialog: User-defined point selection 

The User-defined point selection option allows the user to specify own sampling points. This may be useful 
if LS-OPT is used as a process manager. There are two formats supported to import the data, csv (comma 
separated variables) and a free format. 
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Comma separated variables 

A user-defined experimental design can be specified in a text file using the .csv (comma separated 
variables) format. This allows the user to import a table from a text file with the following keyword-based 
format: 
"Point","tbumper","thood", 
"sk","dv","dv", 
1,3.0000000000000000e+00,1.0000000000000000e+00, 
2,5.0000000000000000e+00,1.0000000000000000e+00, 
3,1.0000000000000000e+00,1.0000000000000000e+00, 
4,1.0000000000000000e+00,5.0000000000000000e+00, 
5,5.0000000000000000e+00,5.0000000000000000e+00, 

The two header lines are required. The variable types are design variables (dv), noise variables (nv), discrete 
variables (dc) or string variables (st), respectively (see also Appendix E.3.1 ). The variable names assure 
that each column is tied to a specific name and will be displayed as variables in the “Parameter Setup” panel 
in the Setup dialog. The variable types defined in the user file will take precedence over other type 
definitions of the same variable (e.g. from the input files). 
The sk variable type can be used to screen out variables. Therefore variables of the sk type will not appear 
on the Parameter setup page when importing the file. 
This format is convenient for use with Microsoft Excel which allows the export of a .csv text file. The 
browser for specifying an input file has a filter for .csv files. This feature is also ideal for setting up an LS-
OPT run with using an exported file of Pareto Optimal points. Such a file can be produced using the Viewer. 

Free format 

A user-defined experimental design can also be specified in a text file using the following keyword-based 
free format: 
lso_numvar 2 
lso_numpoints 3 
lso_varname     t_bumper t_hood 
lso_vartype     dv  nv 
This is a comment lso_point  1.0  2.0 

lso_point  2.0  1.0 
lso_point  1.0  1.0 

The keywords (e.g. lso_numvar) except lso_vartype are required but can be preceded or followed by any 
other text or comments. The variable types are design variables (dv) or noise variables (nv) respectively. 
The variable names assure that each column is tied to a specific name and will be displayed as variables in 
the Parameter setup pane in the Setup dialog. The variable types defined in the user file will take 
precedence over other type definitions of the same variable (e.g. from the input files). 
This format is convenient for use with Microsoft Excel which allows the export of a .txt text file. The 
browser for specifying an input file has a filter for .txt files.  
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9.3.7. Advanced point selection options 

Random number seed 

All point selection schemes are repeatable, but a random number seed can be provided to create different 
sets of random points for methods that use randomness. The feature is particularly useful for Monte Carlo or 
Latin Hypercube point selections which both directly use random numbers. Because D-Optimal and Space 
Filling designs also use random numbers, albeit less directly, they may only show small differences due to 
the occurrence of local minima in the respective optimization procedures. 

9.3.8. Replicate experimental points 

For direct Monte Carlo analysis, when using stochastic fields, any particular design point can be (re-
)analyzed using different stochastic fields. These are then replicate evaluations of the same design. The 
Number of Replicate Simulations can be specified in the Sampling dialog Advanced Options, Figure 9-13. 
The stochastic field is controlled using the LS-DYNA® *PERTURBATION and *PARAMETER cards. 
Note that the RND (random number seed) field of the card can be set to 0 to allow the field to vary freely, or 
set to a positive number to get a specific stochastic field. 

 

Figure 9-13: Sampling Dialog options for direct Monte Carlo Analysis 

So, in the above, the original experimental design has 10 point, hence 50 FEA evaluations will be done. See 
also the example in Section 19.1. 

9.3.9. Remarks: Point selection 

1. The database files Experiments_n.csv, AnalysisResults_n.lsox and 
AnalysisResults_n.csv are synchronous, i.e. they will always have the same experiments 
after extraction of results. These files also mirror the result directories for a specific iteration. 

2. Design points that replicate the starting point are omitted during the sampling phase.0. 
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9.4. Active Variables 

 

Figure 9-14: Sampling Dialog: Active Variables panel 

The Active Variables panel shows a list of all previously defined variables, Figure 9-14. Each variable has a 
checkbox that allows the user to select or deselect it for the respective sampling. Deselected variables are 
treated as constants using the optimal value of the previous iteration. 
The selection in the Active Variables dialog is coupled to the respective column of the Sampling Matrix 
shown in the Setup Dialog, Section 8.3. 
If a variable has been deselected across all the available samplings it will assume the baseline value over all 
iterations. It will therefore effectively be assumed to be a constant. 
The active variable selection can also be changed between iterations. 
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9.5. Sampling Features 

 

Figure 9-15: Sampling Features 

Table 9-10: Sampling Features 

Feature Description Reference 

Approximate Histories Extension of the metamodel concept to curves. Section 9.5.1 

Import Analysis Results Import table of design points (variable and response 
values) 

Section 9.5.3 

Import Metamodel Import previsouly generated metamodel Section 9.5.4 

Verify Metamodel using 
Checkpoints 

Calculate error measures of the metamodel using a 
given metamodel and set of checkpoints (variables 
and response values) 

Section 9.5.1 

Restart: Do not augment 
sampling before iteration 

Use larger number of sampling points from a 
specified iteration 

Section 9.5.4 

9.5.1. Approximate histories 

Each history curve can be pointwise (at each sampled time-step) approximated using metamodels. These 
approximations of the entire history curves in time-domain are called predicted histories. These history 
approximations are used to study the influence of changes in the variables as well as for parameter 
identification problems. The approximation of histories is enabled by setting the Approximate Histories flag 
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on the Features page of the Sampling dialog as shown in Figure 9-15. The user can approximate the data 
using either linear or quadratic polynomials or by radial basis functions. The approximations are carried out 
on the sampling points used for response approximations. While the approximation models for the histories 
and responses can be different, the number and location of sampling points remain the same such that all 
options for history approximation may not be suitable depending on the number of available data points, for 
example, if the response sampling is linear polynomial the number of points sampled would not be 
sufficient to approximate the histories using a quadratic polynomial and that option should be avoided. It is 
also important to note that approximation of histories may take significantly long as approximations at 
thousands of time-steps are carried out. 

Remarks: 
1. It is assumed that the each history curve has the same number of time-steps for all points.  
2. For sequential strategies, all points sampled so far would be used for creating RBF approximations, 

whereas only the points sampled in the current iteration are used for polynomial approximations.0. 

9.5.2. Verify Metamodel using Checkpoints 

The error measures of any number of designs (checkpoints) can be evaluated using an existing metamodel. 
There are two simple steps to obtaining a table with error data. 
Browse for the file with the checkpoint information using the “Verify Metamodel using Checkpoints” option 
in the Features tab in the Sampling panel. The file must be in .csv format although spaces, commas or 
tabs are allowed as delimiters. The file must contain two header lines. The first header line contains the 
variable and response names. The second header line contains the variable and response types; in this case 
"dv", ”nv”, “dc” and “st” for variables and "rs" for responses (see also Appendix E.3.1 ). For string 
variables (“st”), the corresponding mapped integer values need to be provided. The mapping is stored in the 
file StringVar.lsox. The variable coordinates are then specified as one row for each design point. See 
example below.  
Use the Evaluate Metamodels option from the Tools menu Repair option to run (see Section 3.5).  
Cases without checkpoint files will be ignored. 
The results are available in lsopt_report. 

Example of a checkpoints file: 
x1, x2, x3, Disp, Acc 
dv, dv, dv, rs, rs 
1.0, 1.3, 1.2, 123.6, 1278654.7 
2.1, 2.2, 639.2, 2444588.1 

9.5.3. Importing user-defined analysis results 

A table (in text form) of existing analysis results can be used for analysis.  
Browse for the file with the analysis results to import using the Import User Results option in the Features 
tab in the Sampling panel. 
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Two header lines are required. The first header line contains the variable names. The second header line 
contains the variable types. The following lines contain the variable and response values for each design 
point, see example below. The types are defined as described in Table 9-11 (see also Appendix E.3.1 ). The 
parsing code looks for double quotes, commas, spaces and/or tabs as delimiters. 

Table 9-11: Variable types 

Symbol Explanation 

Dv Design variable 

Nv Noise variable 

Rs Response 

Sk Ignore 

Example: 
An example of a analysis results file (with 2 simulation points) is: 
"var1","var2","var3","Displacement","Intrusion","Acceleration" 
"dv",  "dv",  "nv",  "rs",          "rs",       "rs" 
1.23   2.445  3.456  125.448        897.2       223.0 
0.01,2.44,1.1,133.24,244,89,446.6 

The steps for importing user-defined analysis result files are as follows: 
1. Sampling panel, Features tab: Browse for the text file in the Import User Results textfield. The 

browser has a preference for .csv and .txt files. Variables and responses are imported 
automatically into the GUI, the responses are added to the first stage of the respective sampling. 

2. Sampling panel. Check that the number of points defined in the sampling panel is the same as the 
number of points in the user-provided file. If fewer points are available in the file, LS-OPT will 
augment the sampling points and try to run simulations. 

3. Sampling pane, right mouse menu. Select "Repair", "Import results". This is a critical step to convert 
the .csv format to the LS-OPT database format ready for analysis. 

4. The user can now choose the type of analysis in the Task dialog. 
a. DOE Study: Change to the Metamodel-based DOE Study task and Run. Metamodels will be 

created and the Viewer can be used to study the metamodel results. 
b. Optimization: Define the Objectives and/or constraints. For RBDO, define the distributions 

for the input variables as well as the probability of failure. 
Change to the Metamodel-based Optimization or Metamodel-based RBDO task, choose the Single Stage 
strategy and Run. An optimization history is created. 
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9.5.4. Importing metamodels 

Metamodels can be imported for the purpose of performing metamodel-based tasks such as optimization or 
reliability analysis. Only files in the LS-OPT DesignFunctions.x format (xml format) can be imported. 
Figure 9-16 shows the feature for browsing an input file. To import the file, select the Import Metamodels 
option in the global Repair option found in the menu bar. The import repair feature can also be found by 
right-clicking on the Metamodel dialog box and selecting Repair→Import.  
An automatic import feature can be selected in the Task settings (Import metamodel). This feature can be 
used to automatically activate the metamodel import function as a pre-processor task before executing other 
tasks such as optimization or reliability analysis. This feature is useful when performing inner level tasks in 
a multi-level optimization based on existing metamodels. In such cases it is not possible to manually import 
a metamodel file for each inner level run. 

 

Figure 9-16: Sampling Dialog: Selection of metamodel import feature 

9.5.5. Changing the number of points on restart* 

The number of points to be analyzed can be changed starting with any iteration. This feature is useful when 
the user wants to restart the process with a different (often larger) number of points. This option avoids 
adding points in iterations prior to the specified iteration. The feature is sampling-specific, so must be added 
to all the sampling definitions. 

Example 1: 
In the first analysis, the following sampling scheme was specified: a single iteration with 5 D-optimal points 
was performed. By default, a single verification run is done in iteration 2. 
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After the first analysis, the user wants to restart, using 10 points per iteration and 3 iterations in total. Do not 
augment sampling before iteration is set to 2. Iterations 2 and 3 will then be conducted with 10 points each 
while iteration one will be left intact. 

Example 2: 
Starting with a single iteration with 5 D-optimal points and restarting with 10 D-optimal points, but now, Do 
not augment sampling before iteration is set to 1. Iteration 1 of the restart will be augmented with 5 points 
(to make a total of 10), before continuing with 10 points in further iterations.  
Note: The user will have to delete the single verification point generated in the first analysis before 
restarting the run. For this example, this can be done by using the Run with clean start from current 
iteration run option, and setting the current iteration to 2. The restart will then generate a new starting point 
for iteration 2 and conduct 10 simulations altogether. 

9.6. Sampling Constraints 
Sampling constraints are used to specify an irregular design space. An irregular (reasonable) design space 
refers to a region of interest that, in addition to having specified bounds on the variables, is also bounded by 
arbitrary constraints. This may result in an irregular shape of the design space. This region of interest is thus 
defined by constraint bounds and by variable bounds. The purpose of an irregular design space is to avoid 
designs which may prove to be impossible to analyze. 
Sampling constraints are defined in the Constraints tab of the Sampling dialog, Figure 9-17. Previously 
defined constraints are available for selection in the Add new list, new constraints may be defined using the 
Sampling constraint wizard, Figure 9-18, accessible by the Create sampling constraint button. 
Only explicit constraints, i.e. constraints that do not require simulations, can be specified for the reasonable 
design space. A typical explicit constraint could be a simple inequality relationship between the design 
variables. 
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Figure 9-17: Definition of Sampling Constraints by selection from list or new creation. 

 

Figure 9-18: Sampling constrain wizard: definition of an expression and bounds 

This specification of the Sampling constraint ensures that the points are selected such that the bounds are 
not violated. 

Remark: 
A reasonable design space can be created using the D-optimal experimental design as well as the Space 
Filling experimental design. These are the most commonly used options that accompany the choice of 
polynomials, Radial Basis Function Networks, Neural Networks or Kriging as metamodels.  
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9.7. Comparison metamodels 
Additional metamodels, not used in optimization or metamodel-based Monte Carlo analysis, can be created. 
These metamodels are based on the same analysis result set as the main metamodel and can be used for 
comparison (see Figure 9-19). Comparison metamodels are calculated in all iterations.  
A comparison metamodel is identified by a user-provided name and can be de-activated or overwritten. The 
attributes of a comparison metamodel can be edited as shown for e.g. Feedforward Neural Networks in 
Figure 9-20. 

 

Figure 9-19: Definition of comparison metamodels. 
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Figure 9-20: Definition of the attributes of a selected comparison metamodel. 
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10. Composite Dialog 

Composite functions can be used to combine response surfaces and variables as well as other composites. 
The response components can belong to any stage. The objectives and constraints can then be constructed 
using the composite functions. 

10.1. Introduction 

10.1.1.  Composite vs. response expressions 

There is an important distinction between response expressions and composites. This distinction can have a 
major impact on the accuracy of the result. Response expressions are converted to response surfaces after 
applying the expression to the results of each sampling point in the design space. Composites, on the other 
hand, are computed by combining response surface results. Therefore the response expression will always 
be of the same order as the chosen response surface order while the composite can assume any complexity 
depending on the formula specified for the composite (which may be arbitrary). 

Example  
If a response function is defined as f(x, y) = xy and linear response surfaces are used, the response 
expression will be a simple linear approximation ax + by whereas a composite expression specified as xy 
will be exact. 

10.2. Defining Composites 
A composite can be defined by using the interfaces in the Composites dialog, Figure 10-1. To add the first 
Composite, select Add Composite from the main GUI control bar Add ( ) menu. To add a new definition, 
select the respective interface from the list on the right. The available interfaces are explained in Table 10-1. 
To edit an already defined composite, double-click on the respective entry from the list on the left. 
Composites may be deleted using the delete icon on the right of the respective definition.  

Remarks: 
1. An objective definition involving more than one response or variable requires the use of a composite 

function. 
2. In addition to specifying more than one function per objective, multiple objectives can be defined 

(see Section 11.2).0. 
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Figure 10-1: Composites Dialog 

Table 10-1: Composite types 

Composite type Description Reference 

EXPRESSION Mathematical expression using previously defined entities Section 10.3 

Curve Matching Curve matching metrics Section 10.5 

Standard Composite Weighted or targeted composites Section 10.4 

Standard Deviation Standard deviation of another response or composite Section 10.6 

Copy Copy the selected Composite  

Paste Paste a previously copied Composite. The next free number is 
automatically appended to the name. 
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10.3. Expression composite 

 

Figure 10-2: Definition of a Composite Expression 

A mathematical expression can be specified for a composite. The composite can therefore consist of 
previously defined constants, variables, dependent variables, responses and other composites (see Appendix 
F:  Mathematical Expressions). 

10.4. Standard composite 
The Standard composite dialog is displayed in Figure 10-3. First the composite function type has to be 
selected, Table 10-2. Then select the Response or Variable components to be used to calculate the 
composite from the list on the right. The selected components appear in the list on the left with text fields to 
specify weighting and scaling factors and target values, respectively. Selected components can be deleted 
from the list by using the delete icon on the left of the entity name. 
The composite function types are explained in detail in the following sections, Table 10-2. 
Note that each formulation could alternatively be defined as a composite expression, examples are given in 
the following sections. Using the Standard Composite interface is convenient in many cases. 

Table 10-2: Standard Composite function types 

Composite function type  Reference 

Weighted  Section 10.4.3 

MSE  Section 10.4.2 

Sqrt MSE  Section 10.4.1 
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Figure 10-3: Standard Composite Interface 

10.4.1. Targeted composite (square root of MSE) 

This is a standard composite in which a target is specified for each response or variable in the Target text 
field. The composite is formulated as the ‘distance’ to the target using a Euclidean norm formulation. The 
components can be weighted and normalized. 
 

𝐹𝐹 = ��𝑊𝑊𝑗𝑗 �
𝑓𝑓𝑗𝑗(𝒙𝒙) − 𝐹𝐹𝑗𝑗

𝜎𝜎𝑗𝑗
�
2

+ �𝜔𝜔𝑖𝑖 �
𝑥𝑥𝑖𝑖 − 𝑋𝑋𝑖𝑖
𝜒𝜒𝑖𝑖

�
2𝑛𝑛

𝑖𝑖=1

𝑚𝑚

𝑗𝑗=1

 

 

where σ and χ are scale factors (to be specified in the Divisor text fields) and W and ω are weight factors 
(to be specified in the Multiplier text fields). These are typically used to formulate a multi-objective 
optimization problem in which F is the distance to the target values of design and response variables. 
In the GUI this type is selected as the Sqrt MSE composite function type. 
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Figure 10-4: Definition of targeted (Root MSE) composite response in LS-OPTui 

A suitable application is parameter identification. In this application, the target values Fj are the 
experimental results that have to be reproduced by a numerical model as accurately as possible. The scale 
factors σj and χi are used to normalize the responses. The second component, which uses the variables, can 
be used to regularize the parameter identification problem. Only independent variables can be included. See 
Figure 10-4 for an example of a targeted composite response definition. Here, F_damage will be calculated 
as 
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The equivalent expression composite is: 
sqrt(((intrusion_3 - 20)/30)**2 + ((intrusion_4 + 35)/25)**2)} 
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10.4.2. Mean squared error composite 

This standard composite is the same as the targeted composite, except that the square root operation is 
omitted. This allows for composites to be added to make a larger composite (similar to the vector ordinate-
based Mean squared error composite in Section 10.5.1). 

10.4.3. Weighted composite 

Weighted response functions and independent variables are summed in this standard composite. Each 
function component or variable is scaled (to be specified in the Divisor text fields) and weighted (to be 
specified in the Multiplier text fields). 
 

𝐹𝐹 = �𝑊𝑊𝑗𝑗
𝑓𝑓𝑗𝑗(𝒙𝒙)
𝜎𝜎𝑗𝑗

𝑚𝑚

𝑗𝑗=1

+ �𝜔𝜔𝑖𝑖
𝑥𝑥𝑖𝑖
𝜒𝜒𝑖𝑖

𝑛𝑛

𝑖𝑖=1

 

 
These are typically used to construct objectives or constraints in which the responses and variables appear in 
linear combination. 
An example is given in Figure 10-3. 
The equivalent expression composite is 
Intru_1 – Intru_2. 

Needless to say, this is the preferable way to define this composite. 

10.5. Curve Matching Composite 
The Curve Matching interface provides two metrics for comparison of a target curve and curves extracted 
from simulation runs, Figure 10-5. The options are explained in Table 10-3. 
To evaluate these composites, predicted histories (histories approximated by metamodels) are used, see 
Section 9.5.1 for details. 
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Figure 10-5: History Matching Composite Dialog 

Table 10-3: History Match Composite options 

Option Description Reference 

Algorithm Curve matching metric to calculate “distance” between 
target and computed curve: 

o Mean Square Error (Ordinate-based) 
o Curve Mapping 

                         
Section 10.5.1 
Section 10.5.2 

Target Curve Previously defined File history containing target values.  

add new file history If the file history to be used as Target curve is not already 
defined, this can be done here. 

Section 6.17 

Computed curve Previously defined history or Crossplot extracted from 
simulation results 

 

Regression points Regression points used to calculate composite: 
From target curve 
Fixed number (equidistant, interpolated) 

 

convert this composite 
to an expression 

Use a composite expression to define curve matching 
metric to be able to add further arguments 

Appendix F:  
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10.5.1.  Ordinate-based Curve Matching  

A composite function is provided to compute the Mean Squared Error ε for the discrepancy between two 
curves: 
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It is constructed so that Gp , p=1, …, P are the values on the target curve G and fp(x) the corresponding 
components of the computed curve f. fp(x) are represented internally by response surface values. x is the 
design vector. sp = max |Gp| , p=1, …, P. By using the default values, the user should obtain a dimensionless 
error ε of the order of unity. See Section 24.3.1 for more detail. 

Note: 
1. Only points within range of both curves are included in Equation (13-3), so P will be automatically 

reduced during the evaluation if there are missing points. A warning is issued in 
WARNING_MESSAGE. 

2. The Mean Square Error composite makes use of response surfaces to avoid the nonlinearity 
(quadratic nature) of the squared error functional. Thus if the response curve f(x) is linear in terms of 
the design variables x, the composite function will be exactly represented. 

3. Mean Square Error composites can be added together to make a larger MSE composite (e.g. 
for multiple test cases). 

4. The simplest target curve that can be defined has only one point.  
5. Ordinate-based Curve Matching should not be used for a non-monotonic abscissa (e.g. as found in 

hysteretic behavior) of the target curve. For this purpose, Curve Mapping (Section 10.5.2, Section 
24.3.2) is available.0. 

10.5.2. Curve Mapping 

In contrast to the Mean Square Error curve-matching metric described in Section 10.5.1, Curve Mapping 
incorporates the ordinate and the abscissa into the curve-matching metric Points of the one curve are 
mapped onto the second curve and the volume (area) between the two curves is computed. It is therefore 
highly suited to matching hysteretic curves. Both curves are normalized internally to adjust the magnitude of 
ordinate and abscissa, respectively. Since the curves could be of significantly different length, partial 
mapping is done. 
Please refer to Section 24.3.2 for the theory of Curve Mapping. 

Note: 
It is recommended that both curves be filtered before matching to obtain curves which are as noise-free as 
possible. This avoids discrepancies in curve length which will affect the result. A general history filtering 
feature is available (see Section 6.4.3). 
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10.6. Standard Deviation Composite 
The standard deviation of another response or composite can be specified to be a composite, Figure 10-6. 
The dialog shows a list containing all previously defined responses and composites. The one to be used to 
calculate the standard deviation has to be selected. 

 

Figure 10-6: Definition of a Standard Deviation composite 

The variation of response approximated using response surfaces is computed analytically as documented for 
the LS-OPT stochastic contribution analysis, Section 25.7.  For neural nets and composites a quadratic 
response surface approximation is created locally around the design, and this response surface is used to 
compute the robustness. Note that the recursion of composites (the standard deviation of a composite of a 
composite) may result in long computational times especially when combined with the use of neural 
networks. If the computational times are excessive, then the problem formulation must be changed to 
consider the standard deviations of response surfaces. 
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11. Optimization Dialog – 
Objectives, Constraints and 
Algorithms 

This chapter describes the specification of objectives and constraints for the design formulation and the 
optimization algorithms used for metamodel optimization. 

11.1. Formulation of the optimization problem 
Multi-criteria optimal design problems can be formulated. These typically consist of the following: 

1. Multiple objectives (multi-objective formulation) 
2. Multiple constraints.0. 

Mathematically, the problem is defined as follows: 

Minimize ( )1 2, , , NF F F F2   

subject to   

mmm UgL

UgL
UgL

≤≤

≤≤
≤≤



222

111

  

where F represents the multi-objective function, ( )nii xxx ,,, 21 2Φ=Φ  represent the various objective 
functions and ( )njj xxxgg ,,, 21 2=  represent the constraint functions. The symbols xi represents n design 
variables. 

In order to generate a trade-off design curve involving objective functions, more than one objective iΦ  
must be specified so that the multi-objective 
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     (11-1) 

A component function must be assigned to each objective function where the component function can be 
defined as a composite function F (see Chapter 10) or a response function f (see Chapter 6). 

11.2. Defining objective functions 
Objectives are defined in the Objectives tab of the Optimization dialog, Figure 11-1. To define an 
objective, select a response or composite from the list on the right, that contains all previously defined 
responses and composites. The entity will show up in the list on the left. For each objective, a weight has to 
be specified using the Weight text field. If multiple objectives are defined, LS-OPT uses the weights to build 
a multi-objective function as described in Section 11.1. The weight applies to each objective as represented 
by ωk in Equation (11.1). Note that the optimization result depends in the specified weights. 
The weights are not used in Multi-Objective Optimization, except to record the scalar multi-objective value. 
Additional options are described in Table 11-1. 

 

Figure 11-1: Objective panel in LS-OPTui Optimization dialog.  
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Table 11-1: Objective options 

Option Description 

Maximize Objective 
Function (instead of 
minimize) 

The default is to minimize the objective functions. The program can 
however be set to maximize the objective functions. 

Create Pareto Optimal Front 
(Multi-Objective Mode) 

Pareto optimal solutions are calculated instead of a single optimum. 
This option is only available if multiple objectives are defined. See 
also Section 4.9. 

11.3. Defining a constraint 
Constraints are defined in the Constraints tab of the Optimization dialog, Figure 11-2. To define a 
constraint, select a response or composite from the list on the right, that contains all previously defined 
responses and composites. The selected entity will show up in the list on the left. To specify a lower or an 
upper bound, select the respective hyperlink and enter the desired value in the text field. 
Additionally, for Reliability Based Design Optimization, the probability of exceeding a bound on a 
constraint can be set. 
Internal constraint scaling can be defined by selecting the Constraint scaling option and defining the 
respective scaling factors in the Divisor text field, Section 11.3.1. 
To delete a constraint definition or a bound, use the respective delete icon. 
If Show advanced options is selected, the Strict option is available. For details, see Section 11.3.2. 
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Figure 11-2: Constraints panel in LS-OPTui 

11.3.1. Internal scaling of constraints 

Constraints can be scaled internally to ensure normalized constraint violations. This may be important when 
having several constraints and an infeasible solution so that when the maximum violation over the defined 
constraints is minimized, the comparison is independent of the choice of measuring units of the constraints. 
The scale factor sj (to be specified in the respective Divisor test field) is applied internally to constraint j as 
follows: 
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11.3.2. Minimizing the maximum response or violation* 

Refer to Section 24.1 for the theory regarding strict and slack constraints. To specify hard (strict) 
constraints, select the respective Strict checkboxes. Otherwise constraints are soft (slack) constraints. 
The purpose of a formulation using strict and slack constraints is to compromise only on the slack 
constraints if a feasible design cannot be found. 

Remarks: 
1. The objective function is ignored if the problem is infeasible. 
2. The variable bounds of both the region of interest and the design space are always hard. 
3. Soft constraints will be strictly satisfied if a feasible design is possible. 
4. If a feasible design is not possible, the most feasible design will be computed. 
5. If feasibility must be compromised (there is no feasible design), the solver will automatically use the 

slackness of the soft constraints to try and achieve feasibility of the hard constraints. However, there 
is always a possibility that hard constraints must still be violated (even when allowing soft 
constraints). In this case, the variable bounds may be violated, which is highly undesirable as the 
solution will lie beyond the region of interest and perhaps beyond the design space. This could cause 
extrapolation of the response surface or worse, a future attempt to analyze a design which is not 
analyzable, e.g. a sizing variable might have become zero or negative. 

6. Soft and strict constraints can also be specified for search methods. If there are feasible designs with 
respect to hard constraints, but none with respect to all the constraints, including soft constraints, the 
most feasible design will be selected. If there are no feasible designs with respect to hard constraints, 
the problem is ‘hard-infeasible’ and the optimization terminates with an error message.0. 

11.4. Algorithms 
Optimization algorithms for metamodel-based optimization can be selected in the Algorithms tab of the 
Optimization dialog, Figure 11-3. 
The core solvers that can be used for metamodel optimization are LFOP, the Genetic Algorithm (GA), 
Adaptive Simulated Annealing (ASA) and Differential Evolution. Hybrid algorithms may also be selected 
by selecting Switch to LFOP, namely the Hybrid GA and Hybrid ASA. The hybrid algorithms start with the 
GA and ASA to find an approximate global optimum after which LFOP is used to sharpen the solution. The 
solution to a hybrid algorithm will be at least as good as the one provided by the global optimizer (GA and 
ASA).  
Hybrid Simulated Annealing is the default. 
For each algorithm, advanced settings are available using the respective Show *** Settings button. 
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Figure 11-3: Selecting the optimization algorithm used for the optimization on the metamodel 

Table 11-2: Algorithms options 

Option Description Reference 

LFOP Leapfrog Optimizer Section 11.4.1, Section 23.7 

GA Genetic Algorithm Section 11.4.2, Section 23.8 

ASA Adaptive Simulated Annealing Section 11.4.3, Section 23.10 

Differential Evolution Differential Evolution Section 11.4.4, Section 23.11 

Switch to LFOP Hybrid version Section 23.12 

11.4.1. Setting parameters in the LFOPC algorithm* 

The values of the responses are scaled with the values at the initial design. The default parameters in 
LFOPC should therefore be adequate. Should the user have more stringent requirements, the following 
parameters may be set for LFOPC. These can be set in the GUI if Show LFOP Settings is selected. See 
Section 23.7 for the theory of LFOPC. 
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Figure 11-4: LFOP settings 

Table 11-3: LFOPC parameters and default values 

Option Parameter Remark 

Number of Multi-Start Points Number of Multi-Start Points  

Penylty Parameter mu Initial penalty value µ  

Penalty Parameter mumax Maximum penalty value µ max 1 

Convergence Criterion xtol Convergence tolerance ex on the step movement 2 

Convergence Criterions eg Convergence tolerance ef on the norm of the gradient 2 

Maximum Step Size Maximum step size δ 3 

Maximum Number of Steps Maximum number of steps per phase 1 

Print Control Number Printing interval 4 
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Remarks: 

1. For higher accuracy, at the expense of economy, the value of µ max can be increased. Since the 
optimization is done on approximate functions, economy is usually not important. The maximum 
number of steps must then be increased as well. 

2. The optimization is terminated when either of the convergence criteria becomes active that is when  

xε<∆ )(x  

or 

ff ε<∇ )(x  

3. It is recommended that the maximum step size, δ, be of the same order of magnitude as the 
“diameter of the region of interest”. To enable a small step size for the successive approximation 

scheme, the maximum step size has been defaulted to ∑ =
=δ

n

i
range

1
2)(05.0 . 

4. If the Print Control Number = Maximum umber of steps + 1, then the printing is done on step 0 and 
exit only. The values of the design variables are suppressed on intermediate steps if the Print Control 
Number < 0.0. 

In the case of an infeasible optimization problem, the solver will find the most feasible design within the 
given region of interest bounded by the simple upper and lower bounds. If LFOP is selected as a non-hybrid 
optimizer, a global solution is attempted by multiple starts from a set of random points. 

11.4.2. Setting parameters in the genetic algorithm* 

The default parameters in the GA should be adequate for most problems. However, if the user needs to 
explore different methods, the following parameters may be set in the GUI (see Figure 11-5). See Section 
23.8 for the theory of the Genetic Algorithm. 

 

Figure 11-5: GA settings 
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Table 11-4: GA parameters and default values 

Option Parameter Remark 

Population Size Population size (always even)  

Number of Generations Number of generations  

Selection Operator Selection operator: Tournament, Roulette, SUS  

Tournament Size Tournament size for tournament selection operator  

Elitism Switch elitism for single objective GA: ON/OFF  

Number of Elites Number of elites passed to next generation  

Encoding variable Type of encoding for a variable: Binary=1, Real=2  

Numbits variable Number of bits assigned to a binary variable  

Crossover type  Type of real crossover: SBX, BLX  

Crossover probability Real crossover probability  

Alpha value for BLX Value of α for BLX operator  

Crossover distribution Distribution index for SBX crossover operator  

Mutation probability Mutation probability in real-space  

Mutation distribution Distribution index for mutation operator  

Algorithm Subtype Multi-objective optimization algorithm: NSGA2, 
SPEA2 

 

Restart Interval Frequency of writing restart file. For multi-
objective problems, this parameter governs the 
frequency of writing TradeOff files 

 

Max Repeat 
Optimum/Generations 

Maximum number of generations allowed to repeat 
as a fraction of the total number of generations 
allowed. 

 

Constraint Handling Constraint handling types: Deb Efficient 
Constraint Handling, Penalty 
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11.4.3. Setting parameters in the simulated annealing algorithm* 

The adaptive simulated annealing parameters can be modified in the GUI, Figure 11-6. See Section 23.10 
for the theory of Adaptive Simulated Annealing. 

 

Figure 11-6: ASA settings 

Table 11-5: ASA parameters and default values 

Option Parameter 

Tmin/Tmax (Ratio) Ratio of minimum and maximum temperature 

Annealing Scale Annealing scale 

Cost-Parameter Anneal Ratio Ratio of cost temperature ratio and parameter temperature ratio 

Maximum Function Exaluations Maximum number of function evaluations  

Runction Evaluations/Temp step Number of function evaluations at some temperature 

11.4.4. Differential Evolution 

This algorithm is only available if discrete and string variables as well as constraints are absent from the 
optimization problem. 
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11.5. Algorithms for metamodel based Monte Carlo analysis 

 

Figure 11-7: Algorithm Options for Metamodel based Monte Carlo Analysis 

Table 11-6: Algorithm Options for Metamodel based Monte Carlo Analysis 

Option Description 

Use Approximation Residuals If noise was found when the metamodel was created, then this noise 
may be reproduced whenever the metamodel is used for reliability 
computations. This is possible only for the response surfaces and 
neural nets. The noise is normally distributed with a zero mean and a 
standard deviation computed from the residuals of the least square 
fit. 

Reliability Resolution The number of Monte Carlo samples to be analyzed can be set by the 
user. These samples are evaluated based on the metamodels and not 
using the actual solver. 
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12. Termination Criteria 

This chapter explains termination criteria for iterative tasks. 

12.1. Metamodel based methods 

Depending on the optimization task and strategy, the user can specify tolerances on the design change (∆xi), 
the objective function change (∆f) or the accuracy of the metamodel. The user can also specify whether 
termination is reached if any one (or condition), or all (and condition) of these criteria are met, Figure 12-1. 
The options are described in Table 12-1. 

 

Figure 12-1: Termination Criteria dialog for metamodel based optimization, strategy sequential with 
domain reduction 
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Table 12-1: Termination Criteria options for metamodel based optimization 

Option Parameter Reference 

Tolerance Required for 
Termination 

Design AND Objective AND Metamodel Accuracy 
Design OR Objective OR Metamodel Accuracy 

- 

Design Change Tolerance Tolerance on design accuracy ex Section 12.1.1 

Objective Function 
Tolerance 

Tolerance on objective function accuracy ef Section 12.1.1 

Response Accuracy 
Tolerance 

Tolerance on accuracy of response surface er Section 0 

Maximum number of 
Iterations 

Maximum Number of Iterations Section 12.1.3 

12.1.1. Design Change Tolerance and Objective Function Tolerance 

The design change termination criterion  and the objective function termination criterion are available for 
the strategy sequential with domain reduction and the sequential strategy, if no Pareto optimal solutions are 
calculated. 
The design change termination criterion becomes active if 

x

kk

d

xx
ε<

− − )1()(

, 

where x refers to the vector of design variables and d is the size of the design space. 
The objective function termination criterion becomes active if 
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, 

where  f denotes the value of the objective function, (k) and (k – 1) refer to two successive iteration 
numbers. 
The use of these termination criteria is recommended for a metamodel based optimization with strategy 
sequential with domain reduction.  

12.1.2. Response Accuracy Tolerance 

The response accuracy tolerance criterion is available for the sequential strategy. 
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The tolerance on the metamodel accuracy is based on the change of the prediction accuracy measure (square 
root of the PRESS error, Section 21.3.5). The measure is divided by the mean of the simulated values used 
to construct the response surface unless this mean is zero. The value of the most critical response is used. 
The response accuracy tolerance termination criteron becomes active if 

r
k

i
k

i ss ε<− − )1()(

, 

where si denotes the approximation error of ith response characterized by the ratio of square root PRESS 
statistics and the mean value of response and, (k) and (k – 1) refer to two successive iteration numbers. 
The use of this termination criterion is recommended for the sequential strategy, if the iterative process is 
used to improve the quality of the metamodel. Make sure to use the OR option and set the other tolerances 
to 0. 

12.1.3. Maximum Number of Iterations 

The maximum number of optimization iterations is specified in the appropriate field in the Termination 
Criteria dialog. If previous results exist, LS-OPT will recognize this (through the presence of results files in 
the Run directories) and not rerun these simulations. If the termination criteria described above are reached 
first, LS-OPT will terminate and not perform the maximum number of iterations. 

12.2. Direct Optimization 

  

Figure 12-2: Termination Criteria dialog for multi-objective direct optimization 

Termination criteria are available for multi-objective optimizers. While the default selection is maximum 
number of function evaluations/generations, one can also use consolidation ratio or hypervolume based 
metrics to terminate the search as shown in Figure 12-2. The available options are described in Table 12-2. 
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Figure 12-3: Termination Criteria Dialog for single-objective direct optimizationTable 12-2: Termination 
criteria and default values 

Table 12-3: Termination Criteria options for multi-objective optimization 

Item Parameter 

Termination Criterion MOO performance metric*: Consolidation Ratio | Variable 
Consolidation Ratio | Hypervolume 
*No information needed for maximum function criterion 

Generation gap Interval to calculate MOO performance metrics 

Normalized hypervolume 
change threshold 

Threshold value for the change in normalized hypervolume 

Utility fraction cutoff Parameter F defining bound (CRi/F) on the variation in the 
consolidation ratio  

Consolidation ratio threshold Threshold value of the consolidation ratio 

Max Repeat 
Optimum/Generations 

Fraction of the limit on the total number of generations. This 
fraction acts as a limit on the number of repeated solutions. 

Number of generations Maximum number of generations. If the termination criteria 
described above are reached first, LS-OPT will terminate and not 
perform the maximum number of generations. 
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13. Probabilistic Modeling and 
Tasks 

This chapter summarizes the specifications for probabilistic problems, such as tasks, variable setup, 
constraint definition etc. It also provides additional probabilistic task-specific details of these definitions. 
Probabilistic evaluations investigate the effects of uncertainties in the system parameters on the responses.  
Based on the uncertainty model and problem specification, the statistics of variation of the system 
responses, such as the nominal value of the response, reliability, and extreme values, can be computed. The 
results can be viewed using the Viewer. The simulation statistical tools (histogram, probability of constraint 
violation, summary, correlation and covariance plots), scatter, parallel coordinate and correlation matrix 
plots are pertinent to a pure Monte Carlo (MC) analysis. For a metamodel-based Monte Carlo evaluation, 
the Accuracy, Sensitivities, and Stochastic Contribution plots are relevant in addition to the statistical tools, 
scatter, and correlation plots. 
More background on the probabilistic methods is given in Chapter 25 (the theoretical manual), while 
example problems can be found in Chapter 20. The LS-DYNA results can be investigated for possible 
bifurcations using DYNAStats described in Chapter 16. 

13.1. Probabilistic problem modeling 
The definition of a probabilistic problem has several differences and additional features compared to a 
deterministic problem. The specifications for introducing probabilistic effects are: 

1. Modeling of uncertainties: The source of the variation can be the variation of the design variables 
(control variables) as well as the variation of noise variables, whose value is not under the control of 
the analyst such as the variation in a load. The variation of the system parameters is described by: 
o Defining a statistical distribution 
o Assigning the statistical distributions to design variables, Section 13.2 

2. Definition of the probabilistic task: The available task options are Direct Monte Carlo Analysis, 
Metamodel-based Monte Carlo Analysis and RBDO/Robust Parameter Design.  

3. Additional task-dependent problem specifications: 
o Experimental Design: For Monte Carlo analysis, a suitable sampling strategy based on the 

variable statistical distributions is needed. This is not the case in metamodel-based tasks. 
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o Objective and constraint: Constraint bounds are used as failure limits for reliability 
computations. In the case of RBDO a target failure probability is also needed. 

13.2. Probabilistic distributions 
The most common way of describing the randomness or uncertainty of an input is through probabilistic 
distributions associated with random variables. The definition of a probabilistic distribution using the 
Distribution menu of the Parameter Setup panel in the LS-OPT GUI is presented in Figure 13-1. A 
distribution can be defined using “Add new distribution”. It is not required for a distribution to be associated 
with a variable. Many design variables can refer to a single distribution. New distribution definitions can be 
added and already defined distributions edited by using the Statistical Distribution dialog accessible from 
the Distribution menu in the Parameter Setup panel, Figure 13-1. The Distribution menu is also used to 
assign a distribution to a parameter. For each distribution, a name has to be specified, and the type selected. 
Additional parameters to be specified are described in the following sections for each distribution type. 

 

Figure 13-1: Setup Dialog, Parameter Setup: Definition of Probabilistic Distributions 
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Beta distribution 

The beta distribution is quite versatile as well as bounded by two limits. The shape of the distribution is 
described by two parameters q and r, Table 13-1. Swapping the values of q and r produces a mirror image of 
the distribution. 

   

Figure 13-2: Beta distribution 

Table 13-1: Parameters defining a Beta distribution 

Item Description 

Lower Lower Bound 

Upper Upper Bound 

Q Shape parameter q 

R Shape parameter r 

Binomial distribution 

The binomial distribution is a discrete distribution describing the expected number of events for an event 
with probability p evaluated over n trails, Table 13-2. For n=1, it is the Bernoulli distribution (experiments 
with two possible outcomes ― success or failure) with probability of success p. 
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Figure 13-3: Binomial distribution 

Table 13-2: Parameters defining a Binomial distribution 

Item Description 

P Probability of event (Success) 

N Number of trials 

Lognormal distribution 

If X is a lognormal random variable with parameters µ and σ, Table 13-3, the random variable Y = ln X has 
a normal distribution with mean µ and variance σ2. 
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Figure 13-4: Lognormal distribution 

Table 13-3: Parameters defining a Lognormal distribution 

Item Description 

Mean Mean value in logarithmic domain 

Standard Dev Standard deviation in logarithmic domain 

Normal distribution 

The normal distribution is symmetric and centered about the mean µ with a standard deviation of σ. 
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Figure 13-5: Normal Distribution 

Table 13-4: Parameters defining a Normal distribution 

Item Description 

Mean Mean value 

Standard Dev Standard deviation 

Truncated normal distribution 

The truncated normal distribution is a normal distribution with the values constrained to be within a lower 
and an upper bound. This distribution occurs when the tails of the distribution are censored through, for 
example, quality control. 
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Figure 13-6: Truncated Normal Distribution 

Table 13-5: Parameters defining a truncated Normal distribution 

Item Description 

Mean Mean value 

Standard Dev Standard deviation 

Lower Lower bound on values 

Upper Upper bound on values 

Uniform distribution 

The uniform distribution has a constant value over a given range. 
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Figure 13-7: Uniform Distribution 

Table 13-6: Parameters defining a Uniform distribution 

Item Description 

Lower Lower bound 

Upper Upper bound 

User defined distribution 

A user-defined distribution is specified by referring to the file containing the distribution data. 
The probability density is to be assumed piecewise uniform and the cumulative distribution to be piecewise 
linear. Either the PDF or the CDF data can be given:  

o PDF distribution: The value of the distribution and the probability at this value must be provided 
for a given number of points along the distribution. The probability density is assumed to be 
piecewise uniform at this value to halfway to the next value; both the first and last probability must 
be zero. 

o CDF distribution: The value of the distribution and the cumulative probability at this value must be 
provided for a given number of points along the distribution. It is assumed to vary piecewise 
linearly. The first and last value in the file must be 0.0 and 1.0 respectively. 

Lines in the data file starting with the character ‘$’ will be ignored. 
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Figure 13-8: User defined distribution 

Table 13-7: Parameters defining a User defined distribution 

Item Description 

User File Name of file containing the distribution data 

Example: User PDF file 
$ Demonstration of user defined distribution with 
$ piecewise uniform PDF values 
$ x PDF 
$ First PDF value must be 0 
-5              0.00000 
-2.5            0.11594 
 0              0.14493 
 2.5            0.11594 
$ Last PDF value must be 0 
 5              0.00000 

Example: User CDF file 
$ Demonstration of user defined distribution with 
$ piecewise linear CDF values 
$ x CDF 
$ First CDF value must be 0 
-5               0.00000 
-4.5            0.02174 
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-3.5            0.09420 
-2.5            0.20290 
-1.5            0.32609 
-0.5            0.46377 
0.5             0.60870 
1.5             0.73913 
2.5             0.85507 
3.5             0.94928 
$ Last CDF value must be 1 
1.00000 

Weibull distribution 

The Weibull distribution is quite versatile – it has the ability to take on various shapes. The probability 
density function is skewed to the right, especially for low values of the shape parameter. 

   

Figure 13-9: Weibull distribution 

Table 13-8: Parameters defining a Weibull distribution 

Item Description 

Scale Scale parameter 

Shape Shape parameter 
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13.3. Parametrization of distributions 
Distributions can be parameterized by using the “&” operator. This allows the distribution parameters to 
vary during the solution, instead of being fixed numbers. A distribution parameter can be defined as a 
constant, a transfer variable or a dependent of transfer variables and constants. This has application in 
multilevel tolerance optimization, in which the distribution bounds may not be fixed a priori (Section 20.5).  

13.4. Probabilistic variables 
The uncertainty of a probabilistic variable is described by associating it with a statistical distribution. In the 
LS-OPT GUI, this is done in the Parameter Setup panel (Section 13.2). The statistical distribution defines 
the mean or nominal value and the variation around this nominal value. The nominal value, the probabilistic 
counterpart of a deterministic variable, may or may not change during the course of LS-OPT run. This 
depends on the task and variable type. The two main probabilistic variable types (Figure 13-10) are: 

o Noise variables: These variables are completely described by the associated probabilistic 
distribution. These variables are not controlled at the design and production level, but only at the 
analysis level. A probabilistic variable can be defined as a noise variable either because the user 
chooses to study the effect of uncertainty around a fixed mean value or because it may not be 
possible to control the variable. An example of the later is wind velocity for which a statistical 
distribution can be defined from measurements, but one cannot design or control it. A noise variable 
will have the nominal value as specified by the distribution, i.e. it follows the distribution exactly.  

o Control variables:  Variables that can be controlled in the design, analysis, and production level; for 
example: a shell thickness. The nominal value can be adjusted during the design optimization phase 
in order to have a more suitable design. The associated distribution only provides the variation 
around this nominal value. A probabilistic control variable can be either continuous or discrete. A 
discrete variable is a special case of a control variable, in which the nominal value can only be 
among the specified list of values. However, due to uncertainty about the discrete nominal value, the 
variable can actually have a value that does not belong to the list. In other words the nominal value is 
discrete, but the variable value is continuous. 
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Figure 13-10: Probabilistic variables. The nominal value of a control variable can be adjusted by the 
optimization algorithm between the lower and upper bound; the probabilistic variation of a design 
variable is around this nominal value. A noise variable is described completely by the statistical 
distribution. A discrete variable, like design variable has a nominal value selected by the optimization 
algorithm; the probabilistic variation of the discrete variable is around this nominal value. 

A variable is declared probabilistic by: 
o Creating it as a noise variable or  

o Assigning a distribution to a control variable. o 

Three associations between probabilistic variables are possible: 
o Their nominal values are the same but their distributions differ 
o Their nominal values and distributions are the same 

o Their nominal values differ, but they refer to the same distribution.o 

13.4.1. Setting the nominal value of a probabilistic variable 

The specified nominal value is used for a control variable; the associated distribution will be used to 
describe the variation around this nominal value. For example: a variable with a nominal value of 7 is 
assigned a normal distribution with µ=0 and σ=2; the values of the variable will be normally distributed 
around a nominal value of 7 with a standard deviation of 2. 
This behavior is only applicable to control variables; noise variables will always follow the specified 
distribution exactly, i.e. they will have the same nominal value and variation as defined for the associated 
distribution. 
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13.4.2. Bounds of a probabilistic variable 

The bounds of a control variable are defined by the user (minimum and maximum) like for deterministic 
variables. It should be noted, however, that if the nominal value of a variable is close to a bounding value, 
then the bound can be exceeded because of the uncertainty (Figure 13-11). This is the case by default, unless 
specified otherwise Using “Enforce Variable Bounds” in the Parameter Setup panel. 

 

Figure 13-11: Bounds exceeded due to variable uncertainty 

Noise variables are completely defined by their distributions; they are not bounded unless specified in the 
associated distribution. Thus no bounds are required in direct Monte Carlo Analysis. However, in a 
metamodel-based analysis or optimization, bounds are required even for noise variables to select the 
samples for metamodel construction. In such tasks, noise variable bounds are defined as multiples of the 
standard deviation (“Noise Variable Subregion Size”, Table 8-3). By default, two standard deviations are 
used on either side of the nominal value. 

13.5. Monte Carlo analysis 
Monte Carlo analysis is used to simulate the uncertainty of variables using random samples based on the 
associated distribution.  
The Monte Carlo evaluation will: 

o Select the random sample points according to a user specified strategy and the statistical 
distributions assigned to the variables. 

o Evaluate the structural behavior at each point. 
o Collect the statistics of the responses.  

The user must specify the experimental design strategy (sampling strategy) to be used in the Monte Carlo 
evaluation. The Monte Carlo, Latin Hypercube and space-filling experimental designs are available. The 
experimental design will first be computed in a normalized, uniformly distributed design space and then 
transformed to the distributions specified for the design variables.  
Only variables with a statistical distribution will be perturbed; all other variables will be considered at their 
nominal value. 
The following will be computed for all responses: 

o Statistics such as the mean and standard deviation for all responses and constraints 
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o Reliability information regarding all constraints: 
o The number of times a specific constraint was violated during the simulation 
o The probability of violating the bounds and the confidence region of the probability 
o A reliability analysis for each constraint assuming a normal distribution of the response. 

 The exact value at each point will be used. Defining multiple samplings is not allowed for Monte Carlo 
analysis; multiple disciplines must share the same samples. 

13.6. Monte Carlo analysis using a metamodel 

The Monte Carlo analysis will be done using metamodels − response surfaces, neural networks, Kriging or 
SVR − as prescribed by the user. Unlike the direct Monte Carlo method, in which the Monte Carlo samples 
are evaluated using the actual stage solvers, this is a two step process: 

1. First the metamodels are constructed based on a few samples evaluated using the actual stage 
solvers. These samples need not (typically do not) follow the variable statistical distributions. 

2. Next, Monte Carlo Samples are randomly generated (typically a large number) based on the variable 
statistical distributions. These samples are evaluated using the metamodels. The number of Monte 
Carlo points can be set by the user using the Reliability Resolution option, Section 11.5. The default 
value is 106. A higher number of samples represents the underlying distribution more closely, and 
gives more accurate results provided the metamodel approximations are accurate.  

 

Figure 13-12: Metamodel-based Monte Carlo analysis. The method proceed in two steps: firstly a 
metamodel is created, and then the Monte Carlo simulation is done using the metamodel and the 
statistical distribution of the variable. Note that the metamodel for a design/control variable is 
constructed considering the upper and lower bound on the variable and not considering the statistical 
distribution. For a noise variable the upper and lower bounds for the creation of the metamodel are 
selected considering the statistical distribution. 

Metamodel-based probabilistic analysis or optimization is accompanied by the calculation of stochastic 
contributions of the variables. It can be useful to know how the variation of each design variable contributes 
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to the variation of a response. These computations are also known as Stochastic Sensitivity Analysis or 
Sobol’s analysis. The stochastic contribution will be printed for all the responses in a metamodel-based 
procedure. If no metamodel is available the covariance of the responses with the variables can be 
investigated. The stochastic contributions of the variables can also be examined in the Viewer component of 
the GUI (Section 15.6.2). The amount of variation due to noise or the residuals from the fitting procedure 
will be indicated. This term is taken as zero for composite functions, as they do not have associated 
metamodels and corresponding residuals.  
The following data will be collected: 

o Statistics such as the mean and standard deviation for all responses, constraints, and variables 
o The reliability information for each constraint: 
o The number of times a specific constraint was violated during the simulation 
o The probability of violating the bounds and the confidence region of the probability. 
o Stochastic contributions of variables 

13.7. RBDO/Robust parameter design 
To find a robust parameter design, use the task RBDO/Robust parameter design, Section 25.8 and Section 
25.9, and the strategy Sequential with Domain Reduction, Section 4.7.3. 
LS-OPT has a reliability/robustness-based design capability based on the computation of the standard 
deviation of any response. The standard deviation of a response is available as a composite, Section 10.6,  
and therefore available for use in a constraint or objective, or in another composite. The theoretical concerns 
are discussed in Section 25.8. 
The method computes the standard deviation of the responses using the same metamodel as used for the 
deterministic optimization portion of the problem using the First Order Second Method (FOSM), Section 
25.4.4. No additional FE runs are therefore required for the probabilistic computations. 
The method requires very little information additionally to what is required for deterministic optimization. 
Specify the following: 

o Statistical distributions associated with the design variables 
o Probabilistic bounds on the constraints. 

The statistical distributions associated with the design variables are specified in the same manner as for a 
Monte Carlo analysis using a metamodel.  
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Figure 13-13: Probabilistic constraint definition for RBDO. A target failure probability is defined. 

The difference between RBDO and robust design lies in the optimization problem formulation; therefore, 
both capabilities are provided under the same task. In RBDO, “safety” of the design is ensured by the 
probabilistic bounds on the constraints (target failure probability) while the objective is defined such that it 
provides a better “deterministic” design goal (e.g. lowest cost or weight calculated at the variable means of 
the design). In robust design, the objective is to provide a design that is least sensitive to slight variations of 
the design. This can be achieved by minimizing the standard deviation of the response (Figure 13-14). 
One extra consideration is required to select an experimental design for robust analysis: provision must be 
made to study the interaction between the noise and control variables. Finding a robust design requires that 
the experimental design considers the ji xx cross-terms (considering variables ix  and jx ), and therefore, a 
linear metamodel should not be used. Thus, when using a polynomial approximation, the order should at 
least be linear with interaction terms. The 2

j
x  and 2

jx  terms can be included for a more accurate variance 
computation. Non-polynomial metamodels such as RBF, FF, Kriging, SVR etc. can also be used. An 
example for robust design is presented in Section 20.4. 
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Figure 13-14: An example of objective function for RBDO (top) and robust design (bottom). Standard 
deviation is defined as the objective in latter case. 
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14. Running the Design Task 

This chapter explains simulation job-related information and how to execute a design task from the 
graphical user interface as well as monitoring the status of the task and the simulation runs from the GUI. 

14.1. Running the design task 

After setting up the task, run the design task using Normal Run or Baseline Run from the Run menu ( ) in 
the control bar of the main GUI as described in Section 3.3. If needed, previous results can be deleted using 
the Clean options in the Tools menu ( ), Section 3.4. 

14.2. Analysis monitoring 
While running LS-OPT, the status and progress of the task can be visualized in the main GUI, Figure 14-1.  

The currently running iteration number is displayed in the control bar at the top ( ). The stage LED of 
the currently running task process is highlighted (glows) in yellow while the green “pie” fraction inside the 
LED visualizes the solver progress. For the stage LED’s, green and red is used for solver N o r m a l 
and E r r o r terminations, respectively. Double-clicking on a stage LED launches the Progress dialog 
described in Section 14.3. The status of individual jobs is also displayed in the Progress tab of the integrated 
output window, Section 14.3.2. 
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Figure 14-1: Main GUI showing scheduled jobs in progress 
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14.3. Job monitoring – the Progress dialog 

 

Figure 14-2: Progress dialog displaying progress of stage runs 

Table 14-1: Tools for selected run 

Tool Description Reference 

View log Opens job_log file of selected run Section 14.6 

Open folder Opens run directory of selected job - 

LS-OPT Opens LS-OPT GUI if solver type is LS-OPT - 

LS-PREPOST Opens selected run in LS-PREPOST (LS-DYNA only) - 

Kill Kills selected job Appendix I.2  

Accelerated kill  Appendix I.2  

Show plot Show Time History plot  

The progress of the simulation jobs can be displayed for a selected stage or for all stages. If a job is selected 
from the list, the tools described in Table 14-1 are enabled. 
When using LS-DYNA, the user can also view the progress (time history) of the analysis by selecting one of 
the available quantities from the Plot list (Time Step, Kinetic Energy, Internal Energy, etc.), Figure 14-2. 
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The Progress dialog allows a graphical indication of the job progress with the green horizontal bars linked 
to estimated completion time, Figure 14-2. This progress is only available for LS-DYNA jobs. The job 
monitoring is also visible when running remotely through a supported job distribution (queuing) system. 
The job status is automatically reported at a regular interval. 
The text screen output while running both the batch and the graphical version as well as the integrated 
output window, Section 14.3.2, also report the status as follows: 
JobID Status     PID   Remaining 
----- ------     -----  --------- 
1 N o r m a l termination! 
2 Running     8427  00:01:38 (91% complete) 
3 Running     8428  00:01:16 (93% complete) 
4 Running     8429  00:00:21 (97% complete) 
5 Running     8430  00:01:13 (93% complete) 
6 Running     8452  00:21:59 (0% complete) 
7 Waiting ... 
8 Waiting ... 

In the batch version, the user may also type control-C to get the following response: 
Jobs started 
Got control C. Trying to pause scheduler 
Enter the type of sense switch: 
sw1: Terminate all running jobs 
sw2: Get a current job status report for all jobs 
t: Set the report interval 
v: Toggle the reporting status level to verbose 
stop: Suspend all jobs 
cont: Continue all jobs 
c: Continue the program without taking any action 
Program will resume in 15 seconds if you do not enter a choice switch: 

If v is selected, more detailed information of the jobs is provided, namely event time, time step, internal 
energy, ratio of total to internal energy, kinetic energy and total velocity. 

14.3.1. Error termination of a solver run 

The job scheduler will mark an error-terminated job to avoid termination of LS-OPT. For error-terminated 
solver jobs, the progress bars in the GUI are colored in red. Results of abnormally terminated jobs are 
ignored, hence they are not used in the optimization, e.g. to construct metamodels. If there are not enough 
results to continue, e.g. to construct the approximate design surfaces, LS-OPT will terminate with an 
appropriate error message. 

14.3.2. Integrated output and display window 

An integrated window which shows job progress (Figure 14-3) as well as output (comprehensive [I], 
warnings [W] and errors [E] ― Figure 14-4) is also available. The window size can be adjusted or hidden 
using the ˅ above the top left corner of the progress window. Global progress is shown at the top. The tool 
functionality (except for Show plot) is the same as for the stage-based progress window shown in Figure 
14-2 (see also Table 14-1). 
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Figure 14-3: Progress dialog  

 

Figure 14-4: LS-OPT output showing error diagnostic 
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14.4. Restarting 

Restarting is conducted by selecting the appropriate option from the Run menu ( ) in the control bar panel 
of LS-OPTui. 
Completed simulation runs will be ignored, while half completed runs will be restarted automatically. 
However, the user must ensure that an appropriate restart file is dumped by the solver by specifying its 
name and dump frequency. 
The following procedure must be followed when restarting a design run: 

1. As a general rule, the run directory structure should not be erased. The reason is that on restart, LS-
OPT will determine the status of progress made during a previous run from status and output files in 
the directories. Important data such as response values (response.n files), response histories 
(history.n files) are kept only in the run directories and may not be available elsewhere (with the 
exception of the AnalysisResults_n.lsox database in the sampling directory). 

2. In most cases, after a failed run, the optimization run can be restarted as if starting from the 
beginning. There are a few notable exceptions: 
o A single iteration has been carried out but the design formulation is incorrect and must be 

changed. In this case the design formulation must be corrected before re-optimizing Iteration 1 
using the Optimize repair function in the Tools ( ) menu (see Section 3.5). If histories or 
responses are added, the ‘Extract Results’ repair function in the Tools menu must be used to re-
extract the data. 

o Incorrect data was extracted, e.g., for the wrong node or in the wrong direction. In this case, the 
user must re-extract the results using the ‘Extract Results’ repair function in the Tools menu after 
correcting the response definitions. 

o The user wants to change the response surface type, but keep the original experimental design. In 
this case the user must use the ‘Build Metamodels’ repair function in the Tools menu after 
correcting the metamodel type. 

After completing the repair functions mentioned above, a normal restart can be executed ( ).  
Note: A restart will only be able to retain the data of the first iteration if more than one iteration were 
completed. The directories of the other higher iterations must be deleted in their entirety. This can be 
accomplished by using the ‘Clean from current iteration [iter]’ selection in the Tools menu. Unless 
the database was deleted (by, e.g., using the clean file or a ‘Delete’ file operation, see Section 5.6), 
no simulations will be unnecessarily repeated, and the optimization procedure will continue. 

3. A restart can be made from any particular iteration by selecting the Clean from current iteration 
[iter] option from the Tools menu, see Section 3.4, and selecting the iteration number. The 
subdirectories representing this iteration and all higher-numbered iterations will be deleted after 
confirmation. Then select a Run option to restart. 

4. The number of points can be changed for a restart (see Section 9.5.4). 0. 
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14.5. Directory structure 
When running an optimization, LS-OPT will generate a directory in the work directory for each sampling 
and for each stage using the sampling or stage name, respectively. If a sampling and a stage have the same 
name, the same directory will be used.   
In the stage directories a subdirectory will be created for each simulation. 
These sub-directories are named mmm.nnnn, where mmm represents the iteration number and nnnn is a 
number starting from 1.  

The work directory needs to contain at least the .lsopt file.  

An example of a subdirectory name, defined by LS-OPT, is side_impact/3.11, where 3.11 
represents the design point number 11 of iteration 3. The creation of subdirectories is automatic and the user 
only needs to deal with the working directory. 
In the case of simulation runs being conducted on remote nodes, a replica of the run directory is 
automatically created on the remote machine. The response.n and history.n files will automatically 
be transferred back to the local run directory at the end of the simulation run. These are the only files 
required by LS-OPT for further processing. More files can be transferred back by using the recover files 
options, see Section 5.4.5. 
If some of the stages are of type LSOPT (Section 5.3.9) then the sub-directories mmm.nnnn act as the 
working directories for inner level LS-OPT processes. Therefore, these directories have further sublevel 
directories. In Figure 14-6, the directory structure is shown for multilevel optimization with a single LSOPT 
stage named ‘Stage 3’. 

 

Figure 14-5 : Directory structure in LS-OPT 
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Figure 14-6 : Directory structure for multilevel optimization with one LSOPT stage. 

14.6. Log files and status files 

Status files started, finished, history.n, response.n and EXIT_STATUS are placed in the run 
directories to indicate the status of the solution progress. The directories can be cleaned to free disk space 
but selected status files must remain intact to ensure that a restart can be executed if necessary. 
A brief explanation is given below. 
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Table 14-2: Status and log files generated by LS-OPT 

File Description Directory 

job_log The simulation run/extraction log is saved 
in that file in the local run directory. 

Simulation home 
directory 

job_command Contains the command of the job executed Simulation home 
directory 

started The run has been started. Simulation home 
directory 

finished The run has been completed. The 
completion status is given in the file. 

Simulation home 
directory 

response.n Response number n has been extracted. Simulation home 
directory 

history.n History number n has been extracted. Simulation home 
directory 

EXIT_STATUS Error message after termination. The user 
interface LS-OPTui uses the message in the 
EXIT_STATUS file as a pop-up message. 

Project directory 

lfop.log The file contains a log of the core 
optimization solver solution. 

Project directory 

lscheduler.debug This file is generated by the lscheduler 
executable and is used for debugging 
purposes. 

Project directory 

lsopt.debug Traceback of the solver termination. Used 
for debugging purposes. 

Project directory 
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15. Viewing Results 

This chapter describes the post-processing of LS-OPT result data using the Viewer. 

15.1. Viewer overview 

15.1.1. Plot Selector 

 

Figure 15-1: Plot Selector 

To start the Viewer, select the respective icon (  ) from the control bar of the main GUI or start the 
executable viewer located in the LS-OPT installation directory (Section 15.1.7). 
The plots are grouped into five categories (Figure 15-1): 

o Simulations, 
o Metamodel, 
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o Optimization, 
o Pareto Optimal Solutions and 
o Stochastic Analysis. 

Depending on the optimization task, the selected options and the database availability, specific plot types 
are enabled or disabled. For example, in Figure 15-1 History plots are disabled due to the absence of history 
definitions. The Pareto Optimal Solutions and Stochastic Contribution plots are also disabled. Hovering of 
the mouse over a particular plot type gives additional information about that plot (Figure 15-2). 

 

Figure 15-2: Plot Selector with additional information. Note the difference with Figure 15-1. 

If plots already exist, the placement of the new plot may be specified in the plot selector, Figure 15-3. The 
default is to create a new plot. All available options are explained in Table 1515-1. For details see Section 
15.1.5. 

 

Figure 15-3: Selection for placement of new plot in the plot selector 

Table 1515-1: Plot placement options 

Option Description 

 Create a new plot window 

 Replace current plot 

 Split window and place new plot at the highlighted position 
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15.1.2. General Plot Options 

General plot options are available on the toolbar at the top of the plot window (Figure 15-1). Table 15-2 
explains the options. 

 

Figure 15-4: General options 

Table 15-2: General plot options 

Option Description 

 New plot Opens Plot Selector with placement selection for the new plot, 
Section 15.1.1. 

 Delete plot Deletes active plot 

 Save plot setup Saves current plot setup to be reused later, Section 15.1.6. 

 Pointer tool [F1] Rectangular selection (rubber-banding) in plot or clicking marks 
points or curves and opens Point selection window, Section 
15.1.4. 

 Zoom in tool [F2] Rectangular selection in plot specifies zoom region 

 Zoom out [F3] Clicking on plot zooms out 

 Reset zoom Resets plot to initial range 

 Split vertical Splits plot window vertical, Section 15.1.5.  

 Split horizontal Splits plot window horizontal, Section 15.1.5. 

 Print Prints the current plot, options see Figure 15-5. 

 Save image Saves the current plot, options see Figure 15-5. 

 Visualize relations between 
controls and plots 

If several plots are displayed in the same plot window, this 
option helps to find each plot’s control panel. 

 Point selection window Shows/hides a window showing the values of all entities for 
selected points in a table. If point selection changes, this window 
shows up automatically, Section 15.1.4. 
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Figure 15-5: Options for printing (right) and saving (left) images 

15.1.3. Plot Rotation 

For all 3D plots, image rotation is performed by holding down the Ctrl key while moving the mouse (same 
as LS-PREPOST). 

15.1.4. Point Selection 

The points on Scatter, Tradeoff, Surface, Accuracy, Optimization History and HRV plots, and lines on 
Parallel Coordinate plots (PCP) and History plots may be selected by clicking on a single point or by 
selecting several points within a rectangular box. The selected points are highlighted in the plot. The 
computed and predicted values of all entities for the selected points are displayed in a spreadsheet in a 
separate plot selection window (Figure 15-6 and Figure 15-7). Options for point selection are explained in 
Table 15-3. Points may also be selected from the list of all points available in the current plots on the left in 
the Point selection window (Table 14-3). 
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Figure 15-6: Point selection window for single  point selection 

 

Figure 15-7: Point selection window for multi-point selection. Infeasible designs are highlighted in red. 

LS-OPT Version 5.2  241 



CHAPTER 15: Viewing Results 

Table 15-3: Point selection options 

Option Description 

 Open selected run in LS-
PREPOST 

This option is only available for LS-DYNA runs, if the 
d3plot or d3eigv database is available 

 Add to set of selected points Options for new point selection 

 Subtract from set of selected 
points 

 Replace set of selected points 

 Toggle set of selected points 
(within rectangle) 

 Deselect all points  

 Export as text file (.csv) The exported file has the format of a user defined sampling 

 Add points to category Define and manage point categories for user defined 
coloring or plotting of points, Section 15.1.10. 

 Hide colors Display multi-point table without feasibility background 
color 
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Figure 15-8: Cross-display of selected points 

The SOM plot (Section 15.5.4) also supports selection. If a cell is selected, all points that are mapped to the 
selected cell are displayed in the point selection window. Point selection is integrated; hence selected points 
are highlighted in all plots within the same plot window. 

15.1.5. Split Window 

To display several plots side by side, there are two basic selections available to split the plot window - (i) 
options to split the window horizontally or vertically in the toolbar at the top of the plot window or (ii) 
select the new plot together with a placement option for the new plot in the Plot Selector.  
If the split window options are used, the plot is repeated with the same settings, which is useful for e.g., 
displaying 3D surface plots for different responses side by side, Figure 15-9. 
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Figure 15-9: Example for split option 

If split window options are used several times, the plots may become too small, and as much as possible 
space on the screen is needed to get a good view. Hence all control panels are detachable or may even be 
hidden by pushing the respective button in the toolbar at the top of the plot window, Figure 15-10. 

  

Figure 15-10: Detachable panels  

Show/hide 
panels 

Detached panels 
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15.1.6. Save Plot Setup 

Window splitting and placement selection of new plots allows complex plot setups. To reuse a plot setup 
several times, even across problems, it may be saved. Later you can bring this plot state back by clicking on 
the preview in the plot selector, Figure 15-11. 
The plot setup is stored in XML format in ~/.LS-OPT Viewer/plotname.plot on Linux machines. On 
Windows, the plot setup is stored in Application Data\LS-OPT Viewer in the user’s home directory. The full 
path depends on the Windows version and setup, e.g. C:\Documents and Settings\user\Application Data\LS-
OPT Viewer. 
The command line option “-l” makes the viewer load a plot setup from a file immediately, without showing 
the plot selector. That makes it possible to write a script that generates the plot state XML file and then calls 
upon the viewer to display the plots. For more details on command line options, see Section 15.1.7. 

 

Figure 15-11: Plot Selector with previously saved setups 

15.1.7. Command line options 

The post-processing tool of LS-OPT may be started from the Viewer Panel in LS-OPTui, or the executable 
viewer located in the LS-OPT installation directory may be called from the command line: 
viewer [-p <str>] [-l <str>] [-f <str>] [-n <str>] [-h] [--verbose] [.lsopt 
file] 

Table 15-4 explains the command line options. 
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Table 15-4: Command line options 

Option Description 

-p <str>, --show-
plot=<str> 

Open the given plot, valid plot types are 

accuracy Accuracy (Section 15.3.3) 

correlation Correlation Bars (Section 0) 

corrmatrix Correlation Matrix (Section 15.2.1) 

history Histories – Metamodel (Section 15.3.5) 

history_ar Histories  – Simulations (Section 15.2.4) 

hrv Hyper-Radial Visualization (Section 15.5.3) 

interpol 2D Interpolator (Section 15.3.2) 

opthist Optimization History (Section 15.4.1) 

parallelcoord Parallel Coordinates – Pareto Optimal Solutions 
(Section 15.5.2) 

parallelcoord_ar Parallel Coordinate – Simulations (Section 15.2.3) 

scatter Scatter Plots (Section 15.2.2) 

sensitivities Sensitivity (Section 15.3.4) 

som Self-Orgamizing Maps – Pareto Optimal Solutions 
(Section 15.5.4) 

statistics Statistical Tools (Section 15.2.6) 

stoch Stochastic Contribution (Section 15.6.2) 

surface Surface (Section 15.3.1) 

tradeoff Tradeoff (Section 15.5.1) 

variable Variables (Section 15.4.2) 
 

-l <str>, --load-
setup=<str> 

Load plot Setup from file, see section Save Plot Setup 

-f <str>, -- Image format to export to (png, bmp, jpg, svg, tiff, pdf, ps) 
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format=<str> 

-n <str>, --
filename=<str> 

Filename to export to 

-h, --help show help message for command line options 

--verbose generate verbose log messages 

.lsopt file LS-OPT command file. By default, the viewer loads the LS-OPT database 
called lsopt_db 

15.1.8. Iteration Panel 

Except for the Optimization History plot which displays the iteration history, all plots allow specifications 
for the iteration data to be shown. The available options depend on the plot type (see Figure 15-12). 

 

Figure 15-12: Iteration Panel- only current iteration (left), all previous/ all iterations (middle), iteration 
range and step size (right) 

A slider is available to select the current iteration to be plotted. Some plots allow plotting all previous 
iterations or all iterations, and the Scatter- and Tradeoff plots also allow the specification of a range and a 
step size, e.g. the selection in the right iteration panel in Figure 15-12 plots iterations 2,4,6,8 and 10. 

15.1.9. Ranges and Axes options 

Most plots allow specification of the ranges for all plotted entities (Figure 15-13). The user can manually 
specify any desired plot range by providing the lower and upper bounds using the Manual option. However, 
there is also an option to let the Viewer automatically select the ranges based on the data. If the Auto option 
(default) is used, the range is set to include the minimal and maximal values based on the data. 
For surface plots, there are three options for the plot range type when the Auto range is selected. The first 
option (Auto, Entire design space) plots the surface across the full design space. The second option (Auto, 
region of interest) uses only the sample selection subregion (Section 23.6) of the selected iteration. The 
third option (Auto, GSA Region of interest) uses only the selected GSA subregion (Section 4.10.1). For 
scatter plots, only the first and third options are available. For both surface and scatter plots, the option GSA 
Region of interest is available only if subregions for the calculation of global sensitivities are used. For 
surface plots, the selected GSA region of interest is displayed using a rectangle (two variable axes) or a line 
(one variable axis) on the xy plane (variable plane). For scatter plots with variable axes, the GSA subregion 
intervals are displayed using a different color for the relevant parts of the variable axes. 
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If never shrink plot range is selected (Figure 15-13), ranges of the new plot cannot be smaller than the 
previous plot. The previous ranges are used if all the values in the new plot lie within these ranges; the new 
plot may have some empty spaces in this case. If the new plot has values outside any of the previous ranges, 
those ranges are expanded to accommodate the new values.  If the user selects a different quantity, the 
selections made for the shrinking and the plot range type options stay the same. However, the ranges for the 
new entity are unrelated to the previous entity. Therefore, the ranges of the new plot for a different entity 
will usually be different from the old plot ranges even if never shrink plot range is selected.  

 

Figure 15-13: Ranges selections 

For Histogram plots (Statistical Tools), manual steps for the tick marks can be specified in addition to the 
manual range selection. The step length determines the number of grid lines and tick marks on the 
corresponding axis. 

15.1.10. User-defined Categorization of Points 

Points can be categorized in the Point Categories dialog, Figure 15-14.  Point Categories can be used for 
User-defined coloring and plotting of points in the Scatter Plot (Section 15.2.2) and the Parallel Coordinate 
Plot (Section 15.2.3). The dialog is accessible from the Point Selection window, Section 15.1.4. 
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Figure 15-14: Point Categories dialog to define and manage Point Categories for user-defined coloring 
and plotting of points 

In the list on the left, categories can be added and deleted. For the selected category, the attributes Name, 
Color, Shape and Description can be modified using the options on the right. Spaces are allowed in the 
Name. Selecting the button Add selected points to category assigns the currently selected points that are 
displayed in the Point Selection window to the selected category on the left. Points that are already assigned 
to another category are moved to the new category. The definitions are stored in xml format in the file 
CategorizedPoints.lsox in the working directory. 
Categories of points can be displayed using the User-defined selection (see Table 15-6, Table 15-7) and/or 
color-coded using the User-defined selection (see Table 15-5, Table 15-7). 

15.2. Visualization of Simulation Results 

15.2.1. Correlation Matrix 

The correlation matrix displays 2D scatter plots, histograms and the linear correlation coefficients calculated 
from the simulation results of the selected load case for the selected variables, dependents, responses and 
composites, Figure 15-15. 
Moving the mouse on a scatter plot displays its ranges and marks the respective correlation coefficient with 
a yellow border, and vice versa. Row and column entities may be selected separately. Hence it is also 
possible to display, for example, only correlation coefficients (Figure 15-16).  
By double-clicking on a scatter plot or histogram, the respective plot may be reached, see Section 15.2.2 or 
Section 15.2.6, respectively. 
The correlation coefficients are color-coded from blue to red. Blue indicates a strong negative correlation, 
red a strong positive correlation, whereas grey indicates almost no correlation. 
Using the Sort option, the order of the rows in the correlation matrix is sorted with respect to the selected 
column entity values. In the sorted correlation matrix, only correlation values are displayed. 
The button Export plot data stores the correlation values in a .csv file in the working directory. 
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Figure 15-15: Correlation matrix with scatter plots, histograms and linear correlation coefficient 

 

Figure 15-16: Correlation matrix, only correlation coefficients 

15.2.2. Scatter Plot 

The results of all the simulated points for the selected iterations appear as dots on the scatter plots. This 
feature allows the three-dimensional plotting of any three entities. A fourth entity may be displayed using 
the color of the points. Other coloring options are explained below. 2D plots can be obtained by selecting 
No entity for the z axis. For 3D plots, the image rotation is performed by holding down the Ctrl key while 
moving the mouse (same as LS-PREPOST). 
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To be able to view the results of composite functions spanning two or more disciplines or stage, the same 
sampling (Section 24.2) must be selected before starting an analysis. This also implies that the number of 
variables must be the same for all the disciplines involved and yields coincident experimental designs.  

Color Entities – 3D Plots 

Table 15-5:  Color entity options 

Selection Description 

Feasibility Feasible points are shown in green, infeasible points in red  

(with previous 
in b/w 

The points for the current iteration are shown in green (feasible) or red (infeasible). 
Previous points as light grey (feasible) or dark grey (infeasible) 

Iterations The iteration sequence is shown using a color progression from blue through red. 

Neutral All points are shown in blue 

User-defined User-defined colors and shapes, only available if Point Categories are defined, 
Section 15.1.10. 

 

Figure 15-17: Scatter plot. The 4th dimension is represented by point color. 
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Points Options 

Table 15-6: Point options 

Selection Description 

Experiments Plot Experiments (Default if no simulation results are available) 

Analysis Results Plot simulation results (Default for the Scatter Plot) 

Feasible Plot Feasible simulation results (Default for the Scatter Plot) 

Infeasible Plot Infeasible simulation results (Default for the Scatter Plot) 

Pareto Optimal 
Solutions 

Plot Pareto optimal solutions (Default for the Tradeoff Plot, Section 15.5.1) 

Use reduced set of 
points 

Only active for Pareto optimal solutions, plots 100 uniformly distributed 
points selected from the Pareto optimal solutions 

User-defined Plot points that are assigned to selected categories and other selected point 
options, only available if Point Categories are defined, Section 15.1.10. 

Only in GSA subregion Plot points that satisfy other selected point options and are within the 
selected GSA subregion in the Ranges tab. Only available if subregions for 
GSA are defined (Sections 4.10.1 and 15.1.9).  

15.2.3. Parallel Coordinate Plot 

In contrast to the Scatter Plot, the number of dimensions that can be visualized using the Parallel Coordinate 
Plot is not restricted. Each dimension is visualized on a vertical axis and each data point is shown as a poly-
line connecting the respective values on the vertical axis, Figure 15-18. The ranges of the entities may be 
changed using the sliders at the ends of each vertical axis rendering the points outside the ranges 
unselectable. Points within the selected ranges are colored in blue, while the remaining points are colored in 
grey. Selected points are colored in purple, if only a single point is selected, the corresponding value for 
each entity is displayed in the plot.  
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Figure 15-18: Parallel Coordinate Plot with selected point 
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Options 

Table 15-7: Parallel Coordinate Plot options 

Selection Description 

Analysis Results Plots simulation results (Default) 

Pareto Optimal Solutions Plots Pareto optimal solutions (Section 15.5.2) 

Use reduced set of points Only active for Pareto optimal solutions; plots 100 points selected from 
the Pareto optimal solutions 

Select from active points Selects all points that are not outside the constraints set by the handles, see 
Section 15.1.4. Useful for visualizing this set of points in another plot. 

Only selected Plot only selected runs, see 15.1.4. 

User-defined colors User-defined colors, only available if Point Categories are defined, 
Section 15.1.10. 

User-defined points Plot points that are assigned to selected categories, only available if Point 
Categories are defined, Section 15.1.10. 

15.2.4. Self-Organizing Maps 

The Self-Organizing Maps plot in the Simulations category functions similar to the Self-Organizing Maps 
Plot described in Section 15.5.4, but here, the default setting is to visualize Analysis results. 

15.2.5. History Plot 

This plot visualizes history curves based on time data or crossplots obtained from simulations, Figure 15-19. 
If a variable is selected as y entity, a 3D plot will be displayed. The coloring options are the same as the 
point coloring options, see 15.2.2. If histories from files are defined in the optimization problem, they can be 
visualized in addition to the simulation curves, Figure 15-20. The Multi option enables plotting of multiple 
histories in the same plot. 
Other History options are explained in Table 15-8.  
History statistics may also be displayed, Table 15-9 and Table 15-10. 
The Predicted Histories option and Statistics of residuals are explained in Section 15.3.5. 
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Figure 15-19: History Plot, curves colored by variable 

Options 

Table 15-8: History Plot options – Histories from Experiments 

Selection Description 

Feasible Plot feasible runs 

Infeasible Plot infeasible runs 

Only optimal Plot the optimal runs of the selected iterations 

Only selected Plot only selected runs, see 15.1.4.. In this case, the selected curves are 
not highlighted 

Only best computed Plot the run with the smallest multiobjective and constraint violation, 
respectively  

Points Plot the discrete history points in addition to the interpolation line  
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Figure 15-20: Histories from simulations colored by variable with target curve (File history)  

Table 15-9: History Plot options - Statistics 

Selection Description 

Use Metamodels and Distributions Use metamodels and statistical distribution of the input 
variables to construct statistics 

Mean Mean values of history values 

Standard deviation Standard deviation of history values 

Mean +- Standard deviation (Mean value + Standard deviation) and (Mean value – 
Standard deviation) of history values 

Max Maximal values of history values (Mean + two standard 
deviations if metamodels and distributions are used) 

Min Minimal values of history values (Mean - two standard 
deviations if metamodels and distributions are used) 
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Table 15-10: History Plot Options - Advanced Statistics 

Selection Description 

Range Range of the history values (maximum values minus the 
minimum values; four standard deviations if 
metamodels and distributions are used) 

Sample index of Min ID of the simulation job where the maximum value 
occurred. This can be used to identify the jobs likely to 
contain a different bifurcation. 

Sample index of Max ID of the simulation job where the minimum value 
occurred. This can be used to identify the jobs likely to 
contain a different bifurcation. 

Safety margin The margin of safety (constraint margin) considering (i) 
a given bound on the response and (ii) the variation of 
the response as computed using the Monte Carlo 
analysis 

 Lower/Upper bound Constraint bound 

 Value Safety margin value 

 Scaled with standard deviation Safety margin value scaled with standard deviation 

 Probability of failure Probability of failure 

 95% confidence interval 95% confidence interval of probability of failure 

LS-OPT Version 5.2  257 



CHAPTER 15: Viewing Results 

 

Figure 15-21: Histories from Experiments and selected Statistics 

15.2.6. Statistical Tools 

The Statistical Tools option offers multiple types of plots - Histogram, Statistics Summary, Probability of 
constraint violation, Correlation and Covariance. 
The feature enables display of statistical measures based on either the simulation results directly or based on 
metamodel approximations. The simulation results are read from the ExtendedResults file of the relevant 
sampling. If the use of the metamodels is selected, then a Monte Carlo simulation (MCS) is performed to 
calculate the statistics. The MCS points are generated using a Latin Hypercube experimental design, based 
on the statistical distributions of the variables. The user can control the number of points in this Monte Carlo 
simulation in the viewer, as mentioned among the available options in Table 15-11. A large number of MCS 
points can be used, as only inexpensive metamodel calculations are done at these. If desired, the residuals of 
the metamodel fit can be added to results of the Monte Carlo simulation as a normal distribution. 
For optimization results, iteration can be selected, while for probabilistic evaluations the default iteration, 
iteration 1, will automatically be selected. 
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General Options 

Table 15-11: General options 

Selection Description 

Use Metamodels and 
Distributions 

Use metamodels and statistical distribution of the input variables to 
construct statistics 

Metamodel Points Number of points used for Monte Carlo Simulation on the metamodel to 
construct statistics 

Add Residuals Add residuals of the metamodel fit (“noise”) to the results of the Monte 
Carlo simulation as a normal distribution 

Use Opt. Iter. Start Design Display statistics using the starting design for selected iteration as the 
mean. If not checked, by default, the optimum solution of the iteration, 
i.e., starting point of next iteration is used. 

Histogram 

Histograms of the variables, dependents, responses, composites, constraints and objectives are available. 
Three types of histograms are available – frequency (Frequency), relative frequency (Probability) and 
relative frequency per unit class width (PDF). Table 15-12 describes the available options. The histogram 
panel is shown in Figure 15-22.  
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Figure 15-22: Histogram constructed from simulation results. Feasibility information is shown using 
different background colors (green for feasible and red for infeasible). 
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Table 15-12: Histogram options 

Selection Description 

Y-axis scaling Frequency Number of samples 

Probability Relative frequency ((Number of samples)/(total 
number of samples)) 

PDF Relative frequency per unit class interval width 
((Number of samples)/(total number of 
samples)/(class width)) 

 

Number of Bars The number of histogram bars may be specified by the user. 

Mean value The mean value is displayed as a thick line. 

Standard deviation The standard deviation is displayed using two lines (mean ± std). 

Median The median is displayed as a thick line. 

Kernel density estimation Only Y-axis scaling PDF. An estimation of the probability density 
function of the plotted entity is displayed. 

Constraints 
 

Feasibility Color the background of the plot by 
feasibility 

Value Display constraint bounds as lines 

Upper Bound Define upper bound for entity 

Lower Bound Define lower bound for entity 
 

Box plot Show box plot below histogram, left and right end of the box are first 
and third quartile. A tooltip or clicking on the plot visualizes the median 
and first and third quartile values. Several whisker types are available: 

min/max Minimum and maximum of all data 

Interquartile range the lowest datum still within 1.5 IQR of 
the lower quartile, and the highest datum 
still within 1.5 IQR of the upper quartile 

Standard deviation Mean ± standard deviation 

9%/91% 9th percentile and 91st percentile 
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Statistics Summary 

Here, the standard deviation and the mean value for the selected variable, dependent, response or composite 
are visualized with bars. The 95% confidence intervals are shown in red (Figure 15-23). 

 

Figure 15-23: Standard deviation and mean value of selected response constructed from simulation 
results 

Probability of constraint violation 

The user may specify lower and upper bounds, respectively, for the selected variable, dependent, response 
or composite in the Options tab. The probabilities that the entity violates the bounds are visualized using 
grey bars. The 95% confidence intervals are shown in red (Figure 15-24). 
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Figure 15-24: Probability of TOP_DISP < -230 (i.e. probability of violating the lower bound of -230) with 
95% confidence interval shown in red, constructed from simulation results 

By selecting the Multi button, values for lower and upper bounds can be specified directly in the entity 
selection list and multiple entities can be selected. The plot displays the probability of violating a lower 
bound and an upper bound, respectively, for all selected entities. 

Correlation Bars 

The coefficients of correlation of the responses and composites with respect to the design variables can be 
displayed, along with their confidence limits (Figure 15-25). Either the simulated points or the metamodels, 
together with the statistical distribution of the variables, can be used. If a metamodel is used then a Monte 
Carlo simulation using a Latin Hypercube experimental design and the statistical distributions of the 
variables will be conducted on the metamodel to obtain the desired results. The plot can be used to estimate 
the stochastic contribution of an analysis without a metamodel. 
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Figure 15-25: Coefficient of Correlation plot with 95% confidence interval in red 

Covariance 

The covariance of the responses and composites with respect to the design variables can be displayed 
(Figure 15-26). The plot is very similar to the correlation plot, and can be used to estimate the stochastic 
contribution of an analysis without a metamodel. 

 

Figure 15-26: Covariance plot  
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15.3. Visualization of Metamodel Results 

 

Figure 15-27: Metamodel options 

15.3.1. Surface Plot 

Two- or three-dimensional cross-sections of the metamodel surfaces and simulation points can be plotted 
and viewed from arbitrary angles. The image rotation is performed by holding down the Ctrl key while 
moving the mouse (same as LS-PREPOST). The XY, XZ and YZ buttons at the bottom of the panel rotate 
the plot to the respective coordinate plane. 
The following options are available: 

Setup 

The selection of one or two variables and the response or composite function is done here. The sliders allow 
changing the variable values for unselected variables (variables not plotted). The slider for the active 
variables can be activated by selecting the “Predicted Value” option. 
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Table 15-13: Surface Plot Setup options 

Selection Description 

Gridlines Gridlines are displayed on the surface, Figure 15-28 

Isolines Isolines are displayed on the surface, Figure 15-29 

Constraints Constraints are displayed on the surface, Figure 15-31. 
Feasible regions are in green, the shade of red shows the 
degree of infeasibility (number of violated constraints), the 
colored lines in 3D and the + marks in 2D, respectively show 
the location where the constraints are exactly met. 

Predicted value The predicted value for the selected variable values is 
displayed on the surface, the variable and response values are 
displayed in the top left corner, Figure 15-28 

Variable values Values of fixed variables and all variables, if Predicted value 
is selected, respectively, are displayed in the plot. 

Center variable sliders on Optimum Variable sliders are set to optimal values of selected iteration 
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Point plotting options 

Table 15-14: Surface Plot point plotting options 

Selection Description 

Feasible Show feasible runs only 

Infeasible Show infeasible runs only 

Predicted Optimum Show predicted optimum 

Computed Optimum Show computed optimum 

Pareto Optimal Solutions Show Pareto optimal solutions 

Use reduced set of points Only active for Pareto optimal solutions, plots 100 uniformly 
distributed points selected from the Pareto optimal solutions 

Failed runs on surface Failed runs such as error terminations are projected to the surface in 
grey 

Points only Show only points without surface 

Only in GSA subregion Plot points that satisfy other selected point options and are within 
the selected GSA subregion in the Ranges tab. Only available if 
subregions for GSA are defined (Section 4.10.1) 

Project points to surface The points are projected on the surface to improve visibility. Future 
versions will have a transparency option. 

Show Residuals Shows a black vertical line connecting the computed and predicted 
values. 

Point status 

The points are colored according to the selected Status (colors) menu option, Table 15-15. 
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Table 15-15: Surface Plot point status options 

Selection Description 

Feasibility Feasible points are shown in green, infeasible points in red 

Previous b/w The points for the current iteration are shown in green (feasible) or 
red (infeasible). Previous points as light grey (feasible) or dark grey 
(infeasible) 

Iterations The iteration sequence is shown using a color progression from blue 
through red. See Figure 15-29. 

Optimum runs Optimal points are shown in green/red and all other points in white. 

 

Figure 15-28: Metamodel plot showing feasible (green) and infeasible (red) points. The predicted point is 
shown in violet (t_hood = 4, t_bumper = 4) with the values displayed at the top left. 
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Figure 15-29: Metamodel plot showing point color coding for iteration numbers. 

 

Figure 15-30: Surface plot representing only the region of interest of the fourth iteration. 
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Figure 15-31: Plot showing isolines on the objective function as well as constraint contours and 
feasibility. Feasible regions are in green. Shade of red shows degree of infeasibility (number of violated 
constraints). Note the legend describing constraints at the top right. 

 

Figure 15-32: Plot showing isolines and points opposite the “Points” tab. 
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Fringe plot options for neural nets 

The options are function value or standard deviation of the Neural Net committee values. See Figure 15-33. 

 

Figure 15-33: Metamodel plot showing standard deviation of the Neural Net committee values. 

Comparison metamodels 

If comparison metamodels have been defined, they can be selected at the top of the surface display control 
panel. See Figure 15-34. The main metamodel selection is always available at the top of the list. 
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Figure 15-34: Metamodel plot showing two selected comparison metamodels based on the same 
simulation results. The individual metamodels are selected in the uppermost dialog of the Setup tab. 

15.3.2. 2D Interpolator Plot 

The Interpolator plot is a tool to display multiple two-dimensional surface plots. All selected responses and 
composites are plotted against all selected variables. The default is to display each response against all 
variables in a row.  
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Options 

Table 15-16: 2D Interpolator Plot options 

Selection Description 

Constraints Constraints are displayed on the surface. 
Feasible regions are in green, the shade of red shows the 
degree of infeasibility (number of violated constraints), the 
colored + marks in 2D show the location where the constraints 
are exactly met. 

Predicted value The predicted value for the selected variable values is 
displayed on the surface (purple line), the variable and 
response values are displayed in the panel 

Transpose Allows to display each response against all variables in a 
column. 

Link ranges col/row The same y range is used for all plots in a column and in a 
row, respectively, if Transpose is selected. This is the default. 

Link all ranges The same y range is used for all plots. 

Center on Opt. Variable sliders are set to optimal values of selected iteration 

Automatically apply By default, any new selection automatically regenerates the 
plot. Since this can take time, this can be switched off. 
Multiple option changes can be done in the panel, and the plot 
is only regenerated if the Apply button is pressed. 

For a description of the Points options, see Table 15-14 and Table 15-15. 
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Figure 15-35: Interpolator Plot with constraints (Feasible regions are in green, shade of red shows 
degree of infeasibility (number of violated constraints)) and predicted value (purple line) 

15.3.3. Accuracy Plot 

The accuracy of the metamodel fit for the selected response or composite is illustrated in a Predicted vs. 
Computed plot, Figure 15-36. The results for the metamodel of each iteration are displayed separately using 
the slider bar. All points used to approximate the metamodel are displayed, i.e., for linear metamodels, the 
points of the current iteration are displayed, whereas for all other metamodels, the points of all previous 
iterations are also visualized, Figure 15-36. The error measures are displayed in the heading. 

Options 

Table 15-17: Accuracy Plot options 

Selection Description 

Feasible Plot feasible runs 

Infeasible Plot infeasible runs 

PRESS statistics PRESS residuals are plotted against computed values 

Status (colors) Coloring options for points, see 15.2.2 
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Figure 15-36: Computed vs. Predicted plot. The points are color-coded to represent the feasibility. The 
largest points represent the most recent iteration. 

Comparison metamodels 

If comparison metamodels have been defined, they can be selected at the top of the accuracy display control 
panel, see Figure 15-37. The main metamodel selection is always available at the top of the list. 
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Figure 15-37: Computed vs. Predicted plot for Comparison Metamodel FFNN. 

15.3.4.  Sensitivities 

The Sensitivities Plot provides visualization of the results of ANOVA and global sensitivity analysis (GSA) 
using Sobol’s variance-based sensitivity indices. 

Linear ANOVA 

The Analysis of Variance (ANOVA) (refer to Section 21.4) of the approximation to the experimental design 
is automatically performed if a polynomial response surface method is selected. In the case of other 
approximation types, a linear approximation is also constructed to generate ANOVA information. The 
ANOVA information can be used to screen variables (remove insignificant variables) at the start of or 
during the optimization process. The ANOVA method, a more sophisticated version of what is sometimes 
termed ‘Sensitivities’ or ‘DOE’, determines the significance of main and interaction effects through a partial 
F-test (equivalent to Student’s t-test) [1]. This screening is especially useful to reduce the number of design 
variables for different disciplines (see Sections 24.2 (theory) and 18.5 (example)). 
If a probabilistic or an RBDO analysis is being done, then the Stochastic Contribution plots (see Section 
15.6.2) are recommended. 
The ANOVA results are viewed in bar/tornado chart format, Figure 15-38. The Sort option sorts the 
ANOVA values by relevance, the sorting doesn’t consider the 95% confidence interval. 
Using the Export plot data (.csv) option, the ANOVA results of the selected response can be stored in a .csv 
file. 
Clicking on the chart displays the respective derivative values (scaled with variable range) and confidence 
interval bounds in the plot. 
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Figure 15-38: Linear ANOVA plot, sorted 

GSA/Sobol 

A global sensitivity analysis is only performed if Global Sensitivities is selected in the Task dialog or 
selected from the Add menu of the main GUI window, see Section 4.10. 
Figure 15-39 displays an example of a global sensitivities plot. Each bar represents the contribution of a 
variable to the variance of the respective response (total sensitivity index). The values are normalized such 
that the sum of all displayed values is 100%. The values are displayed in the labels. For sorted plots, the 
cumulative sensitivity indices of all values in descending order are also displayed in the label.   
Clicking on the chart displays the respective sensitivity values and variances in the plot. 
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Options 

Table 15-18: GSA/Sobol Plot options 

Selection Description 

Sort Sorts data by relevance 

Transpose Sensitivity values are grouped by response/composite 

Main contribution Main contribution is displayed in addition to total contribution 

Multi Allows selection of multiple responses/composites 

Advanced Weighted sums of the GSA values are displayed. A weight for each 
entity can be selected by using the slider right of the entity or by 
entering a value in the textfiled (switch to textfield using the icon at the 
top of the entity list). 

GSA Subregion Sensitivities calculated in the selected subregion are displayed, Section 
4.10.1. The range of each variable is displayed in the label. 

 

Figure 15-39: Sorted global sensitivities of all responses and composites 

15.3.5. History Plot 

If the Approximate History option is set in the Sampling dialog Features tab of LS-OPTui, a database that 
approximates the histories for any design point using metamodels is provided, see Section 9.5.1. If 
Predicted Histories is selected in the Options tab, the history evaluated on the metamodel for the selected 
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design point is visualized, Figure 15-41. Error measures can be plotted to judge the quality of the 
metamodels using the Value to plot selection at the bottom of the Setup tab. If the predicted histories are 
colored by variable, multiple curves are plotted for equidistant values in the range of the selected variable. 
This visualizes the influence of the selected parameter on the history curve, Figure 15-20. A variable may 
also be selected as y entity to get a 3D history plot. 
The Center on … options right of the Variables set the variable sliders to specific values that can be 
selected from the list that appears by clicking on the button, Table 15-19. 

Table 15-19: History Plot Center on … - options for variable values 

Selection – Center on … Description 

Optimum Set variable sliders to optimum of current iteration 

Nearest history Set variable sliders to variable values of nearest history, this is the 
computed history with design point closest to selected design point for 
predicted history 

Selected point Set variable sliders to a selected point, e.g. a Pareto optimal solution 
Only active if there is only one selected point 

 

Figure 15-40: Predicted Histories colored by variable 
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Options 

Table 15-20: Predicted History options 

Selection Description 

Nearest Show computed history with design point closest to selected design 
point 

Number of predicted curves Number of plotted curves if histories are colored by variable 

Variable values Values of fixed variables are displayed in the plot. 

 

Figure 15-41: Predicted History with nearest history and maximal residual 
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Table 15-21: History Plot options – Statistics of residuals 

Selection Description 

Mean Mean values of residual values 

Standard deviation Standard deviation of residual values 

Max Maximal values of residual values 

Min Minimal values of residual values 

Table 15-22: History Plot Options - Advanced Statistics 

Selection Description 

Range Range of the residual values (maximum values minus 
the minimum values) 

Sample index of Min ID of the simulation job where the maximum residual 
occurred. This can be used to identify the jobs likely to 
contain a different bifurcation. 

Sample index of Max ID of the simulation job where the minimum residual 
occurred. This can be used to identify the jobs likely to 
contain a different bifurcation. 

15.4. Visualization of Optimization Results 

15.4.1. Optimization History 

The optimization history of a variable, dependent, response, constraint, objective, multi-objective or the 
approximation error parameters of pure responses (not composites or expressions) shows the changes of the 
respective values of the optimum over the iterations. For the variables, the upper and lower bounds 
(subregion) are also displayed, Figure 15-42. For all the dependents, responses, objectives, constraints and 
maximum violation, a black solid line indicates the predicted values. The red squares represent the 
computed values at the starting point of each iteration (Figure 15-43). For constraints, the lower and upper 
bound are displayed with a blue and red line, respectively. For the error parameters, only one solid red line 
of the optimization history is plotted. RMS, Maximum and R2 error indicators are available.  
Additional options are explained in Table 15-23. 
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Table 15-23: Options for Optimization History plot 

Option Description 

Multi Plot optimization histories of all selected entities 
in the same plot. 

 Omit computed values Only plot predicted values. 

 Omit predicted values Only plot computed values. 

 Omit variable bounds Don’t plot variable bounds for variables. 

 Omit constraint bounds Don’t plot constraint bounds for constraints. 

Scale variable values Scale variable values to [0,1]. 

Core Solver Progress Plot core solver progress. 

 

Figure 15-42: Optimization History plot of a variable – variable values (red) and subregions (blue) 
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Figure 15-43: Optimization History of a response – computed (red points) and predicted (black) values 

15.4.2. Variables Plot 

The variables plot visualizes variable values and confidence intervals for *.1 run of the selected iteration in 
a range scaled to [0,1], Figure 15-44. Clicking on the charts displays the actual value and the bounds on the 
plot. 
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Figure 15-44: Variable Plot 

15.5. Visualization of Pareto Optimal Solutions 

15.5.1. Tradeoff Plot 

The Tradeoff plot (Section 23.13.1) functions similar to the Scatter plot, Section 15.2.2, but the default 
setting is here to plot Pareto optimal solution data instead of Analysis Result data.  
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Figure 15-45: Tradeoff plot 

15.5.2. Parallel Coordinate Plot 

The Parallel Coordinate Plot (Section 23.13.3) in the Pareto optimal solutions category functions similar to 
the Parallel Coordinate Plot described in Section 15.2.3, but here, the default setting is to visualize Pareto 
data. 
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Figure 15-46: Parallel Coordinate Plot for Pareto optimal solutions with selected point (purple line) 

15.5.3. Hyper-Radial Visualization 

The hyper-radial visualization reduces multi-dimensional data to a two-dimensional graph by grouping the 
objectives and calculating a weighted sum for each group. These values are displayed in two dimensions. 
The designer may incorporate his preferences by selecting the weights. The best point with respect to the 
selected weights is colored purple in the plot (Figure 15-47). The theory of hyper-radial visualization is 
explained in Section 23.13.2. 

Grouping 

The objectives may be grouped using the 3-state buttons in the Axis column. 
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Table 15-24: Hyper-Radial Visualization Grouping options 

Selection Description 

 Add objective to the group displayed on the x axis 

 
Add objective to the group displayed on the y axis 

 Ignore objective 

Selection of Weights 

The weights may be selected using the sliders or the text fields in the Weights column. The selected values 
represent the ratio of the weights and are scaled internally such that the sum of the weights is 1. 

Options 

Table 15-25: Hyper-Radial Visualization options 

Selection Description 

Use reduced set of points Plot only reduced set of Pareto optimal solutions 

Scale weights Scale weights by range of objectives 

Color Entity Color entity for HRV points 
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Figure 15-47: Hyper-radial visualization, equal weights, points colored by variable 

15.5.4. Self-Organizing Maps 

The theory of Self-Organizing Maps (SOM) is explained in Section 23.13.4 The default is to visualize 
Pareto optimal solutions. 

Component Selection 

By default, component maps of all objectives are displayed. To modify the plot, select the position in the 
dynamic grid, Figure 15-48, and the respective slot content. Refer to Section 23.13.4 for an explanation of 
the map types. 

 

Figure 15-48: Selection of position for SOM 

Position 
for new 
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Figure 15-49: Self-Organizing Map, component plots of objectives 

Parameter Panel 

The advanced user may want to modify some parameters for the training of the SOM. These options are 
available in the Parameters panel. Modifications in the Parameter Panel effect retraining of the SOM. 

Table 15-26: Self-Organizing Maps parameters 

Selection Description 

Training Iterations Number of iterations performed for training of SOM, default depends on 
honeycomb dimensions and number of data points 

Initial Radius Initial radius used for training of SOM, default depends on honeycomb 
dimensions 

Honeycomb dimensions Honeycomb dimensions, default 12x9 

15.6. Stochastic Analysis 
Two types of plots are available under stochastic analysis – Statistical Tools and Stochastic Contribution. 
These results are calculated based on metamodel approximations and variable distributions. 
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15.6.1. Statistical Tools 

These plots are similar to simulation results-based plots (Section 15.2.6) except that metamodels are used 
for calculating the statistics. An LHS design of experiments is generated to perform metamodel-based 
Monte Carlo analysis for statistics calculation. The user can modify the number of Monte Carlo samples and 
can also use a large number, as the metamodel-based calculations are inexpensive. The available plot types 
under Statistical Tools are Histogram, Statistics Summary, Probability of Constraint Violation, Correlation 
and Covariance. It is possible to add effect of residuals while calculating statistics using metamodels. 
Figures for the various plot types are shown in the following sections. It is interesting to compare them to 
the respective plots in Section 15.2.6. 

Histogram 

 

Figure 15-50: Histogram constructed using metamodel together with the statistical distribution of the 
variables. The background represents the feasibility status. 

LS-OPT Version 5.2  290 



CHAPTER 15: Viewing Results 

Summary 

 

Figure 15-51: Mean value and standard deviation constructed using metamodel together with the 
statistical distribution of the variables 

Probability of violating constraint bounds 

 

Figure 15-52: Probability of Response TOP_DISP < -230 with 95% confidence interval in red 
constructed using metamodel together with the statistical distribution of the variables 
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Correlation 

 

Figure 15-53: Correlation Bars evaluated on metamodel 

Covariance 

 

Figure 15-54: Covariance evaluated using metamodel 

15.6.2. Stochastic Contribution 

The stochastic contribution of the variables to the variance of the responses and composites (see Section 
25.7) can be displayed as a bar chart. 
Optionally, the user can elect to display the influence of the residuals from the metamodel fit and the effect 
of all the variables summed together. Contrasting these two values indicates how well the cause-effect 
relationship for the specific response is resolved. If both the residuals and the sum of the contributions are 
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requested, then a total is displayed that is the sum of the contributions of all the variables as well as the 
residuals. 
The computations are done using the metamodels and stored in databases for visualization. Higher order 
effects, if any, are included in the results plotted. In the Sobol terminology, the total effect as opposed to the 
main effect is therefore plotted. See Section 25.7 for the details. 
For optimization, the stochastic contribution is computed using the optimal design. The stochastic 
contribution panel is shown in Figure 15-55. 

 

Figure 15-55: Stochastic Contribution plot 

15.7. REFERENCES 
[1] Myers, R.H. and Montgomery, D.C. Response Surface Methodology. Process and Product 

Optimization using Designed Experiments. Wiley, 1995 
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The statistics of the LS-DYNA results can be displayed on the FE model using DynaStats. The statistics of 
the LS-DYNA d3plot (or d3eigv) results and LS-OPT history data are computed by LS-OPT for viewing in 
LS-PREPOST. These statistics shows: 

o The variation of the LS-DYNA results due to the variation of the design parameters. 
o The variation of the LS-DYNA results due to bifurcations and other stochastic process events. 

The d3plot results are computed and displayed for every node or element for every state in the d3plot 
database, while the history results are likewise computed and displayed for every time state in the history (in 
history.x file). 
A more complete list of the statistics that can be computed and visualized is: 

1. Statistics of the Monte Carlo data from the LS-DYNA jobs. These are the data from the 
experimental designs used. If the experimental design was for a Monte Carlo analysis then the 
experimental design reflects the variation of the design variables, but if the experimental design was 
for creating a metamodel then the experimental design does not reflect the statistical variation of the 
design variables. 

2. Statistics of the results considering the variation of the design variables using the approximations 
(metamodels) created from the LS-DYNA jobs. It should be noted that these approximations differ 
from the ones defined for the responses under “Metamodeling” dialog of LS-OPT. In order to 
display statistics over the entire LS-DYNA model, several metamodels need to be fitted (for every 
element/node). Therefore, only linear and quadratic metamodeling options are available under 
DynaStats to make the computation fast. The distributions of the design variables and the 
metamodels are used to compute the variation of the responses. If distributions were not assigned to 
the design variables, the resulting variation will be zero. The metamodels allow the computations of 
the following: 
o The deterministic or parametric variation of the responses caused by the variation of the design 

variables. 
o Statistics of the residuals from the metamodels created from the LS-DYNA jobs. These residuals 

are used to find bifurcations in the structural behavior – the outliers comprise the displacement 
changes not associated with a design variable change. See Section 25.6 regarding the 
computation of outliers. This is the process variation is associated with structural effects such as 
bifurcations and not with changes in the design variable values. 

o The stochastic contribution of a variable can be investigated. 
o A probabilistic safety margin with respect to a bound on the LS-DYNA response can be plotted.  
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o The LS-OPT histories of all the LS-DYNA runs as well as history statistics can be plotted. 
3. The correlation of d3plot results or histories with an LS-OPT response can be displayed. This can be 

used, for example, to identify the changes in displacements associated with noise in an LS-OPT 
response.0. 

16.1. Working with the plots 
Select the DynaStats option from the Tools menu of the control bar of the main GUI. The dialog shown in 
Figure 16-1 opens up to work with the plots. Utilize the following actions: 

o Create This creates a new plot. Note that this only creates the definition of the plot. The data for the 
plot must be generated before it can be displayed. The options are described in Section 16.2. 

o Generate The data for a plot is generated. This is done only once per plot. More than one plot can be 
selected to be generated – there is no need to generate plots one-by-one. 

o Display Plot previously created and generated can be displayed. 
o Edit A plot can be edited or copied. This may require that the data be re-generated. 
o Bifurcation A study can be investigated for bifurcations, and the bifurcation can be plotted. 
o Delete A plot can be deleted. 

The plot definitions are stored in a file which allows re-use of a methodology in different studies (see 
Section 16.11). 

16.2. Creation of a plot 
A plot is created in four steps. 

16.2.1. Step 1 – Fringe plot or History plot 

In the first step, the user has to select whether to create a fringe plot or a history plot, Figure 16-2. Select the 
respective image to go to the next step. 

LS-OPT Version 5.2  295 



CHAPTER 16: LS-DYNA Results Statistics 

 

Figure 16-1: Visualization of LS-DYNA results statistics. After plot creation using the wizard, the plot 
data must be generated. The plot can then be displayed in LS-PREPOST. Existing plots can be edited, 
deleted or investigated for a bifurcation. 

 

Figure 16-2: First step of DynaStats  plot definition creation; selection of plot type 
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16.2.2. Step 2 – D3Plot component or History 

 

Figure 16-3: Second step of DynaStats plot creation; selection of d3plot  component or history 
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Table 16-1: DynaStats Second step options 

Option Description Reference 

Select D3Plot 
component to plot 

Statistics are calculated using values of selected component  

Select history to plot Statistics are calculated using values of selected history Section 16.7 

Select stage to plot Name of stage  

Follow coordinates 
instead of nodes 

The ID of the part to be mapped has to be specified Section 16.10 

FLC curve FLC curve specification (for FLD components, metal 
forming) 
Parameteric 
FLD curve t and n coefficients 
Provided curve 
Curve ID in the LS-DYNA file of the FLD curve to be used 

Section 16.10 

Correlate response Correlation between an LS-OPT response and a D3Plot 
component at all states 

Section 16.4.1 

Correlate variable Correlation between an LS-OPT variable and a D3Plot 
component at all states 

Section 16.4.2 
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16.2.3. Step 3 - Statistics 

 

Figure 16-4: Third step of DynaStats plot definition creation 
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Table 16-2: DynaStats Third step options 

Option Description Reference 

Select what to plot Statistics of D3Plot data 
Statistics of residuals (errors) in a metamodel of the D3Plot 
data 
Safety Margin 
A single variable’s contribution to the D3Plot data 
Which variable contributes the most to the D3Plot data 

 
                            
Section 16.6 
Section 16.5 
 

Select statistics to plot  Section 16.3 

Select analysis 
method  

Use actual FEA results (Monte Carlo) 
Build linear metamodel from FEA Results 
Build quadratic metamodel from FEA results 

Section 16.3.1 
Section 16.3.2 
Section 16.3.2 

16.2.4. Step 4 – Visualization in LS-PREPOST 

The user can select the LS-PREPOST plot details in LS-OPT (Figure 16-5). The GUI options will reflect 
whether fringe component response or history data is being investigated. 
The Job Index field specifies the FE model used for the display of the results. Additionally, the FE models 
containing the maximum and the minimum results can be overlayed in order to spot bifurcations as 
described in a later section. 

Table 16-3: DynaStats Visualization in LS-PREPOST options 

Option Description Reference 

Select the iteration to use 
for the plot 

Iteration number  

Select the job on which 
to plot 

  

Also display model from Bifurcation investigations Section 16.8 

Name for this plot   
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Figure 16-5: The statistics viewing options. The statistics will be shown in LS-PREPOST using the FE 
model from the LS-DYNA job specified using the Job field. The FE models of the jobs containing the 
maximum and minimum values can be overlayed in order to identify bifurcations as described in Section 
16.8. 

16.3. Monte Carlo and metamodel analysis 
This section gives the options required for the computation of the statistics from a Monte Carlo or a 
metamodel based set of LS-DYNA results. 
Either the LS-DYNA d3plot results or LS-OPT history results can be analyzed. The resulting output can be 
viewed in LS-PREPOST. The results will be stored in the stage directory with extensions of .statdb and 
.history. 
The statistics are computed for a single stage and a single iteration. 

16.3.1. Monte Carlo 

The statistics of the responses from a Monte Carlo procedure can be computed. The task will calculate: 
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1. Statistics of the response  
o Mean value of the response 
o Standard deviation of the response 
o Range of the response (maximum minus the minimum value) 
o Maximum value of the response 
o Minimum value of the response 
o ID of the LS-DYNA job where the maximum value occurred. This can be used to identify the 

jobs likely to contain a different bifurcation. 
o ID of the LS-DYNA job where the minimum value occurred. This can be used to identify the 

jobs likely to contain a different bifurcation. 
2. The margin of safety (constraint margin) considering (i) a given bound on the response and (ii) the 

variation of the response as computed using the Monte Carlo analysis (see also Section 16.6).0. 

16.3.2. Metamodels and residuals 

Metamodels (approximations) can be used to predict the statistics of the responses. These metamodels will 
be computed for all results for all nodes and elements, respectively, for all time steps. 
The metamodels are also useful for separating deterministic variation, caused by the variation of the design 
variables, from the process variation. The two types of variation are as shown in Figure 16-6. 

 

Figure 16-6: Different types of variation that can occur in a structure. The deterministic variation, 
predicted using the metamodel, is due to changes in the design variable values. The process variation, not 
associated with change in the design variable values, shows up in the residuals of the metamodel fit. 

Metamodels are able to distinguish the process variation because, as shown in Figure 16-7, a metamodel can 
only predict the effect of the design variables. Process variation, not predictable by the design variables, 
becomes residuals. 
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Figure 16-7: Metamodels can be used to distinguish between changes in the results due to the design 
variable changes and changes due to bifurcations. 

The metamodel task will calculate: 
1. Statistics of the response due to all the variables using the metamodel 

o Mean value of the response 
o Standard deviation of the response 
o Range (four standard deviations) 
o Maximum value (mean plus two standard deviations) 
o Minimum value (mean minus two standard deviations) 

2. Statistics of the residuals 
o Mean value of the residuals (always zero) 
o Standard deviation of the residuals 
o Range of the residuals (maximum minus the minimum value) 
o Maximum value of the residuals 
o Minimum value of the residuals 
o ID of the LS-DYNA job where the maximum residual occurred. This can be used to identify the 

jobs likely to contain a different bifurcation. 
o ID of the LS-DYNA job where the minimum residual occurred. This can be used to identify the 

jobs likely to contain a different bifurcation. 
3. Stochastic contribution of each individual variable and the variable contributing the most to the 

variation of the data, respectively. 
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4. The margin of safety (constraint margin) considering (i) a given bound on the response and (ii) the 
variation of the response as computed using the metamodel (see also Section 16.6). 

5. All the computations as specified for the Monte Carlo procedure. The data required for this 
computation is read in for the metamodel computations, so very little time is expended computed 
these results as well. 

The standard deviation of the variation caused by the design variables are computed using the metamodel as 
described in Section 25.7. The maximum, minimum, and range are computed using the mean value 
plus/minus two standard deviations. The Max Job ID and Min Job ID are not meaningful for the metamodel 
results. 
The residuals are computed as the difference between the values computed using FEA and the values 
predicted using the metamodel (see Section 25.6 for more details). 
A linear or a quadratic response surface can be used. The metamodel processing speed is approximately 
105 - 106 finite element nodes a second, where the total nodes to be processed is the number of nodes in the 
model times the number of states times the number of jobs. FLD computations, which require the 
computation of the principle strains, can be a factor of five slower than computations using the nodal 
displacements. The overall speed is dominated by the time required to read the d3plot files from disk; 
accessing files over a network will be slow. 

16.4. Correlation 

16.4.1. Correlation of fringe plots or histories with responses 

The correlation of the LS-DYNA results or LS-OPT histories with a response can be computed. This 
quantity indicates whether the changes in the responses are associated with the changes in the fringe or 
history. Figure 16-8 shows examples of a positive, a negative, and zero correlation. If not enough FE 
evaluations were conducted, the resulting fringe plot can be visually noisy. Thirty or more FE evaluations 
may be required. Note that the correlation of history is with respect to a response at a single time instance. 

 

Figure 16-8: Correlation between X, shown in the upper left corner, and different responses Y. Different 
responses Y with a positive, a negative, and no correlation are shown. 
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16.4.2. Correlation of fringe plots or histories with variables 

The correlation of the LS-DYNA results or LS-OPT histories with a variable can also be computed. This 
quantity indicates for all the time states whether the changes in a particular variable are associated with the 
changes in the D3Plot component or history. The correlation does not necessarily represent uncertainty or 
randomness of the variable. For example, even for a deterministic problem, such as a simple parametric or 
DOE study without random variables, there can be a non-zero correlation between a variable and a LS-
DYNA response component. 

 

Figure 16-9: Viewing the correlation between an LS-DYNA response and an LS-OPT response. 
Additionally, the correlation between an LS-OPT history and an LS-OPT response or variable can also 
be viewed. 

16.5. Stochastic contribution of a variable 
The stochastic contribution of each design variable to the variation of the nodal response can also be plotted 
on the model by selecting A single variable’s contribution to the D3Plot data and a variable form the list. 
These results are computed as described in Section 25.7. It is important to note that stochastic contribution, 
though closely related, is not the same as sensitivity or correlation. While sensitivity and correlation can be 
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non-zero for both stochastic and deterministic problems, stochastic contribution of a deterministic variable 
is always zero. Stochastic contribution provides the variation of a response due to randomness of a variable. 
Thus it depends not only on the relation between the response and the variable (also studied using sensitivity 
or correlation), but also the degree of uncertainty in the variable. Higher randomness of a variable would 
lead to greater stochastic contribution (assuming non-zero sensitivity). 
The most important variable based on stochastic contribution, or rather the variable responsible for the most 
variation of the response, can be plotted on the model by selecting Which variable contributes the most to 
the D3Plot data. Actually, only the index of the variable is displayed on the model. This index is the same 
as in the list of variables as shown in the LS-DYNA results statistics GUI. The importance of stochastic 
contribution analysis is more significant from the perspective of uncertainty or probabilistic analysis. The 
most important variable based on stochastic contribution may not necessarily be the most important based 
on sensitivity analysis, as the latter does not consider the actual probabilistic distributions of variables. 

 

Figure 16-10: Viewing the stochastic contribution of a single variable. 

16.6. Safety margin 
The safety margin as shown in Figure 16-11 can be displayed in three ways: 
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1. The safety margin — the difference between the bound and mean, 
2. The safety margin measured (scaled) in standard deviations (sigmas), and 
3. The probability of exceeding the bound (probability of failure).0.  

 

Figure 16-11: The safety margin is the difference, measured in standard deviations, between the mean 
response and the constraint bound on the response. 

The bound must therefore be specified when the statistics are computed as shown in Figure 16-12. 
Obtaining the safety margin for a different bound requires the generation of a new plot. 
The probability of exceeding the bound is computed using the FOSM method (see Section 25.4.4) using the 
normal distribution together with the safety margin measured in standard deviations (sigmas). The 
computation is therefore done in the six-sigma sense — the number of sigmas (standard deviations) is the 
unit of measure. If a Monte Carlo computation of the probability of failure is desired, then it must be 
computed using a response in the Statistical Tools plot, Section 15.2.6; if this response was not defined 
originally then it must be extracted from the binout or d3plot database: first defining a binout or d3plot 
response, do a Repair/Extract Results, Section 3.5, and use Statistical Tools plot with Plot type Probability 
of constraint violation.. 
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Figure 16-12: Plotting a safety margin or the probability of failure requires that the bound must be 
specified. 

16.7. Viewing LS-OPT histories 
The LS-OPT histories for all the LS-DYNA runs can be viewed simultaneously. See Figure 16-15 for an 
example. In addition, various statistics of LS-OPT histories at all time states can also be viewed. The safety 
margin or probability of failure can also be viewed for all time states.  
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Figure 16-13: Viewing all the LS-OPT histories. 
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Figure 16-14: Statistics of an LS-OPT history. 

 

Figure 16-15: The LS-OPT histories of all the LS-DYNA runs can be viewed simultaneously. 

16.8. Bifurcation investigations 
The residuals plots are useful for finding bifurcations. The standard deviation (or range) of the residuals 
indicate regions where the changes in displacements are not explained by changes in the design variable 
values ― it is therefore a plot of the unexpected displacements or ‘surprise factor’.  The plots from a Monte 
Carlo analysis can also be used to find bifurcations similarly to the residuals from a metamodel-based 
Monte Carlo analysis. 
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Figure 16-16: Bifurcation options. The bifurcation is found by superimposing the FE models containing 
the maximum and minimum results. A node ID associated with the bifurcation may need to  be specified 
if the extreme values in the model are not caused by the bifurcation. 

 

Figure 16-17: Options to create Bifurcation Plot for an existing plot.  
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16.8.1. Automatic detection 

Automatic detection of the LS-DYNA jobs containing the minimum and maximum outlier can be done as 
shown in Figure 16-16 and Figure 16-17.  In the GUI the user must select (i) overlay of the FE models 
containing the maximum and minimum results and (ii) whether the global minimum or the minimum at 
specific node must be used. Viewing the maximum and minimum job simultaneously allows the bifurcation 
to be identified. See Figure 16-18 for an example of the resulting LS-PREPOST plot. 

16.8.2. Manual detection 

The steps for manual detection are: 
1. Plot displacement magnitude outlier Range to identify location in FE model where the bifurcation 

occurred. 
2. Identify job in which maximum value occurred using a Max Job ID plot 
3. Identify job in which minimum value occurred using a Min Job ID plot 
4. View the location in model for the jobs having the minimum and maximum value.0. 

Recommendations: 
o Engineering knowledge of the structure is important. 
o Look at the x, y, and z components in addition to the displacement magnitude to understand in which 

direction the bifurcation occurred; most bifurcations are actually best identified considering a 
displacement component. 

o The history results may be useful to find the time at which a bifurcation occurred. 
o The correlation between a response and displacements (or histories) indicates if variation of the 

displacement is linked to variation of the response. 
o Look at all of the states in the d3plot database; the bifurcation may be clearer at an earlier analysis 

time. 
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Figure 16-18: Viewing a bifurcation. Plate structure that can buckle either left or right. Three FE models 
are shown, and the two distinctly different solution modes are clearly visible. The creation and display of 
the plot containing all three models are automated in LS-OPT. 

16.9. Displacement magnitude issues* 
Approximation of the displacement magnitudes (resultants) introduces some special cases. The magnitude is 
defined as the square root of a sum of squares, which is difficult to approximate around the origin, 
especially using linear approximations, Figure 16-19. The x, y, and z displacement components do not 
suffer from this problem. 
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Figure 16-19: Displacement approximation scenarios. The displacement magnitude, being always larger 
than zero, cannot be approximated accurately around the origin if some of the displacement components 
can have a negative value.  

Unexpected results may occur even if the displacement magnitude is approximated correctly. The 
displacement magnitude is always a positive quantity, which, in addition to the fitting problems, can also 
cause problems when computing the coefficient of correlation with a response quantity. Figure 16-20 
illustrates two buckling modes of a flange evaluated at two locations in space. The displacement magnitude 
variance differs for the two locations though the buckling modes are similar. The variance of the 
displacement magnitude will therefore be smaller than what would be found considering the components. 
Considering a displacement component will cure this problem, but a displacement component aligned with 
the required direction may not always exist. 

 

Figure 16-20: The displacement magnitude can depend on the aligment of the flange with the axis. The 
buckling will be difficult to spot if it is aligned with the position of the axis. For configuration A, the two 
vectors have nearly the same length, while for configuration B, they clearly have different lengths. 
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Recommendations: 
o Use the x, y, and z displacement components.  

16.10. Metalforming options 
Metalforming has some special requirements. It is possible to: 

1. Map the results for each sample to the mesh of the base design. The results will be computed at a 
specific spatial location instead of a node (Eulerian system). This is required in metalforming 
because: 
o The adaptivitity will result in the different iterations having different meshes. 
o It is more natural in metalforming to consider the results at a specific geometric location than at a 

specific node. 
This is done only for the work piece. This part must therefore be specified in the LS-OPT input. 
More detail is shown in Figure 16-21, Figure 16-22 and Figure 16-23. 

2. Specify the FLC curve to be used in the computation of the FLD responses. This can be done by 
either specifying the ID of a curve defined in the LS-DYNA input deck (option Provided curve) or 
using two parameters similar to that being used in LS-PREPOST (option Parametric).0. 
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Figure 16-21: For metal forming specify that the coordinates instead of the nodes must be followed and 
specify the part (blank) for which the results must be mapped. 

 

Figure 16-22: Interpolation of metal forming results. 
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Figure 16-23: Acuracy of of the mapping operation for element results is shown for two cases. For each 
case the results are shown as the element centroid results for the original mapped mesh, the element 
results averaged at the nodes for the original mapped mesh, and the results mapped to the nodes of the 
base mesh. For the first case it can be seen that the mapping accuracy is good if the mesh is sufficiently 
fine to consider smoothly varying results. The second case, which occurs when yielding occurs in a single 
element, indicates a loss of information. But for this second case, the exact numerical value of the 
original results is not considered very accurate, so we can consider the mapped results as sufficient as 
long as they conserve the prediction of failure. For the second case the numerical values are mesh-
dependent, so the prediction of failure is the quantity that should be mapped to another mesh. 

16.11. User-defined statistics* 
Although DynaStats provides an interface only for LS-DYNA response components, it also provides a way 
to visualize statistics of user-defined results. This requires a script from the user that is run by LS-OPT in 
each run directory to calculate the user-defined results for that subdirectory, and eventually the statistics of 
all the runs. The steps involved are listed below: 

1. Select “Misc, user” as the D3Plot Component in DynaStats Creation Wizard, Section 16.2.2, to 
define the required statistic. 

2. A script named “dstats_user” needs to be provided by the user. In each subdirectory LS-OPT will 
run the program “dstats_user -state n” for n ranging from 1 to the total number of states.  The 
program “dstats_user” must dump a file called “dstats.lspp” for the particular state being run. 

3. LS-OPT will open the file “dstats.lspp” for every state. The file must be in the same format as 
dumped by LS-PrePost output command. The data must be written in “%10d%10f” format as nodal 
results. If the results are available as element results, they must first be converted to nodal results 
using nodal averaging in LS-PrePost. 
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A sample dstats_user python program to dump nodal results from LS-PrePost is given below. In general, the 
user can dump results from any program into the file dstats.lspp. 
import sys, os 
cmp  = 9 # Von Mises 
state = 1 
print "state", state 
print "argv", sys.argv 
if len(sys.argv) > 2 : state = eval( sys.argv[2] ) 
print "state", state 
ff = open( "lspp.cmd", 'w' ) 
ff.write( "openc d3plot \"d3plot\"\n" ) 
ff.write( "state %d;\n"%state ) 
ff.write( "fringe %d\n"%cmp ) 
ff.write( "pfringe\n" ) 
ff.write( "output dstats.lspp %d 1 0 1 0 0 0 0 0 1 0 0 0 0 0\n"%state ) 
ff.write( "exit\n" ) 
ff.close( ) 
os.system( "lsprepost c=lspp.cmd" ) 

If element results are available, they must first be dumped by dstats_user before running additional LS-
PrePost commands to read those results, convert them into nodal outputs, and dump the new results. If the 
element results are written to dstats_e.lspp then the following dstats_user should be modified as follows. 
import sys, os 
cmp  = 9 # von mises 
state = 1 
print "state", state 
print "argv", sys.argv 
if len(sys.argv) > 2 : state = eval( sys.argv[2] ) 
print "state", state 
ff = open( "lspp.cmd", 'w' ) 
ff.write( "openc d3plot \"d3plot\"\n" ) 
ff.write( "state %d;\n"%state ) 
ff.write( "fringe %d\n"%cmp ) 
ff.write( "pfringe\n" ) 
ff.write( "range avgfrng none\n" ) 
ff.write( "output dstats_e.lspp %d 1 0 1 0 0 0 0 1 0 0 0 0 0 0\n"%state ) 
# read the file with element data 
ff.write( "open userfringe dstats_e.lspp 1\n") 
ff.write( "fringe 5001\n") 
ff.write( "pfringe\n" ) 
# write the corresponding file with nodal data 
ff.write( "range avgfrng node\n" ) 
ff.write( "output dstats.lspp %d 1 0 1 0 0 0 0 0 1 0 0 0 0 0\n"%state ) 
ff.write( "exit\n" ) 
ff.close( ) 
os.system( "lsprepost c=lspp.cmd" ) 
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16.12. Re-use and persistence of an evaluation methodology* 
The definitions of the plots are saved in a filed named dynastatplots.xml. Copy this file to the directory 
where you want to re-use the definitions. The plots will be available when you restart the LS-OPT GUI. The 
plots will have to be re-generated though; note that you can select all of the plots when you generate plots – 
there is no need to generate plots one-by-one. 
Using the File menu Export and Import features, all defined plots may be exported to an .xml file and 
selected plots can be imported.  
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This chapter provides a brief description of some of the applications of optimization that can be performed 
using LS-OPT. It should be read in conjunction with the examples chapters, where the applications are 
illustrated with practical examples. 

17.1. Parameter Identification 
Parameter identification problems are non-linear inverse problems which can be solved using mathematical 
optimization. System parameter identification is a commonly used feature of LS-OPT, especially for the 
purpose of calibrating material models.  
The procedure consists of minimizing the mismatch between target values and corresponding solver output 
values, or between two curves. In the latter case, the two curves typically consist of a two-dimensional 
experimental target curve and a computed curve. The computed curve is a variable response, being 
dependent on the system parameters, e.g. material constants. It can also be a crossplot, constructed by 
combining two time histories such as strain and stress (Section 6.4.2).  
The two main essential components of an algorithm designed for system identification are  

o optimization algorithm and  
o curve matching metric. 

17.1.1. Optimization algorithm 

The recommended optimization algorithm to be used to solve a parameter identification problem is the 
Metamodel-based Optimization with the strategy Sequential with Domain Reduction, Section 4.7.3. Use 
linear polynomial metamodels and D-optimal point selection which is the default for the selected task and 
strategy, Section 9.3.2.  

17.1.2. Matching scalar values 

To match scalar values, extract the respective responses from the solver output. Specify a Standard 
Composite of type MSE or Sqrt MSE using these responses as components associated with the respective 
target value, Section 10.4. Define this composite as an objective function. 
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17.1.3. Curve matching metric 

To calculate the mismatch between the target and the computed curve, define a Curve Matching composite, 
Section 10.5. There are two curve matching metrics available, Mean Square Error and Curve Mapping. 
Mean Square Error is an ordinate-based curve matching metric. Hence if the curve has steep parts or if the 
ordinate values are not unique, (the curve is a hysteretic curve), Curve Mapping is the metric of choice.  
Because Curve Mapping uses the length of the curve to calculate the mismatch, filtering of the component 
history curves is recommended.  

17.1.4. Sampling constraints 

For parameter identification problems, there are often more restrictions on design variables than just a lower 
and an upper bound for each parameter, e.g. there may be a requirement to obtain monotonically increasing 
solver input curves. Such constraints can be defined as Sampling Constraints in LS-OPT, Section 9.6.  

17.1.5. Parameterization of solver input curves 

A common way to parameterize a solver input curve is to use a parameterized analytical function that 
represents the characteristic of the curve. Use a program or script as a solver of a preprocessor stage to 
calculate the solver input curve depending on parameters. 

17.1.6. Viewer 

This section describes some postprocessing options commonly used for parameter identification problems. 
Further options are described in Chapter 15.  

Optimization History 

The optimization history plot can be used to check the convergence of the variable values as well as the 
decrease of the objective over the iterations. The response optimization history displays computed and 
predicted values; hence it can be used to check the quality of the predictions. See Section 15.4.1 for further 
information on the optimization history plot. 
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Figure 17-1: Optimization history for variables and objective 

Sensitivities 

If there are parameters that do not converge, the sensitivities plot can be used to see if those parameters are 
insensitive. See Section 15.3.4. 

 

Figure 17-2: Global Sensitivities 
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History 

The history plot (Section 15.2.4) can be used to display the computed curves and the test curve in the same 
plot. There are several coloring options for the computed curves, e.g. the curves could be colored by the 
objective values (curve matching metric) to see if the curve matching metric works as expected.   
Displaying the curves for all iterations, selecting the option Only optimal and coloring the curves by 
iteration visualizes the improvement of the optimal curves over the iterations.  

 

Figure 17-3: Target and computed curves, only optimal curves are displayed for all iterations 

17.2. Sensitivity analysis 
Responses can depend on many variables, and the computational effort of an optimization strongly depends 
on the number of variables. In most cases, only a few variables are significant. 
Sensitivity analysis allows the user to determine the significance of design variables when computing a 
selected response. This helps to understand the simulation model and to reduce the design variables used in 
an optimization. The least significant ones can be de-selected to reduce the computational effort. 
Two sensitivity measures are implemented in LS-OPT: Linear ANOVA and GSA/Sobol. 
Both sensitivity measures are global in nature and are evaluated using the metamodel; hence the metamodel 
quality is essential to achieve reasonable sensitivity results. 
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ANOVA is a linear sensitivity measure, whereas GSA/Sobol is non-linear. Therefore, the results are 
comparable for linear metamodels. ANOVA depicts positive or negative influence, whereas GSA/Sobol just 
shows the absolute value. An advantage of GSA/Sobol is, that the values are normalized. Hence they can be 
summed up to determine the influence of a parameter on multiple responses, on a full load case, or on the 
entire optimization problem. 
ANOVA is evaluated automatically if metamodels are available, to get GSA/Sobol values, select the Global 
Sensitivities option in the Task dialog (Section 4.10) or from the Add menu (Section 3.2). 
To perform a sensitivity analysis, a global metamodel approximation should be used. Two approaches are 
described in the following sections. 

17.2.1. DOE task 

A global approximation can be achieved by selecting task DOE, Section 4.3. To get reasonable results, 
increase the Number of Simulation Points (per Iteration per Case) to at least 2*(n+1), where n is the number 
of variables. The greater the non-linearity of the response functions, the more points are needed to represent 
the nonlinearities. Hence the number of points is always a compromise between accuracy and computational 
effort.  

17.2.2. Sequential 

An approach for generating a metamodel to a specified prediction accuracy (using the PRESS metric, see 
Section 21.3.5) is to use an iterative method.  
Select Metamodel based Optimization for the main task, and the Sequential strategy, Section 4.7.2. Here, the 
default Number of Points per Iteration can be used, because points are added sequentially. A nonlinear 
metamodel is recommended, e.g. Radial Basis Functions together with the Space Filling point selection 
scheme, Section 9.3.4. 
An appropriate termination criterion for a sequential approach is Response Accuracy Tolerance, Section 0. 
Make sure to use the OR option and set the non-accuracy tolerances to 0. The number of iterations to be 
performed is again a compromise between accuracy and computational effort. 

17.2.3. Viewer 

This section describes some postprocessing options commonly used for a sensitivity analysis. Further 
options are described in Chapter 15.  

Accuracy 

Use the accuracy plot (Section 15.3.3) and the error measures displayed in the title to judge the quality of 
the metamodels. 

LS-OPT Version 5.2  324 



CHAPTER 17: Applications of Optimization 

 

Figure 17-4: Accuracy plot; computed vs. predicted values; error measures are displayed in the title 

Sensitivities 

The sensitivity measures calculated by LS-OPT, Linear ANOVA and GSA/Sobol can be visualized in the 
Sensitivities plot (Section 15.3.4). By default, the values are sorted by significance, hence the ranking of the 
parameters can be directly taken from the order in the plots. 
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Figure 17-5: ANOVA values for a single response; Sobol values for multiple responses 

Interpolator 

The Interpolator plot (Section 15.3.2) displays 2D cross-sections of the metamodels in a matrix for selected 
responses and variables. Constraints and predicted values for a selected parameter combination can be 
visualized on the metamodel. 
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Figure 17-6: Interpolator plot: 2D surface plots for variables vs. responses; constraints on the metamodel 
and the predicted value for the selected parameter combination are displayed. 

17.3. Multidisciplinary Design Optimization (MDO) 
MDO is often used because in industry each design group typically has its own simulation tools, design 
criteria (constraints) and load cases. A different set of variables, constraints and objectives therefore needs 
to be used for each discipline.  
The MDO capability in LS-OPT implies that the user has the option of assigning different variables, 
sampling types and job specification information to different cases or disciplines. Each case has to be 
defined with a unique Sampling (see Section 3.2.1). 
Variables can be de-activated Sampling-wise in the Sampling Matrix tab (Setup dialog, Section 8.3). After 
each iteration, variables omitted from specific samplings will assume the global value. 
It is permissible to eliminate a set of variables across all Samplings, in which event they will remain 
constant during the optimization process. 
See the examples in Section 18.5 for the command file format. 
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17.4. Multi-objective optimization (MOO) 
Design objectives are often in conflict. This implies that objectives cannot all be minimized to their single-
objective minima (the so called Utopian solution) at the same time. In the mathematical sense multi-
objective problems therefore have multiple solutions, typically defining a line or a surface in the space 
defined by the objectives (i.e. two-dimensional space for two objectives, etc.). In design optimization 
terminology such a solution is referred to as a Pareto Optimal Frontier (POF), or trade-off curve or surface. 
The POF curve can then be used by designers to choose a unique design which satisfies the needs of all the 
disciplines, although it is likely to be a compromise solution. 
POF surfaces can be discontinuous. 
To activate the POF feature, the option Create Pareto Optimal Front can be selected in the Task or 
Optimization dialog, Section 4.9. The option is only available if at least two objectives are defined. 
The recommended optimization task and strategy for MOO is Metamodel-based Optimization using the 
Single Iteration or Sequential strategies, see Section 4.7.  

17.4.1. Direct Genetic Algorithm 

To calculate Pareto optimal solutions using the Direct Genetic Algorithm, select Direct simulation 
Optimization as main task, Section 4.4.  
The advantage of using a direct task is, that it uses only simulation results to find the optimal value, hence 
there is no approximation error. The disadvantage is that the number of simulation runs needed to find an 
optimal value can be high. Therefore this task can only be used for small models or if sufficient 
computational resources are available. 

17.4.2. Metamodel-based Genetic Algorithm 

To calculate Pareto optimal solutions using a metamodel-based Genetic Algorithm, a global approximation 
is recommended. Select Metamodel-based Optimization as the main task, and use the strategy Single 
iteration or Sequential together with a nonlinear metamodel, e.g. Radial Basis Functions or FeedForward 
Neural Nets.  
Because Pareto solutions are often global in nature (spans a significant part of the design space), global 
metamodel accuracy is typically required. This may be difficult to achieve with a large number of design 
variables. In this case the Direct GA (which will also be expensive) is the only remaining option. 

17.4.3. Viewer 

Various plot types that are available for the visualization of Pareto optimal solutions described in Section 
15.5 can be used to explore those solutions and select the appropriate optimal solution that fits best to the 
application. 

17.5. Shape Optimization 
To implement geometrical parameters in LS-OPT, an interface to a preprocessor has to be used. The 
available interfaces, which include a user-defined option, are described in Chapter 5. The process chain to 
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be optimized is at least a two-stage process including a preprocessor and a solver, Figure 17-7. Additional 
parameters can be defined in the solver input file. The preprocessor output is used as solver input. For LS-
DYNA, the output can be used as an include file, specified in the main input file.  
Some preprocessors allow the user to generate multiple output files which can be used in multiple parallel 
simulation stages by using a file operation function between the stages (see Section 3.2.2) to copy the 
selected preprocessor output files. 
The recommended task and strategy for single objective optimization is Metamodel based Optimization and 
Sequential with Domain Reduction, Section 4.7.3.  
 

 

Figure 17-7: Possible setup for a shape optimization. a_pre interfaces with a preprocessor that generates 
the geometry of the model depending on parameters. 

17.6. Worst-case design 
The default setting in LS-OPT is that all design variables are treated as minimization variables. This means 
that the objective function is minimized (or maximized) with respect to all the variables. Maximization 
variables are selected in the Setup dialogs Parameter Setup panel (see Figure 17-8) by toggling the 
required variables from ‘Minimize’ to ‘Maximize’ in the Saddle Direction menu. This option is only 
available if Show advanced options is selected (Section 8.1.9). 
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Figure 17-8: Parameter definition for a worst-case design optimization 

17.7. Multilevel Optimization 
In multilevel optimization, the optimization problem is solved in parts at two (usually) or more levels. Each 
sublevel optimizes a subset of the variable set while maintaining constant values for the variables belonging 
to preceding levels. Multilevel optimization can be used to group variables into the different levels to make 
the problem easier to solve. For example, a gradient based optimizer may be used for some of the variables 
while a zero order method is used for the others. Similarly, metamodels may be constructed with some of 
the variables while the rest are optimized using a direct method. In LS-OPT, this is performed using the LS-
OPT stage and by specifying some of the inner level variables as Transfer Variables (Section 5.3.9).  
The multilevel optimization process in LS-OPT can be briefly summarized as follows. For the sake of 
simplicity, the summary is provided for the case consisting of two levels. 

1. Input File preparation for LS-OPT stage of outer level setup: The input file for the LS-OPT stage is 
an .lsopt file itself. Therefore, preparing this file involves exactly the same steps as any single level 
problem setup. While this file is an input file for the outer level, it is also the LS-OPT setup file for 
solving the inner level problem. As already mentioned, the inner level optimization is performed 
with respect to a subset of the variables while the rest are optimized in the outer level. Therefore, 
these other parameters are constants for the inner level. The LS-OPT GUI is used to prepare the 
.lsopt file; the inner level free variables are set as Continuous or Discrete Variables, but the rest are 
set as Transfer Variables and are treated as constants at this level.  

2. Stage setup for outer level: See Section (Section 5.3.9).  
3. Response definitions for outer level: See section (Section 5.3.9). 
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4. Global Setup for outer level: Once a .lsopt file parameterized with Transfer Variables is specified as 
the LS-OPT stage input file in the outer level, the outer level LS-OPT stage automatically detects 
these parameters and they are added to the Global Setup as constants. These can then be set as 
Continuous or Discrete Variables by the user and thus, they become outer level variables (Figure 
Section 5.3.9). 

5. Running the optimization: The outer level optimization is started by pressing the run button in the 
GUI or from command line, which leads to the creation of a design of experiments for the outer level 
variables. A run directory is created for each outer level sample. The LS-OPT stage input file (i.e. 
the inner level .lsopt setup) is copied to each of these directories and named as LsoOpt.inp by 
default. The Transfer Variable values in a particular run directory are set as the corresponding outer 
level sample’s variable values. Once the Transfer Variable values are set, they are treated as 
constants within a run directory and the inner optimization is carried out with respect to the free 
inner level variables. The optimized inner level entities are then extracted as sample responses at the 
outer level, thus providing the response values at each outer level sample. The outer level 
optimization is then carried out with respect to the remaining variables. 
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18. Examples − Optimization 

18.1. Two-bar truss (3 variables) 
This example has the following features: 

o A user-defined solver is used. 
o Extraction is performed using user-defined scripts. 
o First- and second-order response surface approximations are compared. 
o The effect of subregion size is investigated. 
o The design optimization process is automated. 

18.1.1. Description of problem 

This example problem as shown in Figure 18-1 has one geometric and two element sizing 
variables. 

 

Figure 18-1: The two-bar truss example 

The problem is statically determinate. The forces on the members depend only on the geometric 
variable. Only one load case is considered: F = (Fx,Fy) = (24.8kN, 198.4kN). 
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There are three design variables: AreaL and AreaR, the cross-sectional areas of the bars, and 
Base, half of the distance (m) between the supported nodes. The lower bounds on the variables 
are 0.2cm2 and 0.1m, respectively. The upper bounds on the variables are 4.0cm2 and 1.6m, 
respectively. The objective function is the weight of the structure 

𝑓𝑓(𝑥𝑥) =
1
2

(𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 + 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴)�1 + 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵2. 
The absolute values of the stresses in the members are constrained to be less than 100 MPa, 

−1 ≤ 𝜎𝜎1(𝑥𝑥) = 0.124 ∙ �1 + 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵2 �
8

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴
+

1
𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 ∙ 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴

� ≤ 1, 

−1 ≤ 𝜎𝜎2(𝑥𝑥) = 0.124 ∙ �1 + 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵2 �
8

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴
−

1
𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 ∙ 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴

� ≤ 1. 

The Perl program 2bar printed below simulating the weight response and stress response 
respectively is used as solver. Note the output of the string "N o r m a l" so that the 
completion status may be recognized. 

2bar: 

#!/usr/bin/perl 
# 
#  2BAR truss 
# 
#  Open output files (database) 
#     Each response is placed in its own file 
# 
   open(WEIGHT,">Weight"); 
   open(STRESSL,">StressL"); 
   open(STRESSR,">StressR"); 
# 
#--Compute the responses 
# 
   $length = sqrt(1 + <<Base>>*<<Base>>); 
   $cos  = <<Base>>/$length; 
   $sin  = 1/$length; 
   $Weight = (<<AreaL>> + <<AreaR>>) * sqrt(1 + <<Base>>*<<Base>>) /2; 
   $StressL = ( 24.8/$cos + 198.4/$sin)/<<AreaL>>/200; 
   $StressR = (-24.8/$cos + 198.4/$sin)/<<AreaR>>/200; 
# 
#--Write results to database 
# 
   print WEIGHT $Weight,"\n"; 
   print STRESSL $StressL,"\n"; 
   print STRESSR $StressR,"\n"; 
#****************************************** 
#--Signal normal termination 
#****************************************** 
   print "N o r m a l\n"; 
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Since the parameters are defined in 2bar using the LS-OPT parameter format <<>>, the script 
is defined as the solver input file, while the solver command is perl, Figure 18-2. The response 
values are written to files that are used to define the user-defined responses in LS-OPT, Figure 
18-3. 

 

Figure 18-2: Stage dialog Setup for a user-defined solver. Parameters are specified in the 
input file using the LS-OPT parameter format <<>>. 
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Figure 18-3: User-defined response definitions 

The problem is solved using metamodel based optimization, Figure 18-4. In Sections 18.1.2 to 
18.1.4, a typical semi-automated optimization procedure is illustrated. The last subsection 18.1.5 
shows how an automated procedure can be specified for this example problem. 

18.1.2. A first approximation using linear response surfaces 

To get a first rough approximation of the problem, a single iteration is run, Figure 18-4. 
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Figure 18-4: Task dialog; Selection for a metamodel base optimization using a single 
iteration. 

The parameter setup is defined in the Setup dialog. The type of each parameter is set to 
continuous. A design space defined by minimum and maximum and a starting value is then 
specified for each parameter, Figure 18-5. The starting values are used for the initial design. 
The Sampling dialog, allows for setting the metamodel and point selection, Figure 18-6. To get a 
first rough approximation of the problem, the metamodel type is chosen to be a linear 
polynomial. The default number of points is automatically adapted to the number of variables 
and the metamodel type. 

 

Figure 18-5: Parameter Setup; specification of design space and starting values or all 
parameters 
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Figure 18-6: Sampling and Metamodel; Select metamodel type Polynomial with order Linear; 
use the defaults for Point Selection and number of points 

 

Figure 18-7: Objectives; select the previously defined response Weight from the list on the 
right. 
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Open the Optimization dialog to define the optimization problem. To specify the objective 
function, select the previously defined Weight response from the list on the right in the 
Objectives tab, Figure 18-7. To define constraints, switch to the Constraints tab and select the 
previously defined responses StressL and StressR from the list on the right and enter the 
respective lower and upper bounds, Figure 18-8. 

 

Figure 18-8: Constraints; select the respective responses from the list on the right and specify 
lower and upper bounds. 

Results 

The accuracy of the response surfaces can be illustrated by plotting the predicted results vs. the 
computed results using the Accuracy plot (Figure 18-9 and Figure 18-10). The error measures 
RMS, SPRESS and R² are displayed in the title of the plot. 
The R2 values are large. However the prediction accuracy (Sqrt PRESS), especially for the 
stresses, seems to be poor, so that either a higher order approximation or a smaller region of 
interest will be required. 
Nevertheless an improved design is predicted with the constraint values (stress) changing from 
severely violated approximate values to active constraint, Table 18-1. Due to inaccuracy, the 
actual constraint values of the optimum differ, but also the computed constraints are not violated. 
The weight values have improved for both computed and predicted. Feasible and infeasible 
regions in the design space as well as the computed and predicted optimum are displayed in 
Figure 18-11. 
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Figure 18-9: Accuracy of linear metamodel for response "Weight" 

 

Figure 18-10: Accuracy of linear metamodel of responses "StressL" and "StressR" 

Table 18-1: Comparison of baseline run and optimum (single iteration, linear metamodel) 

 Baseline 
(Computed) 

Baseline 
(Predicted) 

1. Opt 
(Computed) 

1. Opt 
(Predicted) 

Weight 2.56 2.62 1.53 0.85 

StressL 0.73 2.85 0.92 0.99 

StressR 0.53 1.70 -0.41 1.00 
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Figure 18-11: Surface plot for objective function Weight; constraints are displayed on the 
metamodel. 

18.1.3. Updating the approximation to second order 

To improve the accuracy of the metamodels, a second run is conducted using a quadratic 
approximation. Switch the metamodel order in the Sampling dialog to quadratic, Figure 18-12. 
The number of points will automatically update. 
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Figure 18-12: Sampling dialog settings for a quadratic approximation 

Results 

The approximation results have improved considerably, but the stress approximation is still poor. 
The fit is illustrated below in Figure 18-13 and Figure 18-14. 
An improved design is predicted with the approximate constraint values (stress) becoming 
active, Table 18-2. Due to inaccuracy, the actual StressR value of the optimum is infeasible. 
Feasible and infeasible regions in the design space as well as the computed and predicted 
optimum are displayed in Figure 18-15. 
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Figure 18-13: Accuracy of quadratic metamodel for response "Weight" 

 

Figure 18-14: Accuracy of quadratic metamodel of responses "StressL" and "StressR" 

Table 18-2: Comparison of baseline run and optimum (single iteration, quadratic metamodel) 

 Baseline 
(Computed) 

Baseline 
(Predicted) 

1. Opt 
(Computed) 

1. Opt 
(Predicted) 

Weight 2.56 2.54 1.05 1.09 

StressL 0.73 0.69 0.86 1.00 

StressR 0.53 0.30 2.12 1.00 
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Figure 18-15: Surface plot for objective function weight; constraints are displayed on the 
metamodel. 

18.1.4. Reducing the region of interest for further refinement 

It seems that further accuracy can only be obtained by reducing the size of the subregion. In the 
following analysis, the current optimum (0.22, 1.86, 0.2) was used as a starting point while the 
region of interest was cut in half. The order of the approximation is quadratic. The required 
modifications are illustrated in Figure 18-16. 

 

Figure 18-16: Reducing the design space by specifying an initial range; the starting values are 
the optimal values found in the previous approach. 
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Results 

The approximations are significantly improved, Figure 18-17 and Figure 18-18. 

 

Figure 18-17: Accuracy of quadratic metamodel in reduced design space for response 
"Weight" 

 

Figure 18-18: Accuracy of quadratic metamodel in reduced design space of responses 
"StressL" and "StressR" 

The results are displayed in Table 18-3. An improved design is predicted with the approximate 
constraint values (stress) becoming active. Due to inaccuracy, the actual constraint values of the 
optimum are feasible. This value is now much closer to the value of the simulation result. For the 
optimal weight value, computed and predicted is the same. 
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Feasible and infeasible regions in the design space as well as the computed and predicted 
optimum are displayed in Figure 18-19. 

Table 18-3: Comparison of baseline run and optimum (single iteration, quadratic metamodel, 
reduced design space) 

 Baseline 
(Computed) 

Baseline 
(Predicted) 

1. Opt 
(Computed) 

1. Opt 
(Predicted) 

Weight 1.05 1.04 1.12 1.12 

StressL 0.86 0.95 0.96 1.00 

StressR 2.19 1.55 0.38 1.00 

 

Figure 18-19: Surface plot for objective function weight; constraints are displayed on the 
metamodel. 
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18.1.5. Automating the design process 

This section illustrates the automation of the design process of improving the accuracy of the 
metamodels by reducing the design space for both a linear and a quadratic response surface 
approximation order by using the strategy: sequential with domain reduction, Figure 18-20. 10 
iterations are performed for the linear approximation, Figure 18-21, with only 5 iterations 
performed for the more expensive quadratic approximation. 

 

Figure 18-20: Task dialog; select strategy SRSM to automate the process. 
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Figure 18-21: Termination criteria; select 10 iterations for  linear, 5 for quadratic approach 

Results 

The final results of the two types of approximations are displayed in Table 18-4. The 
optimization histories have been plotted to illustrate convergence in Figure 18-22 and Figure 
18-23. Note that the more accurate but more expensive quadratic approximation converges in 
about 3 design iterations (48 simulations), while it takes about 7 iterations (49 simulations) for 
the objective of the linear case to converge. In general, the lower the order of the approximation, 
the more iterations are required to refine the optimum. 

Table 18-4: Summary of final computed results (2-bar truss) 

 Linear Quadratic 

Number of iterations 10 5 

Number of simulations 71 81 

AreaL 1.719 1.788 

AreaR 0.304 0.200 

Base 0.177 0.173 

Weight 1.027 1.008 

StressL 1.000 0.971 

StressR 0.976 1.386 
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Figure 18-22: Optimization history of design variables; linear (left) and quadratic (right) 
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Figure 18-23: Optimization history of responses; linear (left) and quadratic (right) 
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18.2. Small car crash (2 variables) 
This example has the following features: 

o An LS-DYNA explicit crash simulation is performed. 
o Extraction is performed using standard LS-DYNA interfaces. 
o A single iteration optimization using Radial Basis Function networks is performed. 
o The design optimization process is automated. 
o A mixed-discrete optimization is performed 
o An optimization using the direct genetic algorithm is performed. 

18.2.1. Introduction 

This example considers the crashworthiness of a simplified small car model. A simplified vehicle 
moving at a constant velocity of 15.64m.s-1 (35mph) impacts a rigid pole. See Figure 18-24. The 
thickness of the front nose above the bumper is specified as part of the hood. LS-DYNA is used 
to perform a simulation of the crash for an event duration of 50ms. 

  

a) deformed (50ms) b) undeformed 

Figure 18-24: Small car impacting a pole 

18.2.2. Design criteria and design variables 

The objective is to minimize the Head Injury Criterion (HIC) over a 15ms interval of a selected 
point subject to an intrusion constraint of 550mm of the pole into the vehicle at 50ms. The HIC 
is based on the linear head acceleration and is widely used in occupant safety regulations in the 
automotive industry as a brain injury criterion. In summary, the criteria of interest are the 
following: 

o Head injury criterion (HIC) of a selected point (15ms) 
o Peak acceleration of a chosen point filtered at 60Hz (SAE). 

Hood 

Bumper 
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o Component Mass of the structural components (bumper, front, hood and underside) 
o Intrusion computed using the relative motion of two points 
o Units are in mm and sec 

The design variables are the shell thickness of the car front (thood ) and the shell thickness of 
the bumper (tbumper) (see Figure 18-24). 

18.2.3. Design formulation 

The design formulation is as follows: 
Minimize 

 HIC (15ms)        (18-1) 

subject to 

Intrusion (50ms) < 550mm    

 

Figure 18-25: Definition of response histories using standard LS-DYNA interfaces. 
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The HIC value is defined using the INJURY interface. 
The intrusion is measured as the difference between the displacement of nodes 167 and 432. The 
displacement curves are extracted using the LS-DYNA NODOUT interface, Figure 18-25. These 
curves are evaluated at time t=50ms using response expressions. The intrusion is defined using a 
composite expression, Figure 18-27. 
The mass is computed using the LS-DYNA MASS interface, Figure 18-26, but not constrained. 
This is useful for monitoring the mass changes. 

 

Figure 18-26: Definition of responses using standard LS-DYNA interfaces and expressions. 
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Figure 18-27: Definition of composite expression using previously defined responses. 

18.2.4. Modeling 

The simulation is performed using LS-DYNA. An extract from the parameterized input deck is 
shown below. The parameterization of the model is done using the *PARAMETER keyword. 
The cylinder for impact is modeled as a rigid wall. 
*KEYWORD 
*PARAMETER 
rtbumper,3.0,rthood,1.0 

 

Figure 18-28: Parameter Setup; 

A design space of [1; 5] is used for both design variables, Figure 18-28. 
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18.2.5. Single iteration run using Radial Basis Functions 

As a first step, a single iteration is run using Radial Basis Function networks (RBF). In this 
manner a non-linear approximation is created across the whole design space. The approximation 
can then be used for sensitivity analysis or optimization. 

 

Figure 18-29: Sampling dialog; Select metamodel RBF, increase the number of points to 20. 

Results 

The computed vs. predicted HIC and Disp2 responses are given in Figure 18-30. The 
corresponding R2 value for HIC is 0.998, while the RMS error is 4.61%.  For Disp2, the R2 value 
is 0.994, while the RMS error is 0.353%. 

 

Figure 18-30: Computed vs. predicted responses – RBF approximation 
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Table 18-5: Comparison of baseline run and optimum (single iteration, RFB metamodel) 

 Baseline 
(Computed) 

Baseline 
(Predicted) 

1. Opt 
(Computed) 

1. Opt 
(Predicted) 

t_hood 1 - 1.60 - 

t_bumper 3 - 5 - 

HIC 68.03 71.51 130.2 134.08 

Intrusion 575.68 573.90 548.67 550 

Mass 0.41 0.41 0.67 0.67 

 

Figure 18-31: Sensitivities plots; ANOVA with 95% confidence interval (top) and GSA 
(bottom) 
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Figure 18-32: Surface plot for objective function HIC  with predicted and computed optimum, 
simulation points and residuals; constraints are displayed on the surface. 

 

Figure 18-33: History plot for Acceleration; the curves are color-coded using the value of the 
variable thood. 
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18.2.6. Automated run using linear metamodels 

An automated optimization is performed with a linear approximation. Select the strategy 
Sequential with domain reduction, Figure 18-34, and switch to the metamodel type Polynomial 
linear, Figure 18-35. Use the default number of points per iteration per case.  
In the Termination Criteria dialog, set the maximum number of iterations to 8, Figure 18-36. 

 

Figure 18-34: Task dialog; select Strategy Sequential with Domain Reduction 
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Figure 18-35: Sampling Dialog; use the default settings for SRSM for metamodel type and 
order, point selection scheme and number of points 

 

Figure 18-36: Termination Criteria dialog; select the maximum number of iterations 

Results 

It can be seen in Figure 18-37 that the objective function (HIC) and intrusion constraint are 
approximately optimized at the 7th iteration. It takes about 8 iterations for the approximated 
(solid line) and computed (square symbols) HIC to correspond. The approximation improves 
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through the contraction of the subregion. As the variable thood never moves to the edge of the 
subregion during the optimization process, the heuristic in LS-OPT enforces pure zooming (see 
Figure 18-38). For tbumper, panning occurs as well due to the fact that the linear 
approximation predicts a variable on the edge of the subregion. 

 

Figure 18-37: Optimization history of HIC and Intrusion 

 

Figure 18-38: Optimization history of design variables 
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18.2.7. Mixed-discrete optimization 

Mixed discrete optimization is achieved simply by setting the thood variable to be discrete 
with possible values of 1.0, 2.0, 3.0, 4.0, and 5.0.  The definition of a discrete variable is 
displayed in Figure 18-39. 

 

Figure 18-39: Parameter Setup dialog; Definition of a discrete variable. 

Results 

The design variables histories are shown in Figure 18-41, the optimization histories for the 
objective HIC and the constraint Intrusion in Figure 18-40.  

 

Figure 18-40: Optimization history of HIC and Intrusion for mixed-discrete optimization 
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Figure 18-41: Mixed-discrete variable histories. 

18.2.8. Optimization using Direct GA simulation 

The same problem is solved using a direct GA simulation, Figure 18-42. GA specific settings 
and advanced options may beselected in the Optimization dialog, Figure 18-43. For illustration, 
the population size is taken as 10 and number of generations is limited to 15. The Stochastic 
Universal Sampling method is used as selection operator. Two elite members (Number of Elites) 
are used in each generation. For real crossover, SBX operator is used (Crossover Type) with a 
distribution index of 5 (Crossover Distribution) and crossover probability of 0.99 (Crossover 
Probability). The real mutation probability (Mutation Probability) is 1.0. 

 

Figure 18-42: Task dialog; Direct Genetic algorithm 
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Figure 18-43: Optimization dialog; Specification of advanced GA options 

Results 

The outcome of the optimization is shown in Figure 18-44 and Figure 18-45. The discrete 
variable was fixed at 2 units. The direct GA does not terminate if the optimal result does not 
change from one iteration to the next, since the values may still improve. Note that the 
optimization history treats  ‘generation’ as ‘iteration’ to display results. 
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Figure 18-44: Optimization history of mixed-discrete variable optimization using direct GA 
simulation. 

 

Figure 18-45: Optimization history of HIC and Intrusion 
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18.2.9. Multilevel Optimization using both Direct method and Metamodel 

This example uses the same finite element model, but the optimization problem is modified to 
include two more variables. These variables are the material Young’s modulus YM and the yield 
stress SIGY. The optimization problem is given in Equation 16-2. However, the optimization is 
solved in two levels – the outer level optimizes SIGY and YM using a single iteration metamodel-
based method (Equation 16-3) and the inner level optimizes the thickness values thood and 
tbumper using direct GA (Equation 16-4). 

YMSIGY,tbumper,thood,
Minimize

 

 HIC (15ms)        (18-2) 

subject to 
Intrusion (50ms) < 550mm 
The outer level optimization problem is: 

YMSIGY,
Minimize

 

 HICopt_thood_tbumper (15ms)        (18-3) 

subject to 
Intrusionopt_thood_tbumper (50ms) < 550mm 
where HICopt_thood_tbumper and Intrusionopt_thood_tbumper are the HIC and intrusion values obtained as 
the results of  the inner level optimization problem with respect to variables thood and 
tbumper given by Equation 16-4. HICopt_thood_tbumper and Intrusionopt_thood_tbumper are obtained 
for every outer level sample (SIGY-YM pair) by running an inner level optimization for each 
sample. The inner level optimization problem for the jth outer level sample is: 

tbumperthood,
Minimize

 

       HIC (thood,tbumper|YMj,SIGYj) (15ms)      (18-4) 

subject to 

        Intrusion (thood,tbumper|YMj,SIGYj) (50ms) < 550mm 

The LS-OPT GUI for outer level problem setup is shown in Figure 18-46. The optimization 
problem setup is shown in Figure 18-47; HIC_1 and Intru are optimized responses calculated in 
the inner level. 
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Figure 18-46: Multilevel Optimization outer level setup 

  

Figure 18-47: Multilevel Optimization outer level optimization problem 

The LS-OPT GUI for inner level problem setup is shown in Figure 18-48. The optimization 
problem setup is shown in Figure 18-49. It should be noted that the outer level variables are 
Transfer Variables in the inner level and are treated as constants for the optimization. 
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Figure 18-48: Multilevel Optimization inner level setup 

  

Figure 18-49: Multilevel Optimization inner level optimization problem 

Results 
The optimum solution is obtained at SIGY = 412.2, YM = 2.5E5, tbumper = 4.85, thood = 
1.57. The corresponding HIC value is 105.2 and there is no constraint violation at the solution. It 
should be noted that this solution has a lower HIC value than in Section 18.2.5. This is because 
additional variables were introduced, leading to increased design options. 

The metamodel for HIC, with respect to outer level variables YM and SIGY, is shown in Figure 
18-50. The optimum is also plotted on the figure (purple cube). The inner level optimization 
history is depicted in Figure 18-51 for the outer level sample 2.1 (i.e. the sample with optimized 
YM and SIGY). 
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Figure 18-50: Multilevel Optimization. Metamodel for objective function (HIC)  

 

Figure 18-51: Inner level optimization history for the last (optimal) outer level sample.  
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18.2.10. Multilevel Optimization using continuous and string variables 

Multilevel optimization can be used to optimize different sets of variables using different 
methods. For example, direct optimization is often preferred for string or categorical variables 
while metamodel-based methods are often used for other variables. In this example, two of the 
variables are continuous while two other variables are strings. The continuous variables represent 
component thicknesses thood and tbumper and the string variables mat_b and mat_hood 
are the names of include files with different material properties. Two string constants m1 and 
material3 are also used in the example. Different methods of parameterizing string variables 
and constants (native LS-DYNA parameterization and user-defined) are demonstrated through 
this example.  
The optimization problem is given in Equation 16-5. However, the optimization is solved in two 
levels – the outer level optimizes thood and tbumper using a domain reduction 
metamodel-based method (Equation 16-6) and the inner level optimizes the thickness values 
mat_hood and mat_b using direct GA (Equation 16-7). 

mat_hoodmat_b,tbumper,thood,
Minimize

 

                 Mass        (18-5) 

subject to 
Intrusion (50ms) < 550mm 
The outer level optimization problem is: 

thoodtbumper,
Minimize

 

 Massopt_mat_b_mat_hood         (18-6) 

subject to 
   Intrusionopt_mat_b_mat_hood (50ms) < 550mm 
where Massopt_mat_b_mat_hood and Intrusionopt_mat_b_mat_hood are the mass and intrusion values 
obtained as the results of  the inner level optimization problem (Equation 16-7) with respect to 
variables mat_hood and mat_b. Massopt_mat_b_mat_hood and Intrusionopt_mat_b_mat_hood are 
obtained for every outer level sample (tbumper-thood pair) by running an inner level 
optimization for each sample. The inner level optimization problem for the jth outer level sample 
is: 

mat_hoodmat_b,
Minimize

 

                    Mass (mat_b,nat_hooh|tbumperj,thoodj)      (18-7) 

subject to 

         Intrusion (mat_b,nat_hooh|tbumperj,thoodj) (50ms) < 550mm 
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The outer level LS-OPT setup consists of an LS-OPT stage parameterized using two transfer 
variables. These variables, tbumper and thood, are constinuous variable in the outer level 
(Figure 18-52).  

  

Figure 18-52: Outer level optimization setup 

The inner level consists of two string variables and two string constants, in addition to the two 
transfer variables whose values are passed down from the outer level. The LS-DYNA input deck 
is parameterized as follows. tbumper, thood, m1 and mat_b are parameterized using 
the *PARAMETER card. The string parameters are indicated using “c” before the variable 
names. 
*PARAMETER 
rtbumper,3.0,rthood,1.0,cm1,mat1,cmat_b,mat_b_o 
Two other string parameters are defined using the user-defined format. The parameter thood 
appears at two places in the LS-DYNA deck: 
*include 
<<mat_hood:0>> 
*include 
<<mat_hood:30>> 

<<:0>> indicates that the entire replacement string will be printed without any additional 
spaces. <<:30>> indicates that if the length of the replacement string for mat_hood is 
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longer than 30 then it will be truncated. Also, if the replacement string for mat_hood is 
shorter than 30 then it would be padded with spaces while printing. 

The parameter material3 is defined without a colon and has the same meaning as 
<<:0>>. 

*include 
<<material3>> 
The inner level LS-OPT GUI setup is shown in (Figure 18-53). 

 

Figure 18-53: Inner level optimization setup with string and transfer variables 

Results 

The optimum solution is obtained at tbumper = 3.01, thood = 1.04 mat_b = “mat_b_3”, 
mat_hood = “mat_hood_3”. The corresponding Mass value is 0.42 and there is no constraint 
violation at the solution. The outer level optimization history for the SRSM method is depicted in 
Figure 18-54. 
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.  

Figure 18-54: Outer level optimization history.  

18.3. Impact of a cylinder (2 variables) 
This example has the following features: 

o LS-PREPOST is used to incorporate shape optimization. 
o The LS-DYNA keyword *PERTURBATION is used to incorporate a geometric 

imperfection. 
o An LS-DYNA explicit impact simulation is performed. 
o Result extraction is performed using standard LS-DYNA interfaces. 

The example in this chapter is modeled on one by Yamazaki [1]. 

18.3.1. Problem statement 

The problem consists of a tube impacting a rigid wall as shown in Figure 18-55. The energy 
absorbed is maximized subject to a constraint on the rigid wall impact force. The cylinder has a 
constant mass of 0.52 kg with the design variables being the mean radius and thickness. The 
length of the cylinder is thus dependent on the design variables because of the mass constraint. A 
concentrated mass of 500 times the cylinder weight is attached to the end of the cylinder not 
impacting the rigid wall. The deformed shape at 20ms is shown in Figure 18-56 for a typical 
design. 
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x1 x2 

 l 

10m/s 

 

Figure 18-55: Impacting cylinder 

The optimization problem is stated as 

Maximize 𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑥𝑥1, 𝑥𝑥2)|𝑡𝑡=0.02 

subject to 

max
 
�𝐹𝐹𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 (𝑥𝑥1, 𝑥𝑥2)� ≤ 80, 

𝑙𝑙(𝑥𝑥1, 𝑥𝑥2) =
0.52

2𝜋𝜋𝜋𝜋𝑥𝑥1𝑥𝑥2
 

where the design variables x1 and x2 are the radius and the thickness of the cylinder respectively. 
The internal energy  is the objective function and constraint functions  

max �𝐹𝐹𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 (𝑥𝑥1, 𝑥𝑥2)� and l(x) are the maximal normal force on the rigid wall and the length of 
the cylinder, respectively. The rigid wall force is filtered, frequencies exceeding 300Hz are 
excluded. 
The problem is simulated using LS-DYNA. LS-PREPOST is used as a preprocessor to 
incorporate the geometrical parameters. 

02.0internal )( =txE
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Figure 18-56: Deformed finite element model (time = 20ms) 

18.3.2. Solution 

The metamodel-based optimization method with linear metamodels, d-optimal point selection 
and strategy sequential with domain reduction is used. 
The main LS-OPT GUI windows showing the process is displayed in Figure 18-57. LS-
PREPOST is used to generate the finite element model of the cylinder depending on the 
parameter values, Figure 18-58. Since the LS-PREPOST output is used as include file in the LS-
DYNA input, the file needs to be copied to the LS-DYNA run directories, Figure 18-59. Another 
option to make the file available for LS-DYNA is to run LS-PREPOST in the directories of stage 
RUN_DYNA. 
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Figure 18-57: Main LS-OPT GUI window, LS-PREPOST is used as a preprocessor to 
incorporate geometrical parameters. 

 

Figure 18-58: Stage dialog interfacing with LS-PREPOST 
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Figure 18-59: File transfer dialog: the output file of LS-PREPOST is copied to the LS-DYNA 
run directories. 

To extract the rigid wall force and the internal energy, the LS-DYNA standard interfaces 
RCFORC and GLSTAT are used, respectively, Figure 18-60. The length of the cylinder is 
defined as a dependent of the radius and the thickness, also parameters concerning the element 
size and a value used for *PERTURBATION are defined as dependents, Figure 18-61. 

 

Figure 18-60: Result extraction using LS-DYNA interfaces GLSTAT and RCFORC 
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Figure 18-61: Parameter Setup: the length of the cylinder depending on the radius and the 
thickness is defined as a dependent to satisfy the mass constraint. 

18.3.3. Results 

Figure 18-62 displays the deployment of the optimal values over the iterations for the variables, 
the constraint and the objective function, respectively. The initial design below shows that the 
constraint is severely exceeded. The optimization process steadily reduces the infeasibility. The 
final internal energy is significantly lower than the initial value to satisfy the constraint, but 
improved with respect to the value of iteration 4, where feasibility is reached the first time. 
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Figure 18-62: Optimization history of parameters, the constraint and objective function. 

 

Figure 18-63: Cylinder: Constrained rigid wall force: F(t) < 80 (SAE 300Hz filtered); optimal 
curves of all iterations. The red curve is the final design. 
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18.4. Sheet-metal forming (3 variables) 
A sheet-metal forming example in which the design involves thinning and FLD criteria is 
demonstrated in this chapter. The example has the following features: 

o The example utilizes LS-PREPOST as preprocessor. 
o *DEFINE_CURVE_TRIM is used to define the radius of the work piece. 
o Adaptive meshing is used in the finite element analysis. 
o The example employs the sheet metal forming interface utilities for result extraction. 

18.4.1. Problem statement 

The design variables are the radii of the work tool and the radius of the work piece as indicated 
in Figure 18-64.  The design problem is formulated to minimize both tool radii while also 
specifying FLD constraints and a maximum thickness reduction of 25%. Hence the radii are 
variables and objectives at the same time. Adaptive meshing is chosen as an analysis feature for 
the simulation. The FE model is shown in Figure 18-65. 

 

Figure 18-64: Parameterization of cross-section 

 

Figure 18-65: Quarter segment of FE model: tools and blank 
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18.4.2. Solution 

LS-PREPOST is used as a preprocessor to incorporate the geometrical parameters, Figure 18-66. 
In a second stage, a trimming simulation is preformed using LS-DYNA. The thickness reduction 
and the FLD constraints are extracted from the forming simulation results using the FLD and 
THICK response interfaces, Figure 18-67. For each radius, a composite function is generated to 
be used as an objective function, Figure 18-68 and Figure 18-69. 
The definition of the FLD and thickness reduction constraints is displayed in Figure 18-70.  

 

Figure 18-66: Main LS-OPT GUI window 
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Figure 18-67: Interface for FLD response extraction 

 

Figure 18-68: Definition of composite functions 
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Figure 18-69: Definition of objective functions 

 

Figure 18-70: Definition of constraint functions 

18.4.3. Results 

The optimization history for the objectives and constraints is shown in Figure 18-71 and Figure 
18-72. A comparison between the starting and the final values is tabulated below, Table 18-6. 
The FLD diagrams (Figure 18-73) for the baseline design and the optimum illustrate the 
improvement of the FLD feasibility. A typical deformed state is depicted in Figure 18-74. 
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Figure 18-71: Optimization history of FLD constraints and thickness reduction 
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Figure 18-72: Optimization History of objectives radius_upper and radius_lower 

Table 18-6: Comparison of results (Sheet-metal forming) 

Variable Start (Computed) Optimal (Predicted) Optimal (Computed) 

THICKNESS 32.20 22.17 22.04 

FLD_upper_surface 0.047 -0.051 -0.051 

FLD_lower_surface 0.205 -0.050 0.050 

radius_upper 1 1.49 - 

radius_lower 1.5 3.08 - 
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Figure 18-73: FLD diagrams of baseline (left) and 10th iteration (right) 

 

Figure 18-74: Deformed state (optimal run), Fringe component plastic strain 
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18.5. Large vehicle crash and vibration (MDO/MOO) (7 variables) 
This example has the following features: 

o LS-DYNA is used for both explicit full frontal crash and implicit NVH simulations. 
o Multidisciplinary design optimization (MDO) and Multi-objective optimization (MOO) 

are illustrated with a realistic full vehicle example. 
o Extraction is performed using standard LS-DYNA interfaces. 
o Complex mathematical response expressions are used. 

This example illustrates a realistic application of Multidisciplinary Design Optimization (MDO) 
and concerns the coupling of the crash performance of a large vehicle with one of its Noise 
Vibration and Harshness (NVH) criteria, namely the torsional mode frequency [2].  

18.5.1. FE Modeling 

The crashworthiness simulation considers a model containing approximately 30,000 elements of 
a National Highway Transportation and Safety Association (NHTSA) vehicle [3] undergoing a 
full frontal impact. A modal analysis is performed on a so-called ‘body-in-white’ model 
containing approximately 18,000 elements. The crash model for the full vehicle is shown in 
Figure 18-75 for the undeformed and deformed (time = 78ms) states, and with only the structural 
components affected by the design variables, both in the undeformed and deformed 
(time = 72ms) states, in Figure 18-76. The NVH model is depicted in Figure 18-77 in the first 
torsion vibrational mode. Only body parts that are crucial to the vibrational mode shapes are 
retained in this model. The design variables are all thicknesses or gages of structural components 
in the engine compartment of the vehicle (Figure 18-76), parameterized directly in the LS-
DYNA input file. Twelve parts are affected, comprising aprons, rails, shotguns, cradle rails and 
the cradle cross member (Figure 18-76). LS-DYNA v.971 is used for both the crash and NVH 
simulations, in explicit and implicit modes respectively. 

 

(a)       (b) 

Figure 18-75: Crash model of vehicle showing road and wall a) Undeformed b) Deformed 
(78ms) 
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(a) 

 
(b) 

Figure 18-76: Structural components affected by design variables – a) Undeformed and (b) 
deformed (time = 72ms) 

 

Figure 18-77: Body-in-white model of vehicle in torsional vibration mode (38.7Hz) 

18.5.2. Design formulation 

The formulation is as follows: 

Minimize  Mass    

Minimize Maximum intrusion    

subject to     

Stage 1 pulse(xcrash) > 14.51g  

Stage 2 pulse(xcrash) > 17.59g  

Stage 3 pulse(xcrash) > 20.75g  

Front cradle upper and 
lower cross members 

Shotgun outer 
 and inner Left and right 

cradle rails 

Inner and 
outer rail 

Left and right 
apron 
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41.38Hz < Torsional mode frequency(xNVH) < 42.38Hz 

The three stage pulses are calculated from the SAE filtered (60Hz) acceleration and displacement 
of a left rear sill node in the following fashion: 

Stage i pulse = ∫−
− 2

1

d
12

d

d

xa
dd

k  ;  

k = 2.0 for i = 1, 1.0 otherwise; 

with the limits [d1;d2] = [0;184]; [184;334]; [334;Max(displacement)] for i = 1,2,3 respectively, 
all displacement units in mm and the minus sign to convert acceleration to deceleration. The 
Stage 1 pulse is represented by a triangle with the peak value being the value used. 

18.5.3. Multi-objective optimization using metamodel-based optimization 

The MDO and MOO features are specified as follows: 
o MDO. The two disciplines (crash and NVH) are treated separately. 
o MOO. Two design objectives (Intrusion and mass) are stated. The GA must be selected 

(in the Algorithms panel of the Optimization dialog or in the Task dialog) as metamodel 
optimizer to obtain the Pareto optimal front. 

Figure 18-78 shows the LS-OPT main GUI window for a multi-disciplinary optimization using 
metamodels. 
For the main task, select a metamodel-based optimization, Figure 18-79. Since Pareto Optimal 
solutions are generated, make sure to use a global strategy. To get a good approximation of the 
whole design space, choose a non-linear metamodel type, e.g. Radial Basis Functions, Figure 
18-80. Since we use the sequential strategy, the default number of points per iteration per case is 
appropriate. 
The displacements and the acceleration for the crash load case may be evaluated using the 
standard LS-DYNA interfaces, whereas more complex expressions are needed to calculate the 
stage pulses. The Lookup function may be used to get the value of t for a specified value of the 
selected history function, Figure 18-81. Then the stage pulses may be calculated using the 
Integral function, Figure 18-82. 
For the NVH load case, the FREQUENCY interface may be used to extract the frequency and 
related responses, Figure 18-83. Make sure that mode tracking is used. 

LS-OPT Version 5.2  388 



CHAPTER 18: Examples − Optimization 

 

Figure 18-78: Main LS-OPT GUI; Metamodel based optimization; two disciplines. 

 

Figure 18-79: Task dialog; Calculating Pareto Optimal solutions using a metamodel-base 
method using sequential strategy.  
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Figure 18-80: Sampling dialog; use Radial Basis Functions to get a global approximation. 

 

Figure 18-81: Lookup function; evaluate the value of t for a specified value of the history 
XDISP 
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Figure 18-82: Response Expression; The stage pulses are calculated using the Integral 
function. 

 

Figure 18-83: Frequency extraction with Mode Tracking 

Define the objective and constraint functions in the Optimization dialog. For the objectives, 
make sure that the multi-objective mode is selected, Figure 18-84. 
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Figure 18-84: Objectives panel; Select Multi-Objective Mode to create Pareto Optimal Front 

The constraints are scaled using the target values to balance the violations of the different 
constraints, Figure 18-85. This scaling is activated using a single check box and is only 
important in cases where multiple constraints are violated as in the current problem. However, it 
is a good idea to apply scaling of constraints as a rule. 

 

Figure 18-85: Constraints panel; Constraints are scaled using the target values. This is the 
default. 

Since the Pareto Optimal solutions are calculated on the metamodel, 100 verification runs are 
executed after the last iteration to check the quality of the results, Figure 18-86. 
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Figure 18-86: Verification Run; 100 verification runs are performed using results of the 
Pareto Optimal Front 

Results 

The LS-OPT viewer provides several tools to visualize Pareto Optimal solutions. Since this 
example has two objective functions, the Pareto optimal front obtained for the two cases can be 
displayed using the tradeoff plot, Figure 18-87. On the left, the Pareto Optimal solutions 
obtained from the metamodel are displayed while the plot on the right visualizes the verification 
runs. Some of the verification runs are infeasible due to the approximation error of the 
metamodel. Figure 18-88 shows the verification runs color-coded by the maximal constraint 
violation. For most of the simulations, the violation is almost 0, the highest constraint violation is 
0.03, which is fairly small. 
Figure 18-89 show the Self-Organizing maps plot (predicted) for the objective functions, the 
constraints and the variables. The conflict of the objectives is clearly visible (a blue cell in 
‘Mass_scaled” corresponds to a red cell in “Disp_scaled” and vice versa). The corresponding 
ranges and influences of the variables can also be examined. 
Figure 18-90 displays the Parallel Coordinate Plot of the predicted Pareto optimal solutions and 
the verification runs. This plot is useful to select a run from the various Pareto optimal solutions 
that best fits the requirements of the application. Using sliders located at the top and bottom of 
each vertical axis, the bounds of the constraints and the ranges of all entities can be interactively 
modified to narrow down the set of suitable solutions.   
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Figure 18-87: Pareto optimal front. Comparison of predicted results (left) and verification 
runs (right) 

 

Figure 18-88: Verification runs color-coded by maximal constraint violation. 
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Figure 18-89: Self Organizing Maps plot of predicted Pareto optimal solutions 

 

Figure 18-90: Parallel Coordinate Plot; Predicted Pareto Optimal solutions (top) and 
verification runs (bottom) 

18.5.4. Multi-objective optimization using Direct GA simulation 

Next, the problem is solved using direct GA simulations, Figure 18-91. The GA options used are 
displayed in Figure 18-92. The NSGA-II algorithm (MOEA) was used. Tournament selection 
operator (Selection Operator), with a tournament size of four (Tournament Size), was used to 
remove individuals with low fitness values. The simulated binary crossover (Crossover Type) 
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and mutation operators were used to create child populations. The trade-off files were generated 
at each generation (Restart Interval).  

 

Figure 18-91: Task dialog; Direct genetic algorithm 

 

Figure 18-92: Options for Genetic Algorithm 
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Results 

The optimization results are displayed in the following figures. 
Since this example has two objective functions, the Pareto optimal front obtained for the two 
cases can be displayed using the tradeoff plot, Figure 18-93.  
Figure 18-94 shows the Self-Organizing maps plot for the objective functions, the constraints 
and the variables. As in the metamodel-based optimization, the conflict of the objectives is again 
clearly visible while the ranges and influences of the variables can be examined. 
Figure 18-95 displays the Parallel Coordinate Plot of the Pareto optimal solutions. This plot is 
useful to select a run out of the various Pareto optimal solutions that best fits the requirements of 
the application. As in the metamodel-based optimization, sliders located at the top and bottom of 
each vertical axis can be interactively adjusted to modify the bounds of the constraints and the 
ranges of all entities. This allows the user to narrow down the set of suitable solutions.  

 

Figure 18-93: Tradeoffs between scaled mass and intrusion (displacement). 

Trade-off between the two objectives shows that intrusion can be reduced by increasing the 
mass. The trade-off curve clearly illustrates that reduction in intrusion (from 0.81 to 0.988) will 
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require a corresponding increase in mass (from 0.861 to 1.506). The ranges of the optimal design 
variables corresponding to the candidate Pareto optimal front are given in Table 18-7. 

 

Figure 18-94: Self-organizing maps plot of Pareto optimal solutions; results of last generation 

 

Figure 18-95: Parallel coordinate plot of Pareto optimal solutions; results of last generation 

Table 18-7: Ranges of design variables in the final optimal solution set. 

Variable Lower Upper 

Rail inner 2.27 3.01 

Rail outer 0.97 3.04 

Aprons 0.97 2.32 

Shotgun inner 0.97 2.47 

Shotgun outer 1.44 2.40 

Cradle cross member 1.00 1.09 

Cradle rails 0.96 3.04 
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18.6. Knee impact with variable screening (11 variables) 
(Example by courtesy of Visteon and Ford Motor Company) 
This example has the following features: 

o ANSA11 is used as independent parametric preprocessor for shape parameterization 
o A sensitivity analysis is performed to obtain a reduced set of variables for the 

optimization 
o The minimum of two maxima is obtained in the objective (multi-criteria or multi-

objective problem). 

18.6.1. FE modeling 

Figure 18-96 shows the finite element model of a typical automotive instrument panel (IP) [4]. 
For model simplification and reduced per-iteration computational times, only the driver's side of 
the IP is used in the analysis, and consists of around 25,000 shell elements. Symmetry boundary 
conditions are assumed at the centerline, and to simulate a bench component "Bendix" test, body 
attachments are assumed fixed in all 6 directions. Also shown in Figure 18-96 are simplified 
knee forms which move in a direction as determined from prior physical tests. As shown in the 
figure, this system is composed of a knee bolster (steel, plastic or both) that also serves as a 
steering column cover with a styled surface, and two energy absorption (EA) brackets (usually 
steel) attached to the cross vehicle IP structure. The brackets absorb a significant portion of the 
lower torso energy of the occupant by deforming appropriately. Sometimes, a steering column 
isolator (also known as a yoke) may be used as part of the knee bolster system to delay the wrap-
around of the knees around the steering column. The last three components are non-visible and 
hence their shape can be optimized.  The 11 design variables are shown in Figure 18-97. 
The simulation is carried out for a 40 ms duration by which time the knees have been brought to 
rest.  It may be mentioned here that the Bendix component test is used mainly for knee bolster 
system development; for certification purposes, a different physical test representative of the full 
vehicle is performed. Since the simulation used herein is at a subsystem level, the results 
reported here may be used mainly for illustration purposes. 

11 BETA CAE Systems S.A. 
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Figure 18-96: Typical instrument panel prepared for a "Bendix" component test 

 

Figure 18-97: Typical major components of a knee bolster system and definition of design 
variables. 
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18.6.2. Design formulation 

The optimization problem is defined as follows: 
Minimize   ( max (Knee_Force_Left, Knee_Force_Right) ) 
Subject to 

Left Knee intrusion < 115mm 

Right Knee intrusion < 115mm 

Yoke displacement <  85mm 

Kinetic Energy <  1.54e5 

The knee forces have been filtered, SAE 60 Hz, to improve the approximation accuracy. 

18.6.3. Solution 

ANSA is used to parameterize the geometry, Figure 18-98 and Figure 18-99. Since the ANSA 
output file is used as in include file in the LS-DYNA input, a file transfer has to be defined to 
copy the file to the respective LS-DYNA run directory, Figure 18-100. Alternatively, the option 
“Run jobs in directory of stage“ could be used. The maximal knee force to be used as objective 
function is defined as a composite expression, Figure 18-101. The definition of the constraints is 
displayed in Figure 18-102. 

 

Figure 18-98: Main LS-OPT GUI window. ANSA is used as a preprocessor in LS-OPT to 
incorporate shape optimization 
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Figure 18-99: ANSA interface; definition of ANSA command, design variables file and ANSA 
database. 

 

Figure 18-100: File transfer; the ANSA output is used as include file in the LS-DYNA input 
file. 
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Figure 18-101: Definition of maximal knee force as composite expression. 

 

 Figure 18-102: Constraints for the knee bolster design problem. 
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18.6.4. Variable screening 

First a DOE is done with a linear approximation to find the most sensitive parameters. The 
ANOVA and Sobol’s global sensitivity analysis charts may be used to evaluate the results, 
Figure 18-103 and Figure 18-104. Note the large confidence intervals (low confidence levels) on 
some of the responses, especially the Kin_Energy, the Knee_Force_Left  and Yoke_Disp.  

 

Figure 18-103: ANOVA plots for objectives and constraints of knee-bolster design problem. 

 

Figure 18-104: Global sensitivity analysis of objectives and constraints. 

The six most sensitive variables chosen from the charts are: 
x=[ Yoke_Cross_Scetion_Radiu, THICK_k, THICK_r, THICK_l, Left_EA_Width, 
Right_Hole_Radius_1]T; 
Those variables are used to perform an optimization. 
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18.6.5. Optimization 

After reducing the set of parameters considering the results of the previously performed DOE, a 
metamodel-based optimization is performed using the strategy sequential with domain reduction 
and linear metamodels. The reader is also referred to [5] for a discussion of the accuracy and 
purpose of the various sequential sampling strategies available in LS-OPT.  
The plots below (Figure 18-105) show the optimization histories, i.e. the deployment of the 
optimal values over the iterations, of the objectives and the maximal constraint violation. While 
the baseline design resulted in a maximum force of 16551.7 and a maximal constraint violation 
of 41.7, the optimum design resulted in a maximum force of only 6720.7. Though intermediate 
computed results were infeasible because of the approximation error of the metamodels, the final 
design was feasible. 

 

Figure 18-105: Optimization history of objectives and maximum constraint violations. 
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18.7. Shape optimization of a front rail using ANSA12 and µETA13 
This example has the following features: 

o Optimization of a 3-stage process chain using ANSA, LS-DYNA and µETA 
o Shape optimization using the ANSA morphing tool 
o Discrete variables 
o Result extraction using µETA 

18.7.1. Problem Statement 

The problem is of a front rail crash simulation. Embosses are to be used to  

Minimize acceleration 

subject to 

mass < 1.8 

intrusion < 300. 

The design variables are the depth and width of the embosses, the distance between the 
embosses, and the thickness of the rail, Figure 18-106. Thickness and width are defined as 
discrete parameters. 

 

Figure 18-106: Rail with embosses. 

18.7.2. Solution 

The morphing tool of the preprocessor ANSA is used to incorporate the geometrical parameters. 
The thickness parameter is also defined in ANSA. The ANSA database including morphing 

12 BETA CAE Systems S.A. 
13 BETA CAE Systems S.A. 

width 

distance 

depth 

thickness 
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boxes, morphing parameters, and the optimization task is provided in rail_task.ansa. See 
[7] for the setup of the morphing boxes and the optimization task. Make sure that the 
Optimization task is set to Execution mode in ANSA before running the optimization. 

A metamodel based optimization with strategy sequential with domain reduction is used. Figure 
18-107 displays the main LS-OPT GUI window visualizing the optimization process and the 
ANSA – LS-DYNA – µETA process chain. 

 

Figure 18-107: Main LS-OPT GUI window; Metamodel based design optimization, Strategy 
SRSM; Optimization of a process chain with 3 stages. 

Figure 18-108 shows the Setup of the ANSA stage. This stage has no responses or histories.  

All parameters defined in rail_DV.txt are imported to LS-OPT, including type, values and 
ranges, Figure 18-109. 
Since the ANSA output is used for the LS-DYNA run, the specification of a file transfer is 
needed to copy the output to the respective LS-DYNA run directory, Figure 18-110. Another 
possibility to make output files available for other stages is to run the jobs in the respective stage 
directory. This is done here for the META stage, Figure 18-111. 
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Figure 18-108: Stage dialog interfacing with ANSA 

 

Figure 18-109: Parameter Setup; variables, values and ranges are imported from the ANSA 
DV file 
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Figure 18-110: File Transfer dialog; the ANSA output file rail.key is copied to the respective 
LS-DYNA run directory. 

 

Figure 18-111: Stage dialog interfacing with µETApost. µETApost is run in the respective LS-
DYNA run directory, since the results are extracted from the LS-DYNA output. 
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18.7.3. Results 

Figure 18-112 and Figure 18-113 display the optimization history of the variables and the 
responses, respectively. There is no convergence for the variable Emboss_Width, but as the 
Sensitivies Plot in Figure 18-114 shows, this variable is not sensitive. Due to metamodel 
inaccuracy, the final design is infeasible displayed in Figure 18-115, but e.g. the optimal value of 
iteration 9 is feasible, and the acceleration value is similar. 

 

Figure 18-112: Optimization History of variables. 
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Figure 18-113: Optimization History of objective and constraints. 

 

Figure 18-114: Global Sensitivities. 

 

Figure 18-115: Final design. Optimum of iteration 10. 
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18.8. Optimization with analytical design sensitivities 
This example has the following features: 

o Using analytical design sensitivities for optimization 
o Defining a user-defined solver 

18.8.1. Problem Statement 

The optimization problem to be solved is 

max(𝑥𝑥12 + 4(𝑥𝑥2 − 0.5)2) 

subject to 

𝑥𝑥1 + 𝑥𝑥2 ≤ 1 
−2𝑥𝑥1 + 𝑥𝑥2 ≤ 2 

𝑥𝑥2 ≥ 0. 

Figure 18-116 displays the objective and constraint functions. 

 

Figure 18-116: Objective and constraint functions. 

This example demonstrates how analytical gradients (Section 9.1.2) provided by a solver can be 
used for optimization using the SLP algorithm and the domain reduction scheme [5] (Section 
23.6). The solver, a Perl program, is shown below. It calculates the analytical functions as well 
as the gradients at the respective simulation points. 
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In this example the input variables are read from the file: XPoint placed in the run directory 
by LS-OPT. The input variables can also be read by defining this file as an input file and using 
the <<variable_name>> format to label the variable locations for substitution. Note that each 
response requires a unique Gradient file. 

Solver program: 
# Open output files for response results 
# 
open(FOUT,">fsol"); 
open(G1OUT,">g1sol"); 
open(G2OUT,">g2sol"); 
# 
# Output files for gradients 
# 
open(DF,">Gradf"); 
open(DG1,">Gradg1"); 
open(DG2,">Gradg2"); 
# 
# Open the input file "XPoint" (automatically  
# placed by LS-OPT in the run directory) 
# 
open(X,"<XPoint"); 
# 
# Compute results and write to the files 
# (i.e. conduct the simulation) 
# 
while (<X>) { 
   ($x1,$x2) = split; 
} 
# 
print FOUT  ($x1*$x1) + (4*($x2-0.5)*($x2-0.5)),"\n"; 
# Derivative of f(x1,x2) 
#----------------------- 
print DF    (2*$x1)," ";          # df/dx1 
print DF    (8*($x2-0.5)),"\n";   # df/dx2 
# 
print G1OUT $x1 + $x2,"\n"; 
# Derivative of g1(x1,x2) 
#------------------------ 
print DG1 1," "; 
print DG1 1,"\n"; 
# 
print G2OUT (-2*$x1) + $x2,"\n"; 
# Derivative of g2(x1,x2) 
#------------------------ 
print DG2 -2," "; 
print DG2 1,"\n"; 
# 
# Signal normal termination 
print "N o r m a l\n"; 
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18.8.2. Solution 

Figure 18-117 shows the stage dialog defining the user-defined solver. 
Figure 18-118 displays the response definitions. The gradient files generated by the Perl program 
need to be copied to a file called Gradient, the calculated response values need to be output to 
standard output. 
Use the metamodel type Sensitivity to use analytical gradients for optimization, Figure 18-119. 

 

Figure 18-117: Defining a user-defined solver 
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Figure 18-118: User-defined results extraction. 

 

Figure 18-119: Sampling definition for optimization using analytical sensitivities 

Typical ″Gradient″ file (e.g. for f): 
1.8000000000 –3.20000000000 
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18.8.3. Results 

The optimization results are shown in the plots below. An iteration represents a single 
simulation. The red dots represent the computed results while the solid line represents a linear 
approximation constructed from the gradient information of the previous point. 

 

Figure 18-120: Optimization history for variables 

 

Figure 18-121: Optimization history for objective 
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Figure 18-122: Optimization history for constraints 

18.9. Small car crashworthiness example using GenEx to extract 
histories/responses from data files 

18.9.1. Problem Description 

o This example demonstrates the use of GenEx for extracting histories and responses from 
LS-DYNA data files.  

o The small car crash design optimization example (see Section 17.2) has been modified by 
defining LS-DYNA histories and responses using GenEx. Even though GenEx is not 
required for this example, it has been used only to demonstrate its use.  

o This example is a minimization problem with total mass of four parts (part no.2, 3, 4 and 
5) as the objective and the intrusion distance calculated as the difference between 
displacements of two nodes (432 and 167) as the design constraint. 

o The steps to define the task type and design parameters are similar to other simple LS-
OPT examples. In this example, internal energy, nodal acceleration and rigid wall force 
are defined as histories with part masses and nodal displacements defined as responses 
using various GenEx features. 

The following files are used in this example: 
main.k     Main (root) file with LS-OPT design parameters 
car5.k               Include file specified in main.k 
rigid2    Include file specified in main.k 
sample_nodout  Input data file for nodout histories/responses  
sample_glstat   Input data file for glstat histories 
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sample_rwforc   Input data file for rwforc histories 
sample_d3hsp                   Input data file for d3hsp responses  
genex_nodout.g6  GenEx input file for nodout  
genex_glstat.g6  GenEx input file for glstat  
genex_rwforc .g6  GenEx input file for rwforc  
genex_d3hsp.g6  GenEx input file for d3hsp 

18.9.2. Defining Responses in GenEx 

1. Open the file genex.start.lsopt using the LS-OPT GUI. 

2. The task, parameters, sampling and solver settings have already been defined in the 
project file.  

3. The next step is to define responses using GenEx so that these responses can later be 
assigned as optimization objectives or constraints.   

4.  Instead of choosing LS-DYNA responses, the responses are defined using GenEx i.e. 
using the ‘GENEX’ option available under generic list of options within the ‘Histories’ 
and ‘Responses’ tabs of the Setup dialog box. Defining histories/responses using GenEx 
requires an input data file and a .g6 GenEx file as shown in Figure 18-123.. 

 

Figure 18-123: GenEx response dialog box 

5. To define the sum of part masses as an objective, the mass of each part should be defined 
separately as a response. Since the values of the part masses are extracted from the same 
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data file (d3hsp), they can have the same GenEx input file (.g6 file). The GenEx input file 
stores the locations of response values to be extracted from the data file.    

6. To define the mass of part 2 as a response, click on GENEX within the Responses tab. 
Assign a name to the response and click on Create/Edit to open the GenEx window for 
creating a .g6 file (GenEx input file).  

7. The mass is extracted from the d3hsp file of LS-DYNA, therefore open sample_d3hsp 
file in GenEx (File  Select input file). These sample files are output files of the baseline 
analysis.  

8. The mass of part 2 in d3hsp file is identified using anchors and entities. Anchors facilitate 
searching for a field from the data file and an Entity is the actual value field to be 
extracted.  

9. The part mass information is printed in d3hsp under ‘summary of mass’ section. To 
define an anchor, click on New Anchor, assign a name (e.g. mass_of_parts) and enter 
“summary of mass” in ‘Text to search for’ field and hit enter. This creates an anchor at 
the start of the first occurrence of text “summary of mass” throughout d3hsp file as 
shown in Figure 18-124.  

 

Figure 18-124: Creating Anchors in GenEx  

10. Now an entity can be defined under this anchor using the New Entry option. Since 
responses are scalar values, the ‘Type of Entity’ is selected as ‘Scalar’. The relative 
location of this entity is adjusted to obtain the value of mass of Part 2. For example, in the 
sample_d3hsp file, the relative location of mass of Part 2 with respect to the defined 
anchor is specified as line 2, column 5. The final value to be extracted will be highlighted 
on the data file as shown in Figure 18-125. 
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Figure 18-125: Entity selection in GenEx  

11. Similarly, more entities can be created for other parts under the same anchor with the 
only difference being their respective relative locations, Figure 18-126. 

 

Figure 18-126: Multiple entities of an anchor in GenEx  

12. Once all the entities are defined, save the extraction setup to create a .g6 file 
(sample_d3hsp.g6). Now the LS-OPT responses can be defined using this .g6 file and 
corresponding data file. In the New Response dialog box, select this .g6 file as the GenEx 
input file. Once this file is selected, LS-OPT lists all the entities defined in the file. Select 

LS-OPT Version 5.2  420 



CHAPTER 18: Examples − Optimization 

the entity (part_2) to define it as an LS-OPT response with d3hsp being the input data 
file, as shown in Figure 18-127. Repeat this process to define the LS-OPT mass responses 
of all the parts specified. 

 

Figure 18-127: Defining GenEx response in LS-OPT 

13. To create GenEx responses for extracting nodal displacements, similar steps can be 
followed with nodout being the input data file. The sample nodout file (sample_nodout) 
provided with the example can be used to create the required GenEx input file. An anchor 
can be created to search for text ‘x-disp’. By default, this anchor is created under Start of 
file anchor with forward search direction and hence the search results in locating the first 
occurrence of ‘x-disp’ within the nodout data file. Since the last reported displacement 
values are required, the anchor origin can be changed to ‘End of file’ with a backward 
search direction as shown in Figure 18-128. Entities for the x-displacement of both nodes 
(432 and 167) can be defined under this anchor. 
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Figure 18-128: Changing anchor origin and search direction for backward search in GenEx 

14. Once all the required entities are defined, the process is saved as genex_nodout.g6 and 
Step 12 can be repeated to define the LS-OPT responses using this GenEx file with 
nodout being the input data file.   

15. As with any other LS-OPT responses, these GenEx responses can be assigned as 
optimization objectives/constraints.  

18.9.3. Defining Histories in GenEx 

1. Even though histories are not utilized in this example problem, internal energy, nodal 
acceleration and rigid wall force histories have been defined to demonstrate the use of 
GenEx for extracting histories from an input data file. 

2. Similar to responses, GenEx histories require an input data file and its corresponding .g6 
GenEx file, as shown in Figure 18-129. 
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Figure 18-129: GenEx history dialog box 

3. To create internal energy history, click on GENEX and assign a name to the history. The 
LS-DYNA ASCII file glstat is used as input data file, i.e. internal energy history is 
extracted from glstat. To create a .g6 file (genex input file), click on Create/Edit to open 
the GenEx window and select sample_glstat as the input file from the GenEx window 
(File  Select input file).  

4. Now Anchors and Entities should be defined to locate internal energy values at each time 
interval.  

5. To define an anchor, click on New Anchor, assign a name (e.g. cycle) and enter “dt of 
cycle” in the ‘Text to search for’ field and hit enter. This creates an anchor at the start of 
the first occurrence of text “dt of cycle”.  

6. Now create entities for time (x-vector) and internal energy values (y-vector) using this 
anchor. Click on ‘New Entry’ and find the relative location of internal energy values with 
the defined anchor. The relative location can be determined using lines, characters and 
columns options. In this example, the entity IE_value is located at line 5, column 2 
relative to the anchor and the entity time is located at line 2, column 1 (with whitespace 
as the column separator). 

7. Since this is a history, the entities time and IE_value at each cycle should be extracted. 
This can be done by selecting Repeated Anchor Vector as entity type. Selecting Repeated 
Anchor Vector as anchor type highlights all the entity fields with locations relative to text 
“dt of cycle” throughout the data file (shown in Figure 18-130). Once all the anchors and 
entities are defined, save the GenEx file and close the GenEx window.  
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Figure 18-130: History definition using Repeated Anchor Vector as entity type 

8. Now select the GenEx file created in the previous steps as the ‘input GenEx file’ of 
history and glstat as ‘input data file’. Once the GenEx file is selected, the entities defined 
are listed under X/time vector and Y/value vector. Select the time entity as X vector and 
IE_value as Y vector and click OK, Figure 18-131. The internal energy history using 
GenEx has now been defined. When LS-OPT is executed, the defined entity fields are 
extracted as histories from glstat ASCII files generated as a result of the LS-DYNA 
analysis in each run directory. 

 

Figure 18-131: Defining GenEx history in LS-OPT 
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9. Similarly, the nodal acceleration history can be formulated using Repeated Anchor 
Vector for the nodout input data file. To create the .g6 file, the same input GenEx file 
(genex_nodout) used for nodal displacement responses can be modified to include history 
entities.  

10. The rigid wall force history can be extracted from rwforc data file. In this example, since 
only one rigid wall has been defined, the rwforc history (time vs. force) values are printed 
as a list. Therefore, after defining the anchor, the type of entity can be selected as Column 
Vector instead of using Repeated Anchor Vector. When Column Vector is selected all the 
components below the selected entity until the end of the file are highlighted (see Figure 
18-132). 

 

Figure 18-132: History definition using Column Vector as entity type 

11. If a user requires a limited number of components of the column, the Maximum Number 
of Components check box can be used to define the required number.       

12. Once the GenEx file is created, the LS-OPT histories can be defined using this file as 
explained in Step 8. 

18.9.4. Optimization Results 

o The optimization problem was solved using metamodel-based sequential optimization 
with domain reduction technique.   

o The process took seven iterations (with five design points in each iteration) to converge.  
o At the optimum design, the total mass of selected parts was 0.465kg and the computed 

intrusion distance was 549.29mm vs. 550mm predicted by the metamodel. 
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19. Examples − Parameter 
Identification 

19.1. Material identification (elastoplastic material) (2 variables) 
A methodology for deriving system or material parameters from experimental results, known as system or 
parameter identification, is applied here using optimization. The example has the following features: 

o The Mean Square Error composite is used as curve matching metric. 

o The Crossplot history is used.  

o The Min-Max formulation is demonstrated. 
o Multiple test cases are employed. 
o The confidence intervals of the optimal parameters are reported. 

19.1.1. Problem statement 

 

Figure 19-1: Sample of elastoplastic material subjected to a controlled vertical displacement 

The material parameters of a foam material must be determined from experimental results, namely the 
resultant reaction force vs. displacement history of a cubic sample on a rigid base (see Figure 19-1). The 
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problem is solved by minimizing the mean squared residual force (rcforc binary database) with the 
material parameters Young's modulus E and Yield stress Y as the unknown optimization variables.  
The “experimental” resultant forces vs. displacements are shown below. The results were generated from an 
LS-DYNA run with the parameters ( 610=E , 310=Y ). Samples are taken at times 2, 4, 6 and 8 ms for the 
first load case, the test points for the second load case are taken within the linear range of force vs. 
deformation:   

Test1.txt 
  0.36168 10162 
  0.72562 12964 
  1.0903  14840 
  1.4538  17672 

Test2.txt 
  0.02272 2047 
  0.03671 6997 
  0.04653 12215 
  0.05779 17010 

The finite element models for the two cases are represented in the keyword files foam1.k and foam2.k 
respectively. 

19.1.2. Ordinate-based Curve Matching 

The LS-OPT main GUI window is displayed in Figure 19-2. 

The displacement and force histories are extracted from the simulation output using the NODOUT and 
RCFORC interfaces, respectively. Those histories are used to construct a force vs. displacement 
Crossplot for the two cases, Figure 19-3. The experimental curves used as target curves are read into 
LS-OPT as File Histories, Figure 19-4. The mean squared residual error (MSE) between each 
Crossplot and the corresponding test data is then computed. The two MSE values are simply added to 
find the objective value. Although only four test points are given for each case, 10 points at constant 
intervals are interpolated for use in the Mean Square Error composite, Figure 19-5 (Section 10.5.1): 
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where 𝑃𝑃 = 10, 𝑠𝑠𝑝𝑝 = 17672 (Case 1), 17010 (Case 2) and 𝑊𝑊𝑝𝑝 = 1,𝑝𝑝 = 1, … ,10. By default, 𝑠𝑠𝑝𝑝 assumes 
the maximum absolute value of each curve respectively. 
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Figure 19-2: LS-OPT main GUI window 

 

Figure 19-3: Crossplot definition of force vs. displacement 
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Figure 19-4: File History definition. This dialog is accessible from the Histories tab of the Stage dialog 
or the Curve Matching composite dialog. 

 

Figure 19-5: Definition of Mean Square Error composite 
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19.1.3. Targeted composite formulation 

In this formulation, the force history is evaluated at specific times. The deviations from the respective target 
values calculated using the targeted composite formulation, so that the optimization problem for parameter 
identification becomes: 

Minimize  ∑ �𝑓𝑓𝑗𝑗(𝐱𝐱)− 𝐹𝐹𝑗𝑗�7
𝑗𝑗=1 , 

where jf  are the force values evaluated from the simulation runs and jF  the respective target values. 

As a method of second choice, this method presently requires a more laborious input preparation than the 
MSE approach. The force is evaluated using the RCFORC interface. This history is evaluated at the points 
where target values are available using the EXPRESSION interface, Figure 19-6. The definition of the 
targeted composite is displayed in Figure 19-7. 

 

Figure 19-6: Evaluation of simulation curves at target t values 
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Figure 19-7: Definition of equality constraints using the Standard Composite type MSE. 

19.1.4. Results 

The results for both methods are compared below. 

19.1.5. Mean Squared Error (MSE) formulation 

Figure 19-8 visualizes the optimal parameter values (red line) and the respective subregion (blue lines) over 
the iterations. Figure 19-9 displays the final optimal parameter values with respect to a normalized design 
space with 95% confidence interval. The larger confidence interval as well as the slower convergence of 
YMod can be explained by the insignificance of that parameter on the objective function, Figure 19-10. 
Figure 19-11 displays the computed (red square) and predicted (black line) objective values over the 
iterations. Both objectives decrease, the quality of the predictions improves and we get convergence for both 
objectives. 
Figure 19-12 visualizes the optimal force vs. displacement curves together with the target curves. The 
simulation curves are colored by iteration. There is already a good fit after the second iteration. 
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Figure 19-8: Optimization History for YMod and Yield 

 

Figure 19-9: Parameter values of optimal point in normalized design space with 95% confidence interval. 

 

Figure 19-10: Global Sensitivities for MSE1 and MSE2 

LS-OPT Version 5.2  433 



CHAPTER 19: Examples − Parameter Identification 

 

Figure 19-11: Optimization history of MSE 1 and MSE2. Both objectives decrease, and the accuracy of 
the metamodel improves over the iterations. 
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Figure 19-12: Comparison of optimal force-displacement curves and test data. The simulation curves are 
colored by iteration 

19.1.6. Targeted composite formulation 

Figure 19-13 visualizes the optimal parameter values (red line) and the respective subregion (blue lines) 
over the iterations. Figure 19-14 displays the final optimal parameter values with respect to a normalized 
design space with 95% confidence interval. The larger confidence interval as well as the slower 
convergence of YMod can be explained by the insignificance of that parameter on the objective function, 
Figure 19-15. 
Note that the optimum Young’s modulus differs slightly from the results obtained with the Mean Square 
Error approach due to its relative insignificance in the optimization as depicted in the Global Sensitivities 
Plot (Figure 19-15). 
Figure 19-16 displays the computed (red square) and predicted (black line) objective values over the 
iterations. The objective decreases, the quality of the predictions improves and the objective value 
converges. 
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Figure 19-13: Optimization History for YMod and Yield 

 

Figure 19-14: Parameter values of optimal point in normalized design space with 95% confidence 
interval. 

LS-OPT Version 5.2  436 



CHAPTER 19: Examples − Parameter Identification 

 

Figure 19-15: Global Sensitivities for all forces and MSE 

 

Figure 19-16: Optimization history of MSE. The objectives decrease, and the accuracy of the metamodel 
improves over the iterations. 

19.2. System identification with hysteretic curves 

19.2.1. Problem statement 

The Bauschinger effect is significant for automotive sheet steels. The phenomenon is observed under cyclic 
loading which results in a hysteretic stress-strain curve. The nature of the hysteretic curve complicates the 
curve matching required to identify the material parameters and therefore an approach which is more 
sophisticated than the ordinate-based matching is required. For this purpose, a Curve Mapping algorithm is 
used. 
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The following example consists of five load cases, each representing a different cyclic loading range as 
illustrated in the stress-strain diagram in the figure below. The material is defined by 9 parameters. 

19.2.2. Solution using Curve Mapping 

 

Figure 19-17: History definitions. Extract stress and strain using the LS-DYNA d3plot interface. Use the 
Crossplot interface to generate the stress vs. strain curve 
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Figure 19-18: Define a curve matching composite for each load case. 
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Figure 19-19: Definition of the five objective components. 

19.2.3. Results 

 

Figure 19-20: Optimization History of objective components for each of the five load cases as well as the 
multi-objective 
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Figure 19-20 displays the optimization history plots of all objective components, i.e. the curve mapping 
composite of each load case, as well as the optimization history of the multi-objective. For all entities, the 
values decrease rapidly, as the optimal values of the first iteration are alrady quite small. 
Figure 19-21 displays the Global Sensitivities plot for the whole problem. The variable CB is by far the 
most sensitive. 

 

Figure 19-21: Global Sensitivities plot of all objective components 

 

Figure 19-22: Comparison of optimal simulation curves of all iterations and target curves for all load 
cases; simulation curves are colored by iteration (e.g. baseline in blue. The black crosses represent the 
target values. The plot at bottom right shows the comparison of the final optimal simulation curves and 
target curves for all load cases.  

Figure 19-22 visualizes the optimal simulation curves for all iterations colored by the iteration together with 
the target curves for all load cases. Already the optimal curves of the first iteration (turquoise) indicate a 
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good fit. The plot at the bottom on the right shows all target curves (black crosses) and the final optimal 
simulation curves for all load cases. 
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20. Examples − Probabilistic 
Analysis  

20.1. Probabilistic Analysis 

20.1.1. Overview 

This example has the following features: 
o Probabilistic analysis 
o Monte Carlo analysis 
o Monte Carlo analysis using a metamodel 
o Bifurcations analysis 

20.1.2. Problem description 

 

Figure 20-1: Tube impact 

A symmetric short crush tube impacted by a moving wall as shown in the figure is considered. The design 
criterion is the intrusion of the wall into the space initially occupied by the tube (alternatively, how much 
the structure is shortened by the impact with the wall). 
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Both the shell thickness and the yield strength of the structure are probabilistic. The shell thickness is 
normally distributed around a value of 1.0 with a standard deviation of 5% while the yield strength is 
normally distributed around a value scaled to 1.0 with 10% standard deviation. 
The nominal design has an intrusion of 144.4 units. The intrusion is calculated based on the minimum z 
displacement at node 486 (NodDisp response), which lies at the end of the tube. The probability of the 
intrusion being greater than 150 units is computed. The best-known results are obtained using a Monte 
Carlo analysis of 1500 runs. The problem is analyzed using a Monte-Carlo evaluation of 60 runs and a 
quadratic response surface built using a 3k experimental design. The results from the different methods are 
similar as can be seen in the following table. 

Table 20-1: Comparison of results 

Response Monte Carlo 
1500 runs 

Monte Carlo 
60 runs 

Response Surface 
9 runs 

Average Intrusion 141.3 141.8 141.4 

Intrusion Standard Deviation 15.8 15.2 15.0 

Probability of Intrusion > 150 0.32 0.33 0.29 

Using the response surface, the derivatives of the intrusions with respect to the design variables are 
computed as given in the following table. 

Table 20-2: Derivatives of Intrusion from response surface 

Variable Intrusion derivative 

Shell Thickness 208 

Yield Strength 107 

The quadratic response surface also allows the investigation of the dependence of the response variation on 
each design variable variation. The values of the intrusion standard deviation given in the following table 
are computed considering the variable as the only source of variation in the structure (the variation of the 
other design variables are set to zero). 

Table 20-3: Standard Deviation of Intrusion 

Source of variation Intrusion Standard Deviation 

Shell Thickness 10.4 

Yield Strength 10.7 

The details of the analyses are given the following subsections. 
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20.1.3. Direct Monte Carlo evaluation 

The probabilistic variation is described by specifying statistical distributions, Figure 20-3, and assigning the 
statistical distributions to noise variables, Figure 20-2. Monte Carlo samples generated based on the 
distributions are evaluated through the solver to calculate response statistics such as the probability of 
failure, standard deviation of the responses etc. 

 

Figure 20-2: Assigning statistical distributions to noise variables 

 

Figure 20-3: Definition of statistical distributions. This dialog is accessible from the Setup dialog’s 
Parameter Setup tab. 
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Results 

The results of the Monte Carlo analysis can be visualized using the Statistical Tools plot. The distributions 
of the variables and responses can be displayed by selecting the plot type Histogram, Figure 20-4. The 
mean value and the standard deviation of the selected entity are displayed in the plot title. The probability of 
exceeding a bound of a constraint with 95% confidence interval can be displayed by selecting the plot type 
Bounds, Figure 20-5. The bounds can be modified interactively in the viewer. 

 

Figure 20-4: Histogram plots of variables and responses. Mean values and standard deviations are 
displayed in the titles. 

 

Figure 20-5: Probability of NodDisp < -150 with 95% confidence intervals 
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20.1.4. Monte Carlo using metamodel 

The sampling scheme for metamodel-based Monte Carlo analysis differs from the direct MC method. In the 
metamodel-based method, the sampling is not completely defined by the variable distributions; specific 
variable bounds are required to construct the metamodels. If a variable’s type is defined as Noise, its bounds 
are set to be two standard deviations away from the mean (default), Figure 20-6. This multiple can however 
be changed by the user. In this particular example, noise variables are not used in order to have more control 
over the variable bounds. If needed we can change the standard deviation of some variables without 
affecting the variable bounds (the metamodel is computed scaled with respect to the upper and lower bounds 
on the variables). If noise variables are used instead, then we would only define the design space size in 
terms of number of standard deviations (default 2), which is same for all noise variables. 

 

Figure 20-6: Assigning statistical distributions to control variables 

Results 

Since the statistical results are evaluated on the metamodel, the accuracy of the response surface is of 
interest. This can be displayed using the Accuracy plot, Figure 20-7. The error measures RMS, SPRESS 
and R² are displayed in the title. 
The probabilistic evaluation results can be visualized using the Statistical Tools plot as described in Section 
20.1.3, but now, 10000 points evaluated on the metamodel are used to calculate the statistics, Figure 20-8 
and Figure 20-9. 
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Figure 20-7: Accuracy plot. Computed vs. predicted values; error measures are displayed in the title 
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Figure 20-8: Histogram plots of variables and responses. Mean values and standard deviations are 
displayed in the titles. All values are evaluated on the metamodel using 10000 points. 

 

Figure 20-9: Probability of NodDisp < -150 with 95% confidence intervals evaluated on the metamodel 
using 10000 points. 

20.1.5. Bifurcation analysis 

A bifurcation analysis of the tube is conducted using the methods described in more detail in Section 25.6, 
Section 16.8, and Section 20.2. The resulting buckling modes found from the analysis are as shown in 
Figure 20-10. An extra half wave is formed for one of the designs. 
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Figure 20-10 Tube Buckling 

20.2. Bifurcation/Outlier Analysis 

20.2.1. Overview 

This example has the following features: 
o Monte Carlo analysis 
o Identification of different buckling modes in the structure 

20.2.2. Problem description 

The plate as shown in Figure 20-11 has two buckling modes. Buckling in the positive z-direction occurs 
with a probability of 80% while buckling in the negative z-direction occurs with a probability of 20%. The 
statistical distribution of the tip nodes imperfection controls the probability of buckling in a particular mode. 
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Figure 20-11: Plate Buckling Example 

 

20.2.3. Monte Carlo evaluation 

A Latin hypercube experimental design is used for the Monte Carlo analysis, Figure 20-13. We analyze only 
five points. Given that the probability of 20% of buckling in the negative z-direction and a Latin hypercube 
experimental design, one run will buckle in the negative z-direction. The difference between the two modes 
lies in the z-displacement. Therefore, z-displacement of the tip node is defined as a response, Figure 20-14. 
The next section will demonstrate how to find out which run contains the different buckling mode.  

Figure 20-12: Definition of noise variable and distribution 
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Figure 20-13: Definition of Latin Hypercube sampling with 5 points. 
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Figure 20-14: Response Definition for bifurcation identification 

20.2.4. Automatic identification of buckling modes 

Different buckling modes can be identified automatically and displayed in LS-PREPOST using DynaStats 
accessible from the main GUI control bar. To identify bifurcations, we display the FE jobs having the 
extreme values for a selected d3plot component. For this structure, either the global extreme z-displacement 
or the tip z-displacement can be considered in order to identify the bifurcation.  Automated identification of 
the bifurcation is done in the DynaStats GUI as shown in Figure 20-15 with the bifurcation as displayed 
using LS-PREPOST as shown in Figure 20-16. Some background on bifurcation identification can be found 
in Section 16.8. A more user-intensive procedure is described in the next section. 
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Figure 20-15: Selecting the automated identification of a bifurcation. The user must (i) select to overlay 
the FE models associated with the maximum and minimum residual and (ii) chose whether the residual 
is the global residual or a residual at a specific node. 
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Figure 20-16: LS-OPT identified and displayed this bifurcation automatically using the GUI setting 
shown in the previous figure. 

20.2.5. Manual identification of buckling modes 

The different buckling modes are identified using DynaStats accessible from the main GUI control bar.  
Next, LS-PREPOST can be launched to investigate the range (or standard deviation) of all the displacement 
components. From the displacement resultant plot, amongst others, it is clear that the bifurcation is at the 
tip. Looking at the other component plots, we find the z-displacement has a range of 5.3 and the x-
displacement a range of 4.5. The displacement magnitude computed using the maximum vector has a range 
of 6.9. 

 

Figure 20-17: Range of z-component displacement 
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Either the z-displacement or the maximum vector displacement magnitude can therefore be used to identify 
the buckling modes. Fringe plots of the run index of the maximum and minimum displacement identifies the 
runs as 2 and 4. 

 

Figure 20-18: Index of run with maximum z-component displacement 

 

Figure 20-19: Index of run with minimum z-component displacement 

LS-OPT allows you to specify the job number to use for the LS-PREPOST plot. Plotting the results of run 2 
and 4 we find the second buckling mode as: 
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Figure 20-20: Second buckling mode 

20.3. RBDO (Reliability-based design optimization) using FOSM (First 
Order Second Moment Method) 
This section presents an example of RBDO using the same vehicle problem defined in Section 18.2. The 
constraint is modified by introducing a target failure probability. The reliability calculations within the 
optimization loop are done using FOSM. The optimization problem is: 

610550mm]ny[IntrusioProbabilits.t.
ms) HIC(15min

−≤>
     (20-1) 

This formulation implies that the design of the car is made safer such that it has a probability of failure less 
than 10-6. In Section 18.2 the constraint was deterministic and the intrusion was required to be less than 550 
mm. If the same constraint was used on the mean value of intrusion in the presence of uncertainties, that 
could potentially lead to a large probability of failure. This is avoided by having a probabilistic constraint 
with a small target probability of failure. 

In this example the two variables (t_hood, t_bumber ]5,1[∈ ) are assigned identical uniform distributions 
with lower bound of -0.05 and upper bound of 0.05. The SRSM strategy is used to find the optimum. The 
variable setup and constraint definition are shown in Figure 20-21. 
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Figure 20-21: Probabilistic variable and constraint definition for RBDO 

The results are t_hood =1.7, t_bumper=5, a HIC value of 139, and an intrusion of 545 with standard 
deviation 1.01. 

20.4. Robust Parameter Design 
This example has the following features: 

o Reliability based design optimization 
o Standard deviation composite 

Consider the two-bar truss problem as shown in Figure 20-22. Variable x1, the area, is a noise variable 
described using a normal distribution with a mean of 2.0 and a standard deviation of 0.1. The half distance 
between the legs, x2, is a control variable which will be adjusted to control the variance of the stress 
response, Figure 20-24. The standard deviation of stress response is considered as the objective for the 
robust design process, Figure 20-25. 
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Figure 20-22: The two-bar truss problem. The problem has two variables: the thickness of the bars and 
the leg widths as shown. The bar thicknesses are noise variables while the leg widths are adjusted 
(control variables) to minimize the effect of the variation of the bar thicknesses. The maximum stress in 
the structure is monitored. 

The task metamodel-based RBDO/Robust Parameter Design is used, Figure 20-23. A response surface 
considering the effect of variables and the interaction between variables is used to approximate the stress 
response. 

LS-OPT Version 5.2  459 



CHAPTER 20: Examples − Probabilistic Analysis 

 

Figure 20-23: Task Reliability based design optimization/Robust Parameter Design 
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Figure 20-24: Parameter Setup and Distribution 
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Figure 20-25: Definition of Standard deviation composite 

The actual stress response is shown in Figure 20-26. From the figure it can be seen that the ‘base’ variable 
must be set to values of larger than 0.4 to obtain a minimum variation of the stress considering that the 
design will then be in the flattest region of the response. A value of 0.5 is obtained in the optimization 
results as shown in Figure 20-27. Also shown in the optimization results is the design history of the stress 
standard deviation. Note that the standard deviation response stayed fairly insensitive to changes in the 
control variable after iteration 4 and that the initial subregion size for the ‘base’ variable was too large, 
resulting in initial increase in ‘base’ variable due to an inaccurate initial response surface. 
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Figure 20-26: Contours of stress response. The flattest part of the response is when variable 'base' equals 
0.5. 

 

Figure 20-27: Optimization histories. Design variable ‘base’ is shown on the left and the standard 
deviation of the stress response is shown on the right. 
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20.5. Tolerance optimization  

20.5.1. Overview 

This example has the following features: 
o Probabilistic analysis 
o Monte Carlo analysis using imported metamodels 
o Parametrization of probabilistic distribution parameters 
o Extraction of probabilistic analysis results as responses 
o Multilevel optimization 
o Multi-objective optimization 
o Tolerance optimization 

20.5.2. Problem description 

A simplified vehicle model is subjected to impact in this example. The model is the same as defined in 
Section 18.2. The goal is to optimize two thickness parameters for the parts hood and bumper, as well as 
their associated tolerance values to attain a balance between the design objectives and the robustness of the 
optimum.  
The underlying deterministic optimization problem without considering the tolerances or the effect of 
uncertainties is: 
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where x is a vector of design variables, which are the thicknesses thood and tbumper of the selected parts.  

The solution of the above optimization may not be robust, as very often the optimum design lies at the 
constraint boundaries. Therefore, this issue is addressed by introducing tolerances into the problem. The 
nominal design variables are controlled so that the associated tolerance can be increased, thus making the 
design more robust with negligible probability/possibility of failure within the tolerance intervals.  
This enhanced robustness may often come at the cost of other design objectives. Thus, the optimization 
formulation may consist of multiple competing objectives. In this example, the optimization is performed 
using two objectives. The nominal values of the mass are minimized while the relative tolerance is 
maximized. The final solution is a Pareto optimal front with a trade-off between the nominal mass and the 
relative tolerance.  

For simplicity, both the thicknesses are assumed to have the same relative tolerance δ  or rel_tol. It 
should be noted the optimization variables are the nominal values for the thickness, referred to as 

LS-OPT Version 5.2  464 



CHAPTER 20: Examples − Probabilistic Analysis 

nominal_th and nominal_tb. Overall, the problem consists of three optimization variables - 
nominal_th, nominal_tb andδ . The tolerance-based optimization problem is: 
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In the above equation, 𝛿𝛿 is the relative tolerance, 𝑓𝑓1�  represents the nominal mass of the design parts 
(negative sign indicates minimization), and x  is the nominal design. The constraints on intrusion and HIC 
must be satisfied at all possible designs within the tolerance interval (i.e. ( ) ( )[ ]δδ +−∈∀ 1,1 xxx ). 

An important feature to note is that the probabilistic constraint functions require the calculation of 
conditional probabilities with fixed nominal variable values 𝒙𝒙� and 𝛿𝛿. This can be achieved using a simple 
Monte Carlo analysis at that fixed nominal design, as fixing the tolerance 𝛿𝛿 also fixes the distribution 
bounds. This is demonstrated in Section 20.5.3.  
Calculation of failure probability using Monte Carlo analysis is a subproblem of the tolerance optimization 
problem in Equation 20-3. In Section 20.5.4, the tolerance optimization using a two-level setup is 
demonstrated. Here the Monte Carlo analysis forms the inner level and is performed iteratively for different 
combinations of nominal design and tolerance. 
In both Section 20.5.3 and 20.5.4, Monte Carlo analysis is performed using pre-constructed global 
metamodels to reduce the computational cost associated with the calculation of conditional probabilities.  

20.5.3. Imported metamodel-based Monte Carlo analysis with a fixed tolerance  

In this section the goal is to determine the feasibility of a particular design configuration, with nominal 
values nominal_th = 1.9, nominal_tb = 3, within a 2% tolerance interval ( rel_tol = 
0.02). The design has uncertainties associated with it and therefore is considered as feasible only if there 
is not even a single failure among all the possible configurations within the tolerance interval around the 
nominal design. It is assumed that accurate global metamodels, previously constructed using LS-OPT, are 
already available for the required responses and there is no need for additional finite element simulations. 
The metamodel database is available as an XML file which, for the purpose of this example, is named 
DesignFunctionsGlobal_PoleCrash. Additionally, both the thickness parameters are assumed to have 
uniform distributions. Thus, the distributions of the two random variables thood and tbumper are as shown 
in Figure 20-28. 

 

Figure 20-28: Distribution of thood and tbumper based on fixed nominal values and tolerance. 
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The steps to set up a Monte Carlo analysis problem using an imported metamodel are: 
1. Start a new LS-OPT project with metamodel-based Monte Carlo analysis as the task type.  
2. Specify the file DesignFunctionsGlobal_PoleCrash containing the pre-constructed metamodels 

using the Import Metamodel feature available in the Build Metamodels box. Once the file is parsed, 
the design parameters, responses and the metamodel type are automatically identified in LS-OPT 
(Figure 20-29). 

 

Figure 20-29: Monte Carlo analysis using imported metamodels 

3. The part thickness design variables (tbumper and thood) parsed through the imported metamodel 
are defined as noise variables with uniform distributions (Figure 20-30 bottom). As the tolerance and 
nominal values are fixed, the distributions are also fixed as shown in Figure 20-28. 

However, if one has say 10 different design alternatives (combinations of nominal_tb, 
nominal_th and rel_tol), there will be 10 different distributions for each noise variable. 
Thus, for each of the 10 combinations of nominal_tb, nominal_th and rel_tol, the user 
will need to calculate the lower and upper bounds to define the distribution. This manual work can 
be avoided by parametrizing the distribution so that the upper and lower bound are automatically 
calculated in LS-OPT for any given set of the values of the nominal thickness parameters and the 
relative tolerance. This is achieved using the “&” operator (Figure 20-31). The parameterization is 
done with respect to dependents tb_l, tb_u, th_l and th_u, which are defined as functions of 
manually added constants nominal_th, nominal_tb and rel_tol (δ) with suitable values 
(1.9, 3 and 0.02 respectively).  
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Parametrization of the distributions is optional for a single Monte Carlo analysis, but it is essential 
while performing an automated iterative tolerance optimization, as explained in Section 20.5.4 and 
Section 25.10.  

 

Figure 20-30: Fixed variable distributions based on constant mean and tolerance 
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Figure 20-31: Parameterized variable distributions. As the distributions are parametrized, changing the 
values of the constants automatically updates the distributions. 

4. This example consists of two upper bound constraints on the intrusion and the HIC (Equation 20-2).  
The intrusion needs to be defined as a composite Disp1-Disp2, defined in terms of two 
displacement responses Disp1 and Disp2 that are directly obtained from the metamodel import 
file. The constraints for the Monte Carlo analysis are then defined (Figure 20-32). The number of 
Monte Carlo samples used for calculations based on the imported metamodel are defined under 
Algorithms (Figure 20-32). 
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Figure 20-32: Monte Carlo analysis setup. The number of Monte Carlo samples used for calculations 
based on the imported metamodel are defined as the Reliability Resolution. 

5. The next step is to select the checkbox option Import Metamodel in the Task selection menu, 
followed by a Normal Run to perform the Monte Carlo analysis (Figure 20-33).  The analysis in this 
example is done by calculating the responses at 106 Monte Carlo samples based on the imported 
metamodels. 

 

Figure 20-33: Monte Carlo analysis run with imported metamodel. 

The frequency histograms for the two constraint functions are plotted in Figure 20-34, which shows that 
with mean values nominal_tb = 3 and nominal_th = 1.9 there is no failure within the 2% 
tolerance interval. 

Remark: 
An alternate way to perform the 5th step, instead of selecting the task selection checkbox option Import 
Metamodel, is to import the metamodels in the DesignFunctionsGlobal_PoleCrash file through a repair 
operation (Repair →  Import Metamodels) before running the metamodel-based Monte Carlo analysis task 
using a Normal Run. However, such an approach is a two-step process that requires manual intervention to 
perform the Normal Run after importing the metamodels. This approach is therefore not feasible when the 
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Monte Carlo analysis is a subproblem within a tolerance optimization, during which several Monte Carlo 
analyses at different design configurations are performed (Section 20.5.4). 

 

Figure 20-34: Frequency histogram of HIC and Intrusion with feasibility information. The green 
background shows that the designs are feasible within the tolerance interval. 

20.5.4. Tolerance optimization setup and results 

In Section 20.5.3 the calculation of probability of failure using a fixed mean design and tolerance value, 
under the assumption of uniform distribution, was presented. Having fixed the mean variable values and the 
tolerance, the probability calculated was essentially a conditional probability for those particular values. 
Going back to Equation 20-3, the same conditional probabilities are part of the constraint definition in the 
tolerance optimization problem. Thus, the example presented in Section 20.5.3 is a subproblem of the 
tolerance optimization formulation defined in Equation 20-3. In LS-OPT, such problems can be addressed 
using a multilevel framework (Section 17.7). The setup and results for the tolerance optimization problem in 
Equation 20-3 are presented in this section. The LS-OPT setup for tolerance optimization consists of two 
levels. The basic two level tolerance optimization method is presented in Figure 20-35. 
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Figure 20-35: Two-level tolerance optimization methodology. 

To reduce the cost of the two-level optimization, the inner level Monte Carlo analysis is performed using 
imported pre-constructed global metamodels as shown in Section 20.5.3. For that purpose a database of 
global metamodels needs to be created first. Thus, in summary, the complete solution method consists of 
two steps: 

o Step 1: Single iteration metamodel-based optimization to construct the global metamodels and to 
obtain the deterministic optimum solution for Equation 20-2. 

o Step 2: Two-level tolerance optimization using imported metamodels.  In terms of the LS-OPT 
setup, the outer level is an optimization (direct optimization in this example) with the nominal 
thickness values and the associated relative tolerance(s) as the optimization variables and the inner 
level is an imported metamodel-based Monte Carlo analysis, which is carried out for each outer level 
sample (𝒙𝒙�,𝛿𝛿). 

The detailed process with the setup steps of both the steps is explained below.  

Step 1: Deterministic optimization  
The first step consists of a deterministic single iteration metamodel-based optimization. The optimization 
formulation is given in Equation 20-2. The mass of the selected design parts is minimized subject to 
constraints on the intrusion and the HIC. The optimization variables are the thicknesses thood and 
tbumper of selected parts. It is also possible to perform a DOE task instead of optimization, as the main 
purpose of this step is to construct high fidelity metamodels of the design responses. These metamodels can 
be later utilized in lieu of numerous finite element analyses required in step 2. 
The design problem is set up in LS-OPT using the single iteration metamodel-based optimization task type. 
Radial Basis Function networks is selected as the metamodel type with Space Filling as the sampling 
technique. A high number of design samples (200) were defined so that the resulting global metamodels 
have sufficient accuracy.  The metamodel database DesignFunctions.1 generated by LS-OPT is saved as 
DesignFunctionsGlobal_PoleCrash. 
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Figure 20-36: LS-OPT setup for Step 1 (global approximation and deterministic optimization) 

The metamodel surface plot for the objective function Mass is shown in Figure 20-37 along with the 
feasible and infeasible domains. Two things are apparent from the plot, which re-emphasize why the effect 
of uncertainties should be considered during design (such as in the form of tolerance): 

o The optimum tbumper=1, thood=1.734 with mass 0.4554 lies at the boundary of the 
feasible domain. As a result, a slight perturbation may lead to failure. 

o There is a tiny feasible island in the space, which may simply be due to noise or a local 
metamodeling inaccuracy. If the optimum were to lie in that island, such a design would not be 
robust at all. Again, a slight perturbation may lead to failure. 

 

Figure 20-37: Surface plot of Mass. The green region is feasible. The magenta cross represents the 
optimum. 
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Step 2: Optimization of thickness and relative tolerance using multilevel setup  
While the goal of step 1 was mainly to provide the global approximation to reduce the cost of the overall 
design process, Step 2 describes the actual tolerance optimization. In summary, the full setup has two levels: 

6. Outer level: 
Task type: Direct optimization (Equation 20-3) with population size 100 (direct optimization is used, 
but metamodels can also be used) and 50 generations.  
Control Variables: nominal_th, nominal_tb, rel_tol (δ) 
Responses: Probability of failure, nominal values (LS-OPT type responses) 

Objectives: Maximize rel_tol, Minimize nominal_mass 

Constraints: Probabilities of failure ≈ 0 (upper bound lower than the reliability resolution of inner 
level) 
 

( ) ( )[ ]
( ) ( )[ ]δδ

δδ
+−∈≤>

+−∈≤>

1,1 allfor     10250]  y[HICProbabilit
1,1 allfor 10500] n y[IntrusioProbabilit

8−

−8

xxx
xxx

 
7. Inner level: 

Task type: Metamodel-based Monte Carlo at each outer level sample using imported metamodels 
from step 1 (Section 20.5.3). 

Noise Variables: thood, tbumper (distributions of thood and tbumber defined as functions 
of outer level variables) 
Responses: HIC, displacements, mass etc. (Imported metamodel responses) 
Constraints: HIC < 250, Intrusion < 550 mm 

A detailed step by step procedure of setting up the two level problem in LS-OPT is demonstrated in the 
following sections.  First the inner level is set up, followed by the outer level. The inner level setup is an 
input file for an LS-OPT type stage in the outer level (Figure 20-38). 

8. Inner Level Setup (Monte Carlo Analysis): 
Follow the same steps as in Section 20.5.3. The constraint definition needs to be modified however 
in order to conform to the outer level problem in Equation 20-3. 
o Follow the exact same steps as 1 and 2 in Section 20.5.3 to import the existing metamodels from 

DesignFunctionsGlobal_PoleCrash. 
o In step3, make sure to parametrize the distributions as in Figure 20-31. However, the constants 

nominal_tb, nominal_th and rel_tol (δ) need to be changed to Transfer Variables. 
They can be assigned any numeric value without any effect, as these values are eventually 
overwritten by the outer level samples. This is explained further in Section 20.5.5. 
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Figure 20-39: Variable distributions parameterized using Transfer Variables. These variables are treated 
as constants in the inner level Monte Carlo analysis, but may be optimization variable in an outer level 
(Section 17.7). The values of the Transfer Variables are set as the outer level samples variable values. 
Thus, for a specific outer level sample the Transfer Variables and their dependents (nominal variables 
and variable distribution ranges) are fixed, and the failure probabilities calculated in the inner level 
using these fixed distributions corresponds to that specific outer level sample.  

o Follow the same step 4 as in Section 20.5.3 to define the constraints.. 

 

Figure 20-40: Inner level constraints for Monte Carlo Analysis.  

o Follow the same step 5 as in Section 20.5.3 to select the checkbox option Import Metamodel in 
the Task selection menu. However, instead of performing a Normal Run, simply save the inner 
level setup by any name, say inner.lsopt. 

9. Outer Level Setup (Optimization): 
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o Start a new LS-OPT project with direct optimization as the task type.  
o Select LS-OPT as the solver package in the Stage box. Click on ‘use default command’ check 

box, this will change the command to the full path of the LS-OPT executable. Using the browse 
option, select the inner level LS-OPT project file inner.lsopt as the input file of the solver. Since 
the file DesignFunctionsGlobal_PoleCrash is needed in the inner level for metamodel import, 
this file should be transferred to the outer level run directories using the ‘Extra input files’ option 
with parsing checked off.   

 

Figure 20-41: Outer level stage setup. 

o Once the inner level LS-OPT input file is parsed, the transfer variables of the inner level 
nominal_tb, nominal_th and rel_tol are displayed in the parameter Setup box of the 
outer level. Define these parameters as continuous variables and specify the upper and lower 
bounds for each variable.  

 

Figure 20-42: Outer level global variable setup. 

o The next step is to define the outer level responses. The statistics from the inner level Monte 
Carlo analysis can be extracted using LS-OPT Statistics response definition. In this example, the 
probability of failure of constraints of the inner level Monte Carlo analysis and the response 
values of the nominal designs are extracted. Therefore, the probability of exceeding the upper 
bounds and nominal values of intrusion and HIC are defined as outer level responses. It is 
important to note that each outer level sample corresponds to the nominal design of the inner 
level.  The following figure shows the selection of the probability of failure of intrusion and 
other outer level response definitions. 
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Figure 20-43: Outer level response definitions 

o These probabilistic responses are later selected as outer level design constraints with an upper 
bound close to zero (less than the reliability resolution of the inner level Monte Carlo analysis), 
as shown in the figure below. Maximizing the tolerance and minimizing the nominal mass are 
the outer level design objectives. As the tolerance is maximized, the negative of tolerance 
variable can be defined as a composite response (obj_tol) using the Expression composite. The 
objective functions to be minimized are obj_tol and nominal_mass. The ‘Create Pareto Optimal 
Front’ option is selected.  

 

Figure 20-44: Outer level design objectives and constraints.  

o The final step is to specify the required population size and termination criteria for the GA based 
multiobjective optimization. The overall setup of the outer level is shown in the figure below.  
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Figure 20-45: LS-OPT setup for outer level multiobjective optimization.  

Results 

The optimization problem discussed above was solved with a population size of 100 samples for 50 
generations. The multiobjective optimization resulted in a set of Pareto optimal designs with mass of the 
design parts varying from 0.456 to 0.472 units with a maximum tolerance of 0.037. Therefore, a robust 
design with 3.7% tolerance was obtained with a mass increase of approximately 0.016 units or 3.5%. Since 
the Pareto optimal designs were based on metamodels, these points were subjected to LS-DYNA analysis to 
obtain the simulation-based results. The Pareto front of the final generation based on both metamodels and 
LS-DYNA analysis is shown in Figure 20-46. It is important to note that all the simulation-based optimal 
designs are feasible, indicating good accuracy of the metamodel obtained in step1.   

 

Figure 20-46: Metamodel-based (left) and simulation-based (right) tradeoff. 

Figure 20-47 shows the tradeoff between the two objectives and the evolution of the Pareto front over 50 
generations. 
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Figure 20-47: Tradeoff between mass and tolerance objectives for all iterations.  

Table 20-4: Summary of the values of design variables, objectives and constraints for baseline, 
deterministic optimum and tolerance-based optimum (at maximum tolerance).  

Design point tbumper thood rel_tol Mass HIC Intrusion  Max 
Constraint 
Violation 

    

Baseline 3 1 - 0.41 68.02 575.7  25.7     

Deterministic optimum 1 1.75 - 0.456 222.6 549.4  0     

Tolerance-based 
optimum with 
maximum tolerance 

2.63 1.95 0.1 0.6 229.8 541.6  0     

Remark: 
Sometimes it may desirable to constrain the objective function (mass in this example) also in Equation 20-3. 
This is however not always necessary. For details one may refer to [7]. 
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20.5.5. Comparison of RBDO and Tolerance Optimization 

Tolerance optimization is similar to RBDO in several ways – both involve the minimization of one or more 
objective functions subject to probabilistic constraints. The variable distributions in tolerance optimization 
are truncated, and thus, tolerance optimization is similar to RBDO with truncated variable distributions. The 
main difference lies in the fact that the tolerance value associated with a variable is also optimized here. As 
a result, the range of the truncated distribution changes during tolerance optimization. This is in contrast to 
RBDO, in which the range of the variable distribution is known a priori, and only the mean value changes 
during optimization (also see Section 25.10). 
As the variable distribution is fixed a priori in RBDO, calculation of the failure probability at any sample is 
done using distributions having the same range around the sample. On the other hand, during tolerance 
optimization the tolerance value is also a variable for the samples (outer level optimization variable), and 
therefore, the range of variable distribution is different for each sample. For a particular outer level sample, 
however, the tolerance value and the associated variable distribution range are fixed. Therefore, the failure 
probability for that sample is calculated using Monte Carlo analysis in the inner level using that fixed 
distribution. 
The link between the outer and the inner level is established using Transfer Variables. Each outer level 
sample defines the value of the nominal design parameters and the tolerances. The same variables are 
defined as Transfer Variables in the inner level and treated as constants there. Thus, a specific outer level 
sample replaces the Transfer Variable values in the inner level. The distributions in the inner level are 
parametrized using the Transfer Variables, which have constant values in this level. Thus the distributions in 
the inner level are also fixed for a specific outer level sample, which enables the calculation of the failure 
probability for the outer level sample. 
For a fixed value of tolerance (i.e. if the tolerance values are not optimized and instead feasibility within a 
pre-determined interval is enforced), the tolerance optimization problem reduces to RBDO with truncated 
variable distribution.  

20.6. Using Stochastic Fields 
This example demonstrates: 

o Using a stochastic field in a Monte Carlo analysis 
o Using a variable and a stochastic field in a Monte Carlo analysis 
o Replicating experiments using stochastic fields 
o Using fixed stochastic fields 

The structure as shown in the Figure 20-48 is considered. This is the compression of a beam with 
geometrical imperfections modeled using a stochastic field. The result considered is the load at the end of 
the analysis as shown in the figure. 
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Figure 20-48: Problem with a stochastic field. The structural problem is shown in the top.  In the bottom 
left are sample beams with the perturbation exaggerated by a factor 100, and the corresponding histories 
are shown in the bottom right. 

The beam has a length of 20 and a Young’s modulus of 2e8. It is analyzed in using 128 type 2 beam 
elements using an implicit analysis and 20 increments to compress the end a distance of -0.002.  
The perturbation is created using the spectral method to have an autocorrelation function described by a 
Gaussian correlation function. The Gaussian correlation function is 

2)()( asexP −=  with s distance and the 
constant a = 0.1 in this study. The resulting perturbation is scaled by 0.01. The LS-DYNA® 

*PERTURABATION card is: 
*PERTURBATION_NODE 
$type, nid, scl, cmp, icoord, cid 
4, , 1.e-2, 3 
$cstype, e1, e2, rnd 
1, , , 
1, 1.e-1 

20.6.1. Using only a stochastic field 

Firstly, a Monte Carlo analysis is done (Figure 20-49) considering only the geometric stochastic fields. The 
stochastic field is set to vary freely using the LS-DYNA® keyword *PERTURBATION. Every LS-OPT 
analysis needs a variable, so we added a dummy variable that does not do anything, Figure 20-50. 50 
simulations are run, Figure 20-51. The point selection is arbitrary since the variable value is not used. Note 
that it is possible to have a variable controlling the random seed in the LS-DYNA® *PERTURBATION 
keyword, which can be useful for many reasons, such as having only certain stochastic fields. 

LS-OPT Version 5.2  480 



CHAPTER 20: Examples − Probabilistic Analysis 

The histogram of the responses is shown in Figure 20-52. Note that the distribution has a characteristic 
shape. 

 

Figure 20-49: Task dialog. Select the main task Monte Carlo analysis. 

 

Figure 20-50: Parameter setup. Since the variable dummy is not used, an arbitrary distribution can be 
used here. 
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Figure 20-51: Sampling dialog. Specify the number of simulation points. The point selection doesn’t 
affect the analysis here, since the variable is not used. 
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Figure 20-52:  Histogram of the responses using only a stochastic field. 

20.6.2. A variable and a stochastic field 

In this example a variable as well as the stochastic field are used to do the analysis. Figure 20-54 displays 
the resulting forces. The stochastic field is allowed to vary freely using the *PERTURBATION keyword 
like in Section 20.6.1, but the dimension b of the cross-section is also varied based on a Normal distribution 
(Figure 20-53).  
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Figure 20-53:  Noise variable distribution definition. 
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Figure 20-54:  Plot of the responses using the thickness variable and a stochastic field. 

20.6.3. Replicate experiments using stochastic fields 

In this example a variable as well as the stochastic field are used to do the analysis. Replicate runs are done 
at each experimental point with different values of the stochastic field.  
In LS-DYNA, we add the random seed of the stochastic field as a variable, Figure 20-55. We let it vary 
freely by setting the seed to zero: 
*PARAMETER 
irand, 0 
$ 
*PERTURBATION_NODE 
$type, nid, scl, cmp, icoord, cid 
4, , 1.e-2, 3,  
$cstype, e1, e2, rnd 
1, , , &rand 
$ 
1, 1.e-1 
$ 
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In LS-OPT we use replicate experiments to analyze, Figure 20-56. 

 

Figure 20-55: Parameter Setup. 

 

Figure 20-56: Sampling dialog. 10 replicate runs are done at each experimental point. 
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Figure 20-57:  Plot of the responses using replicate experiments 

20.6.4. Using fixed stochastic fields 

In this example a variable as well as the stochastic field are used to do the analysis. Replicate runs are done 
at each experimental point with the same stochastic fields. By using the seed for the stochastic field as a 
variable, we are able to specify the stochastic field used, Figure 20-59. The random seed in the 
*PERTURBATION card can only take integer values. It should be noted that the seed is defined as a 
discrete control variable without a distribution that takes integer values only, and not a noise variable. 
Therefore, the task is metamodel-based Monte Carlo analysis (direct Monte Carlo is used to analyze the 
effect of uncertain variables). 

LS-OPT Version 5.2  487 



CHAPTER 20: Examples − Probabilistic Analysis 

 

Figure 20-58: Task Metamodel-based Monte Carlo analysis 

 

Figure 20-59: Parameter Setup. 
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Figure 20-60: Sampling dialog. 
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Figure 20-61:  Plot of the responses using the same five stochastic fields in the replicates. 

20.7. REFERENCES  
[1] Yamazaki, K., Han, J., Ishikawa, H., Kuroiwa, Y. Maximation of crushing energy absorption of 

cylindrical shells – simulation and experiment, Proceedings of the OPTI-97 Conference, Rome, 
Italy, September 1997. 

[2] Craig K.J., Stander, N., Dooge, D., Varadappa, S. MDO of automotive vehicle for crashworthiness 
and NVH using response surface methods. Paper AIAA2002_5607, 9th AIAA/ISSMO Symposium 
on Multidisciplinary Analysis and Optimization, 4-6 Sept 2002, Atlanta, GA. 

[3] National Crash Analysis Center (NCAC). Public Finite Element Model Archive, 
www.ncac.gwu.edu/archives/model/index.html 2001. 

[4] Akkerman, A., Thyagarajan, R., Stander, N., Burger, M., Kuhn, R., Rajic, H. Shape optimization for 
crashworthiness design using response surfaces. Proceedings of the 1st International Workshop on 
Multidisciplinary Design Optimization, Pretoria, South Africa, 8-10 August 2000, pp. 270-279. 

[5] Stander, N. Goel, T. Metamodel sensitivity to sequential sampling strategies in crashworthiness 
design. Proceedings of the 12th AIAA/ISSMO Multidisciplinary Analysis and Optimization 
Conference, Victoria, British Columbia, Canada, Sep 10-12, 2008. 

LS-OPT Version 5.2  490 

http://www.ncac.gwu.edu/archives/model/index.html%202001


CHAPTER 20: Examples − Probabilistic Analysis 

[6] Stander, N., Craig, K.J. On the robustness of a simple domain reduction scheme for simulation-based 
optimization, Engineering Computations, 19(4), pp. 431-450, 2002. 

[7] Basudhar, A, Stander, N, Gandikota, I, Svedin, Å, Witowski, K: “Design Tolerance Optimization 
using LS-OPT”, 13th LS-DYNA Forum, Bamberg, Germany, 2014 

LS-OPT Version 5.2  491 



 

 
 
 
 

III − Theory 

LS-OPT Version 5.2  492 



 

21. Response Surface 
Methodology  

21.1. Introduction 
An authoritative text on Response Surface Methodology (RSM) 21.5 defines the method as “a collection of 
statistical and mathematical techniques for developing, improving, and optimizing processes.” Although an 
established statistical method for several decades [1], it has only recently been actively applied to 
mechanical design [3]. Due to the importance of weight as a criterion and the multidisciplinary nature of 
aerospace design, the application of optimization and RSM to design had its early beginnings in the 
aerospace industry. A large body of pioneering work on RSM was conducted in this and other mechanical 
design areas during the eighties and nineties [3]-[6]. RSM can be categorized as a Metamodeling technique 
(see Chapter 22 for other Metamodeling techniques namely Neural Networks, and Radial Basis Functions 
available in LS-OPT). 
Although inherently simple, the application of response surface methods to mechanical design has been 
inhibited by the high cost of simulation and the large number of analyses required for many design 
variables. In the quest for accuracy, increased hardware capacity has been consumed by greater modeling 
detail and therefore optimization methods have remained largely on the periphery of the area of mechanical 
design. In lieu of formal methods, designers have traditionally resorted to experience and intuition to 
improve designs. This is seldom effective and also manually intensive. Moreover, design objectives are 
often in conflict, making conventional methods difficult to apply, and therefore more analysts are 
formalizing their design approach by using optimization. 

21.1.1. Approximating the response 

Response Surface Methodology (or RSM) requires the analysis of a predetermined set of designs. A design 
surface is fitted to the response values using regression analysis. Least squares approximations are 
commonly used for this purpose. The response surfaces are then used to construct an approximate design 
“subproblem” which can be optimized. 
The response surface method relies on the fact that the set of designs on which it is based is well chosen. 
Randomly chosen designs may cause an inaccurate surface to be constructed or even prevent the ability to 
construct a surface at all. Because simulations are often time-consuming and may take days to run, the 
overall efficiency of the design process relies heavily on the appropriate selection of a design set on which 
to base the approximations. For the purpose of determining the individual designs, the theory of 
experimental design (Design of Experiments or DOE) is required. Several experimental design criteria are 
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available but one of the most popular for an arbitrarily shaped design space is the D-optimality criterion. 
This criterion has the flexibility of allowing any number of designs to be placed appropriately in a design 
space with an irregular boundary. The understanding of the D-optimality criterion requires the formulation 
of the least squares problem. 
Consider a single response variable y dependent upon a number of variables x. The exact functional 
relationship between these quantities is 

)(xη=y        (21-1) 

The exact functional relationship is now approximated (e.g. polynomial approximation) as 

)()( xx f=η        (21-2) 

The approximating function f is assumed to be a summation of basis functions: 
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where L is the number of basis functions iφ  used to approximate the model. 

The constants T
Laaa ],...,,[ 21=a  have to be determined in order to minimize the sum of the square error: 
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P is the number of experimental points and y is the exact functional response at the experimental points xi. 
The solution to the unknown coefficients is: 

( ) yXXXa TT 1−
=        (21-5) 

where X  is the matrix 

[ ] [ ])( uiui xX φ==X        (21-6) 

The next critical step is to choose appropriate basis functions. A popular choice is the quadratic 
approximation 

T
nnin xxxxxxxx ],...,,...,,,,...,,1[ 2

121
2

1=φ       (21-7) 

but any suitable function can be chosen. LS-OPT allows linear, elliptical (linear and diagonal terms), 
interaction (linear and off-diagonal terms) and quadratic functions. 
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21.1.2. Factors governing the accuracy of the response surface 

Several factors determine the accuracy of a response surface 21.5. 
1. The size of the subregion 

For problems with smooth responses, the smaller the size of the subregion, the greater the accuracy. 
For the general problem, there is a minimum size at which there is no further gain in accuracy. 
Beyond this size, the variability in the response may become indistinguishable due to the presence of 
‘noise’.  

2. The choice of the approximating function 
Higher order functions are generally more accurate than lower order functions. Theoretically, over-
fitting (the use of functions of too high complexity) may occur and result in suboptimal accuracy, 
but there is no evidence that this is significant for polynomials up to second order 21.5. 

3. The number and distribution of the design points 
For smooth problems, the prediction accuracy of the response surface improves as the number of 
points is increased. However, this is only true up to roughly 50% oversampling 21.5 (very roughly). 

21.1.3. Advantages of the method 

Design exploration 

As design is a process, often requiring feedback and design modifications, designers are mostly interested in 
suitable design formulae, rather than a specific design. If this can be achieved, and the proper design 
parameters have been used, the design remains flexible and changes can still be made at a late stage before 
verification of the final design. This also allows multidisciplinary design to proceed with a smaller risk of 
having to repeat simulations. As designers are moving towards computational prototyping, and as parallel 
computers or network computing are becoming more commonplace, the paradigm of design exploration is 
becoming more important. Response surface methods can thus be used for global exploration in a parallel 
computational setting. For instance, interactive trade-off studies can be conducted. 

Global optimization 

Response surfaces have a tendency to capture globally optimal regions because of their smoothness and 
global approximation properties. Local minima caused by noisy response are thus avoided. 

21.1.4. Other types of response surfaces  

Neural and Radial Basis Function networks and Kriging approximations can also be used as response 
surfaces and are discussed under the heading of metamodels in Sections 22.1 and 22.2. 

21.2. Experimental design 
Experimental design is the selection procedure for finding the points in the design space that must be 
analyzed. Many different types are available 21.5. The factorial, Koshal, composite, D-optimal and Latin 
Hypercube designs are detailed here.  
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21.2.1. Factorial design 

This is a nl  grid of designs and forms the basis of many other designs. l  is the number of grid points in one 
dimension. It can be used as a basis set of experiments from which to choose a D-optimal design. In LS-
OPT, the 3n and 5n designs are used by default as the basis experimental designs for first and second order 
D-optimal designs respectively. 
Factorial designs may be expensive to use directly, especially for a large number of design variables. 

21.2.2. Koshal design 

This family of designs is saturated for modeling of any response surface of order d. 

First order model 

For n = 3, the coordinates are: 
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As a result, four coefficients can be estimated in the linear model 

[ ]T
nxx ,...,,1 1=φ        (21-8) 

Second order model 

For n = 3, the coordinates are: 
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As a result, ten coefficients can be estimated in the quadratic model 

T
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21.2.3. Central composite design 

This design uses the 2n factorial design, the center point, and the ‘face center’ points and therefore consists 
of P = 2n + 2n + 1 experimental design points. For n = 3, the coordinates are: 
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The points are used to fit a second-order function. The value of 4 2n=α . 

21.2.4. D-optimal design 

This method uses a subset of all the possible design points as a basis to solve XX Tmax . The subset is 

usually selected from an nl -factorial design where l is chosen a priori as the number of grid points in any 
particular dimension. Design regions of irregular shape, and any number of experimental points, can be 
considered [7]. The experiments are usually selected within a sub-region in the design space thought to 
contain the optimum. A genetic algorithm is used to solve the resulting discrete maximization problem. See 
References 21.5 and [5]. 
The numbers of required experimental designs for linear as well as quadratic approximations are 
summarized in the table below. The value for the D-optimality criterion is chosen to be 1.5 times the Koshal 
design value plus one. This seems to be a good compromise between prediction accuracy and computational 
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cost [7]. The factorial design referred to below is based on a regular grid of 2n points (linear) or 3n points 
(quadratic). 

Table 21-1: Number of experimental points required for experimental designs 

Number of 
Variables n 

Linear approximation Quadratic approximation Central 
Composite 

Koshal D-optimal Factorial Koshal D-optimal Factorial 

1 2 4 2 3 5 3 3 

2 3 5 4 6 10 9 9 

3 4 7 8 10 16 27 15 

4 5 8 16 15 23 81 25 

5 6 10 32 21 32 243 43 

6 7 11 64 28 43 729 77 

7 8 13 128 36 55 2187 143 

8 9 14 256 45 68 6561 273 

9 10 16 512 55 83 19683 531 

10 11 17 1024 66 100 59049 1045 

21.2.5. Latin Hypercube Sampling (LHS) 

The Latin Hypercube design is a constrained random experimental design in which, for n points, the range 
of each design variable is subdivided into n non-overlapping intervals on the basis of equal probability. One 
value from each interval is then selected at random with respect to the probability density in the interval. 
The n values of the first value are then paired randomly with the n values of variable 2. These n pairs are 
then combined randomly with the n values of variable 3 to form n triplets, and so on, until k-tuplets are 
formed. 
Latin Hypercube designs are independent of the mathematical model of the approximation and allow 
estimation of the main effects of all factors in the design in an unbiased manner. On each level of every 
design variable only one point is placed. There are the same number of levels as points, and the levels are 
assigned randomly to points. This method ensures that every variable is represented, no matter if the 
response is dominated by only a few ones. Another advantage is that the number of points to be analyzed 
can be directly defined. Let P denote the number of points, and n the number of design variables, each of 
which is uniformly distributed between 0 and 1. Latin hypercube sampling (LHS) provides a P-by-n matrix 
S = Sij that randomly samples the entire design space broken down into P equal-probability regions: 
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( ) ,/ PS ijijij ζ−η=       (21-10) 

where Pjj ηη ,...,1  are uniform random permutations of the integers 1 through P and ijζ  independent 
random numbers uniformly distributed between 0 and 1. A common simplified version of LHS has centered 
points of P equal-probability sub-intervals: 

( ) PS ijij /5.0−η=       (21-11) 

LHS can be thought of as a stratified Monte Carlo sampling. Latin hypercube samples look like random 
scatter in any bivariate plot, though they are quite regular in each univariate plot. Often, in order to generate 
an especially good space filling design, the Latin hypercube point selection S described above is taken as a 
starting experimental design and then the values in each column of matrix S is permuted so as to optimize 
some criterion. Several such criteria are described in the literature. 

Maxi-min 

One approach is to maximize the minimal distance between any two points (i.e. between any two rows of 
S). This optimization could be performed using, for example, Adaptive Simulated Annealing (see Section 
23.10). The maximin strategy would ensure that no two points are too close to each other. For small P, 
maximin distance designs will generally lie on the exterior of the design space and fill in the interior as P 
becomes larger. See Section 21.2.6 for more detail. 

Centered L2-discrepancy 

Another strategy is to minimize the centered L2-discrepancy measure. The discrepancy is a quantitative 
measure of non-uniformity of the design points on an experimental domain. Intuitively, for a uniformly 

distributed set in the n-dimensional cube 
nI  = [0,1]n, we would expect the same number of points to be in 

all subsets of 
nI  having the same volume. Discrepancy is defined by considering the number of points in 

the subsets of 
nI . Centered L2 (CL2) takes into account not only the uniformity of the design points over 

the n-dimensional box region 
nI , but also the uniformity of all the projections of points over lower-

dimensional subspaces: 
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21.2.6. Space-filling designs 

In the modeling of an unknown nonlinear relationship, when there is no persuasive parametric regression 
model available, and the constraints are uncertain, one might believe that a good experimental design is a set 
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of points that are uniformly scattered on the experimental domain (design space). Space-filling designs 
impose no strong assumptions on the approximation model, and allow a large number of levels for each 
variable with a moderate number of experimental points. These designs are especially useful in conjunction 
with nonparametric models such as neural networks (feedforward networks, radial basis functions) and 
Kriging, [8], [9]. Space-filling points can also be submitted as the basis set for constructing an optimal (D-
Optimal, etc.) design for a particular model (e.g. polynomial). Some space-filling designs are: random Latin 
Hypercube Sampling (LHS), Orthogonal Arrays, and Orthogonal Latin Hypercubes. 
The key to space-filling experimental designs is in generating 'good' random points and achieving 
reasonably uniform coverage of sampled volume for a given (user-specified) number of points. In practice, 
however, we can only generate finite pseudo-random sequences, which, particularly in higher dimensions, 
can lead to a clustering of points, limiting their uniformity. To find a good space-filling design is a nonlinear 
programming hard problem, which – from a theoretical point of view – is difficult to solve exactly. This 
problem, however, has a representation, which might be within the reach of currently available tools. To 
reduce the search time and still generate good designs, the popular approach is to restrict the search within a 
subset of the general space-filling designs. This subset typically has some good 'built-in' properties with 
respect to the uniformity of a design.  
The constrained randomization method termed Latin Hypercube Sampling (LHS) and proposed in [10], has 
become a popular strategy to generate points on the 'box' (hypercube) design region. The method implies 
that on each level of every design variable only one point is placed, and the number of levels is the same as 
the number of runs. The levels are assigned to runs either randomly or so as to optimize some criterion, e.g. 
so that the minimal distance between any two design points is maximized ('maximin distance' criterion). 
Restricting the design in this way tends to produce better Latin hypercubes. However, the computational 
cost of obtaining these designs is high. In multidimensional problems, the search for an optimal Latin 
hypercube design using traditional deterministic methods (e.g. the optimization algorithm described in [11]) 
may be computationally prohibitive. This situation motivates the search for alternatives.  
Probabilistic search techniques, adaptive simulated annealing and genetic algorithms are attractive 
heuristics for approximating the solution to a wide range of optimization problems. In particular, these 
techniques are frequently used to solve combinatorial optimization problems, such as the traveling salesman 
problem. Morris and Mitchell [12] adopted the simulated annealing algorithm to search for optimal Latin 
hypercube designs.  
In LS-OPT, space-filling designs can be useful for constructing experimental designs for the following 
purposes:  

1. The generation of basis points for the D-optimality criterion. This avoids the necessity to create a 
very large number of basis points using e.g. the full factorial design for large n. E.g. for n=20 and 3 
points per variable, the number of points = 320  ≈ 3.5*109. 

2. The generation of design points for all approximation types, but especially for neural networks and 
Kriging.  

3. The augmentation of an existing experimental design. This means that points can be added for each 
iteration while maintaining uniformity and equidistance with respect to pre-existing points.0. 

LS-OPT contains 6 algorithms to generate space-filling designs (see Table 21-2).  
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Figure 21-1: Six space-filling designs: 5 points in a 2-dimensional box region 

LS-OPT Version 5.2  501 



CHAPTER 21: Response Surface Methodology 

Table 21-2: Description of space-filling algorithms 

Algorithm  
Number 

Description 

0 Random 

1 'Central point' Latin Hypercube Sampling (LHS) design with random pairing  

2 'Generalized' LHS design with random pairing 

3 Given an LHS design, permutes the values in each column of the LHS matrix so as to 
optimize the maximin distance criterion taking into account a set of existing (fixed) 
design points. This is done using simulated annealing. Fixed points influence the 
maximin distance criterion, but are not allowed to be changed by Simulated Annealing 
moves. 

4 Given an LHS design, moves the points within each LHS subinterval preserving the 
starting LHS structure, optimizing the maximin distance criterion and taking into 
consideration a set of fixed points. 

5 Given an arbitrary design (and a set of fixed points), randomly moves the points so as to 
optimize the maximin distance criterion using simulated annealing (see 23.10). 

Discussion of algorithms 
The Maximin distance space-filling algorithms 3, 4 and 5 minimize the energy function defined as the 
negative minimal distance between any two design points. Theoretically, any function that is a metric can be 
used to measure distances between points, although in practice the Euclidean metric is usually employed.  
The three algorithms, 3, 4 and 5, differ in their selection of random Adaptive Simulated Annealing moves 
from one state to a neighboring state. For algorithm 3, the next design is always a 'central point' LHS design 
(Eq. 21.11). The algorithm swaps two elements of I, Sij and Skj, where i and k are random integers from 1 to 
N, and j is a random integer from 1 to n. Each step of algorithm 4 makes small random changes to a LHS 
design point preserving the initial LHS structure. Algorithm 5 transforms the design completely randomly - 
one point at a time. In more technical terms, algorithms 4 and 5 generate a candidate state, S ′ , by modifying 
a randomly chosen element Sij of the current design, S, according to:  

ξ+= ijij SS '        (21-13) 

where ξ is a random number sampled from a normal distribution with zero mean and standard deviation 
σξ ∈ [σmin, σmax]. In algorithm 4 it is required that both '

ijS  and ijS  in Eq. (21.13) belong to the same Latin 
hypercube subinterval.  
Notice that maximin distance energy function does not need to be completely recalculated for every iterative 
step of simulated annealing. The perturbation in the design applies only to some of the rows and columns of 
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S. After each step we can recompute only those nearest neighbor distances that are affected by the stepping 
procedures described above. This reduces the calculation and increased the speed of the algorithm.  
To perform an annealing run for the algorithms 3, 4 and 5, the values for Tmax and Tmin can be adapted to the 
scale of the objective function according to: 

ETT ∆×= maxmax : ,        (21-14) 

where ΔE > 0 is the average value of |E'-E| observed in a short preliminary run of simulated annealing and 
Tmax and Tmin are positive parameters.  
The basic parameters that control the adaptive simulated annealing in algorithms 3, 4 and 5 can be 
summarized as follows: 

1. Energy function: negative minimal distance between any two points in the design.  
2. Stepping scheme: depends on whether the LHS property is preserved or not.  
3. Scalar parameters: 

o Parameters for the cooling schedule:  
o scaling factor for the initial (maximal) temperature, Tmax,  
o scaling factor for the minimal temperature, Tmin,  
o ratio of cost temperature and the parameter temperatures,  
o number of iterations at each temperature, νT.  
o parameter temperature update interval 
o Parameters that control the standard deviation of ξ in (2.13):  
o upper bound, σmax,  
o lower bound, σmin.  
o Termination criterion: maximal number of energy function evaluations, Nit. 

21.2.7. Random number generator 

The Mersenne Twister [13] is used in Neural Network construction and Monte Carlo, Latin Hypercube, 
Space Filling and D-Optimal point selection and probabilistic analysis. The Mersenne Twister (MT19937) is 
a pseudo-random number generator developed by Matsumoto and Nishimura and has the merit that it has a 
far longer period and far higher order of equi-distribution than any other implemented generators. It has 
been proved that the period is 219937-1, and a 623-dimensional equi-distribution property is assured. Features 
have been provided to seed the generator to enable sensitivity studies. 

21.2.8. Reasonable experimental designs 

A ‘reasonable’ design space refers to a region of interest which, in addition to having specified bounds on 
the variables, is also bounded by specified values of the responses. This results in an irregular shape of the 
design space. 
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In LS-OPT, constrained experimental designs can be obtained for the D-Optimality criterion as well as for 
Space Filling. 
Reasonable experimental designs can only be obtained using explicit constraints, i.e. constraints which are 
not defined by a metamodel.  

21.3. Model adequacy checking 
As indicated in the previous sections, response surfaces are useful for interactive trade-off studies. For the 
trade-off surface to be useful, its capability of predicting accurate response must be known. Error analysis is 
therefore an important aspect of using response surfaces in design. Inaccuracy is not always caused by 
random error (noise) only, but modeling error (sometimes called bias error), especially in a large subregion 
or where there is strong non-linearity present, could play a very significant role. There are several error 
measures available to determine the accuracy of a response surface. 

21.3.1. Residual sum of squares 

For the predicted response iŷ and the actual response yi, this error is expressed as 

( )∑
=

−=ε
P

i
ii yy

1

22 ˆ
      

 (21-15) 

If applied only to the regression points, this error measure is not very meaningful unless the design space is 
oversampled e.g., e = 0 if the number of points P equals the number of basis functions L in the 
approximation. 

21.3.2. RMS error 

The residual sum-of-squares is sometimes used in its square root form, RMSε , and called the “RMS error”: 

( )∑
=

−=ε
P

i
iiRMS yy

P 1

2ˆ1

       
(21-16) 

21.3.3. Maximum residual 

This is the maximum residual considered over all the design points and is given by 

ii yy ˆmaxmax −=ε .        (21-17) 

21.3.4. Prediction error 

The same as the RMS error, but using only responses at preselected prediction points independent of the 
regression points. This error measure is an objective measure of the prediction accuracy of the response 
surface since it is independent of the number of construction points. It is important to know that the choice 
of a larger number of construction points will, for smooth problems, diminish the prediction error. 
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The prediction points can be determined by adding rows to X 
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and solving 
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a += maxmax        (21-19) 

for xp. 

21.3.5. PRESS residuals 

The prediction sum of squares residual (PRESS) uses each possible subset of P – 1 responses as a regression 
data set, and the remaining response in turn is used to form a prediction set 21.5. PRESS can be computed 
from a single regression analysis of all P points. 
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where hii are the diagonal terms of 

( ) .1 TT XXXXH −
=        (21-21) 

H is the “hat” matrix, the matrix that maps the observed responses to the fitted responses, i.e. 

.ˆ Hyy =        (21-22) 

The PRESS residual can also be written in its square root form 

.
1

ˆ1
1

2

∑
=









−
−

=
P

i ii

ii

h
yy

P
SPRESS        (21-23) 

For a saturated design, H equals the unit matrix I so that the PRESS indicator becomes undefined. 

21.3.6. The coefficient of multiple determination R2 

The coefficient of determination R2 is defined as: 
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where P is the number of design points and y , iŷ and yi represent the mean of the responses, the predicted 
response, and the actual response, respectively. This indicator, which varies between 0 and 1, represents the 
ability of the response surface to identify the variability of the design response. A low value of R2 usually 
means that the region of interest is either too large or too small and that the gradients are not trustworthy. 
The value of 1.0 for R2 indicates a perfect fit. However, the value will not warn against an overfitted model 
with poor prediction capabilities. 

21.3.7. R2 for Prediction 

For the purpose of prediction accuracy the 2
predictionR  indicator has been devised 21.5. 
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2
predictionR  represents the ability of the model to detect the variability in predicting new responses 21.5. 

21.3.8. Iterative design and prediction accuracy 

In an iterative scheme with a shrinking region the R2 value tends to be small at the beginning, then 
approaches unity as the region of interest shrinks, thereby indicating improvement of the modeling ability. It 
may then reduce again as the noise starts to dominate in a small region causing the variability to become 
indistinguishable. In the same progression, the prediction error will diminish as the modeling error fades, 
but will stabilize at above zero as the modeling error is replaced by the random error (noise). 

21.4. ANOVA 
Since the number of regression coefficients determines the number of simulation runs, it is important to 
remove those coefficients or variables which have small contributions to the design model. This can be done 
by doing a preliminary study involving a design of experiments and regression analysis. The statistical 
results are used in an analysis of variance (ANOVA) to rank the variables for screening purposes. The 
procedure requires a single iteration using polynomial regression, but results are produced after every 
iteration of a normal optimization procedure. 
ANOVA is a regression based sensitivity measure with 

𝑏𝑏𝑗𝑗 =
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝑗𝑗

∙ ∆𝑥𝑥𝑗𝑗 , 𝑗𝑗 = 1, . . . ,𝑁𝑁, 

where 𝑓𝑓 is the linear approximation, ∆𝑥𝑥𝑗𝑗 the size of the design space of variable 𝑥𝑥𝑗𝑗, and 𝑁𝑁 the number of 
variables, Figure 21-2. 
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Figure 21-2: Definition of ANOVA value bj 

21.4.1. The confidence interval of the regression coefficients 

The 100(1 – α)% confidence interval for the least squares estimators Ljb j ,...,1,0=∧  is determined by the 
inequality 

,5.05.0 jjjjj bbbb ∆+≤≤∆− b        (21-27) 

where 

( ) ,ˆ2 2
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 (21-28) 

𝛽𝛽𝑗𝑗is the regression coefficient and 2σ̂  is an unbiased estimator of the variance 2σ  given by 
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𝑃𝑃 is the number of points and L is the number of terms in the polynomial while jjC  is the diagonal element 

of ( ) 1−XXT  corresponding to bj and tα/2,P-L is Student’s t-Distribution. 100(1 – α)% therefore represents the 
level of confidence that bj will be in the computed interval. 
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Figure 21-3: ANOVA value with 100(1 – α)% confidence interval 

21.4.2. The significance of a regression coefficient bj 

The contribution of a single regressor variable to the model can also be investigated. This is done by means 
of the partial F-test where F is calculated to be 
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where r = 1 and the reduced model is the one in which the regressor variable in question has been removed. 
Each of the 2ε  terms represents the sum of squared residuals for the reduced and complete models 
respectively. 
It turns out that the computation can be done without analyzing a reduced model by computing 
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F can be compared with the F-statistic Fα,1,P-L so that if F > Fα,1,P-L, bj is non-zero with (100 – α)% 
confidence. The confidence level α that bj is not zero can also be determined by computing the α for 
F = Fα,1,P-L. The importance of bj is therefore estimated by both the magnitude of bj as well as the level of 
confidence in a non-zero bj. 
The significance of regressor variables may be represented by a bar chart of the magnitudes of the 
coefficients bj with an error bar of length )(2 αjb∆  for each coefficient representing the confidence interval 
for a given level of confidence α. The relative bar lengths allow the analyst to estimate the importance of 
the variables and terms to be included in the model while the error bars represent the contribution to noise or 
poorness of fit by the variable. 
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All terms have been normalized to the size of the design space so that the choice of units becomes irrelevant 
and a reasonable comparison can be made for variables of different kinds, e.g. sizing and shape variables or 
different material constants. 
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22. Metamodeling Techniques 

Metamodeling techniques allow the construction of surrogate design models for the purpose of design 
exploration such as variable screening, optimization and reliability. LS-OPT provides the capability of using 
five standard types of metamodeling techniques, namely polynomial response surfaces (already discussed, 
see Section 21.1), Neural Networks (NN) (Section 22.1.2),  Radial Basis Function Networks (RBF) (Section 
22.1.3), Kriging (Section 22.2) and Support Vector Regression (SVR) (Section 22.3). All of these 
approaches can be useful to provide a predictive capability for optimization or reliability. In addition, linear 
polynomials, although perhaps less accurate, are highly suitable for variable screening (Section 21.4). At the 
core, these techniques differ in the regression methods employed to construct the surrogate models. The 
polynomial response surface method and the RBF’s use linear regression, while neural networks use 
nonlinear regression methods requiring an optimization algorithm. 
When using polynomials, the user is faced with the choice of deciding which monomial terms to include. In 
addition, polynomials, by way of their nature as Taylor series approximations, are not natural for the 
creation of updateable surfaces. This means that if an existing set of point data is augmented by a number of 
new points which have been selected in a local subregion (e.g. in the vicinity of a predicted optimum), better 
information could be gained from a more flexible type of approximation that will keep global validity while 
allowing refinement in a subregion of the parameter space. Such an approximation would provide a more 
natural approach for combining the results of successive iterations.  

22.1. Neural networks 
Neural methods are natural extensions and generalizations of regression methods. Neural networks have 
been known since the 1940's, but it took the dramatic improvements in computers to make them practical, 
[3]. Neural networks - just like regression techniques - model relationships between a set of input variables 
and an outcome. Neural networks can be thought of as computing devices consisting of numerical units 
(‘neurons’), whose inputs and outputs are linked according to specific topologies (see the example in Figure 
22-1). A neural model is defined by its free parameters - the inter-neuron connection strengths (‘weights’) 
and biases. These parameters are typically ‘learned’ from the training data by using an appropriate 
optimization algorithm. The training set consists of pairs of input (design) vectors and associated outputs 
(responses). The training algorithm tries to steer network parameters towards minimizing some distance 
measure, typically the mean squared error (MSE) of the model computed on the training data. 
 Several factors determine the predictive accuracy of a neural network approximation and, if not properly 
addressed, may adversely affect the solution. For a neural network, as well as for any other data-derived 
model, the most critical factor is the quality of training data. In practical cases, we are limited to a given 
data set, and the central problem is that of not enough data. The minimal number of data points required for 
network training is related to the (unknown) complexity of the underlying function and the dimensionality 
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of design space. In reality, the more design variables, the more training samples are required. In the 
statistical and neural network literature this problem is known as the ‘curse of dimensionality’. Most forms 
of neural networks (in particular, feedforward networks) actually suffer less from the curse of 
dimensionality than some other methods, as they can concentrate on a lower-dimensional section of the 
high-dimensional space. For example, by setting the outgoing weights from a particular input to zero, a 
network can entirely ignore that input – see Figure 22-1. Nevertheless, the curse of dimensionality is still a 
problem, and the performance of a network can certainly be improved by eliminating unnecessary input 
variables. 
It is clear that if the number of network free parameters is sufficiently large and the training optimization 
algorithm is run long enough, it is possible to drive the training MSE error as close as one likes to zero. 
However, it is also clear that driving MSE all the way to zero is not a desirable thing to do. For noisy data, 
this may indicate over-fitting rather than good modeling. For highly discrepant training data, zero MSE 
makes no sense at all. Regularization means that some constraints are applied to the construction of the 
neural model with the goal of reducing the 'generalization error', that is, the ability to predict (interpolate) 
the unobserved response for new data points that are generated by a similar mechanism as the observed data. 
A fundamental problem in modeling noisy and/or incomplete data is to balance the 'tightness' of the 
constraints with the 'goodness of fit' to the observed data. This tradeoff is called the bias-variance tradeoff 
in the statistical literature. 
 A multilayer feedforward network and a radial basis function network are the two most common neural 
architectures used for approximating functions. Networks of both types have a distinct layered topology in 
the sense that their processing units (‘neurons’) are divided into several groups ('layers'), the outputs of each 
layer of neurons being the inputs to the next layer (Figure 22-1). 
In a feedforward network, each neuron performs a biased weighted sum of their inputs and passes this value 
through a transfer (activation) function to produce the output. Activation function of intermediate ('hidden') 
layers is generally a Sigmoidal function (Figure 22-2), while network input and output layers are usually 
linear (transparent). In theory, such networks can model functions of almost arbitrary complexity, see [4] 
and [5]. All parameters in a feedforward network are usually determined at the same time as part of a single 
(non-linear) optimization strategy based on the standard gradient algorithms (the steepest descent, RPROP, 
Levenberg-Marquardt, etc.). The gradient information is typically obtained using a technique called 
backpropagation, which is known to be computationally effective [6]. For feedforward networks, 
regularization may be done by controlling the number of network weights (‘model selection’), by imposing 
penalties on the weights (‘ridge regression’) [7], or by various combinations of these strategies [8]. 
A radial basis function network has a single hidden layer of radial units, each actually modeling a response 
function, peaked at the center, and monotonically varying outwards (Figure 22-3). Each unit responds (non-
linearly) to the distance of points from its center. The RBF network output layer is typically linear. 
Intuitively, it is clear that a weighted sum of the sufficient radial units will always be enough to model any 
set of training data (see Figure 22-4 and Figure 22-5). The formal proofs of this property can be found, for 
example, in [9] and [10]. An RBF network can be trained extremely quickly, orders of magnitude faster than 
a feedforward network. The training process typically takes place in two distinct stages. First, the centers 
and deviations of the radial units (i.e. the hidden layer's weights) must be set; then the linear output layer is 
optimized. It is important that deviations are chosen so that RBFs overlap with some nearby units. 
Discovering a sub-optimal ‘spread’ parameter typically implies the preliminary experimental stage. If the 
RBFs are too spiky, the network will not interpolate between known points (see Figure 22-6). If the RBFs 
are very broad, the network loses fine detail (Figure 22-7). This is actually another manifestation of the 
over/under-fitting dilemma. 
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In the final shape, after training, a multilayer neural network with linear output (Figure 22-1) can resemble a 
general linear regression model - a least squares approximation. The major differences lie in the choice of 
basis functions and in the algorithms to construct the model (i.e. to adjust model's free parameters). 
Techniques to identify the systematical errors in the model and to estimate the uncertainty of model’s 
prediction of future observations also become more complex. Unlike polynomial regressors, hidden neurons 
do not lend themselves to immediate interpretations in terms of input (design) variables. 
The next sections discuss various goodness-of-fit assessment approaches applicable to neural networks. We 
also discuss how to estimate the variance of the neural model and how to compute derivatives of a neural 
network with respect to any of its inputs. Two neural network types, feedforward and radial basis, are 
considered. 

 

Figure 22-1: Schematic of a neural network with 2 inputs and a hidden layer of 4 neurons with 
activation function f.  
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Figure 22-2: Sigmoid transfer function 
y=1/(1+exp(-x)) typically used with feedforward 
networks 

 

Figure 22-3: Radial basis transfer function y=exp(-
x2)  

 

Figure 22-4: Weighted sum of radial basis transfer 
functions. Three radial basis functions (dashed 
lines) are scaled and summed to produce a 
function (solid line). 

 

Figure 22-5: A radial basis network approximation 
(solid line) of the function, which fits the 21 data 
points (plus symbols). 

LS-OPT Version 5.2  513 



CHAPTER 22: Metamodeling Techniques 

 

Figure 22-6: The same 21 data points as in 
Figure 22-5. Test points reveal that the function 
has been overfit. RBF neuron's spread is too 
small. RBF network could have done better with a 
higher spread constant.  

 

Figure 22-7: The same 21 data points as in 
Figure 22-5. Approximation with overlapping 
RBF neurons. The spread of RBF units is too 
high.  

22.1.1. Model adequacy checking 

Nature is rarely (if ever) perfectly predictable. Real data never exactly fit the model that is being used. One 
must take into consideration that the prediction errors not only come from the variance error due to the 
intrinsic noise and unreliabilities in the measurement of the dependent variables but also from the systematic 
(bias) error due to model mis-specification. According to George E.P. Box's famous maxim, "all models are 
wrong, some are useful". To be genuinely useful, a fitting procedure should provide the means to assess 
whether or not the model is appropriate and to test the goodness-of-fit against some statistical standard. 
There are several error measures available to determine the accuracy of the model. Among them are: 
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where P denotes the number of data points, yi is the observed response value (’target value’), iŷ  is the 

model’s prediction of response, ŷ  is the mean (average) value of ŷ , y  is the mean (average) value of y, and 
2σ̂ is given by 
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Mean squared error (MSE for short) and root mean squared error (RMS) summarize the overall model error. 
Unique or rare large error values can affect these indicators. Sometimes, MSE and RMS measures are 
normalized with sample variance of the target value (see formulae for nMSE and nRMS) to allow for 
comparisons between different datasets and underlying functions. R2 and R are relative measures. The 
coefficient of multiple determination R2 (’R-square’) is the explained variance relative to the total variance 
in the target value. This indicator is widely used in linear regression analysis. R2 represents the amount of 
response variability explained by the model. R is the correlation coefficient between the network response 
and the target. It is a measure of how well the variation in the output is explained by the targets. If this 
number is equal to 1, then there is a perfect correlation between targets and outputs. Outliers can greatly 
affect the magnitudes of correlation coefficients. Of course, the larger the sample size, the smaller is the 
impact of one or two outliers. 
Training accuracy measures (MSE, RMS, R2, R, etc.) are computed along all the data points used for 
training. As mentioned above, the performance of a good model on the training set does not necessarily 
mean good prediction of new (unseen) data. The objective measures of the prediction accuracy of the model 
are test errors computed along independent testing points (i.e. not training points). This is certainly true 
provided that we have an infinite number of testing points. In practice, however, test indicators are usable, 
only if treated with appropriate caution. Actual problems are often characterized by the limited availability 
of data, and when the training datasets are quite small and the test sets are even smaller, only quite large 
differences in performance can be reliably discerned by comparing training and test indicators. 
The generalized cross-validation (GCV) [11] and Akaike’s final prediction error (FPE) [12] provide 
computationally feasible means of estimating the appropriateness of the model. The k-fold cross-validation 
(denoted here as CV-k), generalized cross-validation (GCV) [11] and Akaike's final prediction error (FPE) 
[12] provide computationally feasible means of estimating the appropriateness of the model.  
GCV and FPE estimates combine the training MSE with a measure of the model complexity: 

( ) ,/1 2PMSEMSEGCV ν−=          (22-5) 

,GCVGCV MSERMS = ;ˆ 2σGCVGCV MSEnMSE =       .ˆ 2σ= GCVGCV RMSnRMS    (22-6) 

( ) ( ),/1/1 PPMSEMSEFPE νν −+=          (22-7) 

,FPEFPE MSERMS = ;ˆ 2σFPEFPE MSEnMSE =       .ˆ 2σ= FPEFPE RMSnRMS    (22-8) 

where ν is the (effective) number of model parameters. 

In theory, GCV estimates should be related to ν. As a very rough approximation to ν, we can assume that all 
of the network free parameters are well determined so that ν = M, where M is the total number of network 
weights and biases. This is what we would expect to be the case for large P so that P >> M. Note that GCV 
is undefined when ν is equal to the number of training points (P). In theory, GCV and FPE estimates should 
be related to the effective number of model's parameters ν. Techniques to assess ν for neural networks will 
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be discussed later. As a very rough approximation, we can assume that all of the network free parameters 
are well determined so that ν = M, where M is the total number of network weights and biases. This is what 
we would expect to be the case for large P so that P >> M. Note that both GCV and FPE are undefined 
when the effective number of model's parameters (ν) is equal to the number of training points (P). GCV and 
FPE measures are asymptotically equivalent for large P. 
In k-fold cross-validation the training dataset is divided into k randomly selected disjoint subsets of roughly 
equal size P(j). The model is trained and tested k times. Each time kj ,...,1=  it is trained on all data except 
for points from subset j and then tested on j-th subset. Formally, let )()()( ,...,1),( jj

i
j Piyy ==  be the 

prediction of such a model for the points from subset j. Then the CV-k estimates of accuracy  
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,kCVkCV MSERMS −− = ;ˆ 2σ= −− kCVkCV MSEnMSE       .ˆ 2σ= −− kCVkCV RMSnRMS  (22-10) 

The CV estimate is a random number that depends on the division into folds. Repeating cross-validation 
multiple times using different splits into folds provides a better approximation to complete N-fold cross-
validation (leave-one-out). Leave-one-out measure is almost unbiased, but for typical real world datasets it 
has high variance, leading to unreliable estimates. Small datasets are simply not suitable for CV estimates, 
since data distribution can change considerably after we separate out even a small portion of data. In 
addition, the CV approach is usually too expensive. The question is whether the advantages of CV (if any) 
are big enough to justify the computational cost of training multiple networks rather than one. 
Anyway, no accuracy estimation can be correct all the time. Most probably it is impossible to evaluate a 
model by means of a single descriptive measure. We should always consider several accuracy measures 
when deciding on the appropriateness of the model, especially if this model is trained on noisy and/or 
incomplete data. In certain cases the crucial phase of integrating disparate measures into a single judgment 
could be delegated to a statistical decision-making tool. Of course, when the quantity of data required for 
statistical methods is simply not available, human experts' knowledge should be used for the really big 
decisions. 

22.1.2. Feedforward neural networks 

Feedforward (FF) neural networks have a distinct layered topology. Each unit performs a biased weighted 
sum of their inputs and passes this value through a transfer (activation) function to produce the output. The 
outputs of each layer of neurons are the inputs to the next layer. In a feedforward network, the activation 
function of intermediate (’hidden’) layers is generally a sigmoidal function (Figure 22-3), network input and 
output layers being linear. Consider a FF network with K inputs, one hidden layer with H sigmoid units and 
a linear output unit. For a given input vector ( )Kxx ,...,1=x  and network weights 

( )HKH WWWWWW ,...,,,...,, 1110,10=W , the output of the network is: 
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Where  𝑓𝑓(𝑥𝑥) = 1
1+𝑒𝑒−𝑥𝑥

 . 

The computational graph of Eq. (22-11) is shown schematically in Figure 22-1. The extension to the case of 
more than one hidden layers can be obtained accordingly. It is straightforward to show that the derivative of 
the network Eq. (22-11) with respect to any of its inputs is given by: 
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Neural networks have been mathematically shown to be universal approximators of continuous functions 
and their derivatives (on compact sets) [4]. In other words, when a network (5) converges towards the 
underlying function, all the derivatives of the network converge towards the derivatives of this function. 
Standard non-linear optimization techniques including a variety of gradient algorithms (the steepest descent, 
RPROP, Levenberg-Marquardt, etc.) are applied to adjust FF network’s weights and biases. For neural 
networks, the gradients are easily obtained using a chain rule technique called ‘backpropagation’ [6]. The 
second-order Levenberg-Marquardt algorithm appears to be the fastest method for training moderate-sized 
FF neural networks (up to several hundred adjustable weights) [3]. However, when training larger networks, 
the first-order RPROP algorithm becomes preferable for computational reasons [13].  
Regularization: For FF networks, regularization may be done by controlling the number of network weights 
(’model selection’), by imposing penalties on the weights (’ridge regression’), or by various combinations of 
these strategies ([7], [8]). Model selection requires choosing the number of hidden nodes and, sometimes, 
the number of network hidden layers. Most straightforward is to search for an ’optimal’ network 
architecture that minimizes MSEGCV, MSEFPE or MSECV–k. Often, it is feasible to loop over 1, 2,... hidden 
nodes and finally select the network with the smallest GCV error. In any event, in order for the GCV 
measure to be applicable, the number of training points P should not be too small compared to the required 
network size M. 
Over-fitting: To prevent over-fitting, it is always desirable to find neural solutions with the smallest number 
of parameters. In practice, however, networks with a very parsimonious number of weights are often hard to 
train. The addition of extra parameters (i.e. degrees of freedom) can aid convergence and decrease the 
chance of becoming stuck in local minima or on plateaus [14]. Weight decay regularization involves 
modifying the performance function F, which is normally chosen to be the mean sum of squares of the 
network errors on the training set (Eq. (22-1)). When minimizing MSE (Eq. (22-1)) the weight estimates 
tend to be exaggerated. We can impose a penalty for this tendency by adding a term that consists of the sum 
of squares of the network weights (see also (Eq. (22-1))): 

,WD EEF α+β=          (22-13) 
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where M is the number of weights and P the number of points in the training set. 
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Notice that network biases are usually excluded from the penalty term EW. Using the modified performance 
function (Eq. 22-13) will cause the network to have smaller weights, and this will force the network 
response to be smoother and less likely to overfit. This eliminates the guesswork required in determining the 
optimum network size. Unfortunately, finding the optimal value for α and b is not a trivial task. If we make 
α /b too small, we may get over-fitting. If α /b is too large, the network will not adequately fit the training 
data. A rule of thumb is that a little regularization usually helps [15]. It is important that weight decay 
regularization does not require that a validation subset be separated out of the training data. It uses all of the 
data. This advantage is especially noticeable in small sample size situations. Another nice property of 
weight decay regularization is that it can lend numerical robustness to the Levenberg-Marquardt algorithm. 
The L-M approximation to the Hessian of Eq. (22-13) is moved further away from singularity due to a 
positive addend to its diagonal: 

IHA α+=          (22-14) 
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In [3], [16], [17]and [18] the Bayesian (’evidence framework’ or ’type II maximum likelihood’) approach to 
regularization is discussed. The Bayesian re-estimation algorithm is formulated as follows. At first, we 
choose the initial values for α and b. Then, a neural network is trained using a standard non-linear 
optimization algorithm to minimize the error function (Eq. (22-13)). After training, i.e. in the minimum of 
Eq. (22-13), the values for α and b are re-estimated, and training restarts with the new performance 
function. Regularization hyper-parameters are computed in a sequence of 3 steps: 
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where λm, m = 1,…,M are (positive) eigenvalues of matrix H in Eq. (22-14), ν is the estimate of the 
effective number of parameters of a neural network, 

;2 WEν=α  

( ) .2 DEP ν−=β  

It should be noted that the algorithm (Eq. (22-15)) relies on numerous simplifications and assumptions, 
which hold only approximately in typical real-world problems [19]. In the Bayesian formalism a trained 
network is described in terms of the posterior probability distribution of weight values. The method 
typically assumes a simple Gaussian prior distribution of weights governed by an inverse variance hyper-
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parameter 2/1 weightss=α . If we present a new input vector to such a network, then the distribution of weights 
gives rise to a distribution of network outputs. There will be also an addend to the output distribution arising 
from the assumed β=σ /12

noiσe Gaussian noise on the output variables: 

( ) ( ).,0 2
noiseNyy s+= x  

With these assumptions, the negative log likelihood of network weights W given P training points 
x(1), … , x(P) is proportional to MSE (Eq. 22-1)), i.e., the maximum likelihood estimate for W is that which 
minimizes (Eq. 22-1) or, equivalently, ED. In order for Bayes estimates of α and b to do a good job of 
minimizing the generalization in practice, it is usually necessary that the priors on which they are based are 
realistic. The Bayesian formalism also allows us to calculate error bars on the network outputs, instead of 
just providing a single ’best guess’ output ŷ . Given an unbiased model, minimization of the performance 
function (Eq. 22-1) amounts to minimizing the variance of the model. The estimate for output variance 2

|ˆ xyσ  
of the network at a particular point x is given by: 

 ( ) ( ).12
|ˆ xgAxg −≈σ T
xy  (22-16) 

Equation (22-16) is based on a second-order Taylor series expansion of Eq. (22-13) around its minimum and 
assumes that W∂∂ŷ  is locally linear. 

Variability of Feedforward neural networks 

Neural networks have a natural variability because of the following reasons [20]: 
4. Local behavior of the neural network training algorithms 
5. Uncertainty (noise) in the training data.0. 

The neural network training error function usually has multiple local and global minima. With different 
initial weights, the training algorithm typically ends up in different (but usually almost equally good/bad) 
local minima. The larger the amount of noise in the data, the larger is the difference between these NN 
solutions. The user is allowed to specify a neural network committee to find the average net and quantify the 
variability (Section 9.1.3). The starting weights for network training are randomly generated using a user-
specified seed to ensure repeatability (see Section 21.2.7). 

22.1.3. Radial basis function networks 

A radial basis function neural network has a distinct 3-layer topology. The input layer is linear (transparent). 
The hidden layer consists of non-linear radial units, each responding to only a local region of input space. 
The output layer performs a biased weighted sum of these units and creates an approximation of the input-
output mapping over the entire space.  
While several forms of radial basis function are considered in the literature, the most common functions are 
the Hardy’s multi-quadrics and the Gaussian basis function. These are given as: 
Hardy’s multi-quadric:  
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1 hKh rxxg σ+=         (22-17) 

Gaussian:  

( ) [ ].2/exp,..., 22
1 hKh rxxg σ−=         (22-18) 

The activation of hth radial basis function is determined by the Euclidean distance ( )∑
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between the input vector ( )Kxx ,...,1=x  and RBF center ( )hkhh WWW ,...,1=   in K-dimensional space. The 
Gaussian basis function is a localized function (peaked at the center and descending outwards) with the 
property that 0→hg  as ∞→r . Parameter hσ  controls the smoothness properties of the RBF unit.  

For a given input vector x the output of RBF network with K inputs and a hidden layer with H basis 
function units is given by (see also Eqs. (22-17) and (22-18)):  
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Notice that hidden layer parameters ( )hkhh WWW ,...,1=  represent the center of hth radial unit, while 0hW  

corresponds to its deviation. Parameters 0W  and HWW ,...,1  are the output layer's bias and weights, 
respectively. 
A linear super-position of localized functions as in (22-13) is capable of universal approximation. The 
formal proofs of this property can be found, for example, in [9] and [10]. It is straightforward to show that 
the derivative of the network (22-13) with respect to any of its inputs is given by: 
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where 'f  denotes the first derivative of the transfer function ( ) ).exp(: ' ρρ −−=ff  

 Theory tells us that when a network (Eq. 22-19) converges towards the underlying function, all the 
derivatives of the network converge towards the derivatives of this function.  
A key aspect of RBF networks, as distinct from feedforward neural networks, is that they can be interpreted 
in a way which allows the hidden layer parameters (i.e. the parameters governing the radial functions) to be 
determined by semi-empirical, unsupervised training techniques. Accordingly, although a radial basis 
function network may require more hidden nodes than a comparable feedforward network, RBF networks 
can be trained extremely quickly, orders of magnitude faster than FF networks. 
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For RBF networks, the training process generally takes place in two distinct stages. First, the centers and 
deviations of the radial units (i.e. hidden layer parameters HKWW ,...,11  and 010 ,..., HWW ) must be set. All the 
basis functions are then kept fixed, while the linear output layer (i.e., HWW ,...,0 ) is optimized in the second 
phase of training. In contrast, all of the parameters in a FF network are usually determined at the same time 
as part of a single training (optimization) strategy. Techniques for selecting HKWW ,...,11  and 010 ,..., HWW  are 
discussed at length in following paragraphs. Here we shall assume that the RBF parameters have already 
been chosen, and we focus on the problem of optimizing the output layer weights.  
Mathematically, the goal of output layer optimization is to minimize a performance function, which is 
normally chosen to be the mean sum of squares of the network errors on the training set (Eq. (22-1)). If the 
hidden layer's parameters HKWWW ,...,11,10  in (22-12) are kept fixed, then the performance function 

(Eq. (22-1)) is a quadratic function of the output layer' parameters HWW ,...,0  and its minimum can be found 
in terms of the solution of a set of linear equations (e.g., using singular value decomposition). The 
possibility of avoiding the need for time-consuming and costly non-linear optimization during training is 
one of the major advantages of RBF networks over FF networks. However, when the number of optimized 
parameters ( 1+H , in our case) is small enough, non-linear optimization (Levenberg-Marquardt, etc.) may 
also be cost-effective.  
It is clear that the ultimate goal of RBF neural network training is to find a smooth mapping which captures 
the underlying systematic aspects of the data without fitting the noise. However, for noisy data, the exact 
RBF network, which passes exactly through every training data point, is typically a highly oscillatory 
function. There are a number of ways to address this problem. By analogy with FF network training, one 
can add to (Eq. (22-1)) a regularization term that consists of the mean of the sum of squares of the optimized 
weights. In conventional curve fitting this form of regularization is called ridge regression. The sub-optimal 
value for hyperparameters α and β in (22-13) can be found by applying Bayesian re-estimation formulae 
(Eq. (22-14)) - (Eq. (22-15)). It is also feasible to iterate over several trial values of α and β.  
For RBF networks, however, the most effective regularization methods are probably those pertaining to 
selecting radial centers and deviations in the first phase of RBF training. The commonly held view is that 
RBF centers and deviations should be chosen so as to form a representation of the probability density of the 
input data. The classical approach is to set RBF centers equal to all the input vectors from the training 
dataset. The width parameters hσ  are typically chosen – rather arbitrarily – to be some multiple σS  of the 
average spacing between the RBF centers (e.g. to be roughly twice the average distance). This ensures that 
the RBF's overlap to some degree and hence give a relatively smooth representation of data. 

 To simplify matters, the same value of the width parameter hσ  for all RBF units is usually considered. 
Sometimes, instead of using just one value for all RBF's, each RBF unit's deviation hσ  is individually set to 
the distance to its NN <<σ  nearest neighbors. Hence, deviations hσ  become smaller in densely populated 
areas of space, preserving fine detail, and are higher in sparse areas of space, interpolating between points 
where necessary. Again the choice of σN  is somewhat arbitrary. RBF networks with individual radial 
deviations hσ  can be particularly useful in situations where data tend to cluster in only a small subregion of 
the design space (for example, around the optimum of the underlying system which RSM is searching for) 
and are sparse elsewhere.  
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One must take into consideration that after the first phase of RBF training is over, there's no way to 
compensate for large inaccuracies in radial deviations hσ  by, say, adding a regularization term to the 
performance function. If the basis functions are too spiky, the network will not interpolate between known 
points, and thus, will lose the ability to generalize. If the Gaussians are very broad, the network is likely to 
lose fine detail. The popular approach to find a sub-optimal spread parameter is to loop over several trial 
values of σS  and σN , and finally select the RBF network with the smallest GCV (FPE, CV-k) error. This is 
somewhat analogous to searching for an optimal number of hidden nodes of a feedforward neural network. 
 In order to eliminate all the guesswork required in determining RBF deviations, it might seem natural to 
treat 010 ,..., HWW  ( Hσσ ,...,1 , to be precise) in (Eqs. 22-19) as adjustable parameters, which are optimized in 
the second phase of training along with the output layer's weights and bias. Practical applications of this 
approach, however, are rare. The reason may be that it requires the use of a non-linear optimization method 
in combination with a sophisticated regularization scheme specially designed so as to guarantee that the 
radial functions will remain localized. 
 It should be noted that RBF networks may have certain difficulties if the number of RBF units (H) is large. 
This is often the case in multidimensional problems. The difficulty arises because for a large number of 
RBF's, a large number of training samples are required in order to ensure that the neural network parameters 
are properly determined. A large number of RBF units also increase the computation time spent on 
optimization of the network output layer and, consequently, the RBF architecture loses its main (if not the 
only one) advantage over FF networks – fast training. 
Radial basis function networks actually suffer more from the curse of dimensionality than feedforward 
neural networks. To explain this statement, consider the effect of adding an extra, perfectly spurious input 
variable to a network. A feedforward network can learn to set the outgoing weights of the spurious input to 
zero, thus ignoring it. An RBF network has no such luxury: data in the relevant lower-dimensional space get 
‘smeared’ out through the irrelevant dimension, requiring larger numbers of units to encompass the 
irrelevant variability.  
In principle, the number of RBF's (H) need not equal the number of training samples (P), and RBF units are 
not constrained to be centered on the training data points. In fact, when data contain redundant information, 
we do not need all data points in learning. One simple procedure for selecting RBF centers is to set them 
equal to a random subset of the input vectors from the training set. Since they are randomly selected, they 
will 'represent' the distribution of the (redundant) training data in a statistical sense. Of course, H and P 
should not be too small in this case. 
 It is clear, however, that the optimal choice of RBF centers based on the input data alone need not be 
optimal for representing the input-output mapping as reflected in the observed data. In order to overcome 
these limitations, the selection procedure should take into account the output values, or at least, approximate 
estimates (assumptions) of the global behavior of the underlying system. The common neural term for such 
techniques involving output values is ‘active learning’. In the context of active learning, RBF networks can 
be thought of as DOE metamodels analogous to polynomials, [16] and [19]. Given a candidate list of points, 
an active learner is searching for the 'best' points in order to position RBF centers. Popular in neural 
applications is to treat RBF active learning as 'pruning' technique intended for identifying critical data and 
discarding redundant points, or more accurately, not selecting some training points as RBF centers. RBF 
active learning methods are being successfully applied to approximate huge datasets that come from natural 
stochastic processes. It is questionable, however, whether active learning can be useful for non-redundant 
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datasets, specifically for RSM design sets generated by performing DOE analysis based on low-order 
polynomial metamodels. 
To briefly summarize, parameters governing radial units (radial centers and deviations) play a key role in 
generalization performance of a RBF model. The appropriate selection of RBF centers implies that we 
choose a minimal number of training data points that carry enough information to build an adequate input-
output representation of the underlying function. Unfortunately, this is easier said than done. Indeed, there is 
a general agreement that selecting RBF centers and deviations is more Art than Science. 

22.2. Kriging* 
Kriging is named after D. G. Krige [22], who applied empirical methods for determining true ore grade 
distributions from distributions based on sampled ore grades. In recent years, the Kriging method has found 
wider application as a spatial prediction method in engineering design. Detailed mathematical formulations 
of Kriging are given by Simpson [23] and Bakker [24].  
The basic postulate of this formulation [23] is: 

( ) ( ) ( ),xxx Zfy +=         (22-21) 

where y is the unknown function of interest, f(x) is a known polynomial, the trend model, and Z(x) is the 
stochastic component with mean zero and covariance: 

Cov[Z(xi),Z(xj)] =  σ 2R([R(xi,xj)]).        (22-22) 

With L the number of sampling points, R is the L x L correlation matrix with R(xi,xj) the correlation 
function between data points xi and xj. R is symmetric positive definite with unit diagonal.  
Two commonly applied correlation functions used are: 

1. Exponential:   ( )∏
=

Θ−=
n

k
kk dR

1

exp  and 

2. Gaussian:    ( ).exp
1

2∏
=

Θ−=
n

k
kk dR 0. 

where n is the number of variables and dk = xk
i – xk 

j, the distance between the kth components of points xi 
and xj

 . There are n unknown Θ -values to be determined. The default function in LS-OPT is Gaussian. 

Once the correlation function has been selected, the predicted estimate of the response ŷ(x) is given by: 

ŷ = β̂  + rT(x)R-1(y-f β̂ )        (22-23) 

where rT(x) is the correlation vector (length L) between a prediction point x and the L sampling points, y 
represents the responses at the L points and f is the trend model, a L-vector of basis functions (ones, if f(x) is 
taken as a constant). One can choose either a constant, linear, or quadratic basis function in LS-OPT. The 
default choice is the constant basis function.  

The vector r and scalar β̂  are given by: 
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rT(x) = [R(x,x1),R(x,x2),…,R(x,xL)]T  

β̂  = (f TR -1f)-1f TR -1y. 

The estimate of variance from the underlying global model is: 

( ) ( ).ˆˆ1ˆ 12 ββσ fyfy −−= −R
L

T

 

The maximum likelihood estimates for kΘ , k = 1,…, n can be found by solving the following constrained 
maximization problem: 

( ) ( )[ ],lnˆln
2
1max 2 R+−=ΘΦ σL  subject to .0 kk ∧>Θ  

where both σ̂  and R | are functions of Θ . This is the same as minimizing 

( ) .0:,ˆ /12 >ΘR tosubjectns  

This optimization problem is solved using the real-coded genetic algorithm (Section 23.8). A small constant 
number is adaptively added to the diagonal of matrix R to avoid ill-conditioning. The net effect is that the 
approximating functions might not interpolate the observed response values exactly. However, these 
observations are still closely approximated. 

22.3. Support Vector Regression 
Support vector regression (SVR) is a sub category of support vector machines (SVM) that can be used for 
both regression and classification [32]. It is based on the Vapnik-Chervonenkis (VC) theory, and has the 
ability to have good generalization properties. Instead of empirical risk minimization, it is based on 
structural risk minimization that balances the model's complexity and its ability to fit known data. The 
particular implementation of SVR in LS-OPT is referred to as SVR−ε . Given a set of training data that 
consists of N samples ( )Nii ,,2,1 =x  and their corresponding response values iy , SVR−ε  attempts to 

find a function ( )xf̂  that has at the most ε deviation from the actual response values iy and is as flat as 
possible (low complexity) at the same time. In the case of linear functions, the approximated function is: 

( ) bf += xwx ,ˆ
       (22-24) 

where w is a weight vector and b  is a scalar bias. In order to obtain the "flattest" or most simple function 
approximation (to avoid overfitting), the norm of w is minimized. Thus the SVR solution is obtained as the 
result of the following optimization: 
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To ensure the feasibility of the optimization, two slack variables ξ and *ξ are introduced: 
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where C is a cost or penalty parameter that ensures a solution with slack variables as close to zero as 
possible. In general, the dual formulation of the SVR optimization is solved: 
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where iα and *
iα are Lagrange multipliers of the original problem  that become the optimization variables 

for the dual formulation, ε  is the maximum deviation from the actual response values without any penalty, 
iy  are the actual response values, C is the cost or penalty parameter and N is the number of training 

samples. The weight vector w eliminated in the dual formulation can be written as: 

∑
=

−=
N

i
iii

1

*)( xw αα
       (22-28) 

The support vector regression expression can therefore be written as: 

bf
N

i
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=1

* ,)()( xxx αα
       (22-29) 

where the Lagrange multipliers are obtained by solving the dual problem. The value of b can be obtained 
using the KKT conditions [33]. 
In the general nonlinear case, the inner product is replaced by a kernel function K: 
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The optimization is solved using sequential minimal optimization (SMO) [34]. The final SVR expression is: 

bKf
N

i
iii +−= ∑

=1

* ),()()( xxx αα
       (22-31) 

The kernel function must satisfy Mercer's condition [32,33]. Some of the possible kernels are polynomial, 
exponential radial basis function, Gaussian radial basis function, hyperbolic tangent etc. Two options are 
available in LS-OPT for the kernel: 

1. Gaussian RBF 
2. Polynomial 

The polynomial kernel is given as: 

( )m
iiK xxxx ,1),( +=  

where m is the order of the polynomial that is internally optimized in LS-OPT using 5-fold cross-validation 
[35].  
The Gaussian RBF kernel is given as: 

2

2

2),( σ
i

eK i

xx

xx
−

−
=  

Here, σ  is the width parameter or spread of the kernel that is internally optimized in LS-OPT using cross-
validation. In addition to the kernel parameters, the SVR parameters C and ε  are also internally optimized 
in LS-OPT during cross-validation. The default kernel type is Gaussian RBF; a different kernel can be 
selected under "Advanced SVR Settings", Section 9.1.5. 

22.4. Concluding remarks: which metamodel? 
There is little doubt that the polynomial-based response surfaces are very robust, especially for sequential 
optimization methods. A negative aspect of using polynomials is the fact that the user is obliged to choose 
the order of polynomial. Also, a greater possibility exists for bias error of a nonlinear response. They are 
also, in most cases, not suitable for updating in sequential methods. Linear approximations may only be 
useful within a certain subregion and therefore quadratic polynomials or other higher order approximations 
such as RBF networks may be required for greater global accuracy. However the linear SRSM method has 
proved to be excellent for sequential optimization and can be used with confidence [25][26][27]. 
RBF Networks appear to be generally the best of the neural networks metamodels. They have the following 
advantages: 

o Higher prediction accuracy due to built-in cross validation. Although FF networks may appear more 
accurate due to a smaller fitting error (RMSE), their prediction error is generally larger than that of 
RBF networks. An appealing plot of predicted vs. computed responses showing the training points or 

2R values approaching unity or small RMS error values should not be construed as representing a 
higher accuracy. 

LS-OPT Version 5.2  526 



CHAPTER 22: Metamodeling Techniques 

o Higher speed due to their linear nature. When sizable FF committees (e.g. with 9 members) are used 
they may be vastly more expensive to construct than RBF networks. This is true especially for a 
relatively small number of variables. 

o Relative independence of the calculation time with respect to the number of functions. Although 
there is a slight overhead which depends on this number, the user does not have to be as careful with 
limiting the number of responses. 

FF Neural Networks function well as global approximations and no serious deficiencies have been observed 
when used as prescribed in Section 23.5. FF networks have been used for sequential optimization [27] and 
can be updated during the process. A more recent study [28] which focuses on the accuracy comparison for 
FF neural networks and RBF networks for different types of optimization strategies concluded that, for 
crashworthiness analysis, RBF and FF metamodels are mostly similar in terms of the accuracy of a large 
number of checkpoint results. However, the same study showed that Neural Networks are sometimes better 
than RBF networks for smooth problems. As mentioned earlier, RBF networks have a distinct speed 
advantage. Reference [28] also assesses the use of FF committees and concludes that, although expensive, 
there are some cases where they may be necessary. 
Although the literature seems to indicate that Kriging is one of the more accurate methods [23], there is 
evidence of Kriging having fitting problems with certain types of experimental designs [29]. Kriging is very 
sensitive to noise, since it interpolates the data [30]. The authors of this manual have also experienced fitting 
problems with non-smooth surfaces (Z(x) observed to peak at data points) in some cases, apparently due to 
large values of Θ  that may be due to local optima of the maximum likelihood function. The model 
construction can be very time consuming [30] (also experienced with LS-OPT). Furthermore, the slight 
global altering of the Kriging surface due to local updating has also been observed [27]. Some efforts have 
been made in LS-OPT to reduce the effect of clustering of points.  
Support vector regression has also gained significant popularity in the last decade, and literature indicates 
that it has very good generalization properties, especially in high dimensions. However, the accuracy of 
SVR depends on the values of the parameters selected. The internal cross-validation technique used in LS-
OPT to select these parameter values can be very time consuming. This limits the level of precision with 
which the best parameters values can be selected.  
Reference [27] compares the use of three of the metamodeling techniques for crashworthiness optimization. 
This paper, which incorporates three case studies in crashworthiness optimization, concludes that while 
RSM, NN and Kriging were similar in performance, RSM and NN were shown to be the most robust for this 
application. RBF networks were not available at the time of that study and Kriging has also been improved 
in the mean time. 
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23. Optimization 

23.1. Theory of optimization 
Optimization can be defined as a procedure for “achieving the best outcome of a given operation while 
satisfying certain restrictions” [1]. This objective has always been central to the design process, but is now 
assuming greater significance than ever because of the maturity of mathematical and computational tools 
available for design. 
Mathematical and engineering optimization literature usually presents the above phrase in a standard form 
as 

.,...,2,1;0)(
,...,2,1;0)(

:tosubject
)(min

lkh
mjg
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       (23-1) 

where f, g and h are functions of independent variables x1, x2, x3, …, xn. The function f, referred to as the 
cost or objective function, identifies the quantity to be minimized or maximized. The functions g and h are 
constraint functions representing the design restrictions. The variables collectively described by the vector x 
are often referred to as design variables or design parameters. 
The two sets of functions gj and hk define the constraints of the problem. The equality constraints do not 
appear in any further formulations presented here because algorithmically each equality constraint can be 
represented by two inequality constraints in which the upper and lower bounds are set to the same number, 
e.g. 

0)(00)( ≤≤≈= xx kk hh        (23-2) 

Equations (23-1) then become 
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       (23-3)  

The necessary conditions for the solution *x  to Eq. (23-3) are the Karush-Kuhn-Tucker optimality 
conditions: 
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These conditions are derived by differentiating the Lagrangian function of the constrained minimization 
problem 

).()()( xλxx gfL T+=         (23-5) 

and applying the conditions 

)optimality(0* ≥∂∇ xfT
        (23-6) 

and 

ty)(feasibili0* ≤∂∇ xgT          (23-7) 

to a perturbation *x∂ . jλ  represents the Lagrange multiplier which may be nonzero only if the 

corresponding constraint is active, i.e.  0)( * =xjg . For *x to be a local constrained minimum, the Hessian 

of the Lagrangian function, )()( *2*2 xgx ∇λ+∇ Tf  on the subspace tangent to the active constraint g  must 
be positive definite at *x . 
These conditions are not used explicitly in LS-OPT and are not tested at optima. They are more of 
theoretical interest in this manual, although the user should be aware that some optimization algorithms are 
based on these conditions. 

23.2. Normalization of constraints and variables 
It is a good idea to eliminate large variations in the magnitudes of design variables and constraints by 
normalization.  
Constraints. In LS-OPT, a typical constraint is formulated as follows: 

.,...,2,1;)( mjUgL jjj =≤≤ x         (23-8) 

This inequality represents two constraints: 

.,...,2,1);( mjgL jj =≤ x  
 (23-9) 

.,...,2,1;)( mjUg jj =≤x  
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which, when normalized, become: 
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A feature is provided in the GUI to automatically switch on constraint scaling using a single check box. As 
in Equation  

 (23-10), the values of the bounds, jL  and jU are used as default scale factors, but can be selected.  

Variables. The design variables have been normalized internally by scaling the design space [xL ; xU] to 
[0;1], where xL is the lower and xU the upper bound. The formula 
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 (23-11) 

is used to transform each variable xi to a normalized variable, iξ . 

23.3. Gradient computation and the solution of optimization problems 
Solving the optimization problem requires an optimization algorithm. The list of optimization methods is 
long and the various algorithms are not discussed in any detail here. For this purpose, the reader is referred 
to the texts on optimization, e.g. [1] or [2]. It should however be mentioned that the Sequential Quadratic 
Programming method is probably the most popular algorithm for constrained optimization and is considered 
to be a state-of-the-art approach for structural optimization [3], [4]. In LS-OPT, the subproblem is optimized 
by an accurate and robust gradient-based algorithm: the dynamic leap-frog method [5]. Both these 
algorithms and most others have in common that they are based on first order formulations, i.e. they require 
the first derivatives of the component functions 

iji dxdgdxdf and  

to construct the local approximations. These gradients can be computed either analytically or numerically. 
In order for gradient-based algorithms such as SQP to converge, the functions must be continuous with 
continuous first derivatives. 
Analytical differentiation requires the formulation and implementation of derivatives with respect to the 
design variables in the simulation code. Because of the complexity of this task, analytical gradients (also 
known as design sensitivities) are mostly not readily available. 
Numerical differentiation is typically based on forward difference methods that require the evaluation of n 
perturbed designs in addition to the current design. This is simple to implement but is expensive and 
hazardous because of the presence of round-off error. As a result, it is difficult to choose the size of the 
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intervals of the design variables, without risking spurious derivatives (the interval is too small) or 
inaccuracy (the interval is too large). Some discussion on the topic is presented in Reference [1]. 
As a result, gradient-based methods are typically only used where the simulations provide smooth 
responses, such as linear structural analysis, certain types of nonlinear analysis or smooth metamodels 
(mathematical approximations) of the actual response. 
In non-linear dynamic analysis such as the analysis of impact or metal-forming, the derivatives of the 
response functions are mostly severely discontinuous. This is mainly due to the presence of friction and 
contact. The response (and therefore the sensitivities) may also be highly nonlinear due to the chaotic nature 
of impact phenomena and therefore the gradients may not reveal much of the overall behavior. Furthermore, 
the accuracy of numerical sensitivity analysis may also be adversely affected by round-off error. Analytical 
sensitivity analysis for friction and contact problems is a subject of current research. 
It is mainly for the above reasons that researchers have resorted to global approximation methods (also 
called metamodels) for smoothing the design response. The art and science of developing design 
approximations has been a popular theme in design optimization research for decades (for a review of the 
various approaches, see e.g. Reference [6] by Barthelemy). Barthelemy categorizes two main global 
approximation methods, namely response surface methodology [7] and neural networks [8]. Since then 
other approximations such as Radial Basis Function networks and Kriging have also become popular 
metamodels. 
In the present implementation, the gradient vectors of general composites based on mathematical 
expressions of the basic response surfaces are computed using numerical differentiation. A default interval 
of 1/1000 of the size of the design space is used in the forward difference method. 

23.4. Optimization methods 
The two basic optimization branches employed in LS-OPT are Metamodel-based optimization and Direct 
optimization. Metamodel-based optimization is used to create and optimize an approximate model 
(metamodel) of the design instead of optimizing the design through direct simulation. The metamodel is 
thus created as a simple and inexpensive surrogate of the actual design. Once the metamodel is created, it 
can be used to find the optimum or, in the case of multiple objectives, the Pareto Optimal Front. 
Metamodeling techniques are discussed in Chapter 22. 
The nature and capacity of the simulation environment as well as the purpose of the optimization effort 
typically dictate the strategies for metamodel-based optimization. The strategies depend mostly on whether 
the user wants to build a metamodel that can be used for global exploration or whether she is only interested 
in finding an optimal set of parameters. An important criterion for choosing a strategy is also whether the 
user wants to build the metamodel and solve the problem iteratively or whether he has a "simulation budget" 
i.e., a certain number of simulations that he wants to use as effectively as possible to build a metamodel and 
obtain as much information about the design as possible. 

23.5. Strategies for metamodel-based optimization 
There are three recommended strategies for automating the metamodel-based optimization procedure. These 
strategies apply to the tasks: Metamodel-based Optimization and RBDO. The setup for each strategy is 
explained in detail in Section 4.7. 
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23.5.1. Single stage 

In this approach, the experimental design for choosing the sampling points is done only once. A typical 
application would be to choose a large number of points (as much as can be afforded) to build metamodels 
such as, RBF networks using the Space Filling sampling method. This is probably the best way of sampling 
for Space Filling since the Space Filling algorithm positions all the points in a single cycle. 

23.5.2. Sequential strategy 

In this approach, sampling is done sequentially. A small number of points is chosen for each iteration and 
multiple iterations are requested. The approach has the advantage that the iterative process can be stopped as 
soon as the metamodels or optimum points have sufficient accuracy. It was demonstrated in Reference [16] 
that, for Space Filling, the Sequential approach had similar accuracy compared to the Single Stage approach, 
i.e. 10×30 points added sequentially is almost as good as 300 points. Therefore both the Single Stage and 
Sequential Methods are good for design exploration using a surrogate model. For instance when 
constructing a Pareto Optimal Front, the use of a Single Stage or Sequential strategy is recommended in lieu 
of a Sequential strategy with domain reduction (see Section 23.5.3). 
Both the previous strategies work better with metamodels other than polynomials because of the flexibility 
of metamodels such as neural networks to adjust to an arbitrary number of points. 

23.5.3. Sequential strategy with domain reduction 

This approach is the same as that in 23.5.2 but in each iteration the domain reduction strategy is used to 
reduce the size of the subregion. During a particular iteration, the subregion is used to bind the positions of 
new points. This method is typically the only one suitable for polynomials. There are two approaches to 
Sequential Domain Reduction strategies. The first is global and the second, local. 

Sequential adaptive metamodeling (SAM) 

As for the sequential strategy in Section 23.5.2 without domain reduction, sequential adaptive sampling is 
done and the metamodel constructed using all available points, including those belonging to previous 
iterations. The difference is that in this case, the size of the subregion is adjusted (usually reduced) for each 
iteration (see Section 23.6). This method is good for converging to an optimum and moderately good for 
constructing global approximations for design exploration such as a Pareto Optimal front. The user should 
however expect to have poorer metamodel accuracy at design locations remote from the current optimum. 

Sequential response surface method (SRSM) 

SRSM is the original LS-OPT automation strategy of Section 23.6 and allows the building of a new 
response surface (typically linear polynomial) in each iteration. The size of the subregion is adjusted for 
each iteration (see Section 23.6). Points belonging to previous iterations are ignored. This method is only 
suitable for convergence to an optimum and should not be used to construct a Pareto optimal front or do any 
other type of design exploration. Therefore the method is ideal for system identification (see Section 24.3). 
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23.5.4. How do I choose an appropriate strategy for metamodel-based optimization? 

Selecting the Strategy is the main selection for metamodel-based optimization. In the GUI, the three main 
choices, namely Single stage, Sequential or Sequential with Domain Reduction can be selected. If the Pareto 
Frontier option has been selected for a multi-objective optimization, Domain Reduction is automatically 
grayed out so is no longer an option. Hence few choices remain. 
In the case of a single objective the user might want to change the design formulation or parameters such as 
constraint bounds after the run. In this case, Sequential (no Domain Reduction) should be used. 
The Single Stage approach is intended for users who want to create a globally explorable model and have a 
fixed budget (e.g. 1000 runs). A very similar globally explorable design model can also be created with the 
Sequential strategy (without Domain Reduction) but an advantage of Sequential methods is that one can set 
stopping tolerances. These allow the accuracy of the design model to be maximized if sufficient computing 
resources are available. 
Changing the strategy is flexible, so if, for instance, the user completes a Single Stage run and then decides 
that a refinement of the design model is needed, he can switch to Sequential and restart. Once the strategy is 
selected the remaining options are defaulted. For Sequential, the only remaining strategy settings are the 
convergence tolerances and limits. 

23.6. Sequential response surface method (SRSM) 
The purpose of the SRSM method is to allow convergence of the single-objective solution to a prescribed 
tolerance. 
The SRSM method [15] uses a region of interest, a subspace of the design space, to determine an 
approximate optimum. A range is chosen for each variable to determine its initial size. A new region of 
interest centers on each successive optimum. Progress is made by moving the center of the region of interest 
as well as reducing its size. Figure 23-1 shows the possible adaptation of the subregion. 
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Figure 23-1: Adaptation of subregion in SRSM: (a) pure panning, (b) pure zooming and (c) a 
combination of panning and zooming 
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The starting point )0(x will form the center point of the first region of interest. The lower and upper bounds 
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where n is the number of design variables. The modification of the ranges on the variables for the next 
iteration depends on the oscillatory nature of the solution and the accuracy of the current optimum. 

Oscillation: A contraction parameter γ is firstly determined based on whether the current and previous 
designs )(kx  and )1( −kx  are on the opposite or the same side of the region of interest. Thus an oscillation 
indicator c may be determined in iteration k as 
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The oscillation indicator (purposely omitting indices i and k) is normalized as ĉ  where 

).(ˆ csigncc = .                    (23-15) 

The contraction parameter γ  is then calculated as 

))ˆ1()ˆ1((5.0 cc oscpan −γ++γ=γ .                            (23-16) 

See Figure 23-2. The parameter oscγ  is typically 0.5-0.7 representing shrinkage to dampen oscillation, 
whereas panγ  represents the pure panning case and therefore unity is typically chosen. 
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Figure 23-2: The sub-region contraction rate λ as a function of the oscillation indicator ĉ  and the 
absolute move distance ||d  

Accuracy: The accuracy is estimated using the proximity of the predicted optimum of the current iteration to 
the starting (previous) design. The smaller the distance between the starting and optimum designs, the more 
rapidly the region of interest will diminish in size. If the solution is on the bound of the region of interest, 
the optimal point is estimated to be beyond the region. Therefore a new subregion, which is centered on the 
current point, does not change its size. This is called panning (Figure 23-1(a)). If the optimum point 
coincides with the previous one, the subregion is stationary, but reduces its size (zooming) (Figure 23-1(b)). 
Both panning and zooming may occur if there is partial movement (Figure 23-1(c)). The range )1( +k

ir  for the 
new subregion in the (k + 1)-th iteration is then determined by: 
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where iλ  represents the contraction rate for each design variable. To determine )(, k
ii dλ  is incorporated by 

scaling according to a zoom parameter η that represents pure zooming and the contraction parameter γ to 
yield the contraction rate 

)()( η−γ+η=λ k
ii d        

 (23-18) 

for each variable (see Figure 23-2). 
When used in conjunction with neural networks or Kriging, the same heuristics are applied as described 
above. However the nets are constructed using all the available points, including those belonging to 
previous iterations. Therefore the response surfaces are progressively updated in the region of the optimal 
point. 
Refer to Section 4.8.2 for the setting of parameters in the iterative Sequential Response Surface Method. 
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23.7. Leapfrog optimizer for constrained minimization (LFOPC) 
The optimization algorithm used to solve the approximate subproblem is the LFOPC algorithm of Snyman 
[5]. It is a gradient method that generates a dynamic trajectory path, from any given starting point, towards a 
local optimum. This method differs conceptually from other gradient methods, such as SQP, in that no 
explicit line searches are performed. 
The original leap-frog method [9] for unconstrained minimization problems seeks the minimum of a 
function of n variables by considering the associated dynamic problem of a particle of unit mass in an 
n-dimensional conservative force field, in which the potential energy of the particle at point x(t) at time t is 
taken to be the function f(x) to be minimized.  
The solution to the constrained problem may be approximated by applying the unconstrained minimization 
algorithm to a penalty function formulation of the original algorithm. The LFOPC algorithm uses a penalty 
function formulation to incorporate constraints into the optimization problem. This implies that when 
constraints are violated (active), the violation is magnified and added to an augmented objective function, 
which is solved by the gradient-based dynamic leap-frog method (LFOP). The algorithm uses three phases: 
Phase 0, Phase 1 and Phase 2. In Phase 0, the active constraints are introduced as mild penalties through the 
pre-multiplication of a moderate penalty parameter value. This allows for the solution of the penalty 
function formulation where the violation of the (active) constraints are pre-multiplied by the penalty value 
and added to the objective function in the minimization process. After the solution of Phase 0 through the 
leap-frog dynamic trajectory method, some violations of the constraints are inevitable because of the 
moderate penalty. In the subsequent Phase 1, the penalty parameter is increased to more strictly penalize 
violations of the remaining active constraints. Finally, and only if the number of active constraints exceed 
the number of design variables, a compromised solution is found to the optimization problem in Phase 2. 
Otherwise, the solution terminates having reached convergence in Phase 1. The penalty parameters have 
default values as listed in the User’s manual (Section 11.4.1). In addition, the step size of the algorithm and 
the termination criteria of the subproblem solver are listed. 
The values of the responses are scaled with the values at the initial design. The variables are scaled 
internally by scaling the design space to [0; 1] interval. The default parameters in LFOPC (as listed in 
Section 11.4.1) should therefore be adequate. The termination criteria are also listed in Section 12.1. 
In the case of an infeasible optimization problem, the solver will find the most feasible design within the 
given region of interest bounded by the simple upper and lower bounds. A global solution is attempted by 
multiple starts from the experimental design points. 

23.8. Genetic algorithm 
Genetic algorithms are nature inspired search algorithms that emulate the Darwinian principle of ‘survival 
of the fittest’. The concept of nature inspired algorithms was first envisaged by Prof. John Holland [10] at 
the University of Michigan in mid sixties. Later on this theory gained momentum in engineering 
optimization following the work of Prof. David Goldberg [11] and his students. The differences between 
genetic algorithms and most conventional optimization methods are:  

o GA does not require derivative information to drive the search of optimal points. 
o While conventional methods use a single point at each iteration, GA is a population based approach. 
o GA is a global optimizer whereas conventional methods may get stuck in local optima. 
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o GA is a probabilistic optimization method that is, an inferior solution (that may help evolve the 
correct design variables structure) may also have a non-zero probability of participating in the search 
process. 

o The computational cost of using GA may be high compared to derivative based methods. 

23.8.1. Terminology 

The Genetic Algorithm imitates nature so some of its terminology is derived from biology: 
o Individual – Each design variable vector (often known as solution or design point) is called an 

individual. 
o Population – A group of individuals is called a population. The number of individuals in a 

population is termed population size.  
o Chromosome – The binary string used to encode design variables is called chromosome. 

Chromosomes are used with binary encoding or conventional GA only. There is no direct 
correspondence of chromosome in real coded GA. The length of a chromosome is the sum of 
number of bits assigned to each variable.  

o Gene – In binary encoding, each bit is called a gene.  
o Fitness – The fitness of an individual is analogous to objective function. Each individual is assigned 

a fitness value based on its objectives and constraints values. The selection process tries to maximize 
the fitness of a population. The individual with the highest fitness represents the optimal solution to 
a problem. 

o Generation – A generation (iteration in general optimization lingo) comprises of application of 
genetic operators – selection, crossover, and mutation – to create a child population. At the end of 
each generation, the child population becomes the parent population.  

23.8.2. Encoding 

To use the genetic algorithm for optimization, design variables of a mathematical optimization problem are 
encoded into a format required by GA. There are two prominent ways of encoding design variables: 

o Binary encoding – The conventional approach of using genetic algorithm is to represent an 
optimization problem into a string of binary numbers (chromosomes). The number of bits assigned 
to each variable determines the solution accuracy. If p bits are used to represent a variable with 
lower and upper bounds xl and xu, respectively, the accuracy of this variable can be (xu-xl)/(2p-1). 
While binary encoding is the most natural way to use genetic algorithms, it has two main problems: 
i) discretization of a continuous variable causes loss of accuracy in representation (depends on 
number of bits), ii) Hamming cliff problem – neighbors in real space may not be close in binary 
space such that it may be very difficult to find an optimal solution.  

o Real encoding – To avoid the problems of using binary representation of real variables, researchers 
have suggested directly using real numbers. This required special methods to perform genetic 
operations like crossover and mutation.  
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23.8.3. Algorithm 

The steps in a simple genetic algorithm are illustrated with the help of Figure 23-3. 

 

Figure 23-3: Simple genetic algorithm. 

Firstly, problem-specific GA parameters like population size Npop, type of encoding, number of bits per 
variables for binary coding, number of generations are defined.  

Initialization 

Next, the population is randomly initialized i.e., binary chromosomes or real variable vectors for Npop 
individuals are generated randomly.  

Function evaluation 

For binary encoding, each chromosome (binary string) is decoded to corresponding design variable vector. 
Next, objective functions, constraints, and constraint violation of each individual in parent population is 
evaluated and accordingly fitness of each individual is assigned. 

Selection or reproduction operator 

Selection operator is used to identify individuals with high fitness and to form a mating pool of size Npop. 
This operator reduces diversity in the population by filtering out low fitness schema. Many reproduction 
operators are introduced in literature. Three selection operators implemented in LS-Opt are described below.  
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o Tournament selection. In tournament selection, ‘Ntourn’ (Ntourn is tournament size) individuals from 
a population, selected at random, participate in a tournament. The individual with the largest fitness 
is declared the winner. Mostly, practitioners use Ntourn = 2. Increasing the tournament size ‘Ntourn’ 
increases selection pressure and might lose diversity in the population that is required to drive the 
search.  

o Roulette wheel or proportionate reproduction. In this selection approach, each individual is 
assigned a probability of selection based on its fitness value. In a population of Npop individuals, the 
selection probability of the ith individual is  

 ∑
=

=
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j
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where Fi is the fitness of ith individual. High fitness individuals have a high probability of getting selected. 
This scheme is implemented by considering a roulette wheel with circumference marked by the fitness of 
each individual. One individual per spin of the wheel is selected. Then, the expected number of copies of the 
ith individual in the mating pool can be estimated as 
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This selection operator has a higher selection pressure compared to the tournament selection and can lead to 
a premature convergence to local optima. 

o Stochastic universal sampling. The roulette wheel selection operator is often noisy because of 
multiple spins that correspond to round-off errors in computer simulations. To reduce this noise, it 
was suggested to use a single spin of the wheel with Npop equi-spaced pointers. This operator also 
has a high selection pressure. 

Crossover 

Crossover is the main exploration operator of genetic search. In this operator, µ  randomly selected parents 
mate with a probability (Pc: crossover probability) to create λ children. These children share the attributes 
from all parents such that they may be better or worse individuals. There are two prominent strategies to 
create children: i) )( λ+µ  strategy selects best individuals from parents and children, and ii) ),( λµ  strategy 
replaces parents with children irrespective of their fitness values. LS-OPT has adopted a (2, 2) strategy for 
crossover such that two parents create two children and children replace parents in the new generation. If 
parents do not create children, they are passed to the next generation.  
There are many crossover operators in literature. A few popular crossover operators that have been shown to 
perform reasonably well are available in LS-OPT. A brief description of these operators is as follows: 

o Single point binary crossover 
This crossover operator is used for binary encoding of the individuals. Two parents and a mating site 
are randomly selected. All genes right to the mating sites are swapped between two parents.  

o Uniform binary crossover 
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This crossover operator is also used for binary encoded individuals. For a randomly selected parent 
pair, genes are swapped based on a flip of a coin for each gene in the chromosome. 

o Simulated binary real crossover (SBX) 
This crossover operator, introduced by Deb and Agrawal in 1995 [12], is used with real encoding 
i.e., real variables are used as genes. This crossover emulates the single point binary crossover by 
assigning a probability distribution to each parent. Two children are created from two parents using 
that probability distribution such that the mean of parents and children are the same. The probability 
distribution is controlled by a distribution index ηc such that large value of ηc creates children near 
parents and small value of ηc creates children far from parents. Deb and Beyer [13] showed that 
SBX possesses self-adaptation capabilities.  

o Blend real crossover (BLX-α) 
This crossover operator was introduced by Eshelman and Schaffer in 1993 [14]. In this crossover, a 
child x is created from two parents x(1) and x(2) (x(2) > x(1)) by randomly selecting a value from the 
interval [x(1) – α(x(2) – x(1)), x(2) + α(x(2) – x(1))]. Typically, α is taken as 0.5.  

Mutation 

Mutation is carried out with a mutation probability (Pm) to bring random changes in the individuals. This 
operator is very useful when population has lost diversity and the search has become stagnant. Then 
mutation can help improve diversity in the solutions. The mutation operators for binary and real encoding 
are given as follows: 

o Simple binary mutation 
In simple binary mutation of an individual, a bitwise mutation is carried out by changing a ‘0’ to ‘1’ 
or vice-versa with a small mutation probability Pm. Typically Pm is taken as the inverse of 
chromosome length such that on an average, one gene (bit) per chromosome is changed. 

o Real mutation 
As was used for the SBX operator, a distribution (defined by mutation distribution index) around 
each variable is specified and a random variable is selected from that distribution. Large values of 
the distribution index are recommended to create a child near the parent. 

A complete cycle of selection, crossover, and mutation would result in a child population. The population 
size is kept constant for both parent and child populations.  

Elitism in simple genetic algorithm 

Due to the disruptive nature of exploration operators, high fitness individuals may get lost while creating a 
child population from the parent population. Sometimes, it is advantageous to keep these high fitness 
individuals to preserve favorable genetic information (schema). This process of artificially saving the best 
individuals is called elitism. To implement this process, the parent and child populations are ranked 
separately. The worst individuals in the child population are replaced by the best individuals from the parent 
population. The number of elites should be carefully chosen because a large number of elite solutions may 
drive the search to local optima by reducing the diversity in the population. On the other hand, too few elites 
may slow the convergence because favorable schema would spread at a slow rate.  
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After applying elitism, the child population is transferred to the parent population. The best individual found 
in the search process is preserved at each generation. 

Stopping criterion 

Many criteria have been specified in literature to terminate the GA search process. Some researchers have 
suggested stopping the search when there is no improvement in the last few generations. However, the most 
common stopping criterion is the fixed number of generations or function evaluations. A user-defined 
number of generations is used as the stopping criterion in LS-OPT.  
At the end of simple genetic algorithm, the best individual (among all searched individuals) is reported as 
the optimal solution. If enough processing capabilities are carried out, the reported best individual would 
represent the global optimal solution.  

23.9. Multi-objective optimization using genetic algorithms  
Multi-objective optimization problems are significantly different than the single-objective optimization 
problems. MOO problems do not have a single optimal solution. Instead there is a set of solutions that 
reflects trade-offs among objectives. For MOO problems, population based methods like genetic algorithms 
are very attractive because many trade-off solutions can be found in a single simulation run. While it is easy 
to compare multiple designs for a single-objective optimization problem, special considerations are required 
to compare different designs. Goldberg [11] proposed a non-domination concept to compare different 
individuals. This idea forms the backbone of most MOGAs and is defined next. 

23.9.1. Non-domination criterion 

A non-domination criterion is used to identify better individuals without introducing any bias towards any 
objective ([17]-[19]). To understand the non-domination criterion, a domination criterion is defined as 
follows.  

A solution x(1) dominates another solution x(2) )( )2()1( xx  , if either of the following three conditions is 
true. 

1. x(1) is feasible and x(2) is infeasible. 
2. Both x(1) and x(2) are infeasible but x(2) is more infeasible compared to x(1). 

3. When both x(1) and x(2) are feasible, x(1) dominates x(2) )( )2()1( xx   if following two conditions are 
satisfied0. 

o x(1) is no worse than x(2) in ‘all’ objectives, i.e. ],...,2,1[))()(( )2()1( Mjff jj ∈≥/ xx . 

o x(1) is strictly better than x(2) in ‘at least one’ objective, i.e., ],...,2,1[)),()(( )2()1( Mjff jj ∈∧< xx . 

If neither of the two solutions dominates the other, both solutions are non-dominated with respect to each 
other. An individual s is considered non-dominated with respect to a set of solutions S, if no solution in S 
dominates s.  
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23.9.2. Pareto optimal solutions 

Any non-dominated solution in the entire design domain is a Pareto optimal solution. By definition, all 
Pareto optimal solutions are non-dominated solutions but vice-versa is not true.  
Like single objective optimization problems, there are local and global Pareto optimal solutions. A non-
dominated solution is a local Pareto optimal solution with respect to the considered non-dominated solution 
set, whereas a global Pareto optimal solution is non-dominated with respect to all solutions in the design 
domain.  

23.9.3. Pareto optimal set 

The set of all Pareto optimal solutions is the Pareto optimal set for the given problem.  

23.9.4. Pareto optimal front 

Function space representation of the Pareto optimal set is Pareto optimal front. When there are two 
conflicting objectives, the POF is a curve, when there are three objectives, POF is a surface, and for higher 
dimensions, POF is a hyper-surface.  

23.9.5. Ranking 

Most MOGA search methods assign rank to different individuals based on non-domination criterion. This 
ranking is used to govern the search process. A rank of one is considered the best rank and low fitness 
individuals are assigned low ranks (large values of rank are low). Different individuals in a population are 
assigned rank as follows: 

1. Initialize rnk = 1. Define a set of individuals S, same as the population. 
2. Run a non-domination check on all individuals in S.  
3. All non-dominated individuals are assigned rank = rnk.  
4. rnk = rnk + 1.  
5. Remove all non-dominated individuals from S.  

6. If Φ≠S , repeat Step 2, else stop.0. 

Note that many individuals can have the same rank.  
Different concepts discussed here are illustrated using a two-objective unconstrained minimization problem 
in Figure 23-4. Each dot represents a solution in the design space that is shown as the shaded area. For each 
diamond, there is at least one triangle that is better than the diamond in at least one objective without being 
inferior in other objective. So all individuals represented by diamonds are dominated by the individuals 
represented by triangles. Similarly, all triangles are dominated by squares and squares are dominated by 
circular dots. No solution represented by triangles can be said better than any other solution represented by 
triangles. Thus, they are non-dominated with respect to each other. All individuals represented by circles are 
non-dominated with respect to any other individual hence they have a rank of one (best rank). If all points 
represented by circles are removed, the individuals represented by squares are non-dominated with respect 
to all remaining solutions such that they are assigned a rank of two, and so on. Note that all individuals with 
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the same shape of dots have the same rank. For this example, all individuals with rank one (circular dots) 
also represent the true Pareto optimal solutions set. The line on the boundary shows the Pareto optimal front.  

 

Figure 23-4: Illustration of non-domination criterion, Pareto optimal set, and Pareto optimal front. 

23.9.6. Convergence vs. diversity 

Different multi-objective optimization algorithms are compared using two criteria. First, convergence to the 
global Pareto optimal front, and second, diversity on the Pareto optimal front. The convergence criterion 
requires identifying the global Pareto optimal solution set.  
A good multi-objective optimizer is required to maintain diversity (representation of different regions of the 
Pareto optimal front). This is an important criterion since our goal is to find different trade-off solutions. It 
is important to note that diversity on the Pareto optimal front (function space) does not mean the diversity in 
the variable space, i.e., small changes in variables can result in large changes in the function values.  

23.9.7. Elitist non-dominated sorting genetic algorithm (NSGA-II) 

This algorithm was developed by Prof. Kalyanmoy Deb and his students in 2000 [20]. This algorithm first 
tries to converge to the Pareto optimal front and then it spreads solutions to get diversity on the Pareto 
optimal front. Since this algorithm uses a finite population size, there may be a problem of Pareto drift. To 
avoid that problem, Goel et al. [21] proposed maintaining an external archive.  
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Figure 23-5: Elitist non-dominated sorting genetic algorithm (NSGA-II). The shaded blocks are not the 
part of original NSGA-II but additions to avoid Pareto drift. 

The implementation of this archived NSGA-II is shown in Figure 23-5, and described as follows: 
1. Randomly initialize the parent population (size Npop). Initialize an empty archive.  
2. Evaluate the population i.e., compute constraints and objectives for each individual. 
3. Rank the population using non-domination criteria. Also compute the crowding distance (this 

distance finds the relative closeness of a solution to other solutions in the function space and is used 
to differentiate between the solutions on same rank). 

4. Employ genetic operators – selection, crossover & mutation – to create a child population. 
5. Evaluate the child population.  
6. Combine the parent and child populations, rank them, and compute the crowding distance. 
7. Apply elitism (defined in a following section): Select best Npop individuals from the combined 

population. These individuals constitute the parent population in the next generation. 
8. Add all rank = 1 solutions to the archive. 
9. Update the archive by removing all dominated and duplicate solutions. 
10. If the termination criterion is not met, go to step 4. Otherwise, report the candidate Pareto optimal set 

in the archive.0. 

LS-OPT Version 5.2  546 



CHAPTER 23: Optimization 

23.9.8. Elitism in NSGA-II 

 

Figure 23-6: Elitism in NSGA-II. 

Elitism is applied to preserve the best individuals. The mechanism used by NSGA-II algorithm for elitism is 
illustrated in Figure 23-6. After combining the child and parent populations, there are 2Npop individuals. 
This combined pool of members is ranked using non-domination criterion such that there are ni individuals 
with rank i. The crowding distance of individuals with the same rank is computed. Steps in selecting Npop 
individuals are as follows:  

1. Set i = 1, and number of empty slots Nslots = Npop. 
2. If ni < Nslots,  

o Copy all individuals with rank ‘i’ to the new parent population.  
o Reduce the number of empty slots by ni: Nslots = Nslots – ni.  
o Increment ‘i’: i=i+1. 
o Return to Step 2. 

3. If ni > Nslots,0. 
o Sort the individuals with rank ‘i’ in decreasing order of crowding distance. 
o Select Nslots individuals. 
o Stop 

23.9.9. Diversity preservation mechanism in NSGA-II – crowding distance calculation 

To preserve diversity on the Pareto optimal front, NSGA-II uses a crowding distance operator. The 
individuals with same rank are sorted in ascending order of function values. The crowding distance is the 
sum of distances between immediate neighbors, such that in Figure 23-4, the crowding distance of selected 
individual is ‘a + b’. The individuals with only one neighbor are assigned a very high crowding distance.  
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Note: It is important to scale all functions such that they are of the same order of magnitude otherwise the 
diversity preserving mechanism would not work properly. 

23.10. Adaptive simulated annealing (ASA) 
The Simulated Annealing (SA) is a global stochastic optimization algorithm that mimics the metallurgical 
annealing process. The original simulated annealing algorithm was developed as a generalization of the 
Metropolis Monte Carlo integration algorithm [22] to solve various combinatorial problems by Kirkpatrick 
et al. [23]. The term 'simulated annealing' derives from the rough analogy of the way that the liquefied 
metals at a high temperature crystallize on freezing. At high temperatures, the atoms in the liquid are at a 
high energy state and move freely. When the liquid is cooled, the energy of the molecules gradually reduces 
as they go through many lower energy states, and consequently their motion. If the liquid metal is cooled 
too quickly or 'quenched', the atoms do not get sufficient time to reach thermal equilibrium at a temperature 
and might result in a polycrystalline structure with higher energy. This atomic structure of material is not 
necessarily the most desired. However, if the rate of cooling is sufficiently slow, the atoms are often able to 
achieve the state of minimum (most stable) energy at each temperature state, resulting in a pure crystalline 
form. This process is termed as ‘annealing’. Kirkpatrick et al. [23] employed this annealing analogy to 
develop an efficient search algorithm. Pincus [24], and Cerny [25] also are also independently credited with 
the development of modern simulated annealing algorithm.  
In simulated annealing parlance, the objective function of the optimization algorithm is often called ‘energy’ 
E and is assumed to be related to the state, popularly known as temperature T, by a probability distribution. 
The Boltzmann distribution is the most commonly used probability distribution: 

Probability (E) ~ exp(-E / κBT ),  

where κB is the Boltzmann's constant.  

23.10.1. Algorithm 

The search initializes with the temperature being high and cooling slowly such that the system goes through 
different energy states in search of the lowest energy state that is the global minima of the optimization 
problem. A stepwise description of the simulated annealing algorithm is as follows: 

Step 1: Initialization 

The search starts by identifying the starting state x(0) ∈ X and corresponding energy E(0) = E(x). The 
temperature T is initialized at a high value: T(0) = Tmax. A cooling schedule, acceptance function, and 
stopping criterion are defined. This is iteration k = 0. X(0) = {x(0)}. 

Step 2: Sampling 

A new point x'∈ X is sampled using the candidate distribution D(X(k) ), and set X(k+1) = X(k) U {x'},  and 
corresponding energy is calculated E' = E(x'). 
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Step 3: Check acceptance 

Sample a uniform random number ζ in [0, 1] and set  

x(k+1) = x' if ζ ≤ A(E',E(k),T(k)) or   

x(k+1) = x(k) otherwise. 
 where A(x) is the acceptance function that determines if the new state is accepted. 

Step 4: Temperature update 

Apply the cooling schedule to the temperature: T(k+1) = C( X(k+1), T(k) ). 

Step 5: Convergence check 

Stop the search if the stopping criterion is met, else set k = k+1 and go to Step 2.  
As is obvious, the efficiency of the simulated annealing algorithm depends on appropriate choices of the 
mechanism to generate new candidate states D, cooling schedule C, acceptance criterion A, and stopping 
criterion. While many options have been proposed in literature, the very fast simulated reannealing 
methodology proposed by Ingber (1989) [27] has been the most promising. This algorithm is also known as 
adaptive simulated annealing (ASA) [28]. The different selections along with a very brief historical 
perspective are outlined as follows. 

23.10.2. Acceptance function 

Two most prominent acceptance functions used to accept a candidate point are the Metropolis criterion and 
the Barker criterion.  

Metropolis criterion : )}./)(exp(,1min{),,( '' TEETEEA −−=  

Barker criterion : )}./)exp((1/{1),,( '' TEETEEA −+=  

The theoretical motivation for such a restricted choice of acceptance functions can be found in [29]. It is 
also shown that under appropriate assumptions, many acceptance functions, which share some properties, 
are equivalent to the above two criteria. The Metropolis criterion is the most commonly used selection 
criterion and this is chosen as the acceptance function in LS-OPT. 

23.10.3. Sampling algorithm 

The choice of the next candidate distribution and the cooling schedule for the temperature are typically the 
most important (and strongly interrelated) issues in the definition of a SA algorithm. The next candidate 
state, x', is usually selected randomly among all the neighbors of the current solution, x, with the same 
probability for all neighbors. The choice of the size of the neighborhood typically follows the idea that when 
the current function value is far from the global minimum, the algorithm should have more freedom, i.e., 
larger 'step sizes' are allowed. However, Ingber [27] suggested using a more complicated, non-uniformly 
selection procedure outlined below to allow much faster cooling rates. 

Let ith design variable be bounded as, xi ∈ [Ai, Bi]. Then the new sample is given by 
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The most important distinction in ASA with standard SA is the use of an independent temperature schedule 
(Tp,i) for each parameter along with the temperature associated with the energy function. The cooling 
schedule for the parameter temperature, used to generate N dimensional design vector, is 
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The control parameter ci depends on two free parameters mi and ni, defined as 
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The ratio )0(
,

min
, / ipip TT  is the parameter temperature ratio and the parameter Nanneal is linked to the time allowed 

(number of steps) at each parameter temperature state. Ingber [30] found that the search procedure is 
sensitive to the choice of the two parameters and should be selected carefully. Relatively, the parameter 
temperature ratio is the more important of the two parameters.  

23.10.4. Cooling schedule 

The basic idea of the cooling schedule is to start the algorithm off at high temperature and then gradually 
drop the temperature to zero. The primary goal is to quickly reach the so called effective temperature, 
roughly defined as the temperature at which low function values are preferred but it is still possible to 
explore different states of the optimized system, [31]. After that the simulated annealing algorithm lowers 
the temperature by slow stages until the system 'freezes' and no further changes occur. Geman and Geman 
[32] found the lower bound on the cooling schedule to be 1/log(t) where ‘t’ is an artificial time measure of 
the annealing schedule. Hence, 

).log(/)0()1( kTT i
k
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This strategy is also known as Boltzmann annealing (Szu and Hartley) [33]. Later van Laarhoven and Aarts 
[34] modified this strategy to enable a much faster cooling schedule of  

./)0()1( kTT i
k

i =+

  

A straightforward and most popular strategy is to decrement T by a constant factor every νT iterations:  

TTT µ= /:   
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where µT is slightly greater than 1 (e.g. µT = 1.001). The value of νT should be large enough, so that 'thermal 
equilibrium' is achieved before reducing the temperature. A rule of thumb is to take νT proportional to the 
size of neighborhood of the current solution.  
Nevertheless, the fastest cooling rate was made possible by using Ingber's algorithm that allowed an 
exponentially faster cooling rate of  

)./exp(
)exp( /1)0()(

Nnmc
ckTT N

i
k

i

−=
−=

.  

As was described in the previous section, the cooling rate is governed by the two free parameters that are 
linked to the temperature ratio and annealing scale, 

).log(),/log( )0(min
annealNnTTm ==  

Typically the temperature ratio used to drive the energy (objective) function is linked to the parameter 
temperature ratio called here as ‘cost-parameter annealing ratio’.  

23.10.5. Stopping criterion 

Selection of an appropriate stopping criterion is one of the most difficult tasks in stochastic optimization 
algorithms because it is unknown a priori if the algorithm has reached the global optima or is stuck in a hard 
local optimum. Thus the stopping rules proposed in the literature about SA, all have a heuristic nature and 
are, in fact, more problem dependent than algorithm dependent. Some common ideas in the heuristics are i) 
stop when it does not make a noticeable progress over a number of iterations, ii) stop when the number of 
function evaluations is reached, and iii) stop when the temperature has fallen substantially to a desired 
minimum level Tmin. The last two criteria are used to terminate the adaptive simulated annealing search in 
LS-OPT. 

23.10.6. Re-annealing 

For multi-dimensional problems, most often the objective function has variable sensitivities for different 
parameters and at different sampling states. Hence, it is worth while to adjust the cooling rates for different 
parameters. Ingber [27] used a reannealing algorithm to periodically update the annealing time associated 
with parameters and the energy function such that the search is more focused in the regions with potential of 
improvements. For this, he suggested computing the sensitivities of the energy function as, 

./ ii xEs ∂∂=   

All the annealing time parameters k are updated by the largest sensitivity smax as follows:  
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The new annealing time associated with the ith parameter is ki = '
ik . Similarly the temperature parameter 

associated with the energy function is scaled. One can easily deduce from the above formulation that 
reannealing stretches the ranges of the insensitive parameters relative to the sensitive parameters. More 
details of reannealing can be obtained elsewhere [30]. 

Some comments 

1. It is difficult to find the initial temperature directly, because this value depends on the neighborhood 
structure, the scale of the objective function, the initial solution, etc. In [23] a suitable initial 
temperature is one that results in an average uphill move acceptance probability of about 0.8. This 
T(0) can be estimated by conducting an initial search, in which all uphill moves are accepted and 
calculating the average objective increase observed. In some other papers, it is suggested that 
parameter T(0) is set to a value, which is larger than the expected value of |E'-E| that is encountered 
from move to move. In [31] it is suggested to spend most of the computational time in short sample 
runs with different T(0) in order to detect the effective temperature. In practice, the optimal control of 
T may require physical insight and trial-and-error experiments. According to [35], "choosing an 
annealing schedule for practical purposes is still something of a black art".  

2. Simulated annealing has proved surprisingly effective for a wide variety of hard optimization 
problems in science and engineering. Many of the applications in our list of references attest to the 
power of the method. This is not to imply that a serious implementation of simulated annealing to a 
difficult real world problem will be easy. In the real-life conditions, the energy trajectory, i.e. the 
sequence of energies following each move accepted, and the energy landscape itself can be highly 
complex. Note that state space, which consists of wide areas with no energy change, and a few 
"deep, narrow valleys", or even worse, "golf-holes", is not suited for simulated annealing, because in 
a "long, narrow valley" almost all random steps are uphill. Choosing a proper stepping scheme is 
crucial for SA in these situations. However, experience has shown that simulated annealing 
algorithms are more likely trapped in the largest basin, which is also often the basin of attraction of 
the global minimum or of the deep local minimum. Anyway, the possibility, which can always be 
employed with simulated annealing, is to adopt a multi-start strategy, i.e. to perform many different 
runs of the SA algorithm with different starting points.  

3. Another potential drawback of using SA for hard optimization problems is that finding a good 
solution can often take an unacceptably long time. While SA algorithms may quickly detect the 
region of the global optimum, they often require a few iterations to improve its accuracy. For small 
and moderate optimization problems, one may be able to construct effective procedures that provide 
similar results much more quickly, especially in cases when most of the computing time is spent on 
calculations of values of the objective function. However, it should be noted that for large-scale 
multidimensional problems an algorithm which always (or often) obtains a solution near the global 
optimum is valuable, since various local deterministic optimization methods allow quick refinement 
of a nearly correct solution.0.  

In summary, simulated annealing is a powerful method for global optimization in challenging real world 
problems. Certainly, some "trial and error" experimentation is required for an effective implementation of 
the algorithm. The energy (cost) function should employ some heuristic related to the problem at hand, 
clearly reflecting how 'good' or 'bad' a given solution is. Random perturbations of the system state and 
corresponding cost change calculations should be simple enough, so that the SA algorithm can perform its 
iterations efficiently. The scalar parameters of the simulated annealing algorithm have to be chosen 
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carefully. If the parameters are chosen such that the optimization evolves too fast, the solution converges 
directly to some, possibly good, solution depending on the initial state of the problem.  

23.11. Differential Evolution 
Differential Evolution (DE) is a parallel direct search method developed by Storn and Price in 1997 [41] and 
primarily targeted at unconstrained global optimization problems. It is similar to the Genetic Algorithm and 
Particle Swarm Optimization in that it uses a population of parameter vectors which evolves over time. DE 
follows the same basic steps also employed generation-wise in the GA, namely Mutation, Crossover and 
Selection, although the detail of the implementation is quite different. The basic steps are described in 
Reference [41] as follows: 

Mutation 

For each target vector 𝒙𝒙𝑖𝑖𝑘𝑘, 𝑖𝑖 = 1,2,3, … ,𝑁𝑁𝑁𝑁, 𝑁𝑁𝑁𝑁 the population size, a mutant vector is generated according 
to 

𝒗𝒗𝑖𝑖𝑘𝑘 = 𝒙𝒙𝑟𝑟1
𝑘𝑘 + 𝐹𝐹(𝒙𝒙𝑟𝑟2

𝑘𝑘 − 𝒙𝒙𝑟𝑟3
𝑘𝑘 ) 

With random indices 𝑟𝑟1, 𝑟𝑟2, 𝑟𝑟3 ∈ {1,2,3, … ,𝑁𝑁𝑁𝑁}, integer, mutually different and 𝐹𝐹 > 0. The randomly 
chosen integers 𝑟𝑟1, 𝑟𝑟2 and 𝑟𝑟3 are also chosen to be different from the running index 𝑖𝑖, so that 𝑁𝑁𝑁𝑁 must be 
≥ 4 to allow for this condition. 𝐹𝐹 is a real and constant factor ∈ [0,2] which controls the amplification of 
the differential variation (𝒙𝒙𝑟𝑟2

𝑘𝑘 − 𝒙𝒙𝑟𝑟3
𝑘𝑘 ). 

Crossover 

To increase the diversity of the perturbed parameter vectors, crossover is introduced. To this end the trial 
vector: 

𝒖𝒖𝑑𝑑𝑘𝑘+1 = (𝑢𝑢1𝑖𝑖𝑘𝑘+1,𝑢𝑢2𝑖𝑖𝑘𝑘+1, … , 𝑢𝑢𝑛𝑛𝑛𝑛𝑘𝑘+1)  
is formed where 

𝑢𝑢𝑗𝑗𝑗𝑗𝑘𝑘+1 = �
𝑣𝑣𝑗𝑗𝑗𝑗𝑘𝑘+1

𝑥𝑥𝑗𝑗𝑗𝑗𝑘𝑘
if (𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑗𝑗) ≤ 𝐶𝐶𝐶𝐶) or  𝑗𝑗 = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑖𝑖)
if (𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑗𝑗) > 𝐶𝐶𝐶𝐶) and  𝑗𝑗 ≠ 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑖𝑖)  , 

𝑗𝑗 = 1,2, … ,𝑛𝑛 
In the last equation, 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑗𝑗) is the 𝑗𝑗th evaluation of a uniform random number generator with outcome 
∈ [0,1]. CR is the crossover constant ∈ [0,1] which has to be determined by the user. 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑖𝑖) is a randomly 
chosen index ∈ 1,2, … ,𝐷𝐷 which ensures that 𝑢𝑢𝑗𝑗𝑗𝑗𝑘𝑘+1 gets at least one parameter from 𝑣𝑣𝑗𝑗𝑗𝑗𝑘𝑘+1. 

Selection 

To decide whether or not it should become a member of generation 𝑘𝑘 + 1, the trial vector 𝒖𝒖𝑖𝑖𝑘𝑘+1 is compared 
to the target vector 𝒙𝒙𝑖𝑖𝑘𝑘 using the greedy criterion. If vector 𝒖𝒖𝑖𝑖𝑘𝑘+1 yields a smaller cost function value than 𝒙𝒙𝑖𝑖𝑘𝑘 
the 𝒙𝒙𝑖𝑖𝑘𝑘+1 is set to 𝒖𝒖𝑗𝑗𝑗𝑗𝑘𝑘+1; otherwise the old value  𝒙𝒙𝑖𝑖𝑘𝑘+1 is retained. 
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Other DE variants 

In [41] Storn and Price also discuss other variants of DE in which they use the notation: DE/x/y/z where  
o x specifies the vector to be mutated which can be “rand” (a randomly chosen population vector) 

or “best” (the vector of lowest cost from the current population). 
o y is the number of difference vectors used. 
o z denotes the crossover scheme. The variant described above is known as “bin” (crossover due to 

independent binomial experiments).  
Hence the strategy as described above is known as DE/rand/1/bin. The paper also mentions that 
DE/best/2/bin could be beneficial. In this case 

𝒗𝒗𝑖𝑖𝑘𝑘+1 =  𝒙𝒙best𝑘𝑘 + 𝐹𝐹. �𝒙𝒙𝑟𝑟1
𝑘𝑘 + 𝒙𝒙𝑟𝑟2

𝑘𝑘 − 𝒙𝒙𝑟𝑟3
𝑘𝑘 − 𝒙𝒙𝑟𝑟4

𝑘𝑘 �. 

It is concluded that the usage of two difference vectors seems to improve the diversity of the population if 
the number of population vectors NP is high enough. 
Because DE is such a simple strategy, the astonishing result from [41] was that several examples showed 
DE/rand/1/bin to be superior to several other algorithms tested, namely Adaptive Simulated Annealing [28], 
the Annealed Nelder and Mead approach [43], the Breeder Genetic Algorithm [44], the EASY Evolution 
Strategy [45] and the method of Stochastic Differential Equations [46]. 

Constrained Optimization 

The DE algorithm implemented in LS-OPT was developed by Kitayama et al [42]. The differences between 
the Kitayama and Storn & Price algorithms are mostly of a minor nature. Whereas Storn and Price used a 
constant 𝐹𝐹 (mostly 0.5) for all the variables, a randomized 𝐹𝐹𝑖𝑖 = 𝐹𝐹 + 𝑑𝑑(𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(0,1) − 0.5) where 𝑖𝑖 =
1,2, … ,𝑛𝑛, 𝐹𝐹 = 0.8;   𝑑𝑑 = 0.0001 was used in Reference [42]. Constraints are handled using a penalty 
formulation: 

𝐹𝐹(𝒙𝒙) = 𝑓𝑓(𝒙𝒙) + 𝑟𝑟. 𝛾𝛾;   𝑟𝑟 = (1 + |𝑓𝑓(𝑥𝑥)|)𝑞𝑞;    𝑞𝑞 = 2 

𝛾𝛾 =  �
� exp �1 + 𝑔𝑔𝑗𝑗(𝑥𝑥)� ;   𝑔𝑔𝑗𝑗(𝑥𝑥) > 0
𝑗𝑗=1

                                     0 ;   𝑔𝑔𝑗𝑗(𝑥𝑥) ≤ 0
. 

Algorithm 

The algorithm used in Reference [42] is as follows: 

o 0: Set 𝑁𝑁𝑁𝑁, 𝐹𝐹 and 𝐶𝐶𝐶𝐶. Initialize the iteration counter 𝑘𝑘 = 1. 
o 1: Generate the particles (parameter vectors) at random. 
o 2: Apply the following procedure to all particles: 

o 2-1: Particle 𝑖𝑖, denoted by 𝒙𝒙𝑖𝑖𝑘𝑘, selects three particles (𝒙𝒙𝑟𝑟1
𝑘𝑘 ,𝒙𝒙𝑟𝑟2

𝑘𝑘 ,𝒙𝒙𝑟𝑟3
𝑘𝑘 ) at random, where 

𝑖𝑖 ≠ 𝑟𝑟1 ≠ 𝑟𝑟2 ≠ 𝑟𝑟3. 

o 2-2: Mutation: A new particle is generated by the mutation: 𝒗𝒗𝑖𝑖𝑘𝑘 = 𝒙𝒙1𝑘𝑘 + 𝐹𝐹(𝒙𝒙2𝑘𝑘 − 𝒙𝒙3𝑘𝑘). 
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o 2-3: Crossover: A new particle 𝒖𝒖𝑖𝑖𝑘𝑘 is generated by the crossover between 𝒙𝒙𝑖𝑖𝑘𝑘 and 𝒗𝒗𝑖𝑖𝑘𝑘. 

o 2-4: Selection: The objective function is evaluated at 𝒙𝒙𝑑𝑑𝑘𝑘  and 𝒖𝒖𝑑𝑑𝑘𝑘  and the particle 𝑖𝑖 is updated 
according to the following criteria: 

𝑓𝑓�𝒖𝒖𝑖𝑖𝑘𝑘� ≤ 𝑓𝑓�𝒙𝒙𝑖𝑖𝑘𝑘� → 𝒙𝒙𝑖𝑖𝑘𝑘 = 𝒖𝒖𝑖𝑖𝑘𝑘

𝑓𝑓�𝒖𝒖𝑖𝑖𝑘𝑘� > 𝑓𝑓�𝒙𝒙𝑖𝑖𝑘𝑘� → 𝒙𝒙𝑖𝑖𝑘𝑘 = 𝒙𝒙𝑖𝑖𝑘𝑘
 

o 3: 𝑘𝑘 = 𝑘𝑘 + 1 

o 4: If 𝑘𝑘 < 𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚, go to 2, else terminate. 

In addition to 11 analytical benchmark problems with 𝑛𝑛 varying between 2 and 10, Kitayama et al analyzed 
two structural constrained minimization examples (the optimal design of a spring (𝑛𝑛 = 3) and a truss 
topology optimization (𝑛𝑛 = 28)). As in [41], DE/rand/1/bin was used. The performance of the DE was 
compared to several other algorithms (Generalized Random Tunneling Algorithm (GRTA) [47], Particle 
Swarm Optimization (PSO) [36][37], GA [11], Distributed GA and Simulated Annealing) and was 
concluded to be competitive although GRTA outperformed DE on the topology benchmark. 

23.12. Hybrid algorithms 
As discussed earlier, the stochastic algorithms like the genetic algorithm (GA) and adaptive simulated 
annealing (ASA) are designed to find the global optimal solution. However, one of the most difficult aspects 
of using stochastic algorithms is to identify the correct stopping criterion. A defensive, but likely expensive, 
approach is to run an algorithm sufficiently long to ensure the global optimal solution. However, the speed 
of finding the global optimum can be significantly increased by combining the global optimizers with local 
gradient based optimization methods. This combination, referred to as a hybrid algorithm, is based on a very 
simple idea that the global optimizers reach the basin of the global optimum quickly i.e., they find very high 
quality solutions, but significant effort is then required to achieve small improvements for refining the 
solution. On the other hand, gradient based optimization methods like LFOPC can find an optimal solution 
very quickly when starting from a good solution. Thus, in LS-OPT, a global optimizer such as the GA or 
ASA is used to find a good starting solution followed by a single LFOPC run to converge to the global 
optimum. This approach has been found to be both effective and efficient for global optimization. The 
hybrid algorithms are available for both the GA and ASA options. 

23.13. Visualization of the Pareto optimal frontier 
Due to the complexity of visualizing the Pareto Optimal Frontier (POF) for high dimensional problems, 
methods to improve exploration of the Pareto set have been devised. Several methods have been 
implemented in LS-OPT. These methods are described below: 

23.13.1. Trade-off plot 

This is the simplest of all plot types. The user creates a scatter plot of different entities, mostly objective 
functions, in a 3-D space. One can also add fourth entity in the form of the color. An example of the Trade-
Off plot in four-dimensional space is shown in Figure 23-7. A serious limitation of this plot type is its 
inability to simultaneously show more than four dimensions. 
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Figure 23-7: Trade-off plot shows all four objectives of Pareto optimal solutions. 

23.13.2. Hyper-radial visualization (HRV) 

HRV [38] is based on the minimization of the sum of squares of the normalized objective functions which 
allows the POF to be displayed in two dimensions. HRV is effectively a 2-dimensional mapping of the n-
dimensional objective function space. 
The mathematical form of the multi-objective optimization problem is as follows: 
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HRV can be seen as a conversion of the multi-objective optimization problem to a single objective 
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subject to  
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where s = n/2 and the two additive components represent the objectives assigned to the two axes of the plot 
(see Figure 23-8). The case where n is an odd number is discussed below.  

 
 

Figure 23-8: The Pareto frontier and indifference curves 

The HRV method assumes that the set of Pareto points has already been computed and are available for 
display. First each objective function iF  is normalized to the range of the Pareto points. Normalization is 
done by using the lower and upper values of all the computed Pareto points to define the range for each 
objective. 
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The coordinate ],...,,[ min  min  2min  1 nFFF  represents the Utopian point (see Figure 23-8), i.e. the point 
representing the minima of individual objectives. In the HRV representation, this point becomes the origin 
of the 2-dimensional plot. In addition to normalizing each objective function, the result of the Hyper-Radial 
Calculation (HRC) must also be normalized: 
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Now consider the n-objective sample data, corresponding to Pareto point j (of a total of q Pareto points). 
The objective functions are grouped into 2 sets controlled by the designer and an HRC value is computed 
for each group resulting in the coordinates HRC1 and HRC2. Thus s objectives are represented by HRC1 
while n-s objectives are represented by HRC2. The two groups are therefore 
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The formulation is unbiased because the objectives can be grouped in an arbitrary way without sacrificing 
the unbiased visualization property. This means the radius originating in the Utopian point of any point is 
preserved irrespective of the objective grouping. The 'best' design is therefore considered to be the one 
closest to the Utopian point, i.e., the one with the smallest radius in the 2-dimensional plot. 
The distance from the Utopian point is not the only criterion of how good a design is since a designer may 
also have a preference regarding the objectives. Preferences are incorporated by adding weights to the 
objectives represented in the HRC functions: 
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When (n-s < s) as is the case when, for instance, n is an odd number, (2s-n) dummy objective functions are 
added to normalize the visualization. This is to avoid producing an elliptical set of indifference curves. A 
dummy objective is a q-dimensional null vector, q being the number of Pareto points. The addition of such a 
dummy objective ensures the preservation of the indifference radius, so if the groupings are reselected, a 
particular Pareto point will move tangent to its current radius and therefore maintain its level of 
indifference. 

23.13.3. Parallel co-ordinate plot (PCP) 

The parallel coordinate plot shows all entities of a design by a line such that any number of entities can be 
simultaneously shown. An example of PCP is shown in Figure 23-9. The user can move the sliders on each 
entity to filter-out the undesired values and screen the objectives. The screened out solutions are shown as 
the grey-lines in Figure 23-9. 
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Figure 23-9: Parallel coordinate plot shows objectives and design variables of all points on the Pareto 
front. 

23.13.4. Self organizing maps (SOM) 

Self organizing map [39], proposed by Kohonen in early 1980s, is a very powerful technique to represent n-
dimensional data in two-dimensional space. The designs that are close in the n-dimensional space remain 
close to each other in the mapped space as well. These maps allow the user to explore the solution space in 
many dimensions simultaneously. Figure 23-10 shows an example of a self organizing map. One can 
simultaneously see design objectives, variables, and constraints.  
By default, the network is trained with 12 rows and 9 columns i.e., 108 nodes but the number of units can be 
controlled in the viewer GUI. With a trained SOM, one can show the following:  

1. Component maps:  Each component map shows one entity e.g., variables, responses, etc. One can 
simultaneously plot different component maps to see the variation in data in different regions. 

10. D-matrix: This map shows the average distance from the neighboring units in the maps. This feature 
helps identify sparse sections in the data.  

11. U-matrix: The U-matrix map shows the actual distances between the two neighboring units.  
12. C-matrix: This plot illustrates the density associated with each SOM unit. For a well trained 

network, the C-matrix plot would also identify sparsely distributed data.0. 
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Figure 23-10: Self organizing maps display design objectives, variables, and constraints on the Pareto 
front. 

23.14. Performance metrics for multi-objective optimization 
Since multi-objective optimization results in a set of solutions, it requires special metrics to assess the 
convergence to the Pareto optimal front, diversity on the front, and the spread of the front. While the users 
can get detailed information on performance metrics for multiobjective optimization problems elsewhere 
[17], a few metrics available in LSOPT are described here. 

23.14.1. Number of nondominated points 

This is the number of solutions in the archive of all nondominated solutions at any generation. Usually a 
higher number of nondominated points are achieved when convergence is good. 

23.14.2. Spread 

The spread of the front is calculated as the diagonal of the largest hypercube in the function space that 
encompassed all points. A large spread is desired to find diverse trade-off solutions. The spread measure is 
derived using the extreme solutions making it susceptible to the presence of a few isolated points that could 
artificially improve the spread metric. An equivalent criterion might be the volume of such a hypercube. 
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23.14.3. Standard deviation of crowding distance 

This complimentary criterion (to the spread metric) detects the presence of poorly distributed solutions by 
estimating how uniformly the points are distributed in the Pareto optimal set. This metric is defined as, 
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where di is the crowding distance of the solution in the function or variable space. The boundary points are 
assigned a crowding distance of twice the distance to the nearest neighbor. A small value of the uniformity 
measure is desired to achieve a good distribution of points. 

23.14.4. Min/Max of objectives 

This represents the range of individual objectives. A wide range represents more choices for the designer. 

23.14.5. Hypervolume 

A dominated hypervolume metric tries to simultaneously estimate the convergence and spread 
characteristics by computing the union of the volume between the optimal solutions and a reference point. 
For practical purposes, the nadir point of all solutions is used as the reference point. 
While all the above metrics are obtained on a single set of solutions, the following performance metrics are 
obtained by comparing multiple sets of solutions. These metrics are helpful in determining the convergence. 
In LSOPT, the set of non-dominated solutions separated by Δ generations (archive Ai and Ai-Δ) are compared 
and the following metrics are reported. Δ is called generation interval. 

23.14.6. Number of common points 

This is the number of solutions that exist in both sets Ai and Ai-Δ. A large number of common points is 
indicative of the high quality of solutions. The set of common solutions is represented as, 

{ } .,,: iiiiiii AaAaaaaQ ∈∈== ∆−∆−∆−  

and n(Q) is the size of set Q. This is a particularly good metrics when a large generation interval is used. 

23.14.7. Number of new nondominated solutions 

This metrics denotes the number of nondominated solutions that were evolved during the current generation 
interval. The set of such solutions is represented as, 

{ } .,,: iiiiiii AaAaaaaQ ∈∈≠= ∆−∆−∆−  

A large number of new solutions relative to the total archive size indicates that the new solutions are still 
being evolved and hence convergence is not yet achieved.  
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23.14.8. Number of old dominated solutions n(Q) 

This metrics denotes the number of nondominated solutions in the older archive Ai-Δ that were dominated by 
the solutions in the current archive Ai. The set of dominated solutions is,  

{ } .,,: iiiiiii AaAaaaaQ ∈∈= ∆−∆−∆−∆−   

A large number of dominated solutions represents significant evolution.  

23.14.9. Consolidation ratio 

This represents the fraction of archive Ai that has evolved up to the i-Δth generation. This is computed as the 
ratio of the number of members in archive Ai-Δ that are also present in the archive Ai (non-dominated 
solutions) to the size of archive Ai. Mathematically, 
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This metric represents the proportion of potentially converged solutions in the archive. In the early phase of 
a MOEA simulation, a large fraction of the non-dominated solutions in the archive Ai-Δ would be dominated 
by the solutions in archive Ai due to evolution, thus resulting in a small fraction of surviving solutions i.e., 
small value of the consolidation ratio. However, significantly better solutions evolve in the later phases such 
that a large proportion of solutions in the archive Ai-Δ remain non-dominated with respect to new solutions 
leading to a high consolidation ratio. In the limiting case, the consolidation ratio approaches one. 

23.14.10. Improvement ratio 

This represents the fraction of archive Ai-Δ dominated by the new solutions in archive Ai. This is computed 
as the ratio of the number of members in archive Ai-Δ that are dominated by the solutions in archive Ai 
(dominated solutions) to the size of archive Ai. Mathematically, 
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The archive Ai includes all non-dominated members of archive Ai-Δ so no member of the archive Ai is 
dominated. The improvement ratio quantifies the extent of improvement in the quality of evolved solutions. 
This metric has a high value in the early phase of simulation which gradually converges to zero when 
convergence is achieved. 
More information about these performance metrics can be obtained from [40]. 
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23.15. Discrete optimization 

23.15.1. Discrete variables 

Discrete variables can have only distinct values; for example, the variable can be a plate thickness having 
allowable values 1.0, 2.0, 2.5, and 4.5. 

23.15.2. Discrete optimization 

A very basic method of discrete optimization would be simply evaluating all possible design and selecting 
the best one. This is not feasible for the general case; consider for example that 30 design variables with 
variables having 5 possible values of the design variable will result in 1021 different designs. Evaluating all 
the possible designs is therefore not computationally feasible. Note that 30 design variables describe a 
design space with 109 quadrants, so finding the quadrant containing the optimum design is a hard problem. 
The quadrant containing the optimal design can be found using a gradient based search direction, but 
discrete optimization problems are not convex, which means that gradient based search directions may lead 
to local optima. The LS-OPT discrete optimization methodology using LFOPC therefore use gradient based 
search in conjunction with random search methods. The optimal design found in this manner, cannot be 
shown to be uniquely the global optimum, but is considered the (practical) optimum because it is known that 
it is highly unlikely that a better design will be found. 
The cost of the discrete optimization is kept affordable by doing the optimization using the values from a 
response surface approximation. The accuracy of the response surface or metamodel is improved using a 
sequential strategy described in a later section. 

23.15.3. Mixed-discrete optimization 

The discrete variables can be used together with continuous variables. This is called mixed-discrete 
optimization. 
The steps followed to compute the mixed-discrete optimum are: 

1. Consider all the discrete variables to be continuous and optimize using the gradient based design 
optimization package. This continuous optimum found is used as the starting design in the next 
phase. 

2. Discrete optimization is done considering only the discrete variables with the continuous variables 
frozen at the values found in the previous phase. 

3. Continuous optimization is done considering only the continuous variables and with the discrete 
variables frozen at the values found in the previous phase.0. 

23.15.4. Discrete optimization algorithm: genetic algorithm 

A GA (genetic algorithm, Section 23.8) is used to do the discrete optimization. A GA mimics the 
evolutionary process selecting genetic strings. In a GA, the design variable values are coded up into data 
structure similar to genetic strings. New generations of designs are obtained by combining portions of the 
genetic strings of the previous generation of designs. Designs that have relatively better values of the 
objective function have a better chance to contribute a portion of its genetic string to the next generation. 
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23.15.5. Objective function for discrete optimization 

The discrete optimization algorithm used can only consider an objective function (no constraints); the 
constraints specified by the user are therefore incorporated into this objective function. The resulting 
objective function has two different behaviors: 

1. A feasible design exists. In this case all infeasible designs (those violating the constraints) are simply 
rejected, and only feasible designs are considered inside the optimization algorithm. The objective 
function used is simply that specified by the user. 

2. A feasible design does not exist. If the search for the best feasible designs fails due to a lack of 
feasible designs, then a search is done for the least infeasible constraint. The objective function is a 

scaled sum of the constraint violations: ∑
−

iBound
Boundconstraint ii

 
with the summation done over all 

the violated constraints.0. 

23.15.6. Sequential strategy 

The discrete and the mixed-discrete optimization are done using the response values from the response 
surfaces or metamodels. The accuracy of the response surface or metamodels is therefore very important. 
The accuracy of the metamodels is improved by a sequential response surface method (SRSM) (see Section 
23.6), in which the size of the subregion over which the designs are evaluated are reduced until 
convergence. Reducing the size of the subregion is the best known method of obtaining accuracy for 
optimizing using metamodels. 
Discrete optimization introduces the concern that a discrete variable value may not be on the edge of the 
subregion selected by the SRSM algorithm. The SRSM algorithm was therefore modified to use closest 
discrete values outside the subregion. This implies that the subregion cannot be smaller than the distance 
between two successive discrete values.  

23.16. Summary of the optimization process 
The following tasks may be identified in the process of an optimization cycle using response surfaces. 
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Table 23-1: Summary of optimization process 

Item Input Output 

DOE Location and size of the subregion in 
the design space. The experimental 
design desired. An approximation 
order. An affordable number of 
points. 

Location of the experimental 
points. 

Simulation Location of the experimental points. 
Analysis programs to be scheduled. 

Responses at the experimental 
points. 

Build response surface Location of the experimental points. 
Responses at the experimental points. 
Function types to be fitted. 
 

The approximate functions 
(response surfaces). The goodness-
of-fit of the approximate functions 
at the construction points. 

Check adequacy The approximate functions (response 
surfaces). The location of the check 
points. The responses at the check 
points. 

The goodness-of-fit of the 
approximate functions at the check 
points. 
 

Optimization The approximate functions (response 
surfaces). Bounds on the responses 
and variables. 

The approximate optimal design. 
The approximate responses at the 
optimal design. Pareto optimal 
curve data. 

Two approaches may be taken: 

23.16.1. Convergence to an optimal point 

o First-order approximations.  
Because of the absence of curvature, it is likely that perhaps 5 to 10 iterations may be required for 
convergence. The first-order approximation method turns out to be robust thanks to the sequential 
approximation scheme that addresses possible oscillatory behavior. Linear approximations may be 
rather inaccurate to study trade-off, i.e., in general they make poor global approximations, but this is 
not necessarily true and must be assessed using the error parameters. 

o Second-order approximations.  
Due to the consideration of curvature, a sequential quadratic response surface method is likely to be 
more robust, but can be more expensive, depending on the number of design variables. 

o Other approximations. 
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Neural networks (Section 22.1) and Radial Basis Function networks (Section 22.1.3) provide good 
approximations when many design points are used. A suggested approach is to start the optimization 
procedure in the full design space, with the number of points at least of the order of the minimum 
required for a linear approximation. To converge to an optimum, use the iterative scheme with 
domain reduction as with any other approximations, but choose to update the experimental design 
and response surfaces after each iteration (this is the default method for non-polynomial 
approximations). The metamodel will be built using the total number of points.  

See Section 23.5 on sequential strategies for optimization and design exploration. 
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24. Applications of Optimization 

24.1. Multicriteria design optimization 
A typical design formulation is somewhat distinct from the standard formulation for mathematical 
optimization (Eq. 2.3). Most design problems present multiple objectives, design targets and design 
constraints. There are two ways of solving multicriteria design optimization problems.  
The first method, discussed in Section 23.9, focused on finding multiple trade-offs, known as Pareto optimal 
solutions, using multi-objective genetic algorithms. The advantage of this method is that one can find many 
trade-off designs and the designer does not have to a priori determine the preference structures.  
In the second method, the standard mathematical programming problem is defined in terms of a single 
objective and multiple constraints. The standard formulation of Eq. (23-1) has been modified to represent 
the more general approach as applied in LS-OPT. 
Minimize the function 

p[f(x)]       (24-1) 

subject to the inequality constraint functions 

.21    ;)( ,...,m,jUgL jjj =≤≤ x         

The preference function p can be formulated to incorporate target values of objectives. 
Two methods for achieving this are given: 

24.1.1. Euclidean distance function 

Designs often contain objectives that are in conflict so that they cannot be achieved simultaneously. If one 
objective is improved, the other deteriorates and vice versa. The preference function )]([ xfp  combines 
various objectives fi. The Euclidean distance function allows the designer to find the design with the 
smallest distance to a specified set of target responses or design variables: 
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The symbols Fi represent the target values of the responses. A value Γi is used to normalize each response i. 
Weights Wi are associated with each quantity and can be chosen by the designer to convey the relative 
importance of each normalized response. 

24.1.2. Maximum distance 

Another approach to target responses is by using the maximum distance to a target value 

 𝑝𝑝 = max𝑖𝑖 �
|𝑓𝑓𝑖𝑖(𝒙𝒙)−𝐹𝐹𝑖𝑖|

|𝛤𝛤𝑖𝑖|
�                    (24-3) 

This form belongs to the same category of preference functions as the Euclidean distance function [1] and is 
referred to as the Tchebysheff distance function. A general distance function for target values Fi is defined 
as 

𝑝𝑝 = �∑ �|𝑓𝑓𝑖𝑖(𝒙𝒙)−𝐹𝐹𝑖𝑖|
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with r = 2 for the Euclidean metric and ∞→r  for the min-max formulation (Tchebysheff metric). 

The approach for dealing with the Tchebysheff formulation differs somewhat from the explicit formulation. 
The alternative formulation becomes: 

Minimize  e        (24-5) 

subject to 
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In the above equation, Γi is a normalization factor, e represents the constraint violation or target discrepancy 
and α represents the strictness factor. If α = 0, the constraint is slack (or soft) and will allow violation. If α 
= 1, the constraint is strict (or hard) and will not allow violation of the constraint. 
The effect of distinguishing between strict and soft constraints on the above problem is that the maximum 
violation of the soft constraints is minimized. Because the user is seldom aware of the feasibility status of 
the design problem at the start of the investigation, the solver will automatically solve the above problem 
first to find a feasible region. If the solution to e is zero (or within a small tolerance) the problem has a 
feasible region and the solver will immediately continue to minimize the design objective using the feasible 
point as a starting point. 
A few points are notable: 

1. The variable bounds of both the region of interest and the design space are always hard. This is 
enforced to prevent extrapolation of the response surface and the occurrence of impossible designs. 

2. Soft constraints will always be strictly satisfied if a feasible design is possible. 
3. If a feasible design is not possible, the most feasible design will be computed. 
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4. If feasibility must be compromised (there is no feasible design), the solver will automatically use the 
slackness of the soft constraints to try and achieve feasibility of the hard constraints. However, even 
when allowing soft constraints, there is always a possibility that some hard constraints must still be 
violated. In this case, the variable bounds could be violated, which is highly undesirable as the 
solution will lie beyond the region of interest and perhaps beyond the design space. If the design is 
reasonable, the optimizer remains robust and finds such a compromise solution without terminating 
or resorting to any specialized procedure.0. 

Soft and strict constraints can also be specified for search methods. If there are feasible designs with respect 
to hard constraints, but none with respect to all the constraints, including soft constraints, the most feasible 
design will be selected. If there are no feasible designs with respect to hard constraints, the problem is ‘hard-
infeasible’ and the optimization terminates with an error message. 
In the following cases, the use of the Min-Max formulation can be considered: 

1. Minimize the maximum of several responses, e.g. minimize the maximum knee force in a vehicle 
occupant simulation problem. This is specified by setting both the knee force constraints to have 
zero upper bounds. The violation then becomes the actual knee force. 

2. Minimize the maximum design variable, e.g. minimize the maximum of several radii in a sheet metal 
forming problem. The radii are all incorporated into composite functions, which in turn are 
incorporated into constraints which have zero upper bounds. 

3. Find the most feasible design. For cases in which a feasible design region does not exist, the user 
may be content with allowing the violation of some of the constraints, but is still interested in 
minimizing this violation.0. 

24.2. Multidisciplinary design optimization 
There is increasing interest in the coupling of other disciplines into the optimization process, especially for 
complex engineering systems like aircraft and automobiles [2]. The aerospace industry was the first to 
embrace multidisciplinary design optimization (MDO) [3], because of the complex integration of 
aerodynamics, structures, control and propulsion during the development of air- and spacecraft. The 
automobile industry has followed suit [4]. In [4], the roof crush performance of a vehicle is coupled to its 
Noise, Vibration and Harshness (NVH) characteristics (modal frequency, static bending and torsion 
displacements) in a mass minimization study. 
Different methods have been proposed when dealing with MDO. The conventional or standard approach is 
to evaluate all disciplines simultaneously in one integrated objective and constraint set by applying an 
optimizer to the multidisciplinary analysis (MDA), similar to that followed in single-discipline optimization. 
The standard method has been called multidisciplinary feasible (MDF), as it maintains feasibility with 
respect to the MDA, but as it does not imply feasibility with respect to the disciplinary constraints, is has 
also been called fully integrated optimization (FIO). A number of MDO formulations are aimed at 
decomposing the MDF problem. The choice of MDO formulation depends on the degree of coupling 
between the different disciplines and the ratio of shared to total design variables [5]. It was decided to 
implement the MDF formulation in this version of LS-OPT as it ensures correct coupling between 
disciplines albeit at the cost of seamless integration being required between different disciplines that may 
contain diverse simulation software and different design teams. 
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In LS-OPT, the user has the capability of assigning different variables, experimental designs and job 
specification information to the different solvers or disciplines. The file locations in Version 2 have been 
altered to accommodate separate Experiments, AnalysisResults and DesignFunctions files in 
each solver’s directory. An example of job-specific information is the ability to control the number of 
processors assigned to each discipline separately. This feature allows allocation of memory and processor 
resources for a more efficient solution process. 
Refer to the user’s manual (Section 17.3) for the details of implementing an MDO problem. There is one 
crashworthiness-modal analysis case study in the examples chapter (Section 18.5). 

24.3. System identification using nonlinear regression 
System identification is a general term used to describe the mathematical tools and algorithms that build 
dynamical models such as systems or processes from measured data. The methodology used in LS-OPT 
consists of a nonlinear regression procedure to optimize the parameters of a system or material. This 
procedure minimizes the errors with respect to given experimental results. Two formulations for system 
identification can be used. The first uses the mean squared error (MSE) as the minimization objective, while 
the second, the Min-Max formulation, uses the auxiliary problem formulation to minimize the maximum 
residual. The MSE approach is commonly used for system identification and has been automated using a 
single command. The two formulations are outlined below. 

24.3.1. Ordinate-based Curve Matching 

Figure 24-1 shows a graph containing curve f(x,z) and points Gp(z). The points can be interconnected to 
form a curve G(z). f is a computed response curve (e.g. stress or force history) computed at a point x in the 
parameter space. The variables x represent unknown parameters in the model. System (e.g. automotive 
airbag or dummy model) or material constants are typical of parameters used in constructing finite element 
models. The independent state variable z can represent time, but also any other response type such as strain 
or deformation. The target curve G is constant with respect to x and typically represents a test result (e.g. 
stress vs. strain or force vs. deformation). f may not be readily available from the analysis code if z does not 
represent time. In this case f must first be constructed using a “crossplot” feature (see Section 6.4.2) and the 
curve z(t)  to obtain a plot that is comparable to G. Each function f(x,zp) is internally represented by a 
response surface so that a typical curve f(x,z) is represented by P internal response surfaces. 
In Figure 24-1, seven regression points are shown. The residuals at these points are combined into a Mean 
Squared Error norm:                                                                                                          
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Figure 24-1: Entities in Mean Squared Error formulation                                

The MSE norm is based on a series of P regression points beginning at the start point z1 and terminating at 
the end point zP (see Figure 24-1). The sp, p=1,…,P are residual scale factors and the Wp, p=1,…,P are 
weights applied to the square of the scaled residual (fp - Gp) / sp at point p. 
The application of optimization to system identification is demonstrated in Chapter 19. 

24.3.2. Curve Mapping 

A major difficulty with ordinate-based curve matching is that steep parts of the curve are difficult to 
incorporate in the matching. Failure material models typically have the characteristic of a steep decline of 
the stress-strain curve towards the end of the curve while steep curves also feature in models in which part 
of the behavior (typically the leading part of the curve) is linear. These kinds of problems present a strong 
case for incorporation of the abscissa into the curve-matching metric. 
A related problem with ordinate-based matching is that the ranges of the computed and target curves often 
do not coincide horizontally so that some of the points are ignored. It may even happen that at an interim 
stage of the optimization, the two curves do not share any vertical range overlap (there is not a single 
vertical line which will cross both the computed and the target curves). This type of problem may cause 
instability of the computation because it becomes impossible to quantify the error. 
A third problem is that hysteretic curves (curves with more than one possible y-value for some of the x-
values) cannot be quantified because of the non-uniqueness of the ordinate values of the computed curve 
with respect to the target curve. I.e. a vertical line may cross the same curve more than once. A logical 
approach to comparison of the two curves is to map one of the curves onto the other. Two questions which 
immediately arise are how to scale the curves and how to match two curves of unequal length. Scaling is 
particularly important since scale changes have an effect on the distances between the two curves. In many 
cases (e.g. stress vs. strain) there could be several orders of magnitude difference between the values on the 
abscissa and those of the ordinate. 
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The mathematical literature provides some ideas on curve matching approaches. Two commonly used 
metrics for curve matching are the Hausdorff [6] and Fréchet [7] distances. The Hausdorff distance 
measures the mismatch between two point sets so is therefore not suitably general for curve matching as 
there is no continuous point order. For instance it would not be able to handle a hysteretic curve match. The 
Fréchet distance is better suited for curve matching because it takes the continuity of the curves into 
account. The Fréchet distance is formally defined as: 

))(())((maxinf),(
]1,0[,

tQtPQPFr
t

βa
βa

−=
∈  

where P and Q are polygonal curves, ]1,0[∈t  represents a position on each curve. The parameters α and β 
are used to parameterize the distance whereas we can think of t as “time”. The analogy is that of a dog 
walking along the one curve and the dog’s owner walking along the other connected by a leash. Both walk 
continuously and monotonically along the curve from the start point to the end point and can vary their 
velocities according to α and β. The Fréchet distance is the length of the shortest leash that is sufficient for 
traversing both curves in this manner. 
In LS-OPT we map the points of the one curve onto the second curve and compute the volume (area) 
between the two curves. When both curves are normalized, this typically yields a mismatch error with value 
much less than 1 for two reasonably matching curves. See Reference [8].  
A significant problem is that it is not appropriate to map entire curves to one another. A practical reason 
could be that the test curve, which could be the result of digital output from an experiment, is essentially 
unedited and therefore contains superfluous points unrelated to the actual behavior of the model. It may also 
be that the test curve represents only part of the response, perhaps because a full curve could not be obtained 
from the test. In parameter identification this issue becomes particularly critical as curves are typically 
computed at widely distributed points throughout the parameter space during the optimization process. This 
potential disparity of curve length requires partial mapping of the two curves. 
The steps for computing the curve mismatch are described in full detail below. The reader should refer to 
Figure 24-2 which shows a test curve (in thick red) mapped on to a computed curve. The prime symbol (′) is 
used to denote the curve on which the test curve is being mapped while the double prime symbol (″) is used 
to denote the finally mapped curve. The test curve is shown inside its smallest bounding box, the boundaries 
of which are used to normalize the curve. Hence the normalized curve a is in the [(0,0),(1,1)] range. 
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Figure 24-2:  Partial curve mapping of Curve a (in red) to Curve a′ with offset. The result is Curve a″. 
The solid points represent the original vertices of a′ whereas the open circles represent the mapped points 
representing a″. Curves a and a′ are both normalized to the bounding box of a. 

The algorithm for computing the curve mismatch error is as follows: 
1. Normalize the m point coordinates i of the target curve A to its smallest bounding box to create 

Curve a. See Figure 1. 
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2. Normalize the n point coordinates j of the computed curve A' to the smallest bounding box of A to 
create curve a'. See Figure 1. 
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3. Compute S, the total polygon length of a. Also compute the individual segment lengths iS δ : 
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Here a segment is defined as a part of the curve between two consecutive points, connected by a 
straight line. 

4. Scale each segment length to the total curve length S: 

SSs
ii / ~ δ= ;    mi ,...,3,2=  

5. Compute T, the total polygon length of a'. 
6. If S > T, rename a' to a and a to a'. Hence a will always be shorter than a'. 

7. Define an offset as a starting point of a curve section of total length S on curve a'. The offset = pλ  
will be varied over p = 1 to P  in order to “slide” Curve a along Curve a'. ],0[ ST −∈λ . Assume P 

increments in this interval so that each increment has size 
P

ST −
=∆λ  . 

8. Set λλλ ∆+= −1pp to create a new section of the computed curve and create point coordinate pairs 
by mapping each point of curve a to curve a'. A typical curve segment i on a' which corresponds to 
a segment i on a has length ii ST   δδ =  (see Fig. 1). This creates a new set of point pairs a″. The 
assumption that the length of the mapped section of the long curve is equal to the length of the short 
curve is critical to the success of the method. 

9. Compute the discrepancy (mismatch error) between the two curves a and a". This is done by 
summing the volumes vi representing the individual segment errors. First compute the distances 
between the point pairs: 

22 )"()"( iiiiid ηηξξ −+−=  

Then compute the volume component of each segment. (Note for m points, there are m-1 segments.) 
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Then sum the volumes to get the final discrepancy: 
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10. Set p = p+1 and repeat from point 8. 

11. Find the distance pp
εε min= . This is the best match between the curves a and a'. 

24.3.3. Minimizing the maximum residual (Min-Max) 

In this formulation, the deviations from the respective target values are incorporated as constraint violations, 
so that the optimization problem for parameter identification becomes: 
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Minimize     e,        (24-7)  

subject to        
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This formulation is automatically activated in LS-OPT when specifying both the lower and upper bounds of 
pp sf /  equal to pp sG / . There is therefore no need to define an objective function. This is due to the fact 

that an auxiliary problem is automatically solved internally whenever an infeasible design is found, ignoring 
the objective function until a feasible design is obtained. When used in parameter identification, the 
constraint set is in general never completely satisfied due to the typically over-determined systems used. 
Since sp defaults to 1.0, the user is responsible for the normalization in the maximum violation formulation. 
This can be done by e.g. using the target value to scale the response f(x) so that: 
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Omitting the scaling may cause conditioning problems in some cases, especially where constraint values 
differ by several orders of magnitude. This option has been automated.   

24.3.4. Nonlinear regression: Confidence intervals 

Assume the nonlinear regression model: 

( ) ( ) ,, ε+= xtFtG   

where the measured result G is approximated by F and x  is a vector of unknown parameters. The nonlinear 
least squares problem is obtained from the discretization: 
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is solved to obtain *x . The variance 2σ  is estimated by 
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where F is the P-vector of function values predicted by the model and n is the number of parameters. The 
100(1-α )% confidence interval for each *

ix  is: 
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and 2/α
nPt −  is the Student t-distribution for α . 

F∇ is the P×n matrix obtained from the n derivatives of the P response functions representing P points at 
the optimum x. The optimal solution is therefore calculated first, followed by the confidence interval.  

A critical issue is to ensure that F∇ is not based on a gradient obtained from a spurious response surface 
(e.g. occurring due to noise in the response). Monitoring convergence and selected statistical parameters 
such as the RMS error and R2 can help to estimate a converged result. In many cases material identification 
problems involve smooth functions (e.g. tensile tests) so that spurious gradients would normally not be a 
problem.  

24.4. Worst-case design 
Worst-case design involves minimizing an objective with respect to certain variables while maximizing the 
objective with respect to other variables. The solution lies in the so-called saddle point of the objective 
function and represents a worst-case design. This definition of a worst-case design is different to what is 
sometimes referred to as min-max design, where one multi-objective component is minimized while another 
is maximized, both with respect to the same variables. 
There is an abundance of examples of worst-case scenarios in mechanical design. 
One class of problems involves minimizing design variables and maximizing case or condition variables. 
One example in automotive design is the minimization of head injury with respect to the design variables of 
the interior trim while maximizing over a range of head orientation angles. Therefore the worst-case design 
represents the optimal trim design for the worst-case head orientation. Another example is the minimization 
of crashworthiness-related criteria (injury, intrusion, etc.) during a frontal impact while maximizing the 
same criteria for a range of off-set angles in an oblique impact situation. 

Another class of problems involves the introduction of uncontrollable variables nizi ,...,1, =  in addition to 
the controlled variables mjy j ,...,1, = . The controlled variables can be set by the designer and therefore 
optimized by the program. The uncontrollable variables are determined by the random variability of 
manufacturing processes, loadings, materials, etc. Controlled and uncontrollable variables can be 
independent, but can also be associated with one another, i.e. a controlled variable can have an 
uncontrollable component. 
The methodology requires three features: 

1. The introduction of a constant range ρ of the region of interest for the uncontrollable variables. This 
constant represents the possible variation of each uncontrollable parameter or variable. In LS-OPT 
this is introduced by specifying a lower limit on the range as being equal to the initial range ρ. The 
lower and upper bounds of the design space are set to ±ρ/2 for the uncontrollable variables. 
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2. The controlled and uncontrollable variables must be separated as minimization and maximization 
variables. The objective will therefore be minimized with respect to the controlled variables and 
maximized with respect to the uncontrollable variables. This requires a special flag in the 
optimization algorithm and the formulation of Equation (23-1) becomes: 
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subject to 

𝑔𝑔𝑗𝑗(𝒚𝒚,𝒛𝒛) ≤ 0; 𝑗𝑗 = 1,2, … , 𝑙𝑙. 

The algorithm remains a minimization algorithm but with modified gradients: 

,:mod y∇=∇ y   

.:mod z−∇=∇ z   

For a maximization problem the min and max are switched. 
3. The dependent set (the subset of y and z that are dependent on each other) x = y + z must be defined 

as input for each simulation, e.g. if the manufacturing tolerance on a thickness is specified as the 
uncontrollable component, it is defined as a variation added to a mean value, i.e. t = tmean + tdeviation, 
where t is the dependent variable.0. 
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25. Probabilistic Fundamentals 

25.1. Introduction 
No system will be manufactured and operated exactly as designed. Adverse combinations of design and 
loading variation may lead to undesirable behavior or failure; therefore, if significant variation exists, a 
probabilistic evaluation may be desirable. 
Sources of variation are:  

1. Variation in structural properties; for example: variation in yield stress. 
2. Variation in the environment; for example: variation in a load. 
3. Variation occurring during the problem modeling and analysis; for example: buckling initiation, 

mesh density, or results output frequency.0. 
From the probabilistic analysis we want to infer:  

1. Distribution of the response values. 
2. Probability of failure. 
3. Properties of the designs associated with failure. 

o Variable screening - identify important noise factors. 
o Dispersion factors - factors whose settings may increase variability of the responses. 

4. Efficient redesign strategies.0. 

25.2. Probabilistic variables 
The probabilistic component of a parameter is described using a probability distribution; for example, a 
normal distribution. The parameter will therefore have a mean or nominal value as specified by the 
distribution, though in actual use the parameter will have a value randomly chosen according to the 
probability density function of the distribution. 
The relationship between the control variables and the variance can be used to adjust the control process 
variables in order to have an optimum process. The variance of the control and noise variables can be used 
to predict the variance of the system, which may then be used for redesign. Knowledge of the interaction 
between the control and noise variables can be valuable; for example, information such as that the 
dispersion effect of the material variation (a noise variable), may be less at a high process temperature (a 
control variable) can be used to select control variables for a more robust manufacturing process.  
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Three probabilistic associations between variables are possible: 
1. Their nominal values and distributions are the same. 
2. Their nominal values differ but they refer to the same distribution. 
3. Their nominal values are the same but their distributions differ.0. 

25.3. Basic computations 

25.3.1. Mean, variance, standard deviation, and coefficient of variation 

The mean of a set of responses is 
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The variance is 

( ) .1
1

22 ∑
=

−=
n

i
i yy

n
s

 

The standard deviation is simply the square root of the variance 

.2ss =  

The coefficient of variation, the standard deviation as a proportion of the mean, is computed as 

.... ysvoc =  

25.3.2. Correlation of responses 

Whether a variation in displacements in one location causes a variation in a response value elsewhere is not 
always clear. 
The covariance of two responses indicates whether a change in the one is associated with a change in the 
other. 

( ) ( )( )[ ],, 221121 µµ −−= YYEYYCov   

( ) [ ] ( ) ( )., 212121 YEYEYYEYYCov −=  

The covariance can be difficult to use because it is unscaled. The standard deviation of the responses can be 
used for scaling. The coefficient of correlation is accordingly 
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The confidence interval on the coefficient of correlation is described in the next section. 

25.3.3. Confidence intervals 

The confidence interval on the mean assuming a normal distribution and using s2 as an estimate to the 
variance is 
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with µ  the mean, y  the estimate to the mean, and 1,2/ −ntα  the relevant critical value of the t-distribution. 

The confidence interval on the variance assuming a normal distribution and using s2 as an estimate to the 
variance is 
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with 2σ  the variance and 2
1,2/ −nαχ , 2

1,2/1 −− nαχ  the relevant critical values of the 2χ distribution. 

The confidence interval on the probability of an event is 
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with p the probability, p̂  the estimate to the probability, and 1,2/ −nzα  the relevant critical value of the 
normal distribution. 
The coefficient of correlation has a confidence interval of 
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25.4. Probabilistic methods 

The reliability − the probability of not exceeding a constraint value − can be computed using probabilistic 
methods. 
The accuracy can be limited by the accuracy of the data used in the computations as well as the accuracy of 
the simulations. The choice of methods depends on the desired accuracy and intended use of the reliability 
information. 
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More details on probabilistic methods can be found in, for example, the recent text by Haldar and 
Mahadevan [1]. 

25.4.1. Monte Carlo simulation 

A Monte Carlo simulation aims to compute results with the same scatter as what will occur in practice. 
Multiple analyses are conducted using values of the input variables selected considering their probability 
density function. The results from these analyses should have the scatter expected in practice. Under the law 
of large numbers the output results will eventually converge. 
Applications of a Monte Carlo investigation are: 

1. Compute the distribution of the responses, in particular the mean and standard deviation. 
2. Compute reliability. 
3. Investigate design space – search for outliers.0. 

The approximation to the nominal value is: 

( )[ ] ( ).1 ∑= iXf
N

XfE
 

If the Xi are independent, the laws of large numbers allow us any degree of accuracy by increasing N. The 
error of estimating the nominal value is a random variable with standard deviation 

.
N

σσ θ =
 

with σ  the standard deviation of f(x) and N the number of sampling points. The error is therefore unrelated 
to the number of design variables. 
The error of estimating p, the probability of an event, is a random value with the following variance 

( ) ,12

N
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which can be manipulated to provide a minimum sampling. A suggestion for the minimum sampling size 
provided by Tu and Choi [2] is: 
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The above indicates that for a 10% estimated probability of failure; about 100 structural evaluations are 
required with some confidence on the first digit of failure prediction. To verify an event having a 1% 
probability; about a 1000 structural analyses are required, which usually would be too expensive. 
A general procedure of obtaining the minimum number of sampling points for a given accuracy is illustrated 
using an example at the end of this section. For more information, a statistics text (for example, reference 
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[3]) should be consulted. A collection of statistical tables and formulae such as the CRC reference [4] will 
also be useful. 
The variance of the probability estimation must be taken into consideration when comparing two different 
designs. The error of estimating the difference of the mean values is a random variable with a variance of 

 
,

2

2
2

1

2
12

NN
σσ

σ θ +=
 

with the subscripts 1 and 2 referring to the different design evaluations. The error of estimating the 
difference of sample proportions is a random variable with a variance of  
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The Monte Carlo method can therefore become prohibitively expensive for computing events with small 
probabilities; more so if you need to compare different designs. 
The procedure can be sped up using Latin Hypercube sampling, which is available in LS-OPT. These 
sampling techniques are described elsewhere in the LS-OPT manual. The experimental design will first be 
computed in a normalized, uniformly distributed design space and then transformed to the distributions 
specified for the design variables. 

Example: 
The reliability of a structure is being evaluated. The probability of failure is estimated to be 0.1 and must be 
computed to an accuracy of 0.01 with a 95% confidence. The minimum number of function evaluations 
must be computed. 
For an accuracy of 0.01, we use a confidence interval having a probability of containing the correct value of 
0.95. The accuracy of 0.01 is taken as 4.5 standard deviations large using the Tchebysheff’s theorem, which 
gives a standard deviation of 0.0022. The minimum number of sampling points is therefore: 

.18595
)0022.0(
)1.0)(9.0(
22 ===

σ
pqN

 

Tchebysheff’s theorem is quite conservative. If we consider the response to be normally distributed then for 
an accuracy of 0.01 and a corresponding confidence interval having a probability of containing the correct 
value of 0.95, a confidence interval 1.96 standard deviations wide is required. The resulting standard 
deviation is 0.051 and the minimum number of sampling points is accordingly:  

.3457
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25.4.2. Monte Carlo analysis using metamodels 

Performing the Monte Carlo analysis using approximations to the functions instead of FE function 
evaluations allows a significant reduction in the cost of the procedure. 
A very large number of function evaluations (millions) are possible considering that function evaluations 
using the metamodels are very cheap. Accordingly, given an exact approximation to the responses, the exact 
probability of an event can be computed. 
The choice of the point about which the approximation is constructed has an influence on accuracy. 
Accuracy may suffer if the metamodel is not accurate close to the failure initiation hyperplane, 0)( =xG . A 
metamodel accurate at the failure initiation hyperplane (more specifically the Most Probable Point of 
failure) is desirable in the cases of nonlinear responses. The results should however be exact for linear 
responses or quadratic responses approximated using a quadratic response surface. 
Using approximations to search for improved designs can be very cost-efficient. Even in cases where 
absolute accuracy is not good, the technique can still indicate whether a new design is comparatively better. 
The number of FE evaluations required to build the approximations increases linearly with the number of 
variables for linear approximations (the default being 1.5n points) and quadratically for quadratic 
approximations (the default being 0.75(n+2)(n+1) points). 

25.4.3. Correlated variables 

Considering the correlation ( )( )[ ] ijjjiiji YYEYYCov ∑=−−= µµ),(  between variables, we construct the 
covariance matrix 
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from which we compute the eigenvalues and eigenvectors as EE 2λ=∑  with E and 2λ  respectively the 
eigenvectors and the eigenvalues of the covariance matrix. 
The correlated variables are created by firstly generating independent variables and transforming them back 
to being correlated variables using the eigenvalues and eigenvectors of the covariance matrix  

nnn iidEiidE λλ ++= 111X  with X the correlated variables and iid the independent variables. This method 
is only valid for normally distributed variables. 

Consider a function of correlated variables ∑
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; the statistics of this functions are computed as 
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25.4.4. First-Order Second-Moment Method (FOSM) 

For these computations we assume a linear expansion of the response. The reliability index of a response 
( ) 0<XG  is computed as: 

[ ]
[ ] ,
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XGE

=β
 

with E and D the expected value and standard deviation operators respectively. A normally distributed 
response is assumed for the estimation of the probability of failure giving the probability of failure as: 

),(1)( ββ Φ−−Φ= orPf  

with )(xΦ  the cumulative distribution function of the normal distribution. 

The method therefore (i) computes a safety margin, (ii) scale the safety margin using the standard deviations 
of the response, and (iii) then convert the safety margin to a probability of failure by assuming that the 
response is normally distributed. 
The method is completely accurate when the responses are linear functions of normally distributed design 
variables. Otherwise the underlying assumption is less valid at the tail regions of the response distribution. 
Caution is advised in the following cases:  

1. Nonlinear responses: Say we have a normally distributed stress responses - this implies that fatigue 
failure is not normally distributed and that computations based on a normal distribution will not be 
accurate. 

2. The variables are not normally distributed; for example, one is uniformly distributed. In which case 
the following can have an effect:0. 
o A small number of variables may not sum up to a normally distributed response, even for a linear 

response. 
o The response may be strongly dependent on the behavior of a single variable. The distribution 

associated with this variable may then dominate the variation of the response. This is only of 
concern if the variable is not normally distributed. 

Considering the accuracy of the input data, this method can be reasonable. For example, it should be 
common that the distribution of the input data can only be estimated using a mean and a standard deviation 
with a 20% error bound, in which case the results should be understood to have at the least a matching 
certainty. Interpreting the results in terms of a number of standard deviations can be a reasonable 
engineering approximation under these circumstances. 

25.4.5. Design for six-sigma methods 

See the section for FOSM keeping in mind that the reliability index β is the number of standard deviations. 
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25.4.6. The most probable point  

Probabilistic methods based on the most probable point of failure focus on finding the design perturbation 
most likely to cause failure. 
To understand how these methods works, consider the limit state function G(x) dividing the responses into 
two design regions: one consisting of acceptable responses and the other of unacceptable responses. The two 
regions are separated by the hyperplane described by G(x)=0.  

 

Figure 25-1: Finding the most probable point of failure. The most probable point is the point on the line 
G(x)=0 closest to the design in the probabilistic sense. 

We want to find the design perturbation most likely to cause the design to fail. This is difficult in the 
problem as shown in Figure 25-1, because all variables will not have an equal influence of the probability of 
failure due to differences in their distributions. In order to efficiently find this design perturbation, we 
transform the variables to a space of independent and standardized normal variables, the u-space. 
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Figure 25-2: Most probable point in the transformed space. In the transformed space the most probable 
point is the point on the line G(X)=0 the closest to the origin. 

The transformed space is shown in Figure 25-2. The point on the limit state function with the maximum 
joint probability is the point the closest to the origin. It is found by solving the following optimization 
problem: 

Minimize: 
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Subject to: .0)( =uG  

This point is referred to as the most probable point (MPP) and the distance from the origin in the u-space is 
referred to as the first-order probability index bFORM.  
The advantages of the most probable point are: 

1. The MPP gives an indication of the design most likely to fail. 
2. Highly accurate reliability methods utilizing an approximation around the MPP are possible.0. 

25.4.7. FORM (First Order Reliability Method) 

The Hasofer-Lind transformation is used to normalize the variables: 
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The minimization problem is accordingly solved in the u-space to find the first-order probability index 
bFORM. Approximations to the responses are used to solve the optimization problem. 
The probability of failure is found assuming a normally distributed response as 

( ),FORMfP β−F=  

with F the cumulative density function of the normal distribution. 
The error component of the procedure is due to (i) curvature of the constraint,  (ii) the error component of 
the approximating function used in the computations, and (iii) the assumption of a normal distribution for 
the computation of failure. 
The method is considered conservative considering that disregarding the curvature of the constraint results 
in an overestimation of the probability of failure. 

25.4.8. Design sensitivity of the most probable point 

For a probabilistic variable we use the partial derivative as: 
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with β∂∂P  the derivative of the CDF function of the normal distribution. 

For deterministic variables, which do not have a probabilistic component and therefore no associated u 
variables: 
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with f∂∂β  taken as ( ).minint alnoconstra ff −β  

For the pathological case of being at the MPP, the vector associated with b vanishes and we use: 
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with 0.4 the relevant value derivative of the CDF function of the normal distribution. 

25.5. Required number of simulations 

25.5.1. Overview 

A single analysis of a noisy structural event yields only a single value drawn from an unexplored 
population. The whole population can be explored and quantified using a probabilistic investigation if the 
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computational cost is reasonable. The cost of this probabilistic analysis is of quite some concern for FEA 
results and is therefore expounded in the following subsections. 
Rough rules of thumb: 

o 20 FE evaluation, a maximum of 10 design variables, and a metamodel-based probabilistic analysis 
for design purposes 

o 50 FE evaluations, about 5 design variables, and a metamodel-based probabilistic analysis for a 
detailed analysis of the scatter in the results and the role of the design variables 

o 100 FE evaluations and a Monte Carlo analysis for very noisy behavior or a very large number of 
potentially significant variables. These would be cases where it is very difficult to associate the 
variation in results with the design variables and accordingly only quantifying the result is feasible. 

25.5.2. Background 

The required number of the simulation depends on: 
1. Cost of creating an accurate metamodel 
2. Cost of estimating the noise variation 
3. Cost of observing low-probability events.0. 

If the variation in the responses is mainly due to the variation of the design variables, then the cost of 
creating an accurate metamodel dominates. The region of interest for a robustness analysis will not be as 
large as to contain significant curvature; therefore a linear or preferably a quadratic response surface should 
suffice. In past design optimization work, the number of experiments was successfully taken to be 1.5 times 
the number of terms (unknowns) in the metamodel to be estimated. For a robustness analysis, being 
conservative at this point in time, a value of twice the number of terms is recommended. The number of 
terms for a linear model is k+1 with k the number of design parameters. The number of terms for a quadratic 
response surface is (k+1)(k+2)/2. 
The variation in the responses may not be mainly due to the variation of the design variables. In this case, 
enough experiments much be conducted to estimate this noise variation with sufficient accuracy. This cost is 
additional to the cost of creating the metamodel. The number of experiments required will differ considering 
the criteria for accuracy used. For example, we can require the error of estimating the noise variation to be 
less than 10%; however, this requires about 150 experiments, which may be too expensive. Considering the 
practical constraints for vehicle crash analysis, useful results can be obtained with 25 or more degrees of 
freedom of estimating the noise variation. This gives a situation where the error bound on the standard 
deviation is about 20% indicating that it is becoming possible to distinguish the six sigma events from five 
sigma events. 
For design purposes, the variation of the responses and the role of the design variables are of interest. High 
accuracy may be impossible due to lack of information or unreasonable computational costs. A metamodel-
based investigation and 20 FE evaluations can achieve: 

1. Investigate up to 10 variable 
2. Quantify the contribution of each variable 
3. Estimate if the scatter in results is admissible.0. 
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If the scatter in FE results is large, then the FE model must be improved, the product redesigned, or a more 
comprehensive probabilistic investigation performed. The study should indicate which is required. 
A study can be augmented to re-use the existing FE evaluations in a larger study. 
If higher accuracy is required, then for approximately 50 simulations one can compute: 

o Better quantification of the role of the design variables: Investigate the effect of about five variables 
if a quadratic or neural network approximation is used or about 10 variables using linear 
approximations. 

o Higher accuracy and better understanding of the scatter in the results. Predict effect of frequently 
occurring variation with a rare chance of being in error. Outliers may occur during the study and will 
be identified as such for investigation by the analyst. Structural events with a small (5% to 10%) 
probability of occurring might however not be observed. 

The accuracy of these computations must be contrasted to the accuracy to which the variation of the design 
parameters is known. These limits on the accuracy, though important for the analyst to understand, should 
not prohibit useful conclusions regarding the probabilistic behavior of the structure. 

25.5.3. Competing role of variance and bias 

In an investigation the important design variables are varied while other sources are kept at a constant value 
in order to minimize their influence. In practice the other sources will have an influence. Distinguishing 
whether a difference in a response value is due to a deterministic effect or other variation is difficult, 
because both always have a joint effect in the computer experiments being considered. 
In general [4] the relationship between the responses y and the variables x is: 

( ) ( ) ,εδ ++= xxfy  

with f(x) the metamodel; ( ) ( ) ( )xxx f−= ηδ , the bias, the difference between the chosen metamodel and the 
true functional response ( )xη ; and ε  the random deviation. 

The bias (fitting error) and variance component both contribute to the residuals. If we compute the variance 
of the random deviation using the residuals then the bias component is included in our estimate of the 
variance. The estimate of the variance is usually too large in the case of a bias error. 
The bias error is minimized by: 

1. Choosing the metamodel to be the same as the functional response. The functional response is 
however unknown. A reliable approach in the presence of noise is difficult to establish. In particular, 
metamodels that can fit exactly to any set of points will fit to the noise thus erroneously stating that 
the random deviation is zero; inflexible metamodels will ascribe deterministic effects to noise. 

2. Reducing the region of interest to such a size that the difference between metamodel and true 
functional response is not significant. 

3. Large number of experimental points. This strategy should be used together with the correct 
metamodel or a sufficiently small region of interest.0. 
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The recommended approach is therefore to use a linear or quadratic response over a subregion small enough 
that the bias error should be negligible. 

25.5.4. Confidence interval on the mean 

For multiple regression, the 100(1-α)% confidence limits on the mean value at 0X  are obtained from 

,)( 0
1'

0,2/0 XXXX −
−−± pnpn stY α  

with 2
pns −  an estimate to 2σ . At the center of the region of interest for the coded variables the confidence 

interval is 

,11,2/0 CstY pnpn −−± α  

with 11C  the first diagonal element of 1' )( −XX . The confidence bound therefore depends on the variance of 
the response and the quality of the experimental design. 
More details can be found in, for example, the text by Myers and Montgomery [6]. 

25.5.5. Confidence interval on a new evaluation 

For multiple regression, the 100(1-α)% confidence limits on a new evaluation at  are obtained from 

.)(1 0
1'

0,2/0 XXXX −
−− +± pnpn stY α  

The confidence interval for new observations of the mean is  

,1 11,2/0 CstY pnpn +± −−α  

In the following table we monitor the bounds for a new evaluation of the mean for a linear approximation 
using five design variables using a 95% confidence interval. The value of C11 is computed from D-optimal 
experimental designs generated using LS-OPT. The error bounds are close to 2σ for more than 25 existing 
runs (20 degrees of freedom). 

0X
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Table 25-1: Bounds for a new evaluation of the mean for a linear approximation 

n p n-p C11 Bounds (σ=10% α=5%) 

10 6 4 0.104 ±29% 

15 6 9 0.070 ±23% 

20 6 14 0.051 ±22% 

25 6 19 0.041 ±21% 

30 6 24 0.034 ±21% 

50 6 44 0.020 ±20% 

100 6 94 0.010 ±20% 

25.5.6. Confidence interval on the noise (stochastic process) variance 

The noise (stochastic process) variance can be estimated by considering the residuals of the reponse surface 
fit. Events such as a different buckling mode or order of contact events will appear in the residuals because 
they cannot be attributed to the variables in the response surface fit. These residuals can also be due to a bias 
(lack-of-fit) error, which complicates matters. 
The error of estimating the noise variance (σ2) is minimized by: 

1. Large number of points 
2. Minimizing the bias error. Ideally one wants to observe many occurrences of the same design.0. 

The residual mean square  
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estimates 2σ with n - p degrees of freedom where n is the number of observations and p is the number of 
parameters including the mean.  
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by reading of the values for 0.975 and 0.025. Having [a1, a2] we can compute for [b1, b2] as 
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In the table below we monitor the error bounds on the variance for a problem with six parameters (including 
the mean). 

Table 25-2: Error bounds on variance 

Noise Variance Confidence Interval 

n n-p Lower Bound Value (s) Upper Bound 

α=5% α=10% α=20% α=20% α=10% α=5% 

10  4 5.99 6.49 7.17 10 19.39 23.72 28.74 

15  9 6.88 7.29 7.83 10 14.69 16.45 18.25 

20  14 7.32 7.69 8.15 10 13.41 14.60 15.77 

25  19 7.605 7.94 8.36 10 12.77 13.70 14.6 

30  24 7.81 8.12 8.50 10 12.38 13.16 13.91 

50  46 8.31 8.56 8.86 10 11.59 12.10 12.56 

106  100 8.78 8.97 9.19 10 11.02 11.33 11.61 

206  200 9.11 9.24 9.41 10 10.69 10.92 11.09 

In the above it was assumed that the metamodel is a sufficiently accurate approximation to the mechanistic 
model (the bias error sufficiently small) and that the errors are normally distributed. In general the estimate 
of 2σ will be depend on the approximation model. For a model-independent estimate, replicate runs 
(multiple observations for the same design) are required. If the bias error is significant then the estimate of 

2σ  will usually be too large [7]. 

25.5.7. Probability of observing a specific failure mode 

A large number of runs may be required to be sure that an event with a specific probability is observed. 
1. Probability that the event will be observed at least once (one or more times): 
2. P[observing 0 events] = (1-P[event])n 
3. P[observing 1 or more events] = 1.0 - (1-P[event])n0. 
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Table 25-3: Number of runs required to observe an event with a specific probability 

Probability of event Required number of runs for observing 1 or more occurrences at 95% 
probability 

0.45 5 

0.26 10 

0.14 20 

0.095 30 

0.06 50 

0.03 100 

25.6. Outlier analysis 
Outliers are values in poor agreement with the values expected or predicted for a specific combination of 
design variable values. Unexpected values may occur due to different buckling modes or modeling 
problems. Understanding the cause of the outliers can therefore lead to an improved structure or structural 
model. 
To be considered an outlier, the change in response value computed must not be completely explained by 
the change in design variable value. An expected value of the response value associated with a certain 
design is therefore required to judge whether a response is an outlier or not; the value predicted by the 
metamodel is used as the expected value. 
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Figure 25-3: Outliers are identified after a metamodel has been fitted. Values in poor agreement of what 
is predicted by the design variables are considered outliers. 

Metamodels are therefore useful to separate the effect of design variable changes from the other types of 
variation. The design variable cause-effect relationship is contained by the metamodel. The residuals of the 
fitting procedure are the variation not explained by changes in the design variables. The outliers therefore 
contain amongst others the bifurcation (buckling) effects. 
The outliers are best investigated visually in LS-PrePost by considering the deformation of the structure. A 
useful metric is computing the outliers for the displacement of every node in the structure and to fringe plot 
the standard deviation of these outliers. Fringe plots of the index of the run associated with the maximum or 
minimum displacement outlier can be used to identify different buckling modes. 

25.7. Stochastic contribution analysis 
The variation of the response can be broken down in contributions from each design variable. 

25.7.1. Linear estimation 

The contribution can be estimated as: 

,,, ixig xG σσ ∂∂=  

with ix,σ  the standard deviation of the variable i and ig ,σ  the standard deviation of the variation of function 
g due to the variation of variable i. 
The variance for all the variables is found as the sum of the variance: 
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∑= 22
iT σσ  

where 2
Tσ  is the variation of the response due to the variation of all the variables and 2

iσ  is the variation of 
response due to the variation of variable i. In the above it is assumed that the response is a linear response of 
the design variables and independent variables. If correlation between variables exists, then it is taken into 
account as documented in section 25.4.3. 

25.7.2. Second and higher order estimation 

For higher order effects, one must consider the interaction between different design variables as well as 
curvature. If a variation is due to the interaction of two variables, then the effect of one variable on the 
variation depends on the current value of the other. This is in contrast with problems described by first order 
effects, for which the effect of variables can be investigated independently; if interactions exist, this is no 
longer true. 
The effect of a variable can be described in terms of its main or total effect. The main effect of a variable is 
computed as if it were the only variable in the system, while the total effect considers the interaction with 
other variables as well. The advantage of using the total effect is that the interaction terms, which can be 
significant, are included. For linear systems, the main and total effects are therefore the same. The second 
order effects must be computed, which increases computational costs considerably. 
The variance of the response, assuming independent variables, can be written using the Sobol’s indices 
approach [8] [9]. Firstly the function is decomposed as: 
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From which partial variances are computed as: 
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with the variance of the response summed from the partial variances as: 
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The sensitivity indices are given as: 
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with the useful property that all of the sensitivity indices sum to 1: 
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Using Monte Carlo, the main effect can be computed as  
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with ix~ is the subset of variables not containing ix . 

The total effect of a variable can also be computed as: 

.1 ~iTi SS −=  

Using Monte Carlo, the total effect can be computed by considering the effects not containing  
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For second order response surfaces this can be computed analytically [10] as 
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with mi,j the jth moment about the mean of the distribution i and U the set of variables under consideration. 
o The stochastic contribution is computed analytically only for responses surfaces. For neural 

networks, Kriging models, Support Vector Regression, and composite functions, Monte Carlo 
analysis is used. Many points (10,000 or more) are required. Note that a small number of points can 
results in negative values of the variance; these negative values should be small relative to the 
maximum variances obtained though and should be treated as zero. Inspecting the values printed for 
the effects of the variables should clarify the situation, because the effects are scaled values. The 
default of 10,000 points should give the 1 digit of accuracy needed to compare the effects of 
variables.  

Correlations between variables are not considered in the computation of the main and total effects of the 
variables. 

25.8. Reliability-based design optimization (RBDO)* 
Reliability-based design optimization (RBDO) is the computation of an optimum design subject to 
probabilistic bounds on the constraints. The probabilistic bound is usually interpreted in the six-sigma 
context; for example, the failure of only one part in a million would be acceptable. 
RBDO is currently done using First Order Second Moment (FOSM) method of computing the reliability.  
The requested minimum probability of failure is transformed to a number of standard deviations (sigmas) of 

ix
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the response, and the number of standard deviations (sigmas) is subsequently transformed into a safety 
margin used in the optimization process. The standard deviation of a response is computed analytically for 
response surfaces, and for the other metamodels and composites a second order local approximation is 
created to compute the standard deviation. See Section 25.4.4 for more detail regarding the First Order 
Second Moment (FOSM) method. The FOSM methodology is currently the default RBDO method, but 
more sophisticated methods may be available in future versions of LS-OPT. 
Discrete variables are allowed in RBDO.  The mixed-discrete optimization will be carried out considering 
the probabilistic bounds on the constraints. 
The methods are described in more detail in Section 13.7 with an example in Section 20.3 illustrating the 
method. 
Care must be taken in interpreting the resulting reliability of the responses. Accuracy can be especially poor 
at the tail ends of the response distribution. What constitutes engineering accuracy at the low probabilities is 
an open question. A definition such as six-sigma may be the best way of specifying the engineering 
requirement; a precise numerical value may not be meaningful. Accuracy at low probabilities requires firstly 
that the input data must be known accurately at these low probabilities, which may be prohibitively 
expensive to estimate. 

25.9. Robust parameter design 
Robust parameter design selects designs insensitive to changes in given parameters. 
The field of robust design relies heavily on the work of Taguchi. Taguchi’s insight was that it costs more to 
control the sources of variation than to make the process insensitive to these variations [11]. An alternate 
view of Taguchi [12] is that building quality into a product is preferable to inspecting for quality. Also, in 
simulation, the actual results of a robust system are more likely to conform to the anticipated results [11]. 
The robust design problem definition requires considering two sets of variables: (i) the noise variables 
causing the variation of the response and (ii) the control variables which are adjusted to minimize the effect 
of the noise variables. The method adjusts the control variables to find a location in design space with 
reduced gradients so that variation of the noise variable causes the minimum variation of the responses. 

25.9.1. Fundamentals 

The robustness of a structure depends on the gradient of the response function as shown in Figure 25-4. A 
flat gradient will transmit little of the variability of the variable to the response, while a steep gradient will 
amplify the variability of the variable. Robust design is therefore a search for reduced gradients resulting in 
less variability of the response. 
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Figure 25-4: Robustness considering a single variable.  Larger mean values of the area result in a 
smaller dispersion of the stress values. Note that the dispersion of the stress depends on the gradient of 
the stress-area relationship. 

The variation of the response is caused by a number of variables, some which are not under the control of 
the designer. The variables are split in two sets of variables: 

1. Control variables. The variables (design parameters) under the control of the designer are called 
control variables, 

2. Noise variables. The parameter not under the control of the designer are called noise variables.0.  
The relationship between the noise and control variables as shown in Figure 25-5 is considered in the 
selecting of a robust design. The control variables are adjusted to find a design with a low derivative with 
respect to the noise variable. 

 

Figure 25-5: Robustness of a problem with both control and noise variables.  The effect of the noise 
variable z on the response variation can be constrained using the control variable x. For robustness, the 
important property is the gradient of the response with respect to the noise variable. This gradient 
prescribes the noise in the response and can be controlled using the control variables. The gradient, as 
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shown in the figure, is large for large values of the control variable. Smaller values of the control 
variable will therefore result in a more robust design, because of the lower gradient and accordingly less 
scatter in the response. 

25.9.2. Methodology 

The dual response surface method as proposed by Myers and Montgomery [6] using separate models for 
process mean and variance is considered. Consider the control variables x and noise variables z with 

zrz IVar 2)( σ=z . The response surface for the mean is [ ] xxxzxyEz βββ ''),( ++=  considering that the noise 
variables have a constant mean. Response surface for variance considering only the variance of the noise 
variables is 2'2 )()()],([ σσ += xlxlzxyVar zz  with 

zrz IVar 2)( σ=z , 2σ  the model error variance, and l  the 

vector of partial derivatives zzxyxl ∂∂= ),()( . 

The search direction required to find a more robust design is requires the investigation of the interaction 
terms xizj. For finding an improved design, the interaction terms are therefore required. Finding the optimum 
in a large design space or a design space with a lot of curvature requires either an iterative strategy or higher 
order terms in the response surface. 
For robust design, it is required to minimize the variance, but the process mean cannot be ignored. Doing 
this using the dual response surface approach is much simpler than using the Taguchi approach because 
multicriteria optimization can be used. Taguchi identified three targets: smaller is better, larger is better, and 
target is best. Under the Taguchi approach, the process variance and mean is combined into a single 
objective using a signal-to-noise ratio (SNR). The dual response surface method as used in LS-OPT does 
not require the use of a SNR objective. Fortunately so, because there is wealth of literature in which SNRs 
are criticized [6]. With the dual response surface approach both the variance and mean can be used, together 
or separately, as objective or constraints. Multicriteria optimization can be used to resolve a conflict 
between process variance and mean as for any other optimization problem. 
Visualization is an important part of investigating and increasing robustness. As Myers and Montgomery 
state : “The more emphasis that is placed on learning about the process, the less important absolute 
optimization becomes.” 

25.9.3. Experimental design 

One extra consideration is required to select an experimental design for robust analysis: provision must be 
made to study the interaction between the noise and control variables. Finding a more robust design requires 
that the experimental design considers the xizj cross-terms, while the xi

2 and zj
2 terms can be included for a 

more accurate computation of the variance. 
The crossed arrays of the Taguchi approach are not required in this response surface approach where both 
the mean value and variance are computed using a single model. Instead combined arrays are used which 
use a single array considering x and z combined. 
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25.10. Tolerance optimization 
Mechanical parts often have associated tolerance values that determine whether a particular instance of a 
part is acceptable. A very tight tolerance could increase the associated engineering cost as well as the 
number of rejected parts. A very loose tolerance on the contrary can lead to undesired system behavior (e.g. 
loss of performance, failure etc.) and may also lead to mismatch of components during assembly. The effect 
of a fixed tolerance may also vary depending on the nominal design. Thus, it may be important to optimize 
the nominal design and the associated tolerance values simultaneously [13]. 
There can be several ways to account for tolerances. For example, one may choose to use a fixed value for 
the tolerances and only optimize the nominal design while accounting for those tolerances. Once the 
tolerances are fixed, the nominal design should be such that there should not be any possibility of failure 
within those limits. The possibility of failure can be determined by performing a Monte Carlo analysis 
around the nominal design with the distribution bounds defined based on the tolerance values. Other ways to 
account for the tolerances include simultaneous optimization of the absolute or the relative tolerances, while 
performing a worst case analysis to determine the possibility of failure based on a particular combination of 
nominal values and tolerances. The tolerance optimization problem can also be set up as a multiobjective 
optimization (e.g. Section 23.9) to simultaneously optimize other performance criteria and obtain a Pareto 
optimal front. 
Tolerance optimization can involve a large number of function evaluations, which is greater than that 
required in RBDO (Section 25.8). It is so because RBDO with truncated variable distributions can be 
considered as a special case of tolerance optimization, in which the tolerance values associated with the 
design variables are known a priori. On the contrary, in the general case of tolerance optimization these 
values are also optimized. This results in more variables and therefore usually needs more samples. While 
all samples in RBDO have the same range for truncated variable distributions, during tolerance optimization 
different samples can have different variable distribution range and shape (Figure 25-6). 
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Figure 25-6: Comparison of RBDO(top)  and tolerance optimization (bottom).In tolerance optimization 
both the nominal value and the variable distribution range may vary from one sample to another. This is 
in contrast to control variables in RBDO, for which only the mean can change. The right hand side 
figures demonstrate two samples for RBDO (top) and three samples for tolerance optimization (bottom). 

Due to the usual high cost of tolerance optimization, in order to reduce the number of actual finite element 
simulations, the problem can be set up such that it consists of two steps.  

o In the first step (optional), a deterministic optimization is performed based on the global metamodels 
generated using a limited number of finite element analyses. These global metamodels are then 
evaluated instead of the finite element models while performing the otherwise expensive tolerance-
based optimization. 

o The step 2 consists of a multilevel (Sections 17.7, 18.5.4)  and possibly multi-objective tolerance 
optimization setup with design tolerance and mass of the selected design parts as objectives and the 
probability of failure close to zero as the constraint. As there is no further finite element simulation 
during this step, the computational time is significantly reduced.   
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Appendix A:  LS-DYNA Binout Commands 

A.1  Binout Histories 

BinoutHistory –res_type res_type {-sub sub} –cmp component {-
invariant invariant –frame frame –id id (-name name) (-idi id) 
(-namei name) –localid id1 id2 id3 (-localname name1 name2 
name3) –pos position –side side} 

  

Item Description Default Remarks 

res_type Result type name - 1 

sub Result subdirectory - 1 

cmp Component of result - 2 

invariant Invariant of results. Only MAGNITUDE is currently available. - 3 

id ID number of entity -  

name Description (heading) of entity used as label - 4 

pos Through thickness shell position at which results are 
computed. 

1 5 

side Interface side for RCFORC data. MASTER or SLAVE. SLAVE   

frame GLOBAL|GLOBAL_IN_REF|LOCAL GLOBAL 6 

localid 3 Nodal ID’s to define local coordinate axes - 7 

localname 3 Nodal names (headings) to define local coordinate axes - 7 

id i Multiple ID’s i = 1,2,3, … n - 8 

name i Multiple headings as labels i = 1,2,3, … n - 8 
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Remarks: 

1. The result types and subdirectories are as documented for the *DATABASE_OPTION LS-DYNA 
keyword. 

2. The component names are as listed in Appendix B:  LS-DYNA Binout Components. 
3. The individual components required to compute the invariant will be extracted automatically; for 

example, “-cmp displacement –invariant MAGNITUDE” will result in the automatic 
extraction of the x, y and z components of the displacement. 

4. The option “-name” that allows using the description/heading/name of the entity is valid only with 
nodout and elout result types. 

5. For the shell and thickshell strain results the upper and lower surface results are written to the 
database using the component names such as lower_eps_xx and upper_eps_xx. 

6. Distances and deformations can be computed in global coordinates, local coordinates or global 
coordinates in reference frame (t = 0), e.g. –frame GLOBAL_IN_REF. See Section 6.2.2. 

7. The definition of a local coordinate system requires three reference nodes to define the system. 
These can be defined as integer ID’s or as names labels (headings) for example –localid 231 
556 722 or –localname Thirdnode xBegin xEnd. The second and third nodes define the 
direction of the local x-axis. 

8. Some entities such as deformations or distances require multiple node definitions (two in the case of 
deformation or distance), e.g. –id1 529 –id2 718 or –name1 Measured_node –name2 
Reference_node. 0. 

A.2  Averaging, filtering, and slicing Binout histories 

BinoutHistory {history_options} {–filter filter_type  
–filter_freq filter_freq –units units –ave_points ave_points  
–start_time start_time –end_time end_time } 
 

Item Description Default 

history_options All available history options - 

filter_type Type of filter to use: SAE or BUTT - 

filter_freq Filter frequency 60 cycles / time unit 

units S=seconds MS=milliseconds S 

ave_points Number of points to average - 

start_time Start time of history interval to extract using slicing 0 

LS-OPT Version 5.2  607 



APPENDIX A: LS-DYNA Binout Commands  

end_time End time of history interval to extract using slicing tmax 

A.3  Binout Responses 

BinoutResponse {history_options} –select selection 

 

Item Description Default Remarks 

history_options  All available history options including averaging, 
filtering, and slicing. -  

Selection MAX|MIN|AVE|TIME TIME 1 

Remarks: 
1. The maximum, minimum, average, or value at a specific time must be selected. If selection is TIME, 

the end_time history value will be used. If end_time is not specified, the last value (end of analysis) 
will be used.0. 

A.3.1  Binout injury criteria 

BinoutResponse {history_options}  –cmp cmp { –units units  
–lengthunits lengthunits} 

 

Item Description Default 

history_options All available history options including filtering and slicing. - 

cmp HIC15, HIC36, or CSI - 

lengthunits METER=meter MM=millimeter METER 

units S=seconds MS=milliseconds S 

Remarks: 
1. The length and time units are used to compute the gravity value based on 9.81 m/s20. 

A.3.2  Bilinear FLD constraint 

The values of both the principle upper and lower surface in-plane strains are used for the FLD constraint. 
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DynaFLD p1 p2 ... pn intercept negative_slope positive_slope 

The following must be defined for the model and FLD curve: 

Table 25-4: DynaFLD item description 

Item Description 

p1…pn Part numbers of the model. Omission implies the entire model. 

intercept The FLD curve value at e2 = 0 

negative_slope The absolute value of the slope of the FLD curve value at e2 < 0 

positive_slope The absolute value of the slope of the FLD curve value at e2 > 0 
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Appendix B:  LS-DYNA Binout Components 

Airbag Statistics: ABSTAT 

Component Description 

Volume 
pressure 
internal_energy 
dm_dt_in 
dm_dt_out 
total_mass 
gas_temp 
density 
surface_area 
reaction 

Volume 
Pressure 
Internal energy 
Input mass flow rate 
Output mass flow rate 
Mass 
Temperature 
Density 
Area  
Reaction 

Boundary Nodal Forces: BNDOUT 

Component Description 

Subdirectory discrete/nodes 
x_force  
y_force 
z_force 
x_total 
y_total 
z_total 
energy 
etotal 

X-force 
Y-force 
Z-force 
Total X-force 
Total Y-force 
Total Z-force 
Energy 
Total Energy 

Discrete Element Forces: DEFORC 

Component Description 

x_force 
y_force 
z_force 
resultant_force 
displacement 

X-force 
Y-force 
Z-force 
Resultant force 
Change in length 
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Element Output: ELOUT 

Component Description 

Subdirectory solid 
sig_xx 
sig_xy 
sig_yy 
sig_yz 
sig_zx 
sig_zz 
yield 
effsg 
eps_xx 
eps_xy 
eps_yy 
eps_yz 
eps_zx 
eps_zz 

XX-stress 
XY-stress 
YY-stress 
YZ-stress 
ZX-stress 
ZZ-stress 
Yield function 
Effective stress 
XX-strain 
XY-strain 
YY-strain 
YZ-strain 
ZX-strain 
ZZ-strain 

Subdirectory beam 
axial 
shear_s 
shear_t 
moment_s 
moment_t 
torsion 

Axial force resultant 
s-Shear resultant 
t-Shear resultant 
s-Moment resultant 
t-Moment resultant 
Torsional resultant 

Subdirectory shell 
sig_xx            
sig_yy   
sig_zz      
sig_xy            
sig_yz            
sig_zx            
plastic_strain 
upper_eps_xx 
lower_eps_xx  
upper_eps_yy      
lower_eps_yy  
upper_eps_zz  
lower_eps_zz 
upper_eps_xy 
lower_eps_xy          
upper_eps_yz      
lower_eps_yz      
upper_eps_zx       
lower_eps_zx   

XX-stress 
YY-stress 
ZZ-stress 
XY-stress 
YZ-stress 
ZX-stress 
Plastic strain 
XX-strain 
 
YY-strain 
 
ZZ-strain 
 
XY-strain 
 
YZ-strain 
 
ZX-strain 

Element Output: ELOUT 

Component Description 

Subdirectory thickshell 
sig_xx 
sig_yy 

XX-stress 
YY-stress 

sig_zz 
sig_xy 
sig_yz 
sig_zx 
yield                      
upper_eps_xx 
lower_eps_xx  
upper_eps_yy      
lower_eps_yy  
upper_eps_zz  
lower_eps_zz 
upper_eps_xy 
lower_eps_xy          
upper_eps_yz      
lower_eps_yz      
upper_eps_zx       
lower_eps_zx     

ZZ-stress 
XY-stress 
YZ-stress 
ZX-stress 
Yield 
XX-strain 
 
YY-strain 
 
ZZ-strain 
 
XY-strain 
 
YZ-strain 
 
ZX-strain  

Contact Entities Resultants: GCEOUT 

Component Description 

x_force           
y_force 
z_force 
force_magnitude 
x_moment          
y_moment 
z_moment 
moment_magnitude 

X-force 
Y-force 
Z-force 
Force magnitude 
X-moment 
Y-moment 
Z-moment 
Moment magnitude 
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Global Statistics: GLSTAT 

Component Description 

kinetic_energy 
internal_energy 
total_energy 
energy_ratio 
stonewall_energy 
spring_and_damper_energy 
hourglass_energy 
sliding_interface_energy 
external_work 
global_x_velocity 
global_y_velocity 
global_z_velocity 
system_damping_energy 
energy_ratio_wo_eroded 
eroded_internal_energy 
eroded_kinetic_energy 

Kinetic energy 
Internal energy 
Total energy 
Ratio 
Stonewall energy 
Spring & Damper energy 
Hourglass energy 
Sliding interface energy 
External work 
Global x-velocity 
Global y-velocity 
Global z-velocity 
System damping energy 
Energy ratio w/o eroded 
Eroded internal energy 
Eroded kinetic energy 

Joint Element Forces: JNTFORC 

Component Description 

Subdirectory joints 
x_force   
y_force  
z_force 
x_moment   
y_moment         
z_moment 
resultant_force  
resultant_moment   

X-force 
Y-force 
Z-force 
X-moment 
Y-moment 
Z-moment 
R-force 
R-moment  

Subdirectory type0 
d(phi)_dt 
d(psi)_dt 
d(theta)_dt 
joint_energy 
phi_degrees 
phi_moment_damping 
phi_moment_stiffness 
phi_moment_total 
psi_degrees 
psi_moment_damping 
psi_moment_stiffness 
psi_moment_total  
theta_degrees  
theta_moment_damping 
theta_moment_stiffness 
theta_moment_total 

d(phi)/dt 
d(psi)/dt (degrees) 
d(theta)/dt (degrees) 
joint energy 
phi (degrees)  
phi moment-damping 
phi moment-stiffness 
phi moment-total 
psi (degrees) 
psi-moment-damping 
psi-moment-stiffness 
psi-moment-total 
theta (degrees) 
theta-moment-damping 
theta-moment-stiffness 
theta-moment-total 

 

Material Summary: MATSUM 

Component Description 

kinetic_energy    
internal_energy   
x_momentum      
y_momentum 
z_momentum   
x_rbvelocity      
y_rbvelocity      
z_rbvelocity      
hourglass_energy 

Kinetic energy 
Internal energy 
X-momentum 
Y-momentum 
Z-momentum 
X-rigid body velocity 
Y-rigid body velocity 
Z-rigid body velocity 
Hourglass energy 

Contact Node Forces: NCFORC 

Component Description 

Subdirectory master_00001 and slave_00001 
x_force  
y_force           
z_force      
pressure          
x 
y                 
z                 

X-force 
Y-force 
Z-force 
Pressure 
X coordinate 
Y coordinate 
Z coordinate 

Nodal Point Response: NODOUT 

Component Description 

Translational components 
x_displacement 
y_displacement 
z_displacement 
x_velocity 
y_velocity 
z_velocity 
x_acceleration 
y_acceleration 
z_acceleration 
x_coordinate 
y_coordinate 
z_coordinate 

X-displacement 
Y-displacement 
Z-displacement 
X-velocity 
Y-velocity 
Z-velocity 
X-acceleration 
Y-acceleration 
Z-acceleration 
X-coordinate 
Y-coordinate 
Z-coordinate 

Rotational components 
rx_acceleration 
rx_displacement 
rx_velocity 
ry_acceleration 
ry_displacement 
ry_velocity 
rz_acceleration 
rz_displacement 
rz_velocity 

XX-rotational acceleration 
XX-rotation 
XX-rotational velocity 
YY-rotational acceleration 
YY-rotation 
YY-rotational velocity 
ZZ-rotational acceleration 
ZZ-rotation 
ZZ-rotational velocity 
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Injury coefficients 
CSI 
HIC15 
HIC36 

Kinematics 
x_deformation 
y_deformation 
z_deformation 
x_distance 
y_distance 
z_distance 

Chest Severity Index 
Head Injury Coefficient (15 ms) 
Head Injury Coefficient (36 ms) 
 
 
X-deformation 
Y-deformation 
Z-deformation 
X-distance 
Y-distance 
Z-distance 

Nodal Forces: NODFOR 

Component Description 

x_force  
y_force 
z_force 
x_total 
y_total 
z_total 
energy            
etotal            

X-force 
Y-force 
Z-force 
X-total force 
Y-total force 
Z-total force 
Energy 
Total Energy 

Rigid Body Data: RBDOUT 

Component Description 

Translational components 
global_dx 
global_dy 
global_dz 
global_vx 
global_vy 
global_vz 
global_ax 
global_ay 
global_az 
global_x 
global_y 
global_z 
local_dx 
local_dy 
local_dz 
local_vx 
local_vy 
local_vz 
local_ax 
local_ay 
local_az 

X-displacement 
Y-displacement 
Z-displacement 
X-velocity 
Y-velocity 
Z-velocity 
X-acceleration 
Y-acceleration 
Z-acceleration 
X-coordinate 
Y-coordinate 
Z-coordinate 
Local X-displacement 
Local Y-displacement 
Local Z-displacement 
Local X-velocity 
Local Y-velocity 
Local Z-velocity 
Local X-acceleration 
Local Y-acceleration 
Local Z-acceleration 

 

Rotational components 
global_rax 
global_ray 
global_raz 
global_rdx 
global_rdy 
global_rdz 
global_rvx 
global_rvy 
global_rvz 
local_rdx 
local_rdy 
local_rdz 
local_rvx 
local_rvy 
local_rvz 
local_rax 
local_ray 
local_raz 

X-acceleration 
Y-acceleration 
Z-acceleration 
X-rotation 
Y-rotation 
Z-rotation 
X-velocity 
Y-velocity 
Z-velocity 
Local X-rotation 
Local Y-rotation 
Local Z-rotation 
Local X-velocity 
Local Y-velocity 
Local Z-velocity 
Local X-acceleration 
Local Y-acceleration 
Local Z-acceleration 

Direction cosines 
dircos_11 
dircos_12 
dircos_13 
dircos_21 
dircos_22 
dircos_23 
dircos_31 
dircos_32 
dircos_33 

11 direction cosine 
12 direction cosine 
13 direction cosine 
21 direction cosine 
22 direction cosine 
23 direction cosine 
31 direction cosine 
32 direction cosine 
33 direction cosine 

Injury coefficients 
CSI 
HIC15 
HIC36 

Chest Severity Index 
Head Injury Coefficient (15 ms) 
Head Injury Coefficient (36 ms) 

Reaction Forces: RCFORC 

Component Description 

x_force           
y_force           
z_force       
mass 

X-force 
Y-force 
Z-force 
Mass 
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RigidWall Forces: RWFORC 

Component Description 

Subdirectory forces 
normal_force      
x_force           
y_force           
z_force 

normal 
X-force 
Y-force 
Z-force 

Section Forces: SECFORC 

Component Description 

x_force 
y_force 
z_force 
x_moment 
y_moment 
z_moment 
x_centroid 
y_centroid 
z_centroid 
total_force 
total_moment 
area 

X-force 
Y-force 
Z-force 
X-moment 
Y-moment 
Z-moment 
X-center 
Y-center 
Z-center 
Resultant force 
Resultant moment 
Area 

Single Point Constraint Reaction Forces: 
SPCFORC 

Component Description 

x_force 
y_force 
z_force 
x_resultant  
y_resultant 
z_resultant 
x_moment 
y_moment 
z_moment 

X-force 
Y-force 
Z-force 
Total X-force 
Total Y-force 
Total Z-force 
X-moment 
Y-moment 
Z-moment 

Spotweld and Rivet Forces: SWFORC 

Component Description 

axial 
shear 
failure_flag  

Axial force 
Shear force 
Failure flag 
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Appendix C:  LS-DYNA D3Plot Commands 

C.1  D3Plot histories 

D3PlotHistory –res_type res_type {-sub sub} –cmp component {– 
id id –pos position –pids part_ids –loc ELEMENT|NODE – 
select_in_region selection –coord x y z –setid setid –tref 
ref_state} 

 

Item Description Default Remarks 

res_type Result type name - 1 

cmp Component of result - 1 

id ID number of entity - 2 

pos Through thickness shell position 1  

pids One or more part ids. - 3 

loc Locations in model. ELEMENT or NODE. - 4 

select_in_region MAX|MIN|AVE -select  5 

coord Coordinate of a point for finding nearest element - 6 

tref Time of reference state for finding nearest element 0.0 6 

setid ID of *SET_SOLID_GENERAL in LS-DYNA keyword 
file 

- 6 

Remarks: 
1. The result types and components are similar to what is used in LS-PREPOST. The result types and 

component names are listed in Appendix D. 
2. For histories, the -id option is mutually exclusive with the –select_in_region option. 
3. If part ids are specified, the extraction will be done over these parts only. If no part ids and no 

element or node id are specified, then the extraction will be done considering the whole model. 
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4. Element results such as stresses will be averaged in order to create the NODE results. Nodal results 
such as displacements cannot be requested as ELEMENT results. 

5. The maximum, minimum, or average over a part can be selected. The –select_in_region option is 
mutually exclusive with the –id option. The default value is that of the d3plot response -select 
argument which in turn defaults to MAX. 

6. An x,y,z coordinate can be selected. The quantity will be extracted from the element nearest to x,y,z 
at time tref. Only elements included in the *SET_SOLID_GENERAL element set are considered 
(only the PART and ELEMENT options).0. 

C.1.1  Slicing D3Plot histories 

o Slicing of D3Plot histories is possible. Averaging and filtering are not available for D3Plot results. 

D3PlotHistory {history_options} {–start_time start_time –
end_time end_time } 

Item Description Default 

history_options All available history options - 

start_time Start time of history interval to extract using slicing 0 

end_time End time of history interval to extract using slicing tmax 

C.1.2  D3Plot FLD results 

If FLD results are requested then the FLD curve can be specified using (i) the t and n coefficients or (ii) a 
curve in the LS-DYNA input deck. The interpretation of the t and n coefficients is the same as in LS-
PREPOST. 

D3PlotHistory {history_options} {–fld_t fld_t –fld_n fld_n – 
fld_curve fld_curve} 

Item Description Default 

history_options All available history options - 

fld_t Fld curve t coefficient - 

fld_n Fld curve t coefficient - 

fld_curve ID of curve in the LS-DYNA input deck - 
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C.2  D3Plot responses 
A response is extracted from a history – all the history options are therefore applicable and options required 
for histories are required for responses as well. 

D3PlotResponse {history_options} –select selection 

Item Description Default Remarks 

history_options  All available history options -  

select MAX|MIN|AVE|TIME TIME 1 

Remarks: 

o The maximum, minimum, average, or value at a specific time must be selected. If select is TIME 
then the end_time history value will be used. If end_time is not specified, the last value (end of 
analysis) will be used.  If the selection must be done over parts as well, then this option is used 
together with the –select_in_region argument as documented for d3plot histories; firstly the 
maximum, minimum, or average value will be selected for the part as specified by the –
select_in_region argument, followed by the selection of the maximum, minimum, or average over 
time as specified by the –select argument. 
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Appendix D:  LS-DYNA D3Plot Components 

The table contains component names for element variables. The result type and component name must be 
specified in the “D3Plot”  interface commands to extract response variables. 

Result Type Number Description Component name 

Stress 1 
2 
3 
4 
5 
6 

xx, yy, zz, xy, yz, zx stress xx_stress 
yy_stress 
zz_stress 
xy_stress 
yz_stress 
zx_stress 

 7 Effective plastic strain plastic_strain 
 8 Pressure or average strain pressure 
 9 von Mises stress von_mises 
 10 First principal deviator maximum 1st_prin_dev_stress 
 11 Second principal deviator 2st_prin_dev_stress 
 12 Third principal deviator minimum 3rd_prin_dev_stress 
 13 Maximum shear stress max_shear_stress 
 14 1st principal maximum stress 1st_principal_stress 
 15 2nd principal stress 2st_principal_stress 
 16 3rd principal min 3st_principal_stress 
Ndv 17 x-displacement x_displacement 
 18 y-displacement y_displacement 
 19 z-displacement z_displacement 
 20 Displacement magnitude result_displacement 
 21 x-velocity x_velocity 
 22 y-velocity y_velocity 
 23 z-velocity z_velocity 
 24 Velocity magnitude result_velocity 
 64 xy-displacement xy_displacement 
 65 yz-displacement yz_displacement 
 66 zx-displacement zx_displacement 
Result 26 Mxx bending resultant Mxx_bending 
 27 Myy bending resultant Myy_bending 
 28 Mxy bending resultant Mxy_bending 
 29 Qxx shear resultant Qxx_shear 
 30 Qyy shear resultant Qyy_shear 
 31 Nxx normal resultant Nxx_normal 
 32 Nyy normal resultant Nyy_normal 
 33 Nxy normal resultant Nxy_normal 
 34 Surface stress Nxx/t + 6Mxx/t2 Nxx/t+6Mxx/t^2 
 35 Surface stress Nxx/t – 6Mxx/t2 Nxx/t-6Mxx/t^2 
 36 Surface stress Nyy/t – 6Myy/t2 Nyy/t-6Myy/t^2 
 37 Surface stress Nyy/t + 6Myy/t2 Nyy/t+6Myy/t^2 
 38 Surface stress Nxy/t – 6Mxy/t2 Nxy/t+6Mxy/t^2 
 39 Surface stress Nxy/t + 6Mxy/t2 Nxy/t+6Mxy/t^2 
 40 Effective upper surface stress u_surf_eff_stress 
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Result Type Number Description Component name 

 41 Effective lower surface stress l_surf_eff_stress 
Strain 43 Lower surface effective plastic strain l_surf_plastic_strain 
 44 Upper surface effective plastic strain u_surf_plastic_strain 
 45 

46 
47 
48 
49 
50 

Lower surface xx, yy, zz, xy, yz, zx strain l_surf_xx_strain 
l_surf_yy_strain 
l_surf_zz_strain 
l_surf_xy_strain 
l_surf_yz_strain 
l_surf_zx_strain 

 51 
52 
53 
45 
55 
56 

Upper surface xx, yy, zz, xy, yz, zx strain u_surf_xx_strain 
u_surf_yy_strain 
u_surf_zz_strain 
u_surf_xy_strain 
u_surf_yz_strain 
u_surf_zx_strain 

 57 
58 
59 
60 
61 
62 

Middle surface xx, yy, zz, xy, yz, zx strain m_surf_xx_strain 
m_surf_yy_strain 
m_surf_zz_strain 
m_surf_xy_strain 
m_surf_yz_strain 
m_surf_zx_strain 

 69 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 
80 

Lower, upper, middle principal + effective strains l_surf_max_princ_strain 
l_surf_2nd_princ_strain 
l_surf_min_princ_strain 
l_surf_effective_princ_strain 
u_surf_max_princ_strain 
u_surf_2nd_princ_strain 
u_surf_min_princ_strain 
u_surf_effective_princ_strain 
m_surf_max_princ_strain 
m_surf_2nd_princ_strain 
m_surf_min_princ_strain 
m_surf_effective_princ_strain 

Misc 25 Temperature temperature 
 63 Internal energy density internal energy 
 67 Shell thickness shell_thickness 
 68 Shell thickness reduction (%) %_thickness_reduction 
 81 History variable 1 history_var#1 
FLD 501 

502 
503 
504 

Lower, upper, middle, maxima surface eps1/fldc lower_eps1/fldc 
upper_eps1/fldc 
middle_eps1/fldc 
maxima_eps1/fldc 

 505 
506 
507 
508 

Lower, upper, middle, maxima surface fldc-eps1 lower_fldc-eps1 
upper_ fldc-eps1 
middle_ fldc-eps1 
maxima_ fldc-eps1 

 509 
510 
511 
512 

Lower, upper, middle, maxima surface eps1 lower_ eps1 
upper_ eps1 
middle_ eps1 
maxima_ eps1 

 513 
514 
515 

Lower, upper, middle, maxima surface eps2 lower_ eps1 
upper_ eps1 
middle_ eps1 
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Result Type Number Description Component name 

516 maxima_ eps1 
Beam 701 Axial Force axial_force 
 702 S Force s_force 
 703 T Force t_force 
 704 SS Moment ss_moment 
 705 TT Moment tt_moment 
 706 Torsion torsion 
 707 Axial_stress axial_stress 
 708 RS Shear Stress rs_shear_stress 
 709 TR Shear Stress tr_shear_stress 
 710 Plastic Strain plastic_strain 
 711 Axial strain axial_strain 
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Appendix E:  Database Files 

E.1  Design flow 

Source Database file Task Output Database file Directory 
for output 
database 

Command file (.lsopt) Point selection Experiments_n.csv Sampling 

Experiments_n.csv Simulation runs Solver output files Run 

Solver output files Result 
extraction 

StageResults_n.lsox Stage 

StageResults_n.lsox Assemble 
Sampling 
Results. 
Compute 
extended 
results. 

AnalysisResults_n.lsox 

AnalysisResults_n.csv 

ExtendedResults.n 

ExtendedResults_n.csv 

Sampling 

AnalysisResults_n.csv 

AnalysisResults_n.lsox 

Approximation DesignFunctions.n 

VirtualHistories.n 

Net.func_name 

Sampling 

DesignFunctions.n 

VirtualHistories.n 

Optimize OptimumResults.n 

OptimizationHistory 

OptimizerHistory_n.csv 

lsopt_results_n.csv 

Work 
 

E.2  Output files 
The following files are intermediate database files containing ASCII data. 
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E.2.1  Intermediate database files 

Database file Description Directory 

JobResults.stage.lsox 
Job results of current and previous stages. 
Current stage includes results of current and 
previous stages. 

Run 

StageResults_n.lsox Response and history results of a stage. Stage 

Experiments_n.csv Trial designs computed as a result of the 
experimental design Sampling 

AnalysisResults_n.lsox .xml file containing all the extracted results 
including responses, matrices and histories. Sampling 

AnalysisResults_n.csv The same trial designs and the responses 
extracted from the solver database Sampling 

DesignFunctions.n Parameters of the approximate functions Sampling 

VirtualHistoryFunction Approximation functions data for histories Work 

OptimizationHistory Variable, response and error history of the 
successive approximation process Work 

OptimizerHistory Detailed history of the optimizer Work 

OptimumResults.n Optimum for a particular iteration Work 

OptimumResults_n.lsox Optimal variables, histories and responses for 
iteration n Work 

OptiState_n.lsox Optimization state. Work 

ExtendedResults.n All variables, responses and extended results at 
each trial design point Sampling 

ExtendedResultsMaster.n 
ExtendedResults for a master case (sampling). 
Cases with exactly the same experimental 
design are grouped in a master case. 

Sampling 

Net.funcname Parameters of the metamodel of function with 
name funcname Sampling 
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Variables.n The variable values, confidence intervals and 
bounds  Work 

ANOVA.n ANOVA data used in the Viewer Sensitivity 
feature. Sampling 

SubRegionBounds.n Bounds of the subregion. Sampling 

VariableMap_n.lsox Variable and response connectivity for each 
sampling. Sampling 

VariableMapMaster_n.lsox Variable and response connectivity for master 
sampling. Sampling 

E.2.2  Database files in .csv (comma separated variables) format  

Database file Description Directory Remarks 

Experiments_n.csv Experiments (n = iteration 
number) Sampling  

AnalysisResults_n.csv Analysis Results Sampling  

ExtendedResultsMaster_n.csv 

Extended Results 
(variables, dependents, 
responses, composites, 
objectives, constraints, 
multiobjective) 

Sampling 

 

ExtendedResultsMETAMaster_n.csv 
Extended Results file for 
user-defined Experiments 
file 

Sampling 
Section 
8.5.1 

PRESS_predictions_n.csv 

PRESS (Section 21.3.4) 
predicted results and 
PRESS residuals 
(Polynomials and Radial 
Basis Function networks 
(Section 22.1.2) only. 
PRESS residuals are not 
computed for 
Feedforward Neural 
Networks) 

Sampling 

Use check 
box to select 
PRESS in 
Viewer→ 
Accuracy→ 

OptimizerHistory_n.csv Detailed history of the 
optimizer for iteration n Work  
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E.2.3  Text output files 

Database file Description Directory View 
option 

lsopt_input Input in a formatted style Work Input 

lsopt_output 
Results and some logging 
information. Usually a very large 
file. 

Work Output 

lsopt_report 

A final report of the analysis 
results. Available for some of the 
main tasks and most of the Repair 
tasks 

Work Summary 

lsopt_db 

This file communicates the current 
status of the LSOPT databases to 
other LSTC programs. The content 
of this file is subject to change 
between versions of LS-OPT. 

Work File 

lsopt_results_n.binout 

All variable, responses and 
extended results of the non-
dominated solutions at each 
iteration 

Work - 

E.3  Database file formats 
The database consists of text files, text files with comma separated values (.csv format) and binary files. The 
.csv files have three header lines. The first designates the version name, the second represents the variable 
names and the third represents the variable types. Variable names are provided for clarity (e.g. the user can 
import the file into a spreadsheet program) and to verify the consistency between the command file and the 
run database. The variable types are explained in the table below. The symbol sk is used to ignore certain 
columns, e.g. the first one which simply contains the point number. 

E.3.1  Variable types 

Symbol Explanation 

dv Design variable 

nv Noise variable 

dc Discrete variable 

st String variable 
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rs Response 

sk Ignore this column 

E.3.2  The Experiments_n.csv file 

This file appears in the sampling directory and is used to save the experimental point coordinates for the 
analysis runs. The file consists of header lines and data lines repeated for each experimental point.  
lsopt_version 4.1 
"Point","tbumper","thood", 
"sk","dv","dv", 
1,3.0000000000000000e+00,1.0000000000000000e+00, 
2,5.0000000000000000e+00,1.0000000000000000e+00, 
3,1.0000000000000000e+00,1.0000000000000000e+00, 
4,1.0000000000000000e+00,5.0000000000000000e+00, 
5,5.0000000000000000e+00,5.0000000000000000e+00, 

E.3.3  The AnalysisResults_n.csv file 

This file is used to save the responses at the experimental design points and appears in the sampling 
directory. Every line describes an experimental point and gives the variable and response values at the 
experimental point. The file consists of two header as well as data lines repeated for each experimental 
point. 
lsopt_version 4.1 
"Point","tbumper","thood","Disp2","Disp1" 
"sk","dv","dv","rs","rs" 
1,3.0000000000000000e+00,1.0000000000000000e+00,-7.3670259999999996e+02,-
1.6103350000000000e+02 
2,5.0000000000000000e+00,1.0000000000000000e+00,-7.3311230000000000e+02,-
1.5946590000000000e+02 
3,1.0000000000000000e+00,1.0000000000000000e+00,-7.4418650000000002e+02,-
1.6168279999999999e+02 
4,1.0000000000000000e+00,5.0000000000000000e+00,-6.4731250000000000e+02,-
1.5394180000000000e+02 
5,5.0000000000000000e+00,5.0000000000000000e+00,-6.1158939999999996e+02,-
1.6078149999999999e+02 

Values of 2.0*1030 are assigned to responses of simulations with error terminations. The 
AnalysisResults_n.csv  file is synchronous with the Experiments_n.csv  file. 

E.3.4  The DesignFunctions file 

The DesignFunctions file, which appears in the sampling directory, is used to save a description of the 
polynomial design functions. It is an XML file with XML tags chosen such that the file is easy to read. 
Open a DesignFunction.* file in a text editor to understand the content of the database. 
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The order of the constants in the database for polynomial design functions is: 
beta_0, beta_1, ... , beta_n, beta_1_1, beta_1_2, beta_1_3, ..., beta_1_n, 
     beta_2_2, beta_2_3, ...., beta_2_n, 
     ...., beta_i_n, 
     beta_n_n 

with 
 f(x) = beta_0 + beta_1*x_1 + .... + beta_n*x_n + 
           beta_1_1*x_1*x_1 + beta_1_2*x_1*x_2 + ... + beta_1_n*x_1*x_n 
           + beta_2_2*x_2*x_2 + ... + beta_2_n*x_2*x_n 
        ... 
  + beta_n_n*x_n*x_n       

where [ ]0,1 nx ∈ . 
The following enumerations are used in the database. 

Function Types  

NO_SURFACE                0 

LINEAR                           77 

MULT                             78 

QUADRATIC                 79 

INTERACTION               80 

ELLIPTIC                  81 

SPHERICAL                 82 

FEEDFORWARD               83 

FF_COMMITTEE              84 

RADIALBASIS               85 

NEURALNETWORK             86 

ANALYTICAL_DSA_SURFACE    87 

NUMERICAL_DSA_SURFACE     88 

KRIGING                   89 

USERMETA  90 
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SVR  91 
   

Response Interface Type 

        RESP_INTERF_NULL  0 Interface unknown 

        USERINTERFACE 700 User defined 

        BINARY   701 LS-DYNA d3plot 

        ASCII 702 LS-DYNA ASCII files 

        REXPRESSION 703 Mathematical expression 

        XYFILE      704 User specified history file [t,f(t)] 

        LSDA_BINARY 705  

        FREQUENCY            706 Frequency, Mode #, Generalized Mass 

        MASSC            707 Mass from d3hsp 

        D3P_DISP                 708 Disp from d3 plot file 

        METAPOST 711 MetaPost post-processor format 

        NAST_FREQ 712 Nastran frequency 

        GENEX 713 Generic extractor 

        USERPOST 714 User-defined post-processor (uses same format 
as NAST_FREQ) 

        response_IMPORT 715 Imported from .csv file 

Remarks: 
o The flags for active coefficients exclude the constant a0. 
o The coefficients are based on the independent variables xi having been normalized to the size of the 

design space. 

E.3.5  The VirtualHistoryFunction file 

The VirtualHistoryFunction file appears in the main work directory and stores the approximation models for 
all histories at each sampled time-step. One file per iteration is generated. Like the DesignFunctions file, 
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this is also a XML database with XML tags chosen such that the file is easy to read. This file stores the 
approximation type, number of fitting points, bounds and number of design variables, approximation model 
information (C or Wt), fitting and PRESS residuals (R and PR) at the fitting points, and global error 
measures at each time-step (t) of the history curves. The enumerations for the type of the fitting function are 
the same as used for the DesignFunctions. 

E.3.6  The OptimizationHistory file 

This file is used to save the optimization history results and appears in the work directory. Each line 
contains the values at the optimum point of an iteration.  

Entities Count 

Objective values Number of objectives 

Variables Number of variables 

Variable lower bounds Number of variables 

Variable upper bounds Number of variables 

RMS errors Number of responses 

Average errors Number of responses 

Maximum errors Number of responses 

R2 errors Number of responses 

Adjusted R2 errors Number of responses 

PRESS errors Number of responses 

Prediction R2 Number of responses 

Maximum prediction error Number of responses 

Responses Number of responses 

Multi-objective 1 

Constraint values Number of constraints 

Composite values Number of composites 

Responses (computed) Number of responses 
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Max. constraint violation 1 

Composites (computed) Number of composites 

Constraints (computed) Number of constraints 

Objectives (computed) Number of objectives 

Multi-objective (computed) 1 

Max. constraint violation (computed) 1 

Constants Number of constants 

Dependents Number of dependents 

RBDO lower bound probability* Number of constraints 

RBDO upper bound probability* Number of constraints 

Generation number# 1 

Individual number# 1 

     *Only written for RBDO problems. 
        #Only written for Direct GA simulations. 

Values of 2.0*1030 are assigned to responses of error terminations. 

E.3.7  The ExtendedResults file 

This file contains all points represented in the AnalysisResults_n.csv file and appears in the 
sampling directory. All values are based on the simulation results. A line has the following format: 

Entities Count 

Objective weights Number of objectives 

Objective values Number of objectives 

Variables Number of solver variables 

Responses Number of solver responses 

Multi-objective 1 

Constraint values Number of constraints 
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Composite values Number of composites 

Max. constraint violation 1 

Constants Number of constants 

Dependents Number of dependents 

The values represent the number of entities in the solver. Values of 2.0*1030 are assigned to responses of 
simulations with error terminations. 

E.3.8  The OptimumResults file 

This file contains just the optimum design point data and appears in the main work directory. All values are 
metamodel values, i.e. interpolated. 

Entities Count 

Objective weights Number of objectives 

Objective values Number of objectives 

Variables Number of variables 

Responses Number of responses 

Multi-objective 1 or 0 (no objectives) 

Constraint values Number of constraints 

Composite values Number of composites 

Max. constraint violation 1 

Constants Number of constants 

Dependents Number of dependents 

E.3.9  The Sobol_GSA file 

This file contains the global sensitivity analysis database Sobol_GSA.n file and appears in the main work 
directory. One file per iteration is generated. For each response, the partial variance, main sensitivity index, 
total variance, and total Sobol sensitivity index due to different variables are stored. The mean and variance 
of the response is also stored. All quantities are based on metamodels. The analytical models are used to 
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compute global sensitivity indices for polynomial approximations and Gaussian RBF functions, where as 
Monte-Carlo simulations are used for all other metamodels. 

E.3.10  The lsopt_results file 

This lsda binary database contains all the Tradeoff points. A database file lsopt_results_[n].binout is created 
in the main work directory for nth iteration. The database lists the following information for each TradeOff 
point. 

Entities Location Count 

Objective values Inside directory Number of objectives 

Variables Inside directory Number of solver variables 

Responses Inside directory Number of solver responses 

Multi-objective  1 

Constraint values Inside directory Number of constraints 

Composite values Inside directory Number of composites 

Max. constraint violation  1 

Constants Inside directory Number of constants 

Dependents Inside directory Number of dependents 

Generation Index  1 

Individual Index  1 

E.3.11  The lsopt_db file 

The file should not be used or edited by the user. It is used to communicate the state of the databases 
between various LS-OPT components. The content of the file is subject to change. 
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F.1  Syntax rules 
o Expressions consist of parameters and constants. A parameter can be any previously defined entity. 
o Mathematical expressions can be used for any floating-point number, e.g. upper bound of constraint, 

convergence tolerance, objective weight, etc. 
o An expression is limited to 1024 characters. 
o Empty or underscore (_) arguments in functions will generate default values. 
o Mathematical expressions can be defined in the input template files if the LS-OPT parameter format 

is used, e.g. <<Thickness*25.4>>. 
o Note: Expressions with only integers will evaluate as an integer, e.g. 1 / 2 evaluates as 0. Both 1.0 / 2 

and 1 / 2.0 evaluate as 0.5. 

F.2  Intrinsic functions 
Note: Trigonometric functions use and return degrees, not radians. 

Function Description 

int(a) integer 

nint(a) nearest integer 

abs(a) absolute value 

mod(a,b) remainder of  a/b 

sign(a,b) transfer of sign from b to |a| 

max(a,b) maximum of a and b 

min(a,b) minimum of a and b 

sqrt(a)  square root 

exp(a) ea 

pow(a,b) ab 
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log(a) natural logarithm 

log10(a) base 10 logarithm 

sin(a) sine 

cos(a) cosine 

tan(a) tangent 

asin(a) arc sine 

acos(a) arc cosine 

atan(a) arc tangent 

atan2(a,b) arc tangent of a/b 

sinh(a) hyperbolic sine 

cosh(a) hyperbolic cosine 

tanh(a) hyperbolic tangent 

asinh(a) arc hyperbolic sine 

acosh(a) arc hyperbolic cosine 

atanh(a) arc hyperbolic tangent 

sec(a) Secant 

csc(a) cosecant 

ctn(a) cotangent 

cnd(a) cumulative normal distribution: 

duux
x

∫
∞−









−=Φ

2
exp

2
1)(

2

1,0 p
 

Matrix functions (3×3 only): 

Function Description 

inv(A) Inverse of matrix A 
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tr(A) Transpose of matrix A 

rx(angle) Rotation about x-axis (angle in rad) 

ry(angle) Rotation about y-axis (angle in rad) 

rz(angle) Rotation about z-axis (angle in rad) 

F.3  Special functions 
Special response functions can be specified to apply to response histories. These include integration, minima 
and maxima and finding the time at a specific value of the function, Section F.3.1 . 
The arguments used in the expressions are explained in Section F.3.2  

History arguments must be defined as strings in double quotes and functions of time using the symbol  t, 
e.g. ”Velocity(t)”.  

A “generic” argument type implies that the quantity can be an expression, another defined entity or a 
constant number. An entity (which may be specified in an expression) can be any defined LS-OPT entity. 
Thus variable, history, response and composite are acceptable. An expression is given in 
double quotes, e.g., "4.2 * C1_1 * Displacement(t)". 

If the argument of TerminationTime is a general expression containing several history definitions (e.g. 
"Displacement1(t) – Displacement2(t)"), the function will return the earliest termination 
time over all the histories included. 

F.3.1  Functions to apply to response histories 

Expression Symbols/Description 

FilterHistory(history[,filtertype, frequency, 
timeunits, num_average]) 

Filtered curve using SAE, 
Butterworth or running average 

DerivativeHistory(history, gridsize) 
n-Point rule using a finite 
difference formula with arbitrary 
grid spacing. 

Crossplot(history_z, history_F [, numpoints, 
begin_time, end_time]) F(z) given F(t) and z(t) 

Integral(expression[,t_lower,t_upper,variable]) 
 

Derivative(expression[,T_constant]) 3-Point rule using a finite 
difference formula with arbitrary 

∫
b

a
tdgtf )()(
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grid spacing. 

Min(expression[,t_lower,t_upper]) )]([minmin tff
t

=  

Max(expression[,t_lower,t_upper]) )]([maxmax tff
t

=  

Initial(expression) First function value on record 

Final(expression) Last function value on record 

TerminationTime(expression) Termination time. Time of last 
history value. 

Lookup(expression,value[,t_lower,t_upper]) Inverse function t(f = F) 

LookupMin(expression[,t_lower,t_upper]) Inverse function t(f = fmin) 

LookupMax(expression[,t_lower,t_upper]) Inverse function t(f = fmax) 

MeanSqErr(target_curve,computed_curve[,  
num_reg_points, start_point, end_point, 
weight_type, scale_type, weight_value, 
scale_value, weight_curve_name, 
scale_curve_name]) 

Mean Squared Error function 
2

1

)(1
∑ 









 −

=

P

p p

pp
p s

Gf
W

P
x

 

CurveMapSegment3(target_curve,computed_curve[,n
um_reg_points]) Curve Mapping discrepancy 

F.3.2  Arguments used in functions 

Argument Explanation Symbol Type 

expression history defined as an expression string f(t) generic 

filtertype Filtering type (SAE, Butterworth, 
running average) 

- integer 

frequency Filtering frequency (Hz) f float 

timeunits Time units (s or ms) - integer 

num_average Number of points averaged - integer 

gridsize Number of grid points in template - integer 
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history_z, history_F History names for abscissa and 
ordinate 

z(t), 
F(t) 

history 

numpoints Number of points in curve.  
Default: Smallest of the numbers of 
points  defining  z and F 

- integer 

begin_time, end_time Begin and end times 
Default: Largest t0-value of F and z 
and smallest tP-value of F and z, 
respectively 

t0, tP float 

t_lower lower limit of integration or range a generic 

t_upper upper limit of integration or range b generic 

variable integration variable g(t) generic 

T_constant specific time Τ generic 

value value for which lookup is required F generic 

target_curve,computed_curve Target, computed curve names G, f history 

num_reg_points Number of regression points 
If P < 2 or not specified: use number 
of points in target curve between 
start_point and end_point. 

P integer 

start_point, end_point Location of first/last regression points z0, zP float 

weight_type Weight type (F.3.3 ): 

o WEIGHTVALUE (default)  
o PROPWEIGHT 

o FILEWEIGHT 

 reserved 

scale_type Scale type (F.3.3 ): 
o SCALEVALUE 

o PROPSCALE 

o MAXISCALE (default) 
o FILESCALE 

 reserved 
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weight_value Uniform weight value (default = 1) W float 

scale_value Uniform scale value (default = 1) s float 

weight_curve Weights as a function of z 
(default 
Weight.compositename) 

W(z) History 

scale_curve Scale factors as a function of z 

(default Scale.compositename) 

s(z) History 

Remarks: 
1. Omitting the lower and upper bounds implies operation over the entire available history. 

2. The Lookup function allows finding the value of t for a specified value of f(t) = F. If such a value 
cannot be found, the largest value (within the specified bounds) of t in the history is returned. The 
LookupMin and LookupMax functions return the value of t at the minimum or maximum 
respectively. 

3. Integration. The implied variable represented in the first column of any history file is t. All history 
files produced by extraction from the LS-DYNA database are functions of t which increases 
monotonically. The fourth argument of the Integral function defaults to t. There are two ways to 
compute an integral over a crossplot: 

∫ 𝑓𝑓(𝑡𝑡)𝑑𝑑𝑑𝑑(𝑡𝑡)𝑡𝑡𝑏𝑏
𝑡𝑡𝑎𝑎

:  Integral( "f(t)",t_a,t_b,"g(t)" ) 

∫ 𝑓𝑓(𝑔𝑔)𝑑𝑑𝑑𝑑:𝑔𝑔𝑎𝑎
𝑔𝑔𝑏𝑏

  Integral( "f_vs_g(t)",g_a,g_b ) 

The first formula uses the component functions of a crossplot instead of the crossplot itself. It is 
more robust since it also allows for the function 𝑔𝑔(𝑡𝑡) to be non-monotonic in 𝑡𝑡. The values 𝑡𝑡𝑎𝑎 and 𝑡𝑡𝑏𝑏 
are time values. i.e. the abscissa of the component functions. The two history components 𝑓𝑓(𝑡𝑡) and 
𝑔𝑔(𝑡𝑡) must be available. 
The second formula can be used for integration under an arbitrary curve as long as the abscissa is 
monotonic. The values 𝑔𝑔𝑎𝑎 and 𝑔𝑔𝑏𝑏 are on the 𝑔𝑔-axis. The functions  𝑓𝑓(𝑡𝑡) and 𝑔𝑔(𝑡𝑡) do not have to be 
available. 

4. Differentiation. The multi-point formulas are used for numerical differentiation.  For the derivative 
history the 3- or 5-point rule can be specified with 5 as the default. Special multi-point rules are used 
at the end points. 
Three point rule: 

𝑓𝑓′(𝑥𝑥) ≈
1

2ℎ
[𝑓𝑓(𝑥𝑥 + ℎ) − 𝑓𝑓(𝑥𝑥 − ℎ)] 

Five point rule: 

𝑓𝑓′(𝑥𝑥) ≈  
1

12ℎ
[𝑓𝑓(𝑥𝑥 − 2ℎ) − 8𝑓𝑓(𝑥𝑥 − ℎ) + 8𝑓𝑓(𝑥𝑥 + ℎ) − 𝑓𝑓(𝑥𝑥 − 2ℎ)] 
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The derivative curve has the same number of points as the input curve, but not less than 100. 

Since the multi-point formulas require a constant interval ℎ, the function is first mapped internally to 
constant intervals on the abscissa. 
For calculating a scalar derivative value at a specific value of the abscissa, the 5-point rule is used. 
T_constant in the Derivative function defaults to the last abscissa value. 

5. If a time is specified smaller than the smallest time value of the computed history, the first value is 
returned (same as Initial). If a time is specified larger than the largest time value of the 
computed history, the last value is returned (same as Final). 

F.3.3  Options for MeanSqErr arguments 

Syntax Explanation 

WEIGHTVALUE Wi = value. Default = 1.0 

PROPWEIGHT Use a different weight for each curve point p, proportional to the value of |Gp|. This 
method emphasizes the large absolute values of the response. The weights are 
normalized with respect to max |Gp| 

FILEWEIGHT Interpolate the weight from an x-y file: weight vs. z 

SCALEVALUE si = value. Default = 1.0 

MAXISCALE max |Gp|.  

PROPSCALE Use a different scale factor for each curve point, namely |Gp|. 

FILESCALE Interpolate the scale factor from an x-y file: scale vs. z 

Remarks on MeanSqErr: 
1. Only points within range of both curves are included, so P will be automatically reduced during the 

evaluation if there are missing points. A warning is issued in WARNING_MESSAGE. 

2. The weight curve and scale curve must be predefined histories (see Section 6.1) if they are selected. 
If a weight or scale curve is selected, the name of the curve defaults to 
‘Weight.compositename’ or ‘Scale.compositename’ respectively where compositename 
is the name of the parent composite being defined. 

3. The MeanSqErr composite makes use of response surfaces to avoid the nonlinearity (quadratic 
nature) of the squared error functional. Thus if the response curve f(x) is linear in terms of the design 
variables x, the composite function will be exactly represented. 

4. Empty or underscore (_) arguments will generate default values. 
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5. The option names in Section F.3.3 are reserved names and cannot be used as variable names. 

6. MeanSqErr composites can be added together to make a larger MSE composite (e.g. for multiple 
test cases). 

7. The simplest target curve that can be defined has only one point.0. 

F.4  Matrix functions 

Expression Symbols/Description 

Rotate(x1,y1,z1, x2,y2,z2, x3,y3,z3) Rotation matrix defined by 3 
points. See Section 6.4.4. 

Matrix3x3Init(x1,y1,z1, x2,y2,z2, x3,y3,z3) Initialize 3×3 matrix 

Argument Explanation Symbol Type 

x1,y1,z1,x2,y2,z2,x3,y3,z3 Matrix components - generic 

F.5  Reserved variable names 

Name Explanation 

t Time 

LowerLimit 0.0 

UpperLimit Maximum event time over all histories of all solvers 

length Intrinsic variable 

F.6  Constants associated with histories 
The following commands can be given to override defaults for history operations: 

Constant Explanation Default 

variable fdstepsize Finite difference step size for 
numerical derivatives with 
respect to variables 

0.0001*(Upper bound – Lower bound) 

Historysize Number of time points for 10000 
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(attribute of 
globals node) 

new history 

Remarks: 

1. The variable fdstepsize is used to find the gradients of expression composite functions. 
These are used in the optimization process. 

2. The historysize is used when new histories are generated. 0. 

F.7  Generic expressions 
Expressions can be specified for any floating-point number. In some cases, previously defined parameters 
can be used as follows: 

Number type Parameter type 

Constant none 

Starting variable constant 

Range variable 

Variable bounds variable 

Shift factor for response variable 

Scale factor for response variable 

Constraint bounds variable 

Objective weight variable 

Target value (composite) variable 

Scale factor (composite) variable 

Weight (composite) variable 

Parameters of SRSM none 

Parameters of LFOPC none 

The parameter type represents the highest entity in the hierarchy. Thus constants are included in the variable 
parameters. 
In LS-OPT, expressions can be entered for variables, histories, responses, and composites. 
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F.8  Examples illustrating syntax of expressions 
lowerlimit * 1000 
upperlimit * 1000 
(his1(t) + his2(t))/2 
Initial("his1(t)") 
Final("his1(t)") 
Final("(his1(t) + his2(t))/2") 
Max("his1(t)") 
Max("his1(t)","ll * 1.0") 
Max("his1(t)","ll",ul) 
Max("his3(t)",ll,ul) 
Min("his3(t)",ll,ul) 
Lookup("his1(t)",75) 
Lookup("his2(t)",75) 
Lookup("his3(t)",75) 
Lookup("(his1(t) + his2(t))/2",75) 
max(Inverse11,Inverse21) 
min(Inverse11,Inverse21) 
his3(Inverse31) 
his3(66.1) + 0.1 
nint(hist66) 
int(hist66) 
Integral("his1(t)") 
Integral("his1(t)",ll,ul,"t") 
Integral("his1(t)",ll,UPPER,"t") 
Integral("his2(t)",ll,ul,"t") 
Integral("his3(t)",ll,ul,"t") 
Integral("(his1(t) + his2(t))/2",ll,ul,"t") 
Integral("his3(t)") 
Integral("his3(t)",ll) 
Integral("his3(t)",ll,ul) 
Integral("his1(t)",ll,ul,"his2(t)") 
Integral("his1(t)",0,30,"his2(t)") 
Integral("his1(t)",30,100,"his2(t)") 
Integ1 + Integ2 
Integral("sin(t) * his1(t) * his2(t)",ll,ul,"t") 
Integral("sin(t) * his1(t) * his2(t)") 
Derivative(”Displacement(t)”,0.08) 
Derivative(”Displacement(t)”) 
(Integ3a/(4*Maximum11) + Integ2/2)**.5 
(Apillar_velocity_1 +  Apillar_velocity_2)/2} 
Lookup("engine_velocity(t)",0) 
Apillar_velocity_average(time_to_engine_zero) 
Integral("Apillar_velocity_average(t)",0,  
time_to_engine_zero)/time_to_engine_zero 
Lookup("global_velocity(t)",0) 
Apillar_velocity_average(time_to_zero_velocity) 
Integral("Apillar_velocity_average(t)",time_to_engine_zero, 
     time_to_zero_velocity)/(time_to_zero_velocity - time_to_engine_zero) 
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G.1  Syntax of Injury Criterion Commands 

Expression Symbols/Description Reference 

MOC (force, moment [, dummy_type, 
length_units, force_units, distance]) 

)( FDMMOC ⋅−=  G.1.1  

NIC (accel_t, accel_h [, time_units, 
length_units] ) 

22.0 relativerelative vaNIC +⋅=  G.1.3  

Nij (force,moment,shear [,dummy_type, 
length_units, force_units, 
c_force_tension, c_force_compression, 
c_moment_flexion, c_moment_extension, 
distance]) 

cc M
MOC

F
FNIJ +=  G.1.4  

Nkm (force, moment [, dummy_type, 
length_units, force_units, 
criteria_type, distance, 
critical_force, critical_moment]) 

intint

)()()(
M

tMOC
F

tFtNkm +=  G.1.6  

LNL (axial_force, s_shear, t_shear, 
s_moment, torsion [, length_units, 
force_units, critical_moment, 
critical_shear, critical_tension]) 

tension

z

shear

xy

moment

xy

C
offF

C
FF

C
MM

LNL +
+

+
+

+
=

2222  G.1.9  

ChestCompression ( relative_rotation, dummy_type, 
user_constant ) 

)]([max1 tC
t

Θ  G.1.10  

ViscousCriterion ( history_name, [dummy_type, 
time_units, length_units, scaling_factor, 
deformation_constant, user_constant] ) dt

tdYCtYC
C
C )()(min 33

2

1−  G.1.12  

TTI (accel_upper_rib, accel_lower_rib, 
accel_lower_spine, time_units, 
length_units, gravity) 2

).().(max spinelwrAribATTI +
=  G.1.14  

TibiaIndex (torsion, s_moment, 
t_shear, dummy_type, length_units, 
force_units, critical_moment, CC F

F
M
MTI +=  G.1.15  
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critical_force) 

A3ms ( accel_x, [ accel_y, accel_z, time_units, 
length_units, time_interval, gravity ] )  - G.1.17  

G.1.1  Options for MOC arguments 

Argument name Description Symbol LS-OPT type Default 

Force Neck axial force 
resultant 

F History  

moment Neck s-moment 
resultant 

M History  

dummy_type Dummy type - G.1.2  HYBRID3M50 

length_units Length units - LENG_M 

LENG_MM 
LENG_MM 

force_units Force units - FORCE_N 

FORCE_KN 
FORCE_N 

Distance Distance D Float G.1.2  

G.1.2   MOC Input constants for various dummy types 

Dummy Type D[m] 

Hybrid III, male 95% 0.01778 

Hybrid III, male 50% 0.01778 

Hybrid III, female 5% 0.01778 

Hybrid III, 10-year 0.01778 

Hybrid III, 6-year 0.01778 

Hybrid III, 3-year 0 

Crabi 12, 18 month 0.00584 
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TNO P1,5 0.0247 

Crabi 6 month 0.0102 

TNO P 3/4, P3 0 

ES-2 0 

TNO Q series 0 

SID-IIs 0.01778 

BioRID 0.01778 

WORLDSID 0.0195 

G.1.3  Options for NIC arguments 

Argument name Description Symbol LS-OPT type Default 

accel_t x-acceleration of 
first thorax spine 

TI
xa  History  

accel_h x-acceleration at the 
height of the c.o.g. 
of the head 

Head
xa  History  

time_units Time units - TIME_S 

TIME_MS 

TIME_S 

 

length_units Length units - LENG_M 

LENG_MM 

LENG_MM 

G.1.4  Options for Nij arguments 

Argument name Description Symbol LS-OPT type Default 

force Neck axial force 
resultant 

See MOC History  

moment Neck s-moment 
resultant 

See MOC History  
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shear Force at the point of 
transition from head to 
neck 

F History  

dummy_type Dummy type - Table 6-15 HYBRID3M50 

length_units Length units - LENG_M, 
LENG_MM 

LENG_MM 

force_units Force units - FORCE_N, 
FORCE_KN 

FORCE_N 

c_force_tension Critical force tension 
cF  Float G.1.5  

c_force_compression Critical force 
compression 

cF  Float G.1.5  

c_moment_flexion Critical moment 
flexion 

cM  Float G.1.5  

c_moment_extension Critical moment 
extension 

cM  Float G.1.5  

distance Distance D (See MOC) Float G.1.5  

G.1.5  Nij Input constants for various dummy types 

Dummy type Description Test FC [N] 
Tension 

FC [N] 
Compression 

MC [Nm] 
Flexion 

MC [Nm] 
Extension 

HYBRID3M50 Hybrid III; 
male 50% 

In 
position 

6806 -6160 310 -135 

HYBRID3F05 Hybrid III; 
female 5% 

In 
position 

4287 -3880 155 -67 

HYBRID3F05 Hybrid III; 
female 5% 

Out of 
position 

3880 -3880 155 -61 

HYBRID310Y Hybrid III;  
6-year 

Out of 
position 

2800 -2800 93 -37 

HYBRID306Y Hybrid III; 
3-year 

Out of 
position 

2120 -2120 68 -27 

HYBRID303Y Hybrid III; 
12 month 

Out of 
position 

1460 -1460 43 -17 

LS-OPT Version 5.2  646 



APPENDIX G: Injury Criteria 

G.1.6  Options for Nkm arguments 

Argument 
name 

Description Symbol LS-OPT type Default 

force Neck axial 
force 
resultant 

F History  

moment Neck s-
moment 
resultant 

See 
MOC 

History  

dummy_type Dummy 
type 

- Table 6-11 (MOC) HYBRID3M50 

length_units Length units - LENG_M, LENG_MM LENG_MM 
force_units Force units - FORCE_N, FORCE_KN FORCE_N 
criteria_type Nfa, Nea, 

Nfp, Nep 
- FLEXION_ANTERIOR 

EXTENSION_ANTERIOR 
FLEXION_POSTERIOR 
EXTENSION_POSTERIOR 

FLEXION_ANTERIOR 
 

distance Distance D (See 
MOC) 

Float Table 6-11 (MOC) 

critical_force Critical 
force 

intF  Float G.1.7  

critical_moment Critical 
moment 

intM  Float G.1.7  

G.1.7  Nkm Input constants 

Criteria Description Value 

*_ANTERIOR Positive Shear Fint  845 N 

*_POSTERIOR Negative Shear Fint -845 N 

FLEXION_* Flexion Mint 88.1 Nm 

EXTENSION_* Extension Mint -47.5 Nm 

G.1.8  Options for LNL arguments 

Argument name Description Symbol LS-OPT type Default 

axial_force Axial force resultant yF  History  
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s_shear s-Shear resultant 
xF  History  

t_shear t-Shear resultant 
zF  History  

s_moment s-Moment resultant yM  History  

torsion Torsional resultant 
xM  History  

length_units Length units - LENG_M, 
LENG_MM 

LENG_MM 

force_units Force units - FORCE_N, 
FORCE_KN 

FORCE_N 

critical_moment Critical moment 
momentC  Float G.1.9  

critical_shear Critical force 
shearC  Float G.1.9  

critical_tension Critical force 
tensionC  Float G.1.9  

G.1.9  LNL Input constants 

Force/Moment Description Value 

Cmoment Critical moment 15 [Nm] 

Cshear Critical force 250 [N] 

Ctension Critical force 900 [N] 

G.1.10  Options for Chest Compression arguments 

Argument name Description Symbol LS-OPT type Default 

relative_rotation relative rotation history )(tΘ  History  

dummy_type dummy type - HYBRID3M95 

HYBRID3M50 

HYBRID3M50 
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HYBRID3F05 

constant Multiplier C1 Float Table 6-21 

G.1.11  Chest Comporession Input constants for various dummy types 

Dummy type Description Scaling factor C1 

HYBRID3M95 Hybrid III; male 95% 130.67 

HYBRID3M50 Hybrid III; male 50% -139.0 

HYBRID3F05 Hybrid III; female 5% -87.58 

G.1.12  Options for Viscous Criterion arguments 

Argument name Description Symbol LS-OPT type Default 

history_name Thoracic deformation (m) Y(t) History  

dummy_type Dummy type - Table 6-23 HYBRID3M50 

time_units Time units - TIME_S 

TIME_MS 

TIME_S 
(seconds) 

length_units Length units - LENG_M 

LENG_MM 

LENG_MM 

(mm) 

scaling_factor Scaling factor (multiplier) C1 Float G.1.13  

deformation_constant Constant: Depth or width 
of half the rib cage (m) 

C2 Float G.1.13  

user_constant Multiplier of thoracic 
deformation 

C3 Float 1.0 

G.1.13  Viscous Criterion Input constants for various dummy types 

Dummy type Description Scaling factor Deformation constant (m) 

HYBRID3M95 Hybrid III; male 95% 1.3 0.254 
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HYBRID3M50 Hybrid III; male 50% 1.3 0.229 

HYBRID3F05 Hybrid III; female 5% 1.3 0.187 

BIORID2 BioSID 1.0 0.175 

EUROSID1 EuroSID-1 1.0 0.140 

EUROSID2 EuroSID-2 1.0 0.140 

SID2S SID-IIs 1.0 0.138 

G.1.14  Options for TTI arguments 

Argument name Description Symbol LS-OPT type Default 

accel_upper_rib y-acceleration 
of the upper rib 

).( ribuprA  History  

accel_lower_rib y-acceleration 
of the lower rib 

).( riblwrA  History  

accel_lower_spine y-acceleration 
of the lower 
spine 

).( spinelwrA  History  

time_units Time units - TIME_S 

TIME_MS 

TIME_S 

 

length_units Length units - LENG_M, 
LENG_MM 

LENG_MM 

gravity Gravitational 
acceleration 

g Float Depends on time_units 
and length_units. 9810 
mm/s2 if units undefined 

G.1.15  Options for TI arguments 

Argument name Description Symbol LS-OPT type Default 

Torsion Bending moment, 
torsional resultant 

xM  History  
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s_moment Bending moment, s-
moment resultant 

yM  History  

t_shear Axial compression, 
t-shear resultant 

F  History  

dummy_type Dummy type - Table 6-26  HYBRID3M50 

length_units Length units - LENG_M, 
LENG_MM 

LENG_MM 

force_units Force units - FORCE_N, 
FORCE_KN 

FORCE_N 

critical_moment Critical bending moment 
CM  Float G.1.16  

critical_force Critical compression force 
CF  Float G.1.16  

G.1.16  TI Input constants for various dummy types 

Dummy type Description Critical bending 
moment [Nm] 

Critical compression 
force [kN] 

HYBRID3M95 Hybrid III, male 95% 307.0 44.2 

HYBRID3M50 Hybrid III, male 50% 225.0 35.9 

HYBRID3F05 Hybrid III, female 5% 115.0 22.9 

G.1.17  Options for a3ms arguments 

Argument name Description Symbol LS-OPT type Default 

accel_x x-acceleration history x  History  

accel_y y-acceleration history y  History no history 

accel_z z-acceleration history z  History no history 

time_units Time units - TIME_S 

TIME_MS 

TIME_S (seconds) 
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length_units Length units - LENG_M 

LENG_MM 

LENG_MM 

(mm) 

time_interval Time interval for which 
the acceleration is 
exceeded  

t∆  Float 0.003 s 

gravity Gravitational acceleration g Float Depends on time_units 
and length_units. 9810 
mm/s2 if units 
undefined 
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Appendix H:  Installing LS-OPT 

This chapter describes the installation of LS-OPT. The description includes remote job scheduling through a 
queuing system or the LSTCVM Secure Proxy Server. 

H.1  Download 
LS-OPT is available at http://lstc.com/download/ls-opt.  Please ask LSTC or your local distributor for login 
and password. There are several Linux and Windows versions available. Examples are also provided. 

H.2  Installation 

H.2.1  Linux 

Create or select a folder where you would like to install LS-OPT. Unpack the archive using 
tar –xvfz lsopt_version_revision_system.tar.gz 

in that directory. When unzipping the file, a directory LSOPT_EXE will be created. LSOPT_EXE contains 
all the binaries required. lsoptui is the binary to start the graphical user interface of LS-OPT. Create an alias 
for lsoptui or make sure that lsoptui is in the path. If you want to use LS-OPT in batch mode, do the same 
for the binary lsopt. 

H.2.2  Windows 

There is no installation program required for LS-OPT. Simply create or select a folder where you would like 
to install LS-OPT, and unzip the contents of the downloaded archive into that folder. Make sure that there 
are no spaces in the path to the installation directory or in the directory name. When unzipping the file, a 
directory LSOPT_EXE will be created. LSOPT_EXE contains all the binaries required. 
To start LS-OPT, locate the lsoptui program and double-click it. You may wish to create a short-cut on your 
desktop rather than remember where the LS-OPT installation folder is located. 

A .lsopt file can also be opened in the GUI by double-clicking the .lsopt file. When this is done the 
first time, you will have to select which LS-OPT executable to use (e.g. by browsing). Subsequent requests 
to open a file by double-clicking will then always be automatic. 
In case you want to use the license server for LS-DYNA, please make sure that the LSTC License Client 
lstc_client.exe is available in the directory where the LS-DYNA executable is located. 
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H.2.3  How to run LS-DYNA from LS-OPT using the license server (Windows) 

In case you want to use the license server for LS-DYNA, you need to do the following: 
1. Go to the "start" menu of the Windows Operating System and follow the steps: 
2. Right click on "My Computer"0. 

o Choose "Properties" 
o Click "Advanced" tab 
o Click "Environment Variables" button 
o Add the following "User variables": 

LSTC_LICENSE              network 

LSTC_LICENSE_SERVER      <name of the license server host machine> 

The first column above has the variable names and the second column, the variable values, to be filled into 
the boxes. 
You can also start by right-clicking on the "My Computer" icon on your desktop and going through the 
steps as explained above. 
It may be necessary to restart the operating system to initialize the environment variables. 

H.3  Remote job scheduling 
The solver jobs do not have to be executed on the same machine as where LS-OPT is running. There are 
several ways of distributing the solver jobs. An example of remote job distribution is when the user is 
running LS-OPT on a laptop or desktop computer but prefers to run multiple solver jobs in parallel on a 
computer cluster. 
There are five common scenarios that we try to address using various LS-OPT job scheduling options. 

1. runqueuer/wrapper option 
a. You have a queueing system and you want to submit some or all LS-OPT solver jobs to that 

queueing system. 
b. You can allow remote solver jobs to initiate TCP/IP connections back to the machine where 

LS-OPT runs. 
2. blackbox option 

a. You have a queueing system and you want to submit some or all LS-OPT solver jobs to that 
queueing system. 

b. You prefer not to allow remote solver jobs to initiate TCP/IP connections back to the 
machine where LS-OPT runs. 

3. lstcvm option 
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a. You do not have a queueing system. You would like to run LS-OPT on one machine, but you 
would like to run all solver jobs on a single, dedicated cluster. 

b. You can share a file system between LS-OPT and the cluster where the solver jobs are run. 
4. lstcvm/runqueuer/wrapper option 

a. You do not have a queueing system. You would like to run LS-OPT on one machine, but you 
would like to run all solver jobs on a single, dedicated cluster. 

b. You prefer not to share a file system between LS-OPT and the cluster where the solver jobs 
are run. 

c. You do allow remote solver jobs on the dedicated cluster to connect via TCP/IP back to the 
machine where LS-OPT is running. 

5. lstcvm/blackbox option 
a. You have a queueing system that you would like to use for job submission, but the machine 

where you would like to run LS-OPT does not have a command line submit utility for the 
queueing system. 

b. There is a machine on your system where 

i. You can install the lstcvm job proxy server; 

ii. You can submit jobs using a command line utility; 
iii. You can share a file system with the machine where LS-OPT will run. 0. 

H.4  Simple manual setup for running LS-OPT and solvers on different 
machines 
A convenient setup is one in which LS-OPT runs on e.g. a Windows machine and the solvers are running on 
a cluster (typically Linux). Such a setup can be created as follows: 

1. Install LS-OPT on a Windows (or any desired) machine for preparing the input. Create the problem 
setup using LS-OPTui. The solver command should be created for running jobs on a cluster. This 
can be done by selecting any of the queuing systems supported by LS-OPT or, if all the jobs will be 
running on the same cluster where LS-OPT resides, simply by specifying the solver executable name 
as a solver command. The Resources should be set for each stage in the Stage dialog. Save the input 
to a file using e.g. the name project.lsopt. 

2. Open the lsopt project file with LS-OPTui and create a second command file e.g. 
project.archive.lsopt by selecting Archive LS-OPT database from the control bar Tools 
menu. Select Include Histories and Responses and hit Create Archive in the Archive database 
dialog, Figure H - 1. The lsopt_db file in the work directory contains the settings needed to archive 
the database later in batch mode. Copy lsopt_db to e.g. project.archive.lsopt. There are 
now two command files: project.lsopt for running the optimization task and 
project.archive.lsopt for archiving the output data after the run. 
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3. Install LS-OPT and the solver executables on a cluster node for running LS-OPT in batch mode. 
Copy the recently created problem setup with the two command files from the Windows machine 
onto a cluster node. This setup should allow the user to run an LS-OPT job in batch mode.  

4. Run LS-OPT by executing the command: lsopt project.lsopt on the cluster. This is done 
from the command line. 

5. After completion of the LS-OPT run, execute lsopt project.archive.lsopt to create a 
file lsopack_h.tar.gz containing the entire run database. 

6. Unzip lsopack_h.tar.gz on the Windows machine to do the post-processing.0. 

 

Figure H - 1: Archive database dialog 

H.5  Using an external queuing or job scheduling system 

H.5.1  Installation 

The LS-OPT Queuing Interface interfaces with load sharing facilities (e.g. LSF14
 or LoadLeveler15) to 

enable running simulation jobs across a network. LS-OPT will automatically copy the simulation input files 
to each remote node, extract the results on the remote directory and transfer the extracted results to the local 
directory. 
To run LS-OPT with a queuing (load-sharing) facility the following binary files are provided in the 
LSOPT_EXE directory which un-tars (or unzips) from the distribution during installation of LS-OPT: 
 LSOPT_EXE/wrapper 
 LSOPT_EXE/runqueuer 

14 Registered Trademark of Platform Computing Inc. 
15 Registered Trademark of International Business Machines Corporation 

LS-OPT Version 5.2  656 

                                                 



APPENDIX H: Installing LS-OPT 

The runqueuer executes the command line for the purpose of queuing and must remain in the LS-OPT 
environment (the same directory as the lsopt executable). 
The following instructions should then be followed: 

H.5.2  Installation for all remote machines running simulation jobs 

1. Create a directory on the remote machine for keeping all the executables. Copy the appropriate 
executable wrapper program to the new directory. e.g. if you are running simulation jobs on a 
Linux machine, place the wrapper appropriate for the architecture and operating system on this 
machine.  

2. Change the script you use to run the solver via the queuing facility by prepending "wrapper" to the 
solver execution command. Use full path names for both the wrapper and executable or make sure 
the path on the remote machine includes the directory where the executables are kept.0. 

The argument for the input deck specified in the script must always be the LS-OPT reserved name for the 
chosen solver, e.g. for LS-DYNA use DynaOpt.inp. 

H.5.3  Environment variables LSOPT_HOST and LSOPT_PORT  

Users typically do not set these. These variables are set on the local side by the runqueuer program and 
their values must be carried to the remote side by the queuing software.  

LSOPT_HOST : the machine where LS-OPT (and therefore the runqueuer) is running. Set this if the 
wrapper has trouble connecting back to runqueuer. 

LSOPT_PORT : TCP/IP port runqueuer listens on for remote connections 

The runqueuer program does not set LSOPT_HOST if it is already set, but always sets LSOPT_PORT. 
The examples in Section H.5.4  illustrate two methods by which setting of environment variables can be 
accomplished. Environment variables specified by Environment Variables settings in the LS-OPT GUI (see 
Section H.13 ) are set by the scheduler. The scheduler runs runqueuer, and runqueuer would be the one to 
run 
 qsub -v LSOPT_PORT,LSOPT_HOST <script_name> 

So, the LSOPT_PORT value passed to the remote side will always be the one set by runqueuer. However, 
the LSOPT_HOST value may be set through Environment Variables or though ".cshrc" instead. 

In most cases the queuing system will transmit the environment variables to the remote side, so the setting 
of the variables may not be necessary. The only reason to set LSOPT_HOST would be to compensate for a 
wrong setting. For example, the machine where LS-OPT is running may be known by several different host 
names or by different IP addresses. In such a case it might be required to specify which interface should be 
used for remote connections. It is not permissible for LSOPT_PORT to be changed because only the 
runqueuer knows the right setting. 
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H.5.4  Examples 

Example 1:  
This example uses a two-level script. The outer script (submit_pbs), which has to be used as command for 
the respective stage, sets the values of environment variables in dynscr (the inner script), spawns it and 
submits it through the queuing system. The script dynscr then sets the environment variables and schedules 
the solver on the remote machine. 
The "submit_pbs" file is: 
#!/bin/csh -f 
# 
# Run jobs on a remote processor, remote disk 
set newdir=`pwd | sed -n 's/.*\/\(.*\)\/\(.*\)/\1\/\2/p'` 
# Run jobs on a remote processor, local disk (no transmission) 
# set newdir=`pwd` 
echo $newdir 
cat > dynscr << EOF 
# 
# dynscr script 
# ======================================================================= 
#!/bin/csh -f 
# 
#PBS -l nodes=1:ncpus=1 
# 
setenv LSOPT /nec00a/mike/codes/LSOPT_EXE 
setenv LSOPT_HOST $LSOPT_HOST 
setenv LSOPT_PORT $LSOPT_PORT 
# Run jobs on a remote processor, remote disk 
mkdir -p lsopt/$newdir 
cd lsopt/$newdir 
# The input file name is required for LS-OPT 
/nec00a/mike/codes/wrapper /nec00a/mike/codes/ls980.single i=DynaOpt.inp 
EOF 
# ============== E N D   O F   S C R I P T ============================== 
qsub dynscr 

Example 2: 
This example demonstrates how to specify the queuer command directly on the command line. It shows 
how the required environment variables LSOPT_PORT and LSOPT_HOST set by the runqueuer program 
are specified on the solver command line whereas the two user variables LSDYNA971_MPP and 
LSOPT_WRAPPER are defined and stored as special input entities (see Section H.13 ). These can also be 
set on the command line using the Linux "setenv" command as specified in for instance the .cshrc 
script. qsub is a PBS queue submit command and the –v directive defines the names of environment 
variables to be exported to the job.  

The qsub manual pages should be consulted for more details. Please also consult Sections H.5.3  
(Environment Variables) and H.13  (Passing Environment Variables through LS-OPT). 
# This is the dynscr2 file 
#========================== 
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#!/bin/csh -f 
# 
#$ -cwd -pe mpi 2 
# 
setenv NP 2 
setenv ROUNDROBIN 0 
# 
# Define LSDYNA971_MPP environment variables in lsopt input 
# or shell command ("setenv"). 
# $1 represents i=DynaOpt.inp and is automatically 
# tagged on as the last argument of the lsopt "solver command". 
# 
setenv EXE "$LSDYNA971_MPP $1" 
# 
rm -f mpd.hostfile mpp.appfile 
filter_hostfile < $PE_HOSTFILE > mpd.hostfile 
# 
# This python script builds an HPMPI specific "appfile" telling it 
# exactly what to run on each node. 
# 
gen_appfile.hpmpi mpd.hostfile $SGE_O_WORKDIR $NP $ROUNDROBIN $EXE > mpp.appfile 
# 
# This actually executes the job 
# 
$LSOPT_WRAPPER /opt/hpmpi/bin/mpirun -f mpp.appfile 
# 

H.6  Mechanics of the queuing process 
Understanding the mechanics of the queuing process should help to debug the installation: 

1. LS-OPT automatically prepends runqueuer to the solver command and executes runqueuer which 
runs the submit_pbs script.  

o The runqueuer sets the variables LSOPT_HOST and LSOPT_PORT locally. 

o In the first example, the submit_pbs script spawns the dynscr script. 

2. In Example 1, the queuing system then submits dynscr (see qsub command at  the end of the 
submit_pbs script above) on the remote node which now has fixed values substituted for 
LSOPT_HOST and LSOPT_PORT. 

In Example 2, LS-OPT schedules the qsub command directly with LSOPT_HOST and 
LSOPT_PORT as arguments and i=DynaOpt.inp appended at the end of the command. 
i=DynaOpt.inp therefore serves as an argument ($1) to dynscr2. 

3. The wrapper executes on the same machine as LS-DYNA, opens a socket and connects back to the 
local host using the host/port information.  The standard output is then relayed to the local machine. 
This output is also written to the job_log file on the local host. To view the log of any particular 
run, the user can open job_log localted in the respective run directory using any text editor, or 
double click on the status LED of the respective stage, select a run from the list displayed in the 
Progress dialog, and select the View Log button, see Section 14.3. The Progress dialog is shown 
below, Figure H - 2, followed by the selected popup log.  
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An example of an error message resulting from a mistype of “wrapper” in the submit script is given 
in another example job_log file as follows: 

STARTING command /home/jim/bin/runqueuer 

PORT=56984 

JOB=LoadLeveler 

llsubmit: The job "1/1.1" has been submitted. 

/home/jim/LSOPT_EXE/Xrapper: Command not found. 

Finished with directory 

/home/jim/LSOPT/4.1/optQA/QUEUE/EX4a_remote/remote/1/1.1 

4. The wrapper will also extract the data immediately upon completion on the remote node. Extracted 
data (the history.n and response.n files) are automatically transferred back to the local sub-
subdirectory. If other parts of the database (e.g. d3plot files) are required (e.g. for post-processing 
with LS-PREPOST), the user has to specify these using appropriate LS-OPT settings (see Section 
5.4.5). A log of the database extraction is also provided in the job_log file.0. 

 

Figure H - 2: Progress dialog 
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Figure H - 3: Opened  job_log file using Progress dialog option 

H.7  User-defined and Blackbox queuing systems 
If the queuing system you want to use is not available in the queuing interfaces list in the Stage dialog, 
Section 5.4.2, there are two options to interface with any queuing system by using the User-Defined or the 
Blackbox option. Blackbox can be used when the computers running the jobs are separated from the 
computer running LS-OPT by means of a firewall. 
The key differences between User-defined and Blackbox are: 

1. For Blackbox, it is the responsibility of the queueing system or the user provided scripts to transfer 
input and output files for the solver between the queueing system and the workstation running LS-
OPT. LS-OPT will not attempt to open any communications channel between the compute node and 
the LS-OPT workstation. 

2. For Blackbox, extraction of responses and histories takes place on the local workstation, whereas for 
User-Defined this is done on the computer running the job. 

3. For Blackbox, LS-OPT will not run local placeholder processes (i.e. extractor/runqueuer) for every 
submitted job. This makes Blackbox use less system resources, especially when many jobs are run in 
each iteration. 
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4. The requirements needed for the respective approach are explained in the following sections. 0. 

H.7.1  User-defined queuing systems 

To ensure that the LS-OPT job scheduler can terminate queued jobs, two requirements must be satisfied: 
1. The queuer must echo a string 

Job ”Stringa Stringb Stringc …” has been submitted 

or 

Job Stringa has been submitted 

e.g. 

Job ”Opteron Aqs4832” has been submitted 

Job aqs4832 has been submitted 

The string will be parsed as separate arguments in the former example or as a single argument in the 
latter example. The string length is limited to 1024 characters. The syntax of the phrases “Job ” 
and “ has been submitted” must be exactly as specified. If more than one argument is 
specified without the double quotes, the string will not be recognized and the termination feature will 
fail. 

2. A termination script (or program) LsoptJobDel must be placed either in the main working 
directory (first default location) or in the directory containing the LS-OPT binaries (second default). 
This script will be run with the arguments stringA, stringB, etc. and must contain the command for 
terminating the queue. An example of a Unix C shell termination script that uses two arguments is:0. 

#!/bin/csh -f 

aadmin –c $1 –j $2 stop 

H.7.2  Blackbox queuing system 

The Blackbox queuing system is another flavor of the User-defined queuing system. It can be used when the 
computers running the jobs are separated from the computer running LS-OPT by means of a firewall.  

When using the Blackbox queueing system, a LsoptJobDel script is required, just as in the User-defined 
case. Furthermore, another script named LsoptJobCheck must also be provided. This script takes one 
parameter, the job ID, as returned by the submission script. The script should return the status of the given 
job as a string to standard output.  
The Blackbox queuer option requires the user to specify a stage command that will queue the job. The 
command to queue the job must return a job identifier that has one of the following two forms: 
Job "Any Quoted String" has been submitted 
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Job AnyUnquotedStringWithoutSpaces has been submitted 

The Word "Job" must be the first non-white space on the line, and must appear exactly as shown.  Any 
amount of white space may appear between "Job" and the job identifier, as well as after the job identifier 
and before "has been submitted". 

The Blackbox queuer requires the presence of two executable scripts LsoptJobCheck and 
LsoptJobDel.  These scripts must be located in either in the current LS-OPT project directory or in the 
directory where the running LS-OPT program is located. (For Windows, the scripts must have an added 
extension .exe, .vbs, .cmd or .bat).  If the Blackbox queuer option is invoked for some stages, then 
LS-OPT checks for the existence of executable scripts in one of these locations, and refuses to run if the 
LsoptJobCheck and/or LsoptJobDel scripts cannot be found or are not executable. The project 
directory is searched first. 

H.7.3  LsoptJobCheck script 

The user-supplied LsoptJobCheck script is run each time LS-OPT tries to update the current status of a 
job. The LsoptJobCheck script is run with a single command line argument: 
LsoptJobCheck job_identifier 

The working directory of the LsoptJobCheck script is set to the job directory associated with 
job_identifier. 
The script is expected to print a status statement that LS-OPT can use to update its status information.  The 
only valid status statements are: 

String Description 

WAITING The job has been submitted and is waiting to start 

RUNNING The job is running.  

RUNNING N/M After RUNNING, the script may also report the progress as a fraction. 
RUNNING 75/100 means that the job has ¼ to go. The progress information 
will be relayed to the user, but not used in any other way by LS-OPT. 

FAILED The job failed. This is only to be used when the underlying queuing system 
reports some kind of problem. Hence, a solver that has terminated in error does 
not have to be detected by the LsoptJobCheck script. 

FINISHED The job has completed and any output files needed for extraction has been 
copied back to the run directory. 

ABORTED If a job reports ABORTED, then the status bar in the Progress dialog of 
LSOPTui turns yellow, and the number of retries is shown. 
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Any amount of white space may appear at the beginning of a status statement, and anything may appear 
after these statements.  The optional N/M argument for RUNNING is interpreted as an estimate of the 
progress; in this case N and M are integers and N/M is the fractional progress.  N must be not be larger than 
M. 

If LsoptJobCheck terminates without printing a valid status statement, then it is assumed that 
LsoptJobCheck does not function properly, and LS-OPT terminates the job using the LsoptJobDel 
script.  All output from the LsoptJobCheck script is logged to the job log file (job_log) in the run 
directory for debugging purposes. 

Note: The LsoptJobCheck script may print more than one status statement, but only the first one will be 
used to update the status. 

H.7.4  LsoptJobDel script 

The user-supplied LsoptJobDel script is run whenever the user chooses to terminate a job, or whenever 
LS-OPT determines that a job should be killed (for example, if LsoptJobCheck fails). The 
LsoptJobDel script is run with a single command line argument: 
LsoptJobDel job_identifier . 

The working directory of the LsoptJobDel script is set to the job directory associated with 
job_identifier. 

H.8  Honda queuing system 
The Honda queuing system interface is based on the Blackbox queuing system, but is dedicated to the 
particular needs of this system. 

H.8.1  Mechanics of the Honda queuing process 

The queuing system generates a status file for which an environment variable has been defined in LS-OPT 
as: 
$HONDA_STATUSFILE 

The status file is the output of the PBS queue check command.  During the initialization phase, LS-OPT 
checks whether this variable setting points to a valid file.  If it does not, LS-OPT terminates before starting 
the scheduler, and prints a standard LS-OPT-style error message. 
The line which marks the fields in the status file is used to determine how to parse the file; this line has the 
form "-----  -----------  -  ----- ---- ....". Fields are extracted based on this line which consists solely of space 
and dash characters.  The following fields are used: 

Field Description 

4 name 
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6 status: 'R' for running or 'Q' for queued 

10 total wall clock time allowed 

11 total wall clock time consumed. 

Fields 10 and 11 are used to set the progress indicator.  If the indicator ever reaches 100%, then it will 
terminate due to total wall clock time restrictions. 
If a job cannot be found in the status file, then it is assumed to be dead.  The job status entry is not looked 
for until a minimum of 3 seconds after the job has been started. A status file is searched for a particular job 
status entry only if the status file has a modification time that is later than the start time of the job. 
Since there is no way to determine the exit status of a job by looking only at this status file, the 
determination of the final exit status depends on whether or not the job is an LS-DYNA job. If the job is an 
LS-DYNA job, then the message file is parsed for the status statements "N o r m a l" and "E r r o r" 
termination. If no message file is found 10 seconds after the job is no longer listed in the status file, then we 
assume an error termination. 

If the job is a non-LS-DYNA job, then LsoptJobCheck (see Section H.7 ) is executed just once after the 
job no longer appears in the status file. LsoptJobCheck should print either (a) FINISHED or (b) ERROR 
in order to communicate the final exit status.  If LsoptJobCheck cannot be found or cannot be executed, 
then ERROR is assumed. The job log file will contain a message indicating any problem that may exist 
which prevents LsoptJobCheck from being run. 

The HONDA queued jobs do not use LsoptJobDel as defined in the Blackbox queuing selection. Jobs 
are deleted using the standard PBSPro qdel command. 
Various statements concerning how status information is gathered are logged to the job log files. These are: 

1. Job status for LSDYNA jobs found in 'messag' file: 
    [HONDA] Termination status found in 'messag' file 
    [HONDA] exact termination statement 

2. The job status line for the current job found in $HONDA_STATUSFILE is saved: 
    [HONDA] status line 

3. The job is assumed finished if there is no status line found: 
    [HONDA] Job 23551 not found in STATUS file - assuming job is finished. 

4. Indication that LsoptJobCheck is run at the end of a non-LS-DYNA job: 
    [HONDA] Non LS-DYNA job. Running LsoptJobCheck to determine exit status. 

5. Status returned from LsoptJobCheck. 
    [HONDA] Job finished - LsoptJobCheck reports normal termination 
    [HONDA] Job finished - LsoptJobCheck reports error termination 

Any errors while gathering status information are logged to the job_log files.. 

6. Missing messag file after LSDYNA terminates: 
    [HONDA] Failed to find 'messag' file while FINISHING. 
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    [HONDA] Assuming ERROR termination for LSDYNA job. 

7. Found no termination status statement in messag file 
    [HONDA] Found no termination status in 'messag' file 
    [HONDA] Assuming ERROR termination for LSDYNA job. 

8. HONDA_STATUSFILE variable not set 
    [HONDA] *** Error $HONDA_STATUSFILE not set. 

9. Could not open $HONDA_STATUSFILE 
    [HONDA] *** Error Failed to open $HONDA_STATUSFILE=pbsq_status 

10. LsoptJobCheck script not found for non-LSDYNA job 
    [HONDA] *** Error LsoptJobCheck cannot be found. 
    [HONDA]     Assuming error termination for non-LSDYNA job. 

11. LsoptJobCheck script did not print either (a) FINISHED or (b) FAILED.0. 
    [HONDA] *** Error LsoptJobCheck did not return a valid status. 
    [HONDA]          Assuming error termination for non-LSDYNA job. 

If  $HONDA_STATUSFILE is not updated in a timely fashion, then the scheduler can hang forever, never 
moving forward.  A message is passed to LS-OPT through the communication socket if this happens: 
 *** Warning HONDA_STATUSFILE out of date by more than 5 minutes 
 *** Job progress monitoring suspended until next update 

Even though the status file is checked before starting the scheduler, it is still possible for file errors to occur. 
These are also sent directly to LS-OPT. 
 *** Error $HONDA_STATUSFILE not set 
 *** Error Failed to open $HONDA_STATUSFILE=pbsq_status 
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H.9  Abnormal termination and retrying the job submission 

H.9.1  User-defined abnormal termination 

 

Figure H - 4: Stage dialog: advanced execution options for abnormal terminations 

It may be prudent to retry job submissions for certain types of abnormal termination. For this purpose, the 
user can specify an A b n o r m a l signal for terminations which are neither normal nor error 
termination. A job that has terminated in this way can then be retried by the LS-OPT job scheduler. The  
A b n o r m a l signal should be sent to standard output from the simulation script.  

Two parameters can be used to set the number of retries allowed and timeout for each retry. The defaults are 
9 retries with a timeout of 60 seconds. These are available under Advanced execution options 

H.9.2  Queuer timout 

A special case exists in which the LS-OPT job scheduler automatically generates an A b n o r m a l signal. 
This is whenever the wrapper has not been executed for a specified timeout period. For this case a queuer 
timeout can be specified. The queuer timeout is the time it will wait for the wrapper to connect, otherwise it 
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sets an abnormal termination status and writes an A b n o r m a l signal to standard output. In this case the 
job will be resubmitted for the number of retries specified and using the queuing timeout for each retry. The 
timeout default is 720 minutes (see also Fig. H-4). 

H.10  Troubleshooting 
1. Diagnostics for a failed run usually appear in the job_log file in the run directory. If there is 

almost no information in this file, the wrapper path may be wrong or the submission script may have 
the wrong path or permission. For any job, this file can be viewed from the Progress dialog, Section 
14.3. 
Please attach the log file (lsopt_output) when emailing support@lstc.com. 

2. Make sure that the permissions are set for the executables and submission script. 
3. Check all paths to executables e.g. "wrapper", etc. No diagnostic can detect this problem. 
4. Make sure that the result database is produced in the same directory as where the wrapper is started, 

otherwise the data cannot be extracted. (E.g. the front end program such as mpirun may have a 
specification to change the working directory (-wd dir)). 

5. Running on a remote disk. Make sure that the file "HostDirectory" is not copied by a user script 
to the remote disk if the simulation run is done on a remote disk. The "HostDirectory" file is a 
marker file which is present only on the local disk. Its purpose is to inform the wrapper that it is 
running on the local disk and, if found on a remote disk, will prevent the wrapper from automatically 
transferring extracted results back to the local disk. In general the user is not required to do any file 
copying since input files (including LS-DYNA include files) are copied to the remote disk 
automatically. The response.*, history.*, result.* and matrix.* files are automatically recovered from 
the remote disk. Other files can be recovered using the feature in Section 5.4.5 . 

6. The $LSOPT environment variable defines the path of the LSOPT_EXE directory extracted from 
the distribution .zip or .gz file during installation. This variable is automatically detected when 
executing LS-OPT and set internally and should not be set by the user. Setting this variable 
externally may have the effect of launching an unintended LS-OPT process (e.g. wrapper, extractor, 
lsopt, etc.) that could cause errors during execution. 

7. Termination of user-defined programs: LS-DYNA always displays a  'N o r m a l' at the end of 
its output. When running a user-defined program which does not have this command displayed for a 
normal termination, the program has to be executed from a script followed by a command to write  
'N o r m a l'  to standard output. The example file runscript shown below first runs the user-
defined solver and then signals a normal termination. 0. 

        mpiexec –n 2 /home/john/bin/myprogram –i UserOpt.inp 
        # print normal termination signal to screen 
        echo 'N o r m a l' 

which is submitted by the wrapper command in submit_pbs as: 
         /home/john/bin/wrapper /home/john/bin/runscript 
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Note: Adding "echo N o r m a l" at the end of the wrapper command (after a semicolon) does 
not work which is why it should be part of the script run by the wrapper. 

H.11  Enabling LSTCVM job proxy support 
LSTCVM is a Secure Proxy Server for distributing solver jobs across a computer cluster, e.g. for running 
LS-OPT on a Windows machine controlling solver jobs on a Linux cluster. LSTCVM is available for 
download at http://ftp.lstc.com/user/ls-opt/lstcvm.   

H.11.1  LSTCVM options 

There are two ways that LS-OPT can work with the LSTCVM job proxy. 
1. LSTCVM and LS-OPT share a common file system. 

If LSTCVM and LS-OPT share a common file system, then you may run LS-OPT jobs from within 
the shared file system by using the stage command 

lstcvm_run remote_solver_command 

For example 

lstcvm_run ls971_single 

would be the appropriate stage command in LS-OPT if you want to run the "ls971_single" 
command on the remote LSTCVM server. 

2. LSTCVM and LS-OPT do not share a common file system. 
In this case, you may still execute remote commands on the LSTCVM server, but you must select 
the following option in the Stage dialog Setup tab, Execution: Use LSTCVM proxy, Section 5.4.3. 
LS-OPT will take care of prepending the lstcvm_run command. So, in this case, if you want to 
execute "ls971_single" on the remote LSTCVM server, then your stage command should 
simply be 

ls971_single 

All necessary input files will be transferred to the remote LSTCVM server using LS-OPT 
runqueuer/wrapper commands. Extraction results are automatically brought back to the local 
 side once the job has finished.  

Note: In order for this option to work, you must install the LS-OPT "wrapper" on the LSTCVM 
proxy server, and you must add the following entry to the executable map file 
 "lstcvm.exemap" 

wrapper -> full_path_to_wrapper 
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The "wrapper" command is architecture specific. So be sure to obtain the correct program for the 
LSTCVM architecture. 
REMOTE FILES: We do not currently delete files on the LSTCVM server after the job has 
completed. This must be done by the LSTCVM proxy server administrator. 0. 

H.11.2  LSTCVM server installation 

The LSTCVM server is distributed separately from LS-OPT and, in addition to the executables, contains 
detailed information and installation instructions. This server installation is usually handled by a systems 
administrator. 

H.11.3  Environment Variables 

All solver environment variables defined in the LS-OPT Environment Variables tab of the Stage dialog 
(Section 5.4.4) are automatically passed to the remote job on the LSTCVM server. (PATH is not passed for 
security reasons). This provides a convenient way to define licensing variables for LS-DYNA. For example, 
you can pass the following variables to the remote proxy server job: 
LSTC_LICENSE=network 
LSTC_LICENSE_SERVER=license_server_name 

H.11.4  Configuring the  lstcvm_run client 

In order to configure the "lstcvm_run" client, you should execute 
lstcvm_run -s lstcvm_server_name 

The information will be saved so that this step never needs to be repeated. If you are running on a Microsoft 
Windows platform, then you should execute this command from within a command prompt; the server 
information will be saved in the Windows registry. If you are running on a Linux/UNIX platform, then the 
server information is stored in $HOME/.lstcvm . If, for some reason, a port other than the default is used, 
then you must specify the port number N with the command 
lstcvm_run -s N@lstcvm_server_name 

After setting the server name, then you can test for connectivity using 
lstcvm_run -info 

You should see information about the current configuration of the LSTCVM server. 

To test the installation, 'cd' to a directory where you are allowed to run the lstcvm_run client, and issue 
the command 
lstcvm_run ls -al 

It is possible that this command will fail if the LSTCVM administrator does not allow the "ls" command to 
be run. If that is the case, then check with the administrator about which commands are available. 
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Once you know that the lstcvm_run command is properly configured and able to execute commands 
remotely, you are ready to use lstcvm_run with LS-OPT. Only commands which are allowed and 
enabled by the LSTCVM administrator will function properly. For example, ls971_single is not 
available unless the remote administrator has enabled this command. 

H.12  Getting Started with the LSTCVM Proxy server 
The lstcvm proxy server facilitates executing LS-OPT on a local Windows/Linux machine, whereas the 
solver jobs can be submitted to a remote Linux/Unix server. If this remote server has a queuing system, then 
the solver jobs can also be submitted to the queuing system.  
The basic functionality of the proxy server is to map two directories, one in the local system with the other 
being at the remote end (Linux/Unix) in such a way that the commands executed in the local directory are 
transferred to the server directory and executed there. For example, consider the mapping between two 
directories; dir1 and dir2 given as 
C:\user\imtiaz\Desktop\dir1 ->    /home/imtiaz/Desktop/dir2 
(Windows)                         (Linux/Unix) 
In the above example, dir1 is the local directory (i.e. Windows) and dir2 is the remote server directory. 
Using this mapping and being in dir1, typing a command using lstcvm to list the files (i.e. by using the 
lstcvm_run executable as prefix to command ‘ls’) will result in listing the files of dir2. In this way, 
remote commands can be executed from the mapped local directory.  
LS-OPT utilizes this capability to execute solver jobs on the remote server by transferring the necessary 
input files to the server directory (dir2). Once the analysis is completed, the corresponding output files are 
transferred back to the local directory (dir1) where LS-OPT is running. This is illustrated using an example 
problem in Figure 1.1. 
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Figure H - 5: Using lstcvm with LS-OPT 

DynaOpt.inp, which is the LS-DYNA input file for a design point, is transferred to the remote server hosting 
the LS-DYNA executable. Once this input file is analyzed, the corresponding response outputs (response.0, 
response.1 etc) are extracted from the LS-DYNA output files and transferred back to the local directory 
(dir1). 

H.12.1  Installation and Setup 

o lstcvm is available for download at http://ftp.lstc.com/user/ls-opt/lstcvm. Download and install the 
lstcvm build suitable for the remote server.  

o The lstcvm distribution consists of all the necessary executables along with a few sample files used 
to set up the proxy server. The sample files are provided in the SAMPLE_CONFIG directory. These 
are lstcvm.config, lstcvm.dirmap, lstcvm.exemap, lstcvm.usrmap. All the variables required for 
setting up the proxy server are initialized in these files. 

From the remote server end (Linux/Unix): 
o While setting up the proxy server, the system administrator of the remote server has to define which 

directories are to be mapped, which executables are allowed to run using the proxy server and who 
(which user) can execute the commands using lstcvm. This information is provided using the 
.dirmap, .exemap and .usrmap files which are called by the configuration file lstcvm.config.  

o Note: Mapped directories should have the same subdirectories to execute remote commands from 
the subdirectories.  

o lstcvm.dirmap defines the information/absolute path of the mapping directories. The local directory 
should be on the left hand side and the server directory on the right. The following variable maps 
dir1 with dir2. 
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o C:\user\imtiaz\Desktop\dir1 ->   /home/imtiaz/Desktop/dir2 
o lstcvm.exemap is used to specify the programs that can be executed using the proxy server. For 

example with the following mapping of the executable,  
o ls971_single -> /home/imtiaz/bin/ls971_single 
o being in dir1(local), and if dir2 (remote server) has an LS-DYNA keyword file and assuming 

mapping between dir1 and dir2, executing the command lstcvm_run ls971_single i= 
keyword.k from the local machine will result in an LS-DYNA analysis of the keyword file at the 
remote end in dir2. Mapping should be provided even to list the files using the ls command i.e.  

o ls -> /bin/ls 
o To use lstcvm with LS-OPT, the wrapper provided with the LS-OPT distribution should be mapped 

with its full path as shown below: 
o wrapper -> /home/imtiaz/LSOPT_EXE/wrapper 
o lstcvm.usrmap is used to allow mapped users to execute commands using lstcvm. If a user has the 

same username on both the local machine and the remote server, then no mapping is required. For 
other cases a mapping rule has to be defined in lstcmvm.usermap. For example, for a mapping rule 
given as, (usernames on the left correspond to the local machine while those on the right correspond 
to the remote server) 

o Jones   -> Jack 
o Fred    -> Jack 
o *       -> nobody 
o *       -> (none) 
o For the first two rules, the local user Jones is mapped with remote user Jack and the commands are 

executed on the server if there is a remote user with the name Jack. Similarly, commands executed 
by the local user Fred are run using the remote username Jack if that username exists on the server 
machine. The third rule allows all other local users to execute commands as user nobody if that 
username exists. Any user including * mapped to (none) will not be allowed to run commands on the 
server.  

o lstcvm.config is the main configuration file which has all the information about the proxy server 
including the working directory, job log directories, server port, server log and debug log files and 
all the mapping files apart from other miscellaneous options. The server log and debug log files 
consist of all the commands executed through the proxy server along with error information (if any). 
In the sample configuration file provided by the lstcvm distribution, the default port number is given 
as 3850. This is the port number of the remote server through which lstcvm listens. If the default port 
is not open on the remote server, the user has to ask the system administrator to open a port within a 
range of 1025-65535.  

o Note: More detailed information is provided in the self-documented sample files provided with the 
lstcvm distribution.  

o Once the configuration and mapping files are defined, the proxy server can be started by running the 
executable lstcvm. Once the server has been started,  you should be able see the following 
information 
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Figure H - 6: lstcvm startup 

From the local machine (Windows/Linux): 

o To execute commands from the local machine, lstcvm_run is appended to each command. The 
executable lstcvm_run is available in the lstcvm distribution but for using it from a local 
machine, the lstcvm distribution suitable for the local machine architecture should be downloaded 
(i.e. if the local machine is Windows, the lstcvm_run executable for Windows must be used). 
Once the proxy server has been started from the server end, the environment has to be set on the 
local machine given as (if Linux) 

o       LSTCVM_SERVER server_host_name 
o    export server_host_name 
o For a Windows machine, registry settings are used to store the server name. This can also be done by 

issuing the following command on Windows, 
o lstcvm_run.exe -s server_host_name (or) 
o lstcvm_run.exe -s non_standard_port@server_host_name 
o Once these steps have been followed, the proxy server can be tested by issuing the command 

lstcvm_run ls from dir1 which should result in listing the files of dir2 of the remote server. 

H.12.2  Example Problem 

o Here a simple car crash example similar to the one in section 17.2 is optimized using LS-OPT with 
the lstcvm proxy server.LS-OPT is executed on a local Windows machine and the solver jobs (LS-
DYNA) are scheduled on a remote Linux server. 

o The LS-DYNA input files and LS-OPT job file required for this example can be obtained from the 
LS-OPT training examples set.  
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o (lsopt_50_traning_examples/design_optimization/simple/linear)  
o The example requires the following files: 
o main.k (main input file consisting of LS-OPT parameter definitions) 
o car5.k (include file specified in main.k)  
o rigid.k (include file specified in main.k) 
o linear.correct.lsopt (LS-OPT job file) 

Remote server end: 
o The lstcvm proxy server is started on the Linux server using the following configuration and 

mapping files. 
o lstcvm.config: (Located in the directory same as lstcvm distribution) 
o SERVER_WORKING_DIRECTORY   = /home/imtiaz/Desktop/dir2 
o JOB_LOG_DIRECTORY          = /home/imtiaz/Desktop/dir2 
o TEMPLATE_DIRE              = /home/imtiaz/Desktop/dir2 
o JOB_STATUS_FILE            = /home/imtiaz/Desktop/dir2 
o SERVER_PORT                = 3850 
o SERVER_RUN_IN_FOREGROUND   = 1 
o SERVER_DEBUG_LOG           = lstcvm.debug  
o SERVER_LOG             = lstcvm.log 
o JOB_EXECUTABLE_MAP         = lstcvm.exemap 
o JOB_DIRECTORY_MAP          = lstcvm.dirmap 
o JOB_USER_MAP               = lstcvm.usrmap 
o JOB_ID_FILE                = lstcvm.jobid 
o (Note: In the above sample files, the files without full path are located in the working directory) 
o lstcvm.exemap: 
o ls               -> /bin/ls 
o ls971_single     -> /home/imtiaz/bin/ls971_single 
o wrapper          -> /home/imtiaz/LS-OPT/LSOPT_EXE/wrapper 
o lstcvm.dirmap: 
o C:\user\imtiaz\Desktop\dir1 ->    /home/imtiaz/Desktop/dir2 
o lstcvm.usrmap: 
o imtiaz -> imtiaz 
o *      -> (none) 
o The lstcvm proxy server is started using the lstcvm executable. 
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GUI Setup (Local machine): 
o In the local Windows machine, the remote server name is stored using the registry settings explained 

in the setup process.  
o The files used in the example should be present on the local Windows machine (dir1) and once LS-

OPT is executed with lstcvm, the LS-DYNA input files are copied to each run directory on the 
remote server (dir2). 

o Modify linear.correct.lsopt by checking the option Use LSTCVM proxy in the Stage setup dialogue 
box as shown in Figure 1-3.  Using this check box, the user does not have to append lstcvm_run on 
the command line. The defined LS-DYNA command should correspond to the executable mapped in 
the lstcvm.exemap file. 

 

Figure H - 7: lstcvm GUI setup 

o In the above Figure, the command ls971_single represents the LS-DYNA executable present on the 
remote server. This executable mapping should be defined in the lstcvm.exemap file. 

o Running the LS-OPT example will copy the LS-DYNA input files car5.k, rigid.k and DynaOpt.inp 
(originally main.k) to all the LS-OPT run directories within dir2 of the remote server.  

o Once the LS-DYNA analysis is completed, the response files response.0, response.1 etc are 
automatically transferred back to the run directories of dir1 i.e. to the local Windows machine. These 
files are then utilized by LS-OPT to perform optimization on the local Windows machine. The files 
for further iterations are copied back and forth from the local machine to the remote server until the 
LS-OPT process terminates. 
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H.13  Passing environment variables through LS-OPT 
LS-OPT provides a way to define environment variables that will be set before executing a solver 
command. 
Passing environment variables to stage commands can be a convenient way to control the behavior of a 
command. For example, the command might be a script which queues a job on a remote machine; the 
environment variable settings might be used by the script to select various queuing options. Or, the 
environment variable settings might be passed along through the queuing system to set options for the 
remotely executed job, such as license server locations, input file names, whether to run the MPP version of 
LS-DYNA, whether to run a single or double precision solver, etc.  
Environment variables can be set manually in the GUI, or provided in a file that is loaded to the GUI, 
Section H.13 . 

Executables, *.env files and *.lstcsh files are currently the only valid file types. The default location 
of these files is 
$HOME/LSOPT_SCRIPTS 

You can redefine the search location for scripts by setting an environment variable LSOPT_SCRIPTS to the 
desired directory location. 
NOTE: Windows does not set a HOME environment variable, even though there is a home directory for 
each user. A command prompt, for example, opens in the home directory of the user. 

H.13.1  .env files 

The simplest way to import a group of environment variables into LS-OPT is through the use of an 
environment variable file. For example, create a file “test.env” in $HOME/LSOPT_SCRIPTS with 
these five lines in it 
# This is a comment line 
LSTC_LICENSE=network 
LSTC_LICENSE_SERVER='server1 server2 server3' 
LSTC_LICENSE_PORT=31020 
LSTC_EXE=ls971_R4 

Save the file.  

There are a few formatting rules that should be observed for a “.env” file: 

1. Any line which begins with #  !  @  $  %  &  ;  : is treated as a comment line. 
2. NAME=VALUE lines should not contain white space between NAME and =, or between = and 

VALUE. 
3. White space may appear before NAME, at the beginning of a line 
4. If VALUE contains white space, then use NAME='VALUE' as shown above. (This is an acceptable 

form, whether or not spaces appear in VALUE.)0. 
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H.13.2  Executables 

You can import a group of environment variables by creating an executable that prints a space-separated list 
of NAME=VALUE pairs to standard output, all on one line. This list must appear in a single line of output, 
the last line of output from the program; previous lines of output are ignored. There should be no space 
between NAME and =, or between = and VALUE. If VALUE must contain spaces, then use 
NAME='VALUE'. The single quotes are optional if value does not contain spaces. 
For example, the single output line shown below is valid (it has been broken for display purposes only): 
exe=/home/trent/LSTC/PERL/lsdyna-caec01_pbs_sub.pl menu=batch time=1:00 
host=abcdefgh07 procs=1 jobname=’My Job’ project=isd email=No delay=No 
preemptable=No version=’LS-DYNA 970 MPP SP 6763’ ioloc=/home/trent 
inpfile=DynaOpt.inp mem1=auto mem2=auto pfile=Generic dumpbdb=No dynamore=No 
clean=No tail=No copycont=No optimization=LsOpt 

The main reason to use a program to set variables in bulk, instead of a “.env” file, is that an interactive 
program can take advantage of the Edit browse list feature, which is described in Section 5.4.4. 

.lstcsh files 
These types of files are specialized script files which requires the interpreter “lstcsh” (or “lstcsh.exe” on the 
PC). This interpreter is included in the LS-OPT distribution, and it is designed to generate the output format 
described for “Executables” above. It is also designed to allow interaction with the Edit browse list feature, 
Section 5.4.4. These scripts define graphical programs with standard user-interface components for 
selecting, modifying, or specifying environment variables. For example, if you have complex and 
specialized queuing options, then “.lstcsh” script files could be useful for you. Please contact LSTC for 
more information. 
WARNING: LS-OPT creates a special browse variable when importing a variable list. This variable records 
the program name used to create the Browse List. The user-supplied browse program should never define 
the browse variable in its output. The name browse should be treated as a reserved name. 
A simple Linux browse command could be a shell script: 
#!/bin/bash 
echo This line is ignored. Only the last line survives 

echo A=B C=D 

The LS-OPT GUI offers an option Edit Browse list. If a valid Browse List is present in the Environment 
Variables list, then selecting this option will run the original program that created the Browse List, together 
with all of the current Browse List options passed as command line arguments, one per existing 
environment variable.  
Executing the 'Edit Browse List' will cause the original file to be reread, which is convenient for testing 
purposes.  
Each command-line argument has the form name=value. However ‘value’ is not single-quoted because each 
name=value argument is a separate command-line argument. The customer-supplied browse command 
should offer the user an opportunity to edit the existing variables, and the browse command should return 
the newly edited list on one line, in the same format as described above.  This would normally be done 
through some sort of graphical user interface. The returned list will be used to replace all of the previous 
Browse List. 
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The next example script returns an initial Browse List consisting of two variables, A and C.  Invoking the 
editing feature appends a new variable (tN=N) to the list. 
#!/bin/bash 
echo This line will be ignored. Only the last line survives. 
if [ “$1” == “” ]; then 
  echo A=B C=D; 
else 
  echo $* “t”$$”=”$$; 
fi 

When this script is invoked using the “Create by Browse” feature, there are no command-line arguments, 
and the script prints “A=B C=D” to standard output. However, when the script is invoked using the edit 
feature for the first time, two command-line arguments “A=B” and “C=D” are passed to the script. This 
time the return line consists of the original command-line arguments (printed using $*) and tN=N, where N 
is the PID of the shell process. If the editing feature is invoked a second time, then three command-line 
arguments are passed to the script (“A=B”, “C=D”, and “tN=N”). Another new variable tN is appended, 
where N is the newest PID of the script process. This sample script has little practical value, except to 
illustrate how existing variable settings are passed by command-line to the previous browse command, and 
to illustrate how one can use the editing feature to modify or add new variables. 
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Appendix I:  Killing Jobs 

I.1  Overview of How Jobs are Killed 
There are only a few methods which are used to kill a job, regardless of how the job is run, and regardless of 
the type of job. 

o A D3KIL file is created to kill LS-DYNA jobs. LS-DYNA will save its data, update restart files, and 
exit cleanly. Unfortunately, depending on the type of job, LS-DYNA may not be able to check for 
the presence of a D3KIL file in any short period of time. This is especially true of large implicit jobs 
where large matrix solves are not interrupted for efficiency reasons. 

o SIGINT signal (Ctrl+C under Windows). Many programs are designed to trap such signals and to 
exit gracefully. Others may deliberately ignore such signals. This signal cannot be used to kill LS-
DYNA jobs, because LS-DYNA traps this signal to activate a sense switch. 

o SIGTERM signal (Ctrl+Break under Windows). This is a little more forceful than SIGINT or 
Ctrl+C option for killing programs. Programs which ignore the SIGINT or Ctrl+C may exit upon 
receiving this signal, either voluntarily or involuntarily. Programs are allowed to catch or to ignore 
such signals. 

o SIGKILL signal (TerminateProcess() process under Windows). This is the most reliable method 
for killing a job, but it may result in lost resources because programs cannot generally catch or 
ignore such kill requests. Linux processes killed in this way will not be able to flush unwritten data, 
or to close files. Linux jobs killed in this way may result in <defunct> processes. Windows processes 
killed in this may be unable to properly release DLL resources. This Windows kill option is the same 
mechanism used by the Windows Task Manager to 'force' kill a job, and the same warnings apply. 

o A queuing system job deletion command may be issued. This is generally results in a sure kill of a 
remote running job, but there is no opportunity to save files or other data. This is a remote queuer-
specific version of the SIGKILL option. 

The biggest determining factor in how a job is killed is the manner in which the job is scheduled: 
1. Locally; 
2. Indirectly through a runqueuer/wrapper solution; 
3. Indirectly using the HONDA queuing option; 
4. Indirectly using the BLACK BOX queuing option. 0. 

There are LS-DYNA and non LS-DYNA jobs. How a job is killed depends on how it is run and queued. 
Queued jobs can be stuck in strange states that require special handling. LS-DYNA jobs are handled 
differently in order to preserve data that might be useful. 
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I.1.1  Case 1 (Killing Local Jobs):  

Local jobs are killed using D3KIL files and/or signals. 
o The first attempt to kill an LS-DYNA jobs is done by creating a D3KIL file. The SIGTERM method 

is used if LS-DYNA does not respond within 10 minutes. The SIGKILL method is used if LS-
DYNA does not respond to SIGTERM within 15 seconds. If LS-DYNA does not respond shortly 
afterwards, then the job is abandoned. 

o Non LS-DYNA jobs are killed using signals, starting with SIGINT (or SIGTERM). If that fails after 
about 10 minutes, then SIGTERM is used. If that also fails, then a SIGKILL signal is delivered. If 
that fails, then the job is abandoned. 

I.1.2  Case 2 (Killing Jobs run using runqeuer/wrapper):  

This option is used to monitor/control jobs which are run remotely using a queuing system. A local 
runqueuer process communicates with a remote wrapper process in order to relay terminal I/O, to transfer 
files, and to deliver signals. 
If you try to kill a job started using runqueuer/wrapper before these programs have been able to negotiate a 
connection, then runqueuer will exit, and the remote job will be unable to start. 
If you try to kill a job after runqueuer and wrapper have negotiated a connection, then the method of killing 
the job is much like that for a locally-run job. 

o If the remote job is an LS-DYNA job, then a D3KIL file is created on the remote side. If LS-DYNA 
fails to exit after about 10 minutes, then the SIGTERM is used to kill LS-DYNA. If that also fails, 
then the SIGKILL method is used to kill LS-DYNA. If that fails, then the runqueuer/wrapper 
programs exit, and a queuing system job delete command is issued. The job is then abandoned. 

o If the remote job is a non-LS-DYNA job, then the SIGINT (or SIGTERM) is first used. This is done 
approximately every 15 seconds. If that fails, then the SIGTERM method is used. If that also fails, 
then the SIGKILL method is used. If that fails, then the runqueuer/wrapper programs exit, and a 
queuing system job delete command is used. The job is then abandoned. 

I.1.3  Case 3 (Jobs are run using the HONDA queuing option):  

This queuing option was created to work in environments where TCP/IP connetions from compute clusters 
back to LS-OPT were either impractical, undesirable, or not allowed. Commands are executed using user-
supplied queuing scripts to run the jobs on remote nodes. 
If you try to kill a job managed using this option, then a job id/name must be known, because the only way 
to kill the job is using the queuing system job delete command. Queuing scripts can hang for a time before 
finishing. Therefore, we wait for 2 minutes to find the job name/id in the script output. After that we 
abandon the job. 
NOTE: There are times when an LsoptJobCheck script may be run. If this script is busy when the job is 
killed, then we wait indefinitely for the script to complete. That way we prevent <defunct> processes. 
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I.1.4  Case 4 (Jobs are run using the BLACK BOX queuing option):  

This option was created to deal with an unknown queuing system, and to provide a general mechanism for 
progress monitoring using scripts created by the user. Jobs are submitted using a user-supplied submit script 
to run jobs on remote nodes.  
If you try to kill a job managed using this option, then a job id/name must be known, because the only way 
to kill the job is using a user-supplied LsoptJobDel script. Queuing scripts can hang for a time before finish. 
Therefore, we wait for 2 minutes to find the job name/id in the script output. After that we abandon the job. 
A script named LsoptJobCheck runs periodically for each job. A job for which this script is running is not 
killed or abandoned until this script completes. This is done to avoid <defunct> processes. 

I.2  Killing Jobs using LS-OPT, LS-OPTui, and LSKILLJOB. 
This is a program supplied with LS-OPT for the purpose of killing jobs managed by the lscheduler process. 
Jobs may be killed in bulk or killed individually using this program. The lskilljob program resides in the 
LS-OPT installation directory, along with the other executables.  

I.2.1  Killing All Jobs in Bulk 

Jobs can be killed in bulk from 
o LS-OPT using the sense switch sw1.  
o LS-OPTui Run Panel.  
o Using the LSKILLJOB command line utility. 

The LSKILLJOB program is a separate executable located in the main directory of the LS-OPT distribution. 
The syntax to invoke the bulk kill option using LSKILLJOB is: 
lskilljob -kill 

All three programs contact the LSCHEDULER job scheduling process in order to kill jobs. The 
LSKILLJOB program must be able to contact the LSCHEDULER process in order to kill jobs; so it 
imperative that LSKILLJOB is run in the main project directory for the currently running LS-OPT process. 
LSKILLJOB consults a file named “lsopt.control” for information about how to connect to the 
LSCHEDULER process. If “lsopt.control” cannot be found, or if LSCHEDULER is not currently running, 
then LSKILLJOB prints the following error message and then terminates: 
Kill request status:Failed to open lscheduler 

I.2.2  Kill One Job 

A single job may be killed using LS-OPTui, or using the standalone LSKILLJOB program. The basic kill 
job option requires a job number and no other command line options. As described above, the LSKILLJOB 
program must be run from the main LSOPT project directory 
lskilljob job_number 
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There are several errors which can occur during such a request, and by are diagnosed by the following 
LSKILLJOB error messages 

Kill request status:Job not running 
Kill request status:Invalid parameter 
Kill request status:Target job cannot be killed, 
        or job id out of range 
Kill request status:Failed to open lscheduler 

If the command succeeds (which does not mean that the job is immediately killed,) then you should see a 
success message 

Kill request status:Success 
This indicates the that the job number is a valid, running job, and that the kill operation has been initiated. 

I.3  Kill Level 
Whenever a job is killed using the bulk kill option, or the LSKILLJOB kill described above, the kill 
operation proceeds in levels or stages. For LS-DYNA there are three stages. For somes jobs, there are only 
two. 

I.3.1  LS-DYNA Jobs (non-queued) 

1. A D3KIL file is created in the working directory of the LS-DYNA job. 
2. A SIGTERM signal is sent under Linux, or a Ctrl+Break under Windows. 
3. A SIGKILL signal (kill -9) is sent under Linux, or is forcibly terminated under Windows, using the 

same force-kill mechanism as the Windows Task Manager. 0. 

I.3.2  LS-DYNA Jobs (queued with runqueuer/wrapper) 

1. If the user-defined script failed to return a job name or job id, then a request is made to the 
runqueuer program to exit. The job is then abandoned. 

2. If the user-defined script has returned a job name or job id, but the remote side has not yet connected 
back to the local side, then the queuer-specific job delete command is issued, and the runqueuer is 
instructed to exit. The job is then abandoned. 

3. If the remote wrapper program has connected back to the local runqueuer, then a D3KIL is created 
by the remote wrapper, and we wait for LS-DYNA to exit. 

4. This level pertains only to the case where the remote wrapper has connected, but the D3KIL file has 
failed. The wrapper program is now instructed to send a SIGTERM signal to LS-DYNA. 

LS-OPT Version 5.2  683 



APPENDIX I: Killing Jobs 

5. This level pertains only to the case where the remote wrapper has connected, but the D3KIL and/or 
the SIGTERM signal have failed. The wrapper program is now instructed to send a SIGKILL signal 
to LS-DYNA. 0. 

I.3.3  Other Jobs (non-queued) 

1. A SIGINT (or SIGTERM) signal is sent under Linux, or a Ctrl+C (or a Ctrl+Break) is delivered 
under Windows. 

2. A SIGTERM signal is sent under Linux, or a Ctrl+Break under Wndows. 
3. A SIGKILL signal (kill -9) is sent under Linux, or is foricbly terminated under Windows, using the 

same force-kill mechanism as the Windows Task Manager. 0. 

I.3.4  Other Jobs (queued with runqueuer/wrapper) 

1. If the user-defined script failed to return a job name or job id, then a request is made to the 
runqueuer program to exit. The job is then abandoned. 

2. If the user-defined script has returned a job name or job id, but the remote side has not yet connected 
back to the local side, then the queuer-specific job delete command is issued, and the runqueuer is 
instructed to exit. The job is then abandoned. 

3. If the remote wrapper program has connected back to the local runqueuer, then the wrapper is 
instructed to deliver a SIGINT (or SIGTERM) signal to the process. 

4. This level pertains only to the case where the remote wrapper has connected, but the signal has failed 
to kill the process. The wrapper program is now instructed to send a SIGTERM signal to the process. 

5. This level pertains only to the case where the remote wrapper has connected, but the SIGINT and/or 
SIGTERM signals have failed to kill the process. The wrapper program is now instructed to send a 
SIGKILL signal to LS-DYNA. 0. 0. 

I.3.5  All BLACKBOX Queued Jobs 

1. If the BLACKBOX queuing script has been executed, but no valid job id or job name has yet been 
detected, then we queue a kill event until the job id or job name can be found, and any running 
queuing script or LsoptJobCheck script has finished. We then execute LsoptJobDel to kill the job. If 
this condition has persisted for 120 seconds since starting the queuing script, then the job is 
abandoned. 

2. If the BLACKBOX queuing script has returned a valid job id or job name, but the queuing script or 
LsoptJobCheck is currently running, then we queue a kill event until the script in question has 
finished. We then execute LsoptJobDel to kill the job. 

3. If the BLACKBOX queuing script has returned a valid job id or job name and has completed, and if 
there is no queuing script or LsoptJobCheck in progress, then we kill the job using the user-supplied 
LsoptJobDel script. The job is then abandoned. 
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4. If a queuing script has not yet reported a valid job id or job name, then the job is abandoned. 
5. If an LsoptJobCheck script is stalled, we send a SIGKILL to the script, and the job is abandoned. 
6. The job has been abandoned by this point. 0. 

I.3.6  All HONDA Queued Jobs 

1. If the HONDA queuing script has been executed, but no valid job id or job name has yet been 
detected, then we queue a kill event until the job id or job name can be found. 

2. If the HONDA queuing script has failed to return a valid job id or job name for 120 seconds, then 
the job is abandoned. 

3. If an LsoptJobCheck script is in the process of determining a final exit status for the job, then we 
ignore the kill in favor of waiting for the job check script to finish. 

4. If the HONDA queuing script has returned a valid job id or job name, then the queuing delete 
command is executed, and the job is abandoned. 

5. If the HONDA queuing script has been executed, but still has not returned a valid job id or job name, 
then the job is abandoned. 

6. The job has been abandoned by this point. 0. 

I.4  Increasing the Kill Level 
The bulk kill may spend up to 10 minutes in the first stage (level 0) before proceeding to level 1. It then 
executes level 1 kill operations, and waits only 15 seconds before proceeding to the final “sure-kill” level 2 
kill operations. The kill will remain in the final stage only for a short time before abandoning the job 
entirely, possibly leaving behind a job that refuses to exit. Some jobs are abandoned at level 1, depending on 
the type of job and the queuing options. Jobs abandoned at level 1 do not usually result in lost resources. 
It not generally advisable to elevate the kill level for a particular job, but this is an option which can be 
reasonably invoked by the user. For example, 
lskilljob job_number 1 

will cause the kill routines to spend only 15 seconds waiting for level 0 kill operations to succeed before 
moving to level 1 kill operations. LSHEDULER will then try one level 1 kill operations, and wait 15 
seconds before trying the final 'sure-kill' level 2 kill operations. Executing 
lskilljob job_number 2 

will cause the kill routines to spend only 15 seconds waiting for level 0 kill operations to succeed before 
moving to the final level kill operations (may be level 2 or, in some cases, may be level 1.) 
If you execute LSKILLJOB using level 1, and execute it again immediately afterwards, then the wait period 
for the level 0 kill is eliminated, and level 1 kill operations are executed immediately. Executing 
LSKILLJOB immediately again then aborts the 15-second wait period for level 1 kill operations, and level 2 
kill operations are immediately executed. This will make the impatient user happy, but may surprise other 
users. This is by design in order to create a responsive command. 
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Once the kill level is elevated, then all subsequent LSKILLJOB commands work at the same or higher level 
according to kill level escalation rules, making it unnecessary to add the kill level argument again. The kill 
level cannot be lowered by using the option kill level command line option. And a kill operation cannot be 
aborted. 
Warnings: 

o Once a job kill operation is started, it cannot be canceled. 
o The kill level 2 can result in lost kernel resources and incorrectly closed files. Linux systems may 

leave behind a <defunct> job, and files may be incompletely written. Windows systems may lose 
resources because DLLs are not properly detached, and may even destabilize the system; files may 
also be corrupted or incompletely written. 

o LS-DYNA may be unable to check for the presence of a D3KIL file for a considerable period of 
time. This usually occurs with implicit jobs where long matrix calculations are not interrupted for 
reasons of efficiency. 10 minutes should be sufficient for nearly all explicit LS-DYNA runs. 

I.5  Termination Status for Killed Jobs 
This is a tricky issue, where the defaults are usually appropriate, but not always. For that reason, you may 
wish to set the final job status to ERROR, ABORTED, or KILLED using the lskilljob command. 
You can specify the final exit ERROR, ABORTED or KILLED as follows: 
lskilljob job_number [level] error 
lskilljob job_number [level] aborted 
lskilljob job_number [level] killed 

Commands marked with ERROR will not be restarted using LS-OPT, and results from these commands are 
ignored. The finished file will contain the string 
E r r o r   t e r m i n a t i o n 

Commands marked with ABORTED will be restarted according to the retry rules defined in LS-OPT. If the 
process has reached its maximum number of allowed retries (which may be 0,) then the process is flagged 
with a final status of ERROR. Otherwise, the command is retried after a suitable wait period. A finished file 
is created only in the latter ERROR case and, in that case, will contain 
E r r o r   t e r m i n a t i o n 

The KILLED option is used by the bulk kill option so that LS-OPT will retry the job upon restart; however, 
this job may not restart if LS-OPT has beyond the point where the results of this job are needed. The 
finished file will contain the string 
F o r c e d   t e r m i n a t i o n 

If a bulk kill is in effect when you kill the job using LSKILLJOB, then the default final job status is 
KILLED, which is the same as all other jobs killed during the bulk kill. However, if a bulk kill is not in 
effect when you kill the job using LSKILLJOB, then the default final job status is ERROR. The assumption 
is that any job killed during a bulk kill should be flagged the same as all other jobs; the intent of the user is 
interpreted only as an action to speed along the bulk kill by targeting certain jobs which are slow to exit. 
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However, if just one job is killed outside of a bulk kill, then the assumption is that the job has failed in some 
way, and should be flagged with ERROR; that way the job will not be restarted. 

I.6  Flagging a Job for Restart 
If you kill a job using LSKILLJOB, then you can also flag the job for restart 
lskilljob job_id [kill_level] restart [wait_time_seconds] 

If you do no specify a wait time, then a default value of 0 is used, thereby instructing the LSCHEDULER 
process to reschedule the job as soon as there are resources to do so. The status returned by this command is 
the same as for the corresponding kill command without the restart option. 
This option is designed for cases where a temporary problem has caused a job to hang or misbehave, and 
you want to kill and restart the job after waiting long enough to correct the problem For example, a queuing 
system may have failed, and the job was lost; so the submit script failed to return a job id/name. Or perhaps 
the queuing system discarded the job for some reason, and LS-OPT has no way of knowing that the job 
cannot complete. 
Another designed use of this command is in situations where a job has ERROR terminated because of some 
resource problem, and you want to schedule the job to restart before LSCHEDULER terminates, so that 
LSOPT can use the corrected results. To flag a completed job for restart, issue the LSKILLJOB command 
with the -restart option 
lskilljob job_id -restart [wait_time_seconds] 

The LSCHEDULER process will restart the process as soon after the specified time wait as resources are 
available to start the job. 
You may cancel any pending restart option up until the time the job actually starts. This is done using the 
cancel option for the LSKILLJOB command 
lskilljob job_id -restart job_to_restart cancel 

This cancels any pending restart operation initiated with the LSKILLJOB command. This command does 
not cancel other types of pending restart events caused by an “A b o r t e d” termination status. 
You may modify a pending restart wait time before the job has restarted by issuing the command 
lskilljob job_id -restart wait_time_seconds 

This command does not function for running jobs, unless a kill is already scheduled, in which case the 
restart option and restart time field are updated. If a kill has not yet been scheduled for the job, then 
LSKILLJOB will report an error 

Restart status:Job is running, use kill with restart option 
Other possible returns are 

Restart status:Success 
Restart status:Cannot restart, job never started 
Restart status:Job id out of range 
Restart status:Already flagged for retry (no action taken) 
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Restart status:Invalid argument 
Restart status:Failed to open lscheduler 
Restart status:I/O error while negotating with lscheduler 

Remarks on Restarting Jobs:  
o Restart events should be considered transient, persisting only during the time that LSCHEDULER is 

running. If you issue a bulk kill of all jobs, then any pending restart events are discarded. The 
affected jobs are not automatically restarted at a later time. 

o In future versions, the user will be able to schedule a restart for a job, even if the LSCHEDULER is 
not running. Such restart events will be persistent. 

o A job which has never been started cannot be flagged for restart. 
o Jobs which are running cannot be flagged for restart without also issuing a kill operation. 
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Appendix J:  Document Type Definition 

(DTD) 

<lsoptproject> Root element  
root element 

<lsoptproject>'s attributes 
  

Name Values Default Description 
  

version CDATA Required Version number for this lsopt 
project.  

Element's model: 

(encryption?, head?, globals?, distributions?, filehistories?, variables?, varcorrelations?, samplings?, 
evalmeta?, composites?, objectives?, constraints?, schedulerconfig?, resources?, task) 

<encryption> Child of lsoptproject  
Holder of encrypted data that replaces the current document. 
<head> Child of lsoptproject  
project header - metadata block 

Element's model: 

(title?, meta*) 

<title> Child of head  
project title 
<meta/> Child of head  
meta (metadata name/content-pair) (modelled after its HTML equivalent) 

<meta>'s attributes 
  

Name Values Default Description 
  

content CDATA Required Value for entry 
name Match the NMTOKEN rules. Required Name for this metadata entry 

(such as "author") 
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This element is always empty. 

<globals/> Child of lsoptproject  
Global parameter definitions 

<globals>'s attributes 
  

Name Values Default Description 
  

historysize CDATA 100,000 Number of time points for new histories 

This element is always empty. 

<distributions> Child of lsoptproject  
Container element for the defined distributions 
Element's model: 

(distribution*) 

<distribution/> Child of distributions  
Distribution declaration 

<distribution>'s attributes 
  

Name Values Default Description 
  

a CDATA Implied 'a' value for beta, triangular, gumbel, 
frechet 

b CDATA Implied 'b' value for weibull, beta, erlang, 
rayleigh, frechet triangular, gumbel 

c CDATA Implied 'c' value for weibull, erlang, triangular, 
frechet 

filename CDATA Implied File name for user_pdf, user_cdf 
lambda CDATA Implied lambda value for poisson 
lower CDATA Implied Lower bound for uniform, 

truncated_normal 
mean CDATA Implied Mean value for normal, truncated_normal, 

lognormal 
n CDATA Implied n value for binomial 
name Match the ID rules. Required Distribution name, prefixed with "d_" to 

be unique in the global namespace 
nu CDATA Implied nu value for beta 
omega CDATA Implied omega value for beta 
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p CDATA Implied p value for binomial, geometric 
scale CDATA Implied Scale value for exponential 
stddev CDATA Implied Standard deviation for normal, 

truncated_normal, lognormal 
type uniform, normal, 

truncated_normal, 
lognormal, exponential, 
weibull, beta, binomial, 
geometric, poisson, 
erlang, rayleigh, 
triangular, gumbel, 
frechet, user_pdf, 
user_cdf 

Required Distribution type: uniform, normal, 
truncated_normal, lognormal, 
exponential, weibull, beta, binomial, 
geometric, poisson, erlang, rayleigh, 
triangular, gumbel, frechet, user_pdf, 
user_cdf 

upper CDATA Implied Upper bound for uniform, 
truncated_normal 

This element is always empty. 

<filehistories> Child of lsoptproject  
Container element for the defined distributions 
Element's model: 

(filehistory*) 

<filehistory> Child of filehistories  
Declaration of history on file. The name of the file is given as the contents of the tag 

<filehistory>'s attributes 
  

Name Values Default Description 
  

name Match the ID rules. Required Name for this file history, 
prefixed with "x_" to be 
unique in the global 
namespace 

 
<variables> Child of lsoptproject  
Container element for the defined variables 
Element's model: 

(variable*) 
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<variable> Child of variables  
A single element is used for all types of variables. This is so that a variable can change type (typically back 
and forth from constant) without losing data, since a constant can have min/max/range; it's just unused. 
Element PCDATA is the definition for dependents and user defined. 

<variables>'s attributes 
  

Name Values Default Description 
  

dist Match the IDREF rules.  Distribution for noise variables. 
max CDATA  Maximum value for continuous 

variables. 
maxref Match the IDREF rules Implied Reference max. Reference to a 

variable of input type 
min CDATA  Minimum value for continuous 

variables. 
minref Match the IDREF rules Implied Reference min. Reference ti a variable 

of input type 
name Match the ID rules. Required Variable name, prefixed with "x_" to 

be unique in the global namespace 
range CDATA  Initital range for variables 
replacementlink Match the IDREF rules Implied Name of the linked response. If type = 

constant, value will be replaced by 
respective response value 

saddle minimize, maximize minimize Saddle direction 
sampling continuous, discrete continuous contiuous/discrete sampling for 

discrete vars 
type continuous, discrete, 

noise, constant, 
sconstant,  dependent, 
userdefined, string, 
iconstant, istring, 
responsevariable 

continuous Variable type. 

valref Match the IDREF rules Implied Reference value. Reference to a 
variable of input type 

value   Starting value for continuous/discrete. 
Constant value for constants. 

Element's model: 

(#PCDATA | dvalue)* 
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<dvalue> Child of variable  
Single value for discrete variable 
<varcorrelations> Child of lsoptproject  
Container element for the varcorrelation 
Element's model: 

(varcorrelation*) 

<varcorrelation> Child of samplings  
The correlation between variables can be specified. This correlation will be considered in Monte Carlo 
simulation (including metamodel based simulations) as well as in reliability based design optimization. Only 
correlation between normally distributed variables is allowed. 

<varcorrelation>'s attributes 
  

Name Values Default Description 
  

var1 Match the ID rules. Required Variable name 
var2 Match the ID rules. Required Variable name 
corr CDATA Required Value of the correlation 

between the variables var1 and 
var2. 

 
<samplings> Child of lsoptproject  
Container element for the different samplings 
Element's model: 

(sampling*) 

<sampling> Child of samplings  
Defines a single sampling design 

<sampling>'s attributes 
  

Name Values Default Description 
  

name Match the ID rules. Required Design id, prefixed with "e_" 
(for experiment) to be unique 
in the global namespace. 

Element's model: 

(design?, metamodel?, alternate?, histmetamodel?, myvars?, stages?, importresults?, 
importdesignfunctions?, checkpoints?, cmp_metamodels?) 

<design> Child of sampling, alternate  
Specifies the design for this sampling of points 
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<design>'s attributes 
  

Name Values Default Description 
  

filename CDATA Implied Filename for userdefined 
filetype csv, original Implied set to "csv" or "original" for 

userdefined 
firstaugiter CDATA Implied If set, iterations before the one 

given, that have existing 
experimental points will not be 
augmented. 

perturbation CDATA 0.01 Perturbation relative to design 
space for numerical sensitivity 

points CDATA Implied Number of points per iteration for 
dopt, monte_carlo, 
latin_hypercube*, 
maximin_distance 

ppv 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 2 Points per variable for 
full_factorial 

replicate CDATA 1 Number of replicate evaluations 
of the same design using 
stochstic fields 

seed CDATA 0 Optional random number seed for 
methods that use randomness. All 
point selection schemes are 
repeatable, but a seed can be 
provided to create different sets 
of random points. The feature is 
particularly useful for Monte 
Carlo or Latin Hypercube point 
selections which both directly use 
random numbers. Because D-
Optimal and Space Filling 
designs also use random 
numbers, albeit less directly, they 
may only show small differences 
due to the occurrence of local 
minima in the respective 
optimization procedures. 

stype numerical, analytical numerical Subtype for sensitivity: 
numerical, analytical 

subtype latin_hypercube_central_point 
latin_hypercube_generalized 

 Space Filling 1 
Space Filling 2 
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maximin_distance 
maximin_lhd_permute 
maximin_lhd_subinterval 

Space Filling (Algorithm 5) 
Space Filling 3 
Space Filling 4 

type one, 
dopt, 
koshal_linear, 
koshal_quad, 
composite, 
userdefined, 
plan, 
random, 
latin_hypercube, 
monte_carlo, 
maximin_distance, 
full_factorial, 
piercing, 
domainpiercing 
 
 
sensitivity 

Required Single Point 
D-Optimal 
Linear Koshal 
Quadratic Koshal 
Central Composite 
User defined sampling 
Plan 
Random placement 
Latin Hypercube 
Monte Carlo, Space Filling 0 
Space Filling 
Full Factorial Designs 
 
Space filling of Pareto Frontier 
Space Filling of Pareto region, 
not used 
Sensitivity 

update on, off Implied If set, causes space-filling 
method to consider points from 
previous iterations. Implies 
metamodel update. 

Element's model: 

(basis?) 

<basis/> Child of design  
Custom basis for D-Optimal design 

<basis>'s attributes 
  

Name Values Default Description 
  

points CDATA Implied Number of points per iteration 
for latin_hypercube, 
maximin_distance 

ppv 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 Implied Points per variable for 
full_factorial 

type full_factorial, Implied Full Factorial Designs 
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latin_hypercube, 
maximin_distance 

Latin Hypercube 
Space filling 

This element is always empty. 

<metamodel> Child of sampling  
Controls response metamodel created for this sampling 

<metamodel>'s attributes 
  

Name Values Default Description 
  

order linear, interaction, quadratic, elliptic, 
spherical 

linear linear, interaction, quadratic, 
elliptic, spherical (for 
polynomial) 

overwrite yes, no no  
type polynomial, sensitivity, ffnn, rbf, 

kriging, svr, userdefined 
Required polynomial, sensitivity, ffnn, 

rbf, kriging, svr or userdefined 
update on, off Implied When on, the metamodel will 

re-use points from previous 
iterations. 

Element's model: 

(ffnnopts?, rbfopts?, krigingopts?, svropts?,  usermmopts?) 

<cmp_metamodels/> Child of sampling  
Controls response comparison metamodels created for this sampling 
Element's model: 

(cmp_metamodel*) 

<cmp_metamodel> Child of cmp_metamodels  
Controls response comparison metamodel created for this sampling 

<cmp_metamodel>'s attributes 
  

Name Values Default Description 
  

active yes, no yes  
name Match the ID rules Required  
order linear, interaction, quadratic, elliptic, spherical linear linear, interaction, quadratic, 

elliptic, spherical (for 
polynomial) 

overwrite yes, no no  
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type polynomial, sensitivity, ffnn, rbf, kriging, svr, 
userdefined 

Required polynomial, sensitivity, ffnn, 
rbf, kriging, svr or 
userdefined 

update on, off Implied When on, the metamodel 
will re-use points from 
previous iterations. 

name Match the ID rules Required  
Element's model: 

(ffnnopts?, rbfopts?, krigingopts?, svropts?,  usermmopts?) 

<histmetamodel/> Child of sampling  
Controls history metamodels created for this sampling 

<histmetamodel>'s attributes 
  

Name Values Default Description 
  

type linear, quadratic, rbf Implied Type of metamodel to use for 
histories. linear, quadratic or radial 
basis functions. 

This element is always empty. 

<ffnnopts/> Child of metamodel  
Special options controlling Feed Forward Neural Networks 

<ffnnopts>'s attributes 
  

Name Values Default Description 
  

averagetype mean, median median Averaging function to use, mean or 
median 

command CDATA Implied Command for ffbuilder 
discard CDATA 0 Discard these many committee 

members with the lowest mean 
squared fitting error and the same 
number of committee members with 
the highest MSE. 

hiddennodes CDATA 0,1,2,3,4,5 Space, dash or comma separated list of 
hidden nodes in ensemble 

layers CDATA 3 Number of layers 
members CDATA 9 Number of Committee members 
optimize gcv, gcv_ratio, rmserror gcv Topology Selection Criterion: Leave-

one-out, GCV-ratio, Noise variance 
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regressionalg levenberg, bfgs, rprop rprop Gradient algorithm: Levenberg-
Marquardt, Broyden-Fletcher-
Goldfarb-Shanno, Resilient 
backpropagation 

rmserror CDATA -1.0 Threshold of RMS training error: The 
sorting algorithm will pick the first 
neural net which falls below the 
specified threshold starting with 0 
hidden nodes (linear). That means that, 
for a truly linear function, the sorting 
process will be terminated after 0, 
resulting in a dramatic saving of 
computational effort. 

seed CDATA 0 Random number seed for generation of 
a unique set of neural networks. 

transfer linear, sigmoid, gauss, 
hmq 

sigmoid Transfer function of intermediate 
layers: Linear, Sigmoid, Gauss, 
Hardy's Multi Quadrics 

scheduling yes, no no Use scheduling options that are 
defined for main metamodel 

Element's model: 

(scheduling?) 

<rbfopts/> Child of metamodel  
Special options controlling Radial Basis Function networks 

<rbfopts>'s attributes 
  

Name Values Default Description 
  

optimize gcv, gcv_ratio, rmserror gcv Topology Selection Criterion: Leave-
one-out, GCV-ratio, Noise variance 

rmserror CDATA -1.0 Threshold of RMS training error 
transfer linear, sigmoid, gauss, 

hmq 
hmq Transfer function: Linear, Sigmoid, 

Gauss, Hardy's Multi Quadrics    

This element is always empty. 

<krigingopts/> Child of metamodel  
Special options controlling creation of Kriging metamodels 

<krigingopts>'s attributes 
  

Name Values Default Description 
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correlation gauss, exponential gauss Correlation function 
selectone on, off off Set to one to use fixed theta for 

all responses 
trendmodel constant, linear, quadratic linear Trend model 

This element is always empty. 

<svropts/> Child of metamodel  
Special options controlling creation of Support Vector Regression metamodels 

<svropts>'s attributes 
  

Name Values Default Description 
  

Kernel gauss, polynomial gauss Kernel type 

This element is always empty. 

<usermmopts> Child of metamodel  
Special options controlling user metamodel. Contents of this element is the optional user-defined metamodel 
parameters, separated by whitespace. This allows the user to send numeric parameters to the user defined 
metamodel. It is up to the metamodel to specify which, if any, parameters it requires for operation. 

<usermmopts>'s attributes 
  

Name Values Default Description 
  

command CDATA Implied Optional string command passed to user code. Allows the user to 
send one string parameter to the user-defined metamodel, that may 
be used in any way by the metamodel. 

name CDATA Implied Name for user metamodel 
path CDATA Implied Optional path to look for user binaries. This has to be specified if 

the metamodel binaries are not placed in the same directory than the 
.lsopt file that refers to it, but in a central repository. 

 

<alternate> Child of sampling  
When this element is present in a sampling, linear metamodels will be used instead of the ones specified in 
the metamodel tag, but only up to a certain iteration. An alternate sampling design to be used for these 
iterations may also be specified. 

<alternate>'s attributes 
  

Name Values Default Description 
  

lastiteration CDATA 1 The number of the last iteration to use linear metamodel. 
Default is "1". 

 

Element's model: 
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(design?) 

<stages> Child of sampling  
Container element for all stages in a design 
Element's model: 

(stage*) 

<stage> Child of stages  
Stage definition 

<stage>'s attributes 
  

Name Values Default Description 
  

extractor internal, external external Controls whether this stage will extract using the 
separate binary 

ignore yes, no no Set to yes and this stage will be ignored. 
name Match the ID rules. Required Stage name, prefixed with "s_" to be unique in the 

global namespace 
type Match the NMTOKEN 

rules. 
Required Stage type, dyna960, own ... 

 

Element's model: 

(guidata?, runin?, dependson*, fileops?, command?, dbfile?, inputfile?, sessionfile?,outputfile?, 
appendfile?,configfile?, resource?, envvars?, extrainpfiles?, dynaoptions?, exceloptions?,scheduling?, 
myvars?, histories?, responses?) 

<guidata> Child of stage  
Metadata used for graphical representation of the problem. Not relevant to the LS-OPT engine 
Element's model: 

(position?) 

<position/> Child of guidata  
Position of the entity in 2D Cartesian space 

<position>'s attributes 
  

Name Values Default Description 
  

x CDATA Required X position, floating point value 
y CDATA Required Y position, floating point value 

This element is always empty. 
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<runin/> Child of stage  
By default, stages are run in experiment directories beneath a directory based on the stage name. By 
specifying this element, the stage can set to run in another directory. 

<runin>'s attributes 
  

Name Values Default Descriptions 
  

stage Match the IDREF 
rules. 

Required The name of the stage to share directory with, including 
s_ prefix 

This element is always empty. 

<dependson> Child of stage  
Each dependson element specifies that this stage depends on another stage. 

<dependson>'s attributes 
  

Name Values Default Description 
  

stage Match the IDREF rules. Required Stage name, including s_ prefix 
 

Element's model: 

(filetransfer)* 

<filetransfer/> Child of dependson  
Each filetransfer element specifies transfer of a file or directory from the stage which the parent dependson 
element refers to. 

<filetransfer>'s attributes 
  

Name Values Default Description 
  

dstfilename CDATA Implied Name of destination file in this stage. If not 
specified, default is same as srcfile. 

onerror fail, warn, ignore fail What to do if file transfer fails. stop, warn or 
ignore. 

op copy, move, link, 
copyrecursive 

Required File transfer operation. copy, move, link or 
copyrecursive 

srcfilename CDATA Required Name of file in upstream stage 

This element is always empty. 

<fileops> Child of stage  
Container element for all intra-stage file operations 
Element's model: 
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(fileop)* 

<fileop/> Child of fileops  
Specifies a local file copy operation 

<fileop>'s attributes 
  

Name Values Default Description 
  

dstfilename CDATA Required Destination file name of operation (or file to 
delete) 

onerror fail, warn, ignore Fail What to do if file operation fails. fail, warn or 
ignore. 

op copy, move, link, 
copyrecursive, delete 

Required File transfer operation. copy, move, link or 
copyrecursive or delete 

sequence before, after Required Specifies if the file operation is to be done 
"before" or "after" stage solver execution 

srcfilename CDATA Implied Source file name of operation. Not used for 
delete 

This element is always empty. 

<command> Child of stage  
Specifies a command line 

<command>'s attributes 
  

Name Values Default Description 
  

addinputarg on, off on Add input file argument to command line 
defaultcmd yes, no no Use default command instead of PCDATA when applicable 
displaygraphics on, off off  Omit –nographics option, only valid for stage type LS-

PREPOST 
 

 
<dbfile> Child of stage  
Database file 
<inputfile> Child of gatheropts, extrainpfiles, stage  
Specifies an input file 
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<inputfile>'s attributes 
  

Name Values Default Description 
  

basefilename CDATA Implied The name of the input file after variable substitution. 
The default varies with stage type. For LS-DYNA it is 
"DynaOpt.inp". This attribute is only valid in the stage 
context (eg. not in extrainpfiles) 

skip on, off off Skip this file during parsing 
 

<appendfile> Child of stage  
Specifies an appended file 
<outputfile> Child of stage  
Specifies an output file 
<configfile> Child of stage  
Configuration file 
<dynaoptions/> Child of stage  
LS-DYNA specific settings 

<dynaoptions>'s attributes 
  

Name Values Default Description 
  

checkoutput on, off on Check for needed database cards 
compressd3p on, off off Enable d3plot compression 
partextract CDATA Implied Write the results for a set of parts, given in filename 
xformref CDATA Implied Transform results using reference nodes given in file 

This element is always empty. 

<exceloptions/> Child of stage  
Excel specific settings 

<exceloptions>'s attributes 
  

Name Values Default Description 
  

copyfile yes, no yes Copy file to job directory 
file CDATA Required Excel document 

Element's model: 

(excelinput*) 

<excelinput/> Child of exceloptions  
Excel output definition 

<excelinput>'s attributes 
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Name Values Default Description 
  

cell CDATA Required Target cell(s) or named range 
dir vertical, horizontal vertical Direction. Used for types history or userdef 
ref Match the IDREF 

rules 
Implied Reference to node. Used for types param or history 

sheet CDATA Implied Target worksheet 
type param, history, 

formula, userdef 
param Tape: param, history, formula or userdef 

 
<envvars> Child of stage  
Collection of environment variables 
Element's model: 

(envvar*) 

<envvar> Child of envvars  
A single environment variable declaration. The contents of the element is the variable value 

<envvar>'s attributes 
  

Name Values Default Description 
  

name CDATA Required Name of environment variable 
 
<extrainpfiles> Child of stage  
Collection of extra input files 
Element's model: 

(inputfile*) 

<scheduling> Child of ffnnopts, stage  
Scheduling options 
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<scheduling>'s attributes 
  

Name Values Default Description 
  

concurrent CDATA Implied Number of concurrent jobs. If not set, all jobs are 
run in parallel. 

proxy none, lstcvm none Which proxy to use for job submission: none or 
lstcvm 

queuer lsf, loadleveler, pbs, 
nqs, user, aqs, 
slurm, blackbox, 
msccp, pbspro, 
honda, sge 

Implied Enable the use of a queuing system. Valid values 
are: lsf, loadleveler, pbs, nqs, user, aqs, slurm, 
blackbox, msccp, pbspro, honda, sge. If not set, 
jobs are run locally. 

retries CDATA 9 Number of retries if submission fails 
submittimeout CDATA 60 Submission script timeout (seconds) 
timeout CDATA 720 A special case exists in which the LS-OPT job 

scheduler automatically generates an A b n o r 
m a l signal. This is whenever the wrapper has 
not been executed for a specified timeout period. 
For this case a queuer timeout can be specified. 
The queuer timeout is the time it will wait for the 
wrapper to connect, otherwise it sets an abnormal 
termination status and writes an A b n o r m 
a l signal to standard output. In this case the job 
will be resubmitted for the number of retries 
specified and using the queuing timeout for each 
retry. 
 

 

Element's model: 

(recover*, resourceref*) 

<recover/> Child of scheduling  
Causes files to be recovered from compute node. One of file or dynadb options must be specified. 

<recover>'s attributes 
  

Name Values Default Description 
  

dynadb d3plot, d3eigv, d3hsp, binout, 
eigout 

Implied Enables recovery of a specific dyna database 

file CDATA Implied Enables recovery of a file or glob (wildcard) 
specification 
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This element is always empty. 

<resourceref/> Child of scheduling  
Specifies consumption of a single resource for every job of this stage 

<resourceref>'s attributes 
  

Name Values Default Description 
  

resource CDATA  Required Resource name 
units CDATA Required Number used per job 

This element is always empty. 

<myvars> Child of sampling, stage  
Collection of non-global variables used by this stage. Global variables need not be listed. 
Element's model: 

(varref | sysref)* 

<varref/> Child of myvars  
A reference to a variable 

<varref>'s attributes 
  

Name Values Default Description 
  

src Match the IDREF rules. Required Variable name, including "x_" prefix for this reference 

This element is always empty. 

<sysref/> Child of myvars  
A reference to a system variable 

<sysref>'s attributes 
  

Name Values Default Description 
  

src runid, iterid, lsprojpath  Required System variable name 

This element is always empty. 

<histories> Child of stage  
Collection of histories to extract 
Element's model: 

(history*) 
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<history> Child of histories  
The textual contents of this element is the history definition string, or the expression, based on the type 
attribute 

<history>'s attributes 
  

Name Values Default Description 
  

DatabasePrefix CDATA Implied LS-DYNA/Generic case to use for extraction 
dynacase CDATA Implied LS-DYNA case to use for extraction 
name Match the ID 

rules. 
Required Name for history, prefixed with "x_" to be unique in 

the global namespace 
type definition, 

expression, 
metapost, 
userpost, metlab 

definition definition for classic LS-OPT definition strings. 
expression for expressions, metapost for meta post-
processor result and userpostpro for user defined 
post-processor result. More might be added in the 
future if we'd want full markup for histories 

 

Element's model: 

(#PCDATA | definecurve)* 

<definecurve/> Child of history  
DEFINE_CURVE definition of history 

<definecurve>'s attributes 
  

Name Values Default Description 
  

filename CDATA Required Filename of curve 
lcid CDATA Required LCID of curve 

This element is always empty. 

<responses> Child of stage  
Collection of responses to extract 
Element's model: 

(response | cresponse)* 

<response> Child of responses  
The textual contents of this element is the response definition string, or the expression, based on the type 
attribute 
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<response>'s attributes 
  

Name Values Default Description 
  

DatabasePrefix CDATA Implied LS-DYNA/Generic case to use for extraction 
dumpformula yes, no no Dump metamodel formula to file 
dynacase CDATA Implied LS-DYNA case to use for extraction 
metamodel on, off on Set to off to disable metamodel generation 
name Match the ID rules. Required Name for response, prefixed with "x_" to be 

unique in the global namespace 
offset CDATA 0 Offset of response 
scale CDATA 1 Scaling of response 
type definition, 

expression, matrix, 
metapost, userpost, 
import, matlab 

definition definition for classic LS-OPT definition strings. 
expression for expressions and matrix for 
matrix expressions. More might be added in the 
future if we'd want full markup for responses 

 

 
<importresults> Child of sampling  
If present, activates importing of user results from csv file given as element contents 
<importdesignfunctions> Child of sampling  
If present, activates importing of user design functions from xml file given as element contents 
<checkpoints> Child of sampling  
If present, activates checkpoints with csv file given as element contents 
<evalmeta> Child of lsoptproject  
If present, activates evaluation of metamodel at specific points from the csv file given as element contents 
<composites> Child of lsoptproject  
Collection of composite (global) responses and histories 
Element's model: 

(cresponse | chistory)* 

<cresponse> Child of composites, responses  
A composite response. The textual contents of this element is the cresponse def, when using "expression" 
type 
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<cresponse>'s attributes 
  

Name Values Default Description 
  

computed CDATA Implied Computed curve expression for 
meansqerr and curvemap. Note that this 
is an expression and not a reference to a 
history! 

entity Match the IDREF rules. Implied Entity for stddev-type composite 
name Match the ID rules. Required Name for composite, prefixed with "x_" 

to be unique in the global namespace 
numpoints CDATA Implied Number of points for meansqerr and 

curvemap 
target CDATA Implied Target curve expression for meansqerr 

and curvemap. Note that this is an 
expression and not a reference to a 
history! 

type weighted, targeted, 
standard_mse, expression, 
userdefined, stddev, meansqerr, 
curvemap 

Required Type of composite: weighted, targeted, 
standard_mse, expression, userdefined, 
stddev, meansqerr or curvemap 

 

Element's model: 

(#PCDATA | component)* 

<component/> Child of cresponse  
Composite response component 

<component>'s attributes 
  

Name Values Default Description 
  

divisor CDATA 1 Component divisor, defaults to "1" 
entity Match the IDREF 

rules. 
Required Reference to variable or response, including "x_" 

prefix 
multiplier CDATA 1 Component multiplier, defaults to "1" 
target CDATA Implied Target value for targeted or standard_mse 

This element is always empty. 

<chistory/> Child of composites  
Composite/global history 

<chistory>'s attributes 
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Name Values Default Description 
  

filename CDATA Implied Name of file if type=file 
name Match the ID 

rules. 
Required Name for history, prefixed with "x_" to be unique in the 

global namespace 
type file Required Type of history: file 

This element is always empty. 

<objectives> Child of lsoptproject  
Collection of objectives 

<objectives>'s attributes 
  

Name Values Default Description 
  

goal maximize, 
minimize 

minimize Sets if we are to strive for minimizing or maximizing of 
objective function 

 

Element's model: 

(objective*) 

<objective/> Child of objectives  
A single objective 

<objective>'s attributes 
  

Name Values Default Description 
  

src Match the IDREF 
rules. 

Required Reference to a response or composite to use as objective, 
including prefix 

weight CDATA 1 Weight for this objective 

This element is always empty. 

<constraints> Child of lsoptproject  
Collection of constraints 

<constraints>'s attributes 
  

Name Values Default Description 
  

scaling on, off on Set to "on", changes defaults for bound divisor 
 

Element's model: 

(constraint*) 
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<constraint> Child of constraints  
Constraint for a single entity. Contains one or two bound elements of different types 

<constraint>'s attributes 
  

Name Values Default Description 
  

sampling stay, move, 
move_start 

stay Controls how sampling should be affected by this 
constraint. Known as "move" in GUI. 

src Match the IDREF 
rules. 

Required Reference to a response or composite to use as constraint 

 

Element's model: 

((bound, bound?)?) 

<bound/> Child of constraint, dynastats  
A component of a constraint. 

<bound>'s attributes 
  

Name Values Default Description 
  

divisor CDATA Implied Defaults to "1" if scaling is off, or limit if scaling is on. Not 
valid in dynastats. 

limit CDATA Required Numerical upper/lower limit 
probability CDATA Implied Probability of violating constraint, for RDBO. Not valid in 

dynastats. 
strictness CDATA 0.0 Strictness value, typically 0.0 or 1.0. Not valid in dynastats. 
type upper, 

lower 
Required upper or lower 

This element is always empty. 

<schedulerconfig/> Child of lsoptproject  
Global scheduler options 

<schedulerconfig>'s attributes 
  

Name Values Default Description 
  

globalconcurrencylimit CDATA Implied Maxmimum number of running jobs globally. 
printinterval CDATA 15 Report job status every n:th second 
processfilename CDATA process.lsox Name of process configuration file 
resourcefilename CDATA resource.lsox Name of resource file 
schedconfigfilename CDATA schedconfig.lsox Name of scheduler configuration file 
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This element is always empty. 

<resources> Child of lsoptproject  
Definitions of consumable resources 
Element's model: 

(resource*) 

<resource/> Child of resources, stage  
Single resource definition 

<resource>'s attributes 
  

Name Values Default Description 
  

limit CDATA Required Number of consumable resource units available 
name CDATA Required Name of the consumable resource, no prefix 
global true, false false  

This element is always empty. 

<task> Child of lsoptproject  
Task control section 
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<task>'s attributes 
  

Name Values Default Description 
  

method none, 
metamodel_opt, 
mc, 
metamodel_mc, 
rbdo, 
metamodel_form, 
direct_opt, 
doestudy, 
exp_design 

Required Main task. none is a legacy task that is used when 
converting com files that used the old tools, dynastats 
or repair tasks that are now specified in assignment. 
Task metamodel_form (First Order Reliability 
Method) will: 

o Construct the metamodels as prescribed by 
the user. If the metamodels already exists, 
then they won’t be recreated. 

o Conduct a FORM analysis for every 
constraint using the metamodels. 

The following are computed in a FORM analysis: 
o The most probable point (see Section 25.4.6) 
o The probabilities of exceeding the bounds on 

the constraint 
o The derivatives of the probability of 

exceeding the bound on the constraint with 
respect to the design variables 

The method requires very little information 
additionally to what is required for deterministic 
optimization. Specify the following: 

6. Statistical distributions associated with the 
design variables 

7. Probabilistic bounds on the constraints. 
Theoretical concerns are discussed in Section 25.4.7. 
 

 

Element's model: 

(optopts?, optalg?, runbaseline?, addmmnoise?, importmetamodel?, mcopts?, usegsa?, assignment?) 

<optopts> Child of task  
Options for metamodel_opt or rbdo 
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<optopts>'s attributes 
  

Name Values Default Description 
  

pareto on, off off Set to "on" to enable pareto optimal frontier 
generation 

strategy singlestage, sequential, 
domainreduction 

domainreduction Strategy for optimization: singlestage, 
sequential, domainreduction (not applicable 
for direct_opt method) 

verify CDATA 1 Number of verification runs. (Clamped to 
[0,1] if MOO, not applicable for direct_opt 
method) 

 

Element's model: 

(seqopts?, srsmopts?) 

<seqopts/> Child of optopts  
Options for any sequential optimization strategy 

<seqopts>'s attributes 
  

Name Values Default Description 
  

accuracytol CDATA 1.00 Response Accuracy Tolerance 
designtol CDATA 0.01 Design Change Tolerance 
iterations CDATA Implied Max number of iterations 
objecttol CDATA 0.01 Object Function Tolerance 
toloperator and, or and Tolerance operator: and, or. 

This element is always empty. 

<srsmopts/> Child of optopts  
Options for Domain Reduction strategy 

<srsmopts>'s attributes 
  

Name Values Default Description 
  

eta CDATA Implied Proximity Zoom parameter 
freezefromiter CDATA Implied Freeze Range from iteration 
gamma CDATA Implied Oscillation Contraction parameter 
psi CDATA Implied Panning Contraction parameter 
resetiter CDATA Implied Reset to Initial Range on iteration 
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This element is always empty. 

<optalg> Child of task  
Optimization algorithm control 

<optalg>'s attributes 
  

Name Values Default Description 
  

hybrid on, off Implied Hybrid mode: Switch to lfop after the basin of global optimum has 
been found 

type lfop, ga, asa, 
pso 

Implied Type of algorithm: Leaping Frog, Genetic, Adaptive Simulated 
Annealing, Particle Swarm Optimization 

 

Element's model: 

(gaopts?, asaopts?, psoopts?, lfopopts?, paretoopts?) 

<gaopts/> Child of optalg  
Options for Genetic Algoritm 

<gaopts>'s attributes 
  

Name Values Default Description 
  

binarymprob CDATA Implied Mutation probability for binary values 
binaryxop sing_pt, uniform sing_pt Binary value crossover type: single point or 

uniform 
binaryxoprob CDATA 1.0 Crossover probability for binary values 
blxalpha CDATA 0.5 Alpha value for BLX 
constrainth deb_ech, penalty deb_ech Constraint Handling 
generations CDATA Implied Number of generations 
mdistindex CDATA 100 Mutation distribution index 
moeatype nsga_ii, spea_ii nsga_ii MOEA Type 
nelite CDATA 2 Number of elites 
paramsel tournament, 

roulette, sus 
tournament Selection operator: Tournament, Roulette or 

Stochastic Universal Sampling 
popsize CDATA Implied Population size 
realmprob CDATA Implied Mutation probability for real values 
realxop sbx, blx sbx Real value crossover type 
realxoprob CDATA 1.0 Crossover probability for real values 
repeatlimit CDATA Implied Max repeat optimum generations 
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restartint CDATA Implied Restart interval 
seed CDATA Implied Random number seed 
tournsize CDATA Implied Tournament size 
xdistindex CDATA 10 Crossover distribution index (for SBX) 

This element is always empty. 

<asaopts/> Child of optalg  
Options for Adaptive Simulated Annealing 

<asaopts>'s attributes 
  

Name Values Default Description 
  

annscale CDATA 1000 Annealing Scale 
funcparamratio CDATA 1.0 Cost-Parameter Anneal Ratio 
maxsim CDATA 10000 Maximum Function Evaluations 
tempratio CDATA 1e-6 Tmin/Tmax ratio 
tempupint CDATA 1 Function evaluations per time step 

This element is always empty. 

<paretoopts/> Child of optalg  
Options for Multi Objectives 

<paretoopts>'s attributes 
  

Name Values Default Description 
  

crthres CDATA Implied Consolidation Ratio Change 
dhvthres CDATA Implied Normalized hypervolume change 

threshold 
generationgap CDATA Implied Generation Gap 
hypervolume on, off on Dominated hypervolume 

computation 
termcriterion maxfuncgen, fixedratio, 

ratiochange, volchange 
maxfuncgen Termination Criterion 

utilityfraction CDATA Implied Utility fraction cutof 

This element is always empty. 

<psoopts/> Child of optalg  
Options for Particle Swarm Optimization 

LS-OPT Version 5.2  716 



APPENDIX J: Document Type Definition (DTD) 

<psoopts>'s attributes 
  

Name Values Default Description 
  

cogpressure CDATA 2.0 Cognitive Pressure (C1) 
constrainth deb_ech, penalty deb_ech Constraint Handling 
crazinessperiod CDATA 2000 Craziness interval 
initialinertia CDATA 0.4 Initial inertia 
limitnoimprovement CDATA Implied FE Interval 
maxevals CDATA 25000 Maximum function evaluations 
mutdistributionindex CDATA Implied Mutation Distribution Index 
numparticles CDATA Implied Number of particles 
pmut CDATA Implied Mutation Probability 
seed CDATA -1 Random seed 
socpressure CDATA 2.0 Social Pressure (C2) 
stoppingcriterion maxfunc, noimprovement maxfunc Termination Criterion 

This element is always empty. 

<lfopopts/> Child of optalg  
Options for leaping frog algorithm 

<lfopopts>'s attributes 
  

Name Values Default Description 
  

nummultistart CDATA Implied Number of multi start points 
penaltymu CDATA 100 Penalty Parameter mu 
penaltymumax CDATA 10000 Penalty Parameter mumax 
print CDATA 10 Print control number 
steps CDATA 1000 Maximum number of steps 
stepsize CDATA 1 Maximum step size 
toleg CDATA 1e-05 Convergence Criterion eg 
tolx CDATA 1e-08 Convergence Criterion xtol 

This element is always empty. 

<runbaseline/> Child of task  
When this element is present, only the baseline will be run 
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This element is always empty. 

<importmetamodel/> Child of task  
When this element is present, metamodels will be imported on normal run 

This element is always empty. 

<addmmnoise/> Child of task  
When this element is present, use Approximation Residuals 

This element is always empty. 

<mcopts/> Child of task  
Monte Carlo specific options 

<mcopts>'s attributes 
  

Name Values Default Description 
  

createhistogram CDATA 0 Number of bins in histogram data calculated for standard 
output display. Default number of bins used if set to 0. 
Default number of bins is 20 for more than 500 
observations and 8 otherwise. 

distbounds on, off off Whether the bounds must be enforced for the probabilistic 
component of the variables 

dsaresolution CDATA 10000 Number of points used in the Monte Carlo simulation for 
stochastic contributions 

reliabilityresolution CDATA 1e+06 Number of Monte Carlo samples to be analyzed 
(metamodel evaluations) for probabilistic calculation 

subregsize CDATA 2.0 Noise Variable Subregion Size (in stddevs), for metamodel 
based Monte Carlo 

This element is always empty. 

<usegsa/> Child of task  
Presence of this element enables GSA calculation 

<usegsa>'s attributes 
  

Name Values Default Description 
  

overwrite yes, no No Overwrite results of existing global calculations 
points CDATA 10000 Number of points for Integration 

Element's model: 

(gsasubregion*) 
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<gsasubregion> Child of usegsa  
GSA Subregion 

<gsasubregion>'s attributes 
  

Name Values Default Description 
  

active yes, no yes Whether the subregion should be calculated or not 
name Match the ID 

rules 
Required Name of subregion, prefixed with “b_” to be unique in the 

global namespace 
overwrite yes, no no Overwrite results of existing calculations 

 

Element's model: 

(gsasubbounds*) 

<gsasubbounds/> Child of gsasubregion  
GSA Subregion variable bounds 

<gsasubbounds>'s attributes 
  

Name Values Default Description 
  

lower CDATA Implied Lower bounds 
upper CDATA Implied Upper bounds 
var Match the IDREF rules Required Reference to variable 

This element is always empty. 

<assignment> Child of task  
Controls the assignment (formerly known as repair/tools). If this element is not present, it is equivalent of  
<assignment type="full"/> 

LS-OPT Version 5.2  719 



APPENDIX J: Document Type Definition (DTD) 

<assignment>'s attributes 
  

Name Values Default Description 
  

iteration CDATA Implied Iteration number for repair 
assignments 

sampling Match the IDREF rules. Implied Name of the sampling for 
runjobs, rerunfailed and extract 
assignments. If absent, all 
stages for the given iteration are 
processed. 

stage Match the IDREF rules. Implied Name of the stage for runjobs, 
rerunfailed and extract 
assignments. If absent, all 
stages for the given iteration are 
processed. 

type full, dynastats, readpoints, addmmpoints, 
addmcpoints, runjobs, rungsa, rerunfailed, 
extract, import, importmm, buildmm, 
evalmm, optimize, gather, gatherext, clean, 
rerunverification 

full Type of assignment. Default 
"full" means normal run 

 

Element's model: 

(dynastats?, gatheropts?) 

<dynastats> Child of assignment  
Used for assignment type=dynastats. Controls dynastat assignment. Must contain either dshistory or 
dsd3plot tag 

<dynastats>'s attributes 
  

Name Values Default Description 
  

iteration CDATA 1 Iteration number to use 
order none, linear, quadratic none Set to linear or quadratic to enable use of metamodel. 
stage Match the IDREF rules. Required Which stage to use for calculation 

 

Element's model: 

(dshistory?, dsd3plot?, correlate?, bound?) 

<gatheropts> Child of assignment  
Used for assignment type=gather. Controls options for packing database 
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<gatheropts>'s attributes 
  

Name Values Default Description 
  

withhistresp yes, no no Set to "yes" to include histories and responses 
withinput yes, no no Set to "yes" to include input and extra input files 

 

Element's model: 

(inputfile*) 

<dshistory/> Child of dynastats  
The presence of this tag causes dynastats calculation on histories. 

<dshistory>'s attributes 
  

Name Values Default Description 
  

src Match the IDREF 
rules. 

Required Reference to a composite or response, complete with "x_" 
prefix. 

This element is always empty. 

<dsd3plot> Child of dynastats  
The presence of this tag causes dynastats calculation on d3plot data. 

<dsd3plot>'s attributes 
  

Name Values Default Description 
  

component CDATA Required D3plot component to 
extract. 

restype Ndv, Stress, Strain, Result, Misc, FLD, 
Beam 

Required D3plot response to extract 

 

Element's model: 

(fld?, coordmap?) 

<fld/> Child of dsd3plot  
This tag specifies and FLD curve. It's mandatory when FLD response type is used. Either curveid or t and n 
attributes must be given 

<fld>'s attributes 
  

Name Values Default Description 
  

curveid CDATA Implied Curve ID from keyword file 
n CDATA Implied n parameter for parametric curve 
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t CDATA Implied thickness parameter for parametric curve 

This element is always empty. 

<coordmap/> Child of dsd3plot  
This tag enables following of coordinates instead of nodes for a given part 

<coordmap>'s attributes 
  

Name Values Default Description 
  

part CDATA Required LS-DYNA part ID 

This element is always empty. 

<correlate/> Child of dynastats  
The presence of this tag enables correlation in a dynastats calculation. 

<correlate>'s attributes 
  

Name Values Default Description 
  

entity Match the 
IDREF rules. 

Required The entity to correlate with. Must refer to a response or a 
composite, complete with "x_" prefix. 

This element is always empty 
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Analytical Target Cascading. A rational approach to propagate the desired top-level system 
design targets to appropriate specifications for subsystems and components. 
ANOVA.  Analysis of variance. Used to perform variable screening by identifying insignificant 
variables. Variable regression coefficients are ranked based on their significance as obtained 
through a partial F-test. (See also variable screening). 
ASA. Adaptive Simulated Annealing. An optimization method. 
Bias error. The total error – the difference between the exact and computed response - is 
composed of a random and a bias component. The bias component is a systematic deviation 
between the chosen model (approximation type) and the exact response of the structure (FEA 
analysis is usually considered to be the exact response). Also known as the modeling error. (See 
also random error). 
Binout. The name of the binary output file generated by LS-DYNA (Version 970 onwards). 
Committee. A set of Neural Networks of the same order constructed using the same set of 
results. The nets are usually slightly different because a different weight initiator is typically 
used for the regression procedure of each individual net. 
Composite function. A function constructed by combining responses and design variables into a 
single value. Symbolized by F. 

Concurrent simulation. The running of simulation tasks in parallel without message passing 
between the tasks. 
Confidence interval. The interval in which a parameter may occur with a specified level of 
confidence. Computed using Student’s t-test. Typically applied to accompany the significance of 
a variable in the form of an error bar.  
Constraint. An absolute limit on a response variable specified in terms of an upper or lower 
limit. 
Constrained optimization. The mathematical optimization of a function subject to specified 
limits on other functions. 
Conventional Design. The procedure of using experience and/or intuition and/or ad hoc rules to 
improve a design. 
Crossplot. A curve obtained by using the two ordinate values at a coinciding abscissa obtained 
from two separate functions. The two ordinate values are used as the abscissa and ordinate in the 
new crossplot. In LS-OPT two separate time histories are typically used to construct a single 
crossplot. 
Delimiter. Symbol(s) to separate numeric fields in a text file. Typically spaces, tabs or commas. 
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Dependent. A function which is dependent on variables. Dependent variable. 
Design of Experiments. See experimental design. 
Design parameter. See design variable. 
Design formula. A simple mathematical expression which gives the response of a design when 
the design variables are substituted. See response surface. 
Design space. A region in the n-dimensional space of the design variables (x1 through xn to 
which the design is limited. The design space is specified by upper and lower bounds on the 
design variables. Response variables can also be used to bound the design space. 
Design surface. The response variable as a function of the design variables, used to construct the  
formulation of a design problem. (See also response surface, design rule). 
Design sensitivity. The gradient vector of the response. The derivatives of the response function 
in terms of the design variables. df /dxi. 
Design variable. An independent design parameter which is allowed to vary in order to change 
the design. Symbolized by (xi or x (vector containing several design variables)). 
Discipline. An area of analysis requiring a specific set of simulation tools, usually because of the 
unique nature of the physics involved, e.g. structural dynamics or fluid dynamics. In the context 
of MDO, often used interchangeably with solver. 
DOE. Design of Experiments. See experimental design. 
Domain reduction. The reduction of the region of interest in the design space during the 
optimization process. 
D-optimal. The state of an experimental design in which the determinant of the moment matrix 

XX T  of the least squares formulation is maximized. 

DSA. Design sensitivity analysis. 
Ensemble. A collection of neural nets of different (usually thought of as ascending) order based 
on the same set of results. 
Elliptic approximation. An approximation in which only the diagonal Hessian terms are used. 
Experiment. Evaluation of a single design. 
Experimental Design. The selection of designs to enable the construction of a design response 
surface. Sometimes referred to as the Point Selection Scheme. 
Feasible Design. A design which complies with the constraint bounds. 
Feedforward Neural Network. See Neural Network. 
Function. A mathematical expression for a response variable in terms of design variables. Often 
used interchangeably with “response”. Symbolized by f. 
Functionally efficient. See Pareto optimal. 
Function evaluation. Using a solver to analyze a single design and produce a result. See 
Simulation. 
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Global variable. A variable of which the scope spans across all the design disciplines or solvers. 
Used in the MDO context. 
Global approximation. A design function which is representative of the entire design space. 
Global Optimization. The mathematical procedure for finding the global optimum in the design 
space. E.g. Genetic Algorithm, Particle Swarm, etc. 
Global Sensitivity Analysis. A sensitivity analysis method which uses Sobol indices. 
Gradient vector. A vector consisting of the derivatives of a function f in terms of a number of 
variables x1 to xn. s = [df /dxi]. See Design Sensitivity. 
GSA. See Global Sensitivity Analysis.  
History. Response history containing two columns of (usually time) data generated by a 
simulation. 
Importance. See Weight. 
Infeasible Design. A design which does not comply with the constraint functions. An entire 
design space or region of interest can sometimes be infeasible. 
Isoline. A line representing a constant value of a scalar quantity. In the LS-OPT metamodel 
plotting feature isolines are used with metamodel functions. 
Iteration. A cycle involving an experimental design, function evaluations of the designs, 
approximation and optimization of the approximate problem. 
Kriging. A Metamodeling technique using Bayesian regression. 
Latin Hypercube Sampling. The use of a constrained random experimental design as a point 
selection scheme for response approximation.  
Least Squares Approximation. The determination of the coefficients in a mathematical 
expression so that it approximates certain experimental results by the minimization of the sum of 
the squares of the approximation errors. Used to determine response surfaces as well as 
calibrating analysis models. 
Local Approximation. See Gradient vector. 
Local variable. A variable of which the scope is limited to a particular discipline or disciplines. 
Used in the MDO context. 
Material identification. See parameter identification. 
MDO. Multidisciplinary design optimization. 
Metamodeling. The construction of surrogate design models such as polynomial response 
surfaces, Artificial Neural Networks or Kriging surfaces from simulations at a set of design 
points.  
Min-Max optimization problem. An optimization problem in which the maximum value 
considering several responses or functions is minimized. 
Mode tracking. The identification of a mode closest in shape to a reference mode. LS-OPT uses 
e.g. the Modal Assurance Criterion to quantify the similarity of two mode shapes.  
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Model calibration. The optimal adjustment of parameters in a numerical model to simulate the 
physical model as closely as possible. 
Modeling error. See bias error. 
Multidisciplinary design optimization (MDO). The inclusion of multiple disciplines in the 
design optimization process. In general, only some design variables need to be shared between 
the disciplines to provide limited coupling in the optimization of a multidisciplinary target or 
objective. 
Multi-level Optimization. A formulation of the optimization problem in which optimization is 
conducted in a hierarchy of levels.  
Multi-objective. An objective function which is constituted of more than one objective. 
Symbolized by F.  
Multi-objective Optimization (MOO). Multi-objective optimization is the procedure for 
constructing a Pareto optimal front. 
Multi-criteria. Refers to optimization problems in which several criteria are considered. 
MOO. Multi-objective Optimization. 
MP. Mathematical Programming. Mathematical optimization. 
MSE. Mean Squared Error. Used for system identification. 
Neural network approximation. The use of trained feedforward neural networks to perform 
non-linear regression, thereby constructing a non-linear metamodels (see metamodeling). 
Numerical sensitivity. A derivative of a function computed by using finite differences. 
Noise. See random error. 
Objective. A function of the design variables that the designer wishes to minimize or maximize. 
If there exists more than one objective, the objectives have to be combined mathematically into a 
single objective. Symbolized by Φ . 
Optimal design. The methodology of using mathematical optimization tools to improve a design 
iteratively with the objective of finding the ‘best’ design in terms of predetermined criteria. 
Optimization strategy. A strategy for metamodel-based optimization such as Single Stage, 
Sequential or Sequential with Domain Reduction. 
Parallel Neural Networks. The concurrent solution of Feedforward Neural Networks using the 
job scheduler. 
Parameter identification. See System identification. 
Pareto optimal. A multi-objective design is Pareto-optimal if none of the objectives can be 
improved without at least one objective being affected adversely. A Pareto optimal front can be 
constructed using optimization. 
Point selection scheme. Same as experimental design. 
Preference function. A function of objectives used to combine several objectives into a single 
one suitable for the standard MP formulation. 

LS-OPT Version 5.2  726 



APPENDIX K: Glossary 

Preprocessor. A graphical tool used to prepare the input for a solver. 
Process. A series of analysis stages (or steps) designed to produce a result. Multistage process. 
Example: metal forming analysis which consists of several stages, e.g. gravity loading, stamping, 
springback, trimming, etc. 
Process simulation. The use of computer programming, computer vision, and feedback to 
simulate manufacturing techniques. 
Radial basis function network. The use of radial basis functions (RBFs) to approximate 
response functions. The LS-OPT default option is the Hardy’s multi-quadrics but a user can also 
select Gaussian function as the radial basis function. This is a global approximation method. 
Random error. The total error – the difference between the exact and computed response - is 
composed of a random and a bias component. The random component is, as the name implies, a 
random deviation from the nominal value of the exact response, often assumed to be normally 
distributed around the nominal value. (See also bias error). 
RBDO. Reliability-based Design optimization. 
Reasonable design space. A subregion of the design space within the region of interest. It is 
bounded by lower and upper bounds of the response values. 
Region of interest. A sub-region of the design space. Usually defined by a mid-point design and 
a range of each design variable. Usually dynamic. 
Reliability-based design optimization (RBDO). The performing of design optimization while 
considering reliability-based failure criteria in the constraints of the design optimization 
formulation. This implies the inclusion of random variables in the generation of responses and 
then extracting the standard deviation of the responses about their mean values due to the 
random variance and including the standard deviation in the constraint(s) calculation. 
Residual. The difference between the computed response (using simulation) and the predicted 
response (using a response surface). 
Response. A numerical indicator of the performance of the design. A function of the design 
variables approximated using a metamodel which can be used for optimization. Symbolized by f. 
Collected over all design iterations for plotting. (See also history). 
Response quantity. See response. 
Response Surface. A mathematical expression which relates the response variables to the design  
parameters. Typically computed using statistical methods. 
Response variable. A response which is substituted as an input variable in a downstream stage 
of a multi-stage process. Response-expressions are allowed. 
Result. A numerical indicator of the performance of the design. A result is not associated with a 
metamodel, but is typically used for intermediate calculations in metamodel-based analysis. 
RBF. Radial Basis Function. RBF’s are used as basis functions for metamodels (see also 
metamodeling). These functions are typically Gaussian.  
RSM. Response Surface Methodology. 
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Run directory. The directory in which the simulations are done. Two levels below the Work 
directory. The run directory contains status files, the design coordinate file XPoint and all the 
simulation output. The job_log file which contains a log of the file transfer, the output log of 
the solver and a log of the result extraction also resides in this directory. 
Saturated design. An experimental design in which the number of points equals the number of 
unknown coefficients of the approximation. For a saturated design no test can be made for the 
lack of fit. 
Sampling. In the context of the GUI a Sampling is the same as a Case. It is based on a unique 
subset of variables.  
In general, Sampling is synonymous with Point Selection or Experimental Design. 
Scale factor. A factor which is specified as a divisor of a response in order to normalize the 
response. 
Sensitivity. See Design sensitivity. 
Slack constraint. A constraint with a slack variable. The violation of this constraint can be 
minimized. 
Slack variable. The variable which is minimized to find a feasible solution to an optimization 
problem, e.g.  e in: min e subject to .0;)( ≥≤ eexg j  See Strictness. 

Simulation. The analysis of a physical process or entity in order to compute useful responses. 
See Function evaluation. 
Solver. A computational tool used to analyze a structure or fluid using a mathematical model. 
See Discipline. 
Stage directory. A subdirectory of the work directory that bears the name of a stage and where 
database files resulting from extraction and the optimization process are stored. 
Space Filling Experimental Design. A class of experimental designs that employ an algorithm 
to maximize the minimum distance between any two points. 
Stochastic.  Involving or containing random variables. Involving probability or chance. 
Stage. A distinct step or operation in a process which typically reads input, processes the input 
and produces a result. Example: run a solver. Different stages can be dependent on one another. 
Stopping Criterion. A mathematical criterion for terminating an iterative procedure. 
Strictness. A number between 0 and 1 which signifies the strictness with which a design 
constraint must be treated. A zero value implies that the constraint may be violated. If a feasible 
design is possible all constraints will be satisfied. Used in the design formulation to minimize 
constraint violations. See Slack variable. 
Subproblem. The approximate design subproblem constructed using response surfaces. It is 
solved to find an approximate optimum. 
Subregion. See region of interest. 
Successive (or Sequential) Approximation Method. An iterative method using the successive 
solution of approximate subproblems. 
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System identification. A procedure in which a numerical model is calibrated by optimizing 
selected parameters in order to minimize the residual error with respect to certain targeted 
responses. The targeted responses are usually derived from experimental results. 
Target. A desired value for a response. The optimizer will not use this value as a rigid 
constraint. Instead, it will try to get as close as possible to the specified value. 
Template. An input file in which some of the data has been replaced by variable names, e.g.  
<<Radius>>. A template may also contain the LS-DYNA *PARAMETER keyword with 
corresponding &-parameters. LS-OPT will recognize the parameters defined in the template and 
display them in the GUI.  
Tolerance optimization. Optimization which includes tolerances on the input variables. 
Trade-off curve. A curve constructed using Pareto optimal designs. 
Transfer Variables. Variables transferred from one level to another in a multi-level 
optimization method. 
Transformed variables. Variables which are transformed (mapped) to a different n-space using 
a functional relationship. The experimental design and optimization are performed in this space. 
Variable screening. Method to remove insignificant variables from the design optimization 
process based on a ranking of regression coefficients using analysis of variance (ANOVA). (See 
also ANOVA). 
Weight. A measure of importance of a response function or objective. Typically varies between 
0 and 1. 
Work directory. The directory is which the LS-OPT input files reside and where LS-OPT 
output is generated. Same as Project Home directory. See also Run directory. 
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