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PREFACE TO VERSION 1

LS-OPT originated in 1995 from research done within the Department of Mechanical Engineering,
University of Pretoria, South Africa. The original development was done in collaboration with colleagues in
the Department of Aerospace Engineering, Mechanics and Engineering Science at the University of Florida
in Gainesville.

Much of the later development at LSTC was influenced by industrial partners, particularly in the automotive
industry. Thanks are due to these partners for their cooperation and also for providing access to high-end
computing hardware.

At LSTC, the author wishes to give special thanks to colleague and co-developer Dr. Trent Eggleston.
Thanks are due to Mr. Mike Burger for setting up the examples.

Nielen Stander
Livermore, CA
August, 1999
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PREFACE TO VERSION 2

Version 2 of LS-OPT evolved from Version 1 and differs in many significant regards. These can be
summarized as follows:

The addition of a mathematical library of expressions for composite functions.
The addition of variable screening through the analysis of variance.

The expansion of the multidisciplinary design optimization capability of LS-OPT.
The expansion of the set of point selection schemes available to the user.

The interface to the LS-DYNA binary database.

Additional features to facilitate the distribution of simulation runs on a network.
The addition of Neural Nets and Kriging as metamodeling techniques.
Probabilistic modeling and Monte Carlo simulation. A sequential search method.

N~ WNE

As in the past, these developments have been influenced by industrial partners, particularly in the
automotive industry. Several developments were also contributed by Nely Fedorova and Serge Terekhoff of
SFTI. Invaluable research contributions have been made by Professor Larsgunnar Nilsson and his group in
the Mechanical Engineering Department at Linkdping University, Sweden and by Professor Ken Craig’s
group in the Department of Mechanical Engineering at the University of Pretoria, South Africa. The authors
also wish to give special thanks to Mike Burger at LSTC for setting up further examples for Version 2.

Nielen Stander, Ken Craig, Trent Eggleston and Willem Roux
Livermore, CA
January, 2003
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PREFACE TO VERSION 3

The development of LS-OPT has continued with an emphasis on the integration with LS-DYNA and LS-
PREPOST and differs from the previous version in the following significant regards:
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29.

LS-OPT is now available for Microsoft Windows.

Commands have been added to simplify parameter identification using continuous curves of
measured data.

Stochastic fields have been added to LS-DYNA (Version 971) to provide the capability of modeling
geometric and shell thickness variability.

Extended visualization of statistical quantities based on multiple runs were implemented by further
integrating LS-PREPOST.

An internal d3plot interface was developed.

Reliability-Based Design Optimization (RBDO) is now possible using the probability of failure in
the design constraints.

Neural network committees were introduced as a means to quantify and generalize response
variability.

Mixed discrete-continuous optimization is now possible.

Parameter identification is enhanced by providing the necessary graphical pre- and postprocessing
features. Confidence intervals are introduced to quantify the uncertainty of the optimal parameters.
The importation of user-defined sampling schemes has been refined.

Matrix operations have been introduced.

Data extraction can be done by specifying a coordinate (as an alternative to a node, element or part)
to identify the spatial location. The coordinate can be referred to a selected state.

A simple feature is provided to gather and compress the database for portability.

A utility is provide to both reduce the d3plot file sizes by deleting results and to transform the d3plot
results to a moving coordinate system.

Checking of LS-DYNA keyword files is introduced as a means to avoid common output request
problems.

Statistical distributions can be plotted in the distribution panel in the GUI.

A feature is introduced to retry aborted runs on queuing systems.

3-Dimensional point plotting of results is introduced as an enhancement of metamodel plotting.
Radial basis function networks as surrogate models.

Multi-objective optimization for converging to the Pareto optimal front (direct & metamodel-based).
Robust parameter (Taguchi) design is supported. The variation of a response can be used as an
objective or a constraint in the optimization process.

Mapping of results to the FE mesh of the base design: the results are considered at fixed coordinates.
These capabilities allow the viewing of metalforming robustness measures in LS-PREPOST.

The ANSA morpher is supported as a preprocessor.

The truncated normal distribution is supported.

Extra input files can be provided for variable parsing.

A library-based user-defined metamodel is supported.

User-defined analysis results can be imported.

PRESS predictions can be plotted as a function of the computed values.

The DynaStats panel has been redesigned completely (Version 3.4)
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30. Strategies for metamodel-based optimization are provided as GUI options

31. An algorithm panel has been added for setting optimization algorithm parameters.

32. User-defined sampling points can be evaluated using an existing metamodel.

33. The Adaptive Simulated Annealing algorithm has been added as a core optimization solver. Hybrid
algorithms such as the Hybrid SA and Hybrid GA have also been added.

34. Kriging has been updated and accelerated.

35. Enhancements were made to the Accuracy selection in the viewer by allowing color-coded point
attributes such as feasibility and iteration number.

36. The Tradeoff selection has also been enhanced by converting it to a 3-D application with color
coding for the 4™ dimension as well as color status of points for feasibility and iteration number.

As in the past, these developments were strongly influenced by industrial partners, particularly in the
automotive industry. LS-OPT is also being applied, among others, in metal forming and the identification of
system and material parameters.

In addition to long-time participants: Professor Larsgunnar Nilsson (Mechanical Engineering Department,
Linkdping University, Sweden), significant contributions have been made by Dr. Daniel Hilding, Mr. David
Bjorkevik and Mr. Christoffer Belestam of Engineering Research AB (Linkdping) as well as Dr.-Ing. Heiner
Millerschon, Dipl.-Ing. Marko Thiele and Dipl.-Math. Katharina Witowski of DYNAmore GmbH,
Stuttgart, Germany.

Nielen Stander, Willem Roux and Tushar Goel
Livermore, CA
January, 2009

LS-OPT Version 5.2 Vi



PREFACE TO VERSION 4

The development of LS-OPT has continued with an emphasis on the integration with LS-DYNA and LS-
PREPOST. The main focus of Version 4 has been the development of a new graphical postprocessor as well
as the improvement of the job scheduling system, especially with regard to scheduling on computer clusters.
The following features have been added:

Version 4.0:

1.

The Viewer has been redesigned completely to accommodate a multi-window format using a split-
window and detachable window feature.

The Correlation matrix for simulation variables and results has been added.

For visualizing the Pareto Optimal Frontier, Hyper-Radial Visualization and Parallel Coordinate
plots have been added to the more traditional scatter plot. Multiple points can be selected to create a
table of response values. Point highlighting is cross-connected between plot types.

An interface for the METAPost postprocessor has been added.

5. Topology optimization LS-OPT®/Topology has been added as a separate module. Please refer to the

LS-OPT/Topology User's Manual.

6. Many of the features such as the Reliability-Based Design Optimization have been significantly
accelerated.

7. The Blackbox queuing system has been streamlined in terms of providing better diagnostics and a
special queuing system Honda has been added.

8. The NASTRAN® interface for frequency extraction and mode tracking has been added.

Version 4.1:

9. Discrete sampling can be done on a variable by variable basis for most sampling schemes including
D-Optimality, Space Filling and Full Factorial.

10. The Space Filling algorithm has been improved for accuracy and speed.

11. Job scheduling has been significantly improved. Environment variables can be exported through
queuing systems.

12. Job data is displayed on the run progress bars with a selection to view the solver log file at any stage
of the run.

13. Three injury criteria: a3ms, Chest Compression and Viscous Criterion have been added.

14. SPH, DBBEMAC and NODFOR groups have been added to the LS-DYNA response interface.

15. GenEx, the LS-OPT Generic Extractor provides features for extracting entities from text files. This
allows LS-OPT to be used with any solver code that produces a text database.

16. Responses can be linked to LS-DYNA cases (*CASE keyword).
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17.
18.

19.

20.

21.
22,

In addition to polynomials, Radial Basis Functions can now be used for parameter identification.

The following features have been added to the Viewer: Self-Organizing Maps (for multi-objective
optimization), two-dimensional interpolation matrix using metamodels, global sensitivities (Sobol),
Computed (simulation) and Predicted (metamodel) histories, Parallel Coordinate plot for simulation
results.

Experiments can be replicated for stochastic fields. Improvements have been made to Stochastic
Fields (*PERTURBATION) in LS-DYNA. Special coordinate systems have been added.
*PERTURBATION_MATERIAL has been added for MAT24.

To avoid synchronization errors, the Experiments and AnalysisResults databases have been
converted to self-contained .csv files.

The Run page has been rationalized. Clean start options are now available for all tasks.

A selected subset of Pareto optimal points can be exported to a standard format. The file can be used
to schedule the points as simulations.

Version 4.2:

23

24

25.

26.

27.

28.

29.

30.

31.

32.

. The algorithm for constrained experimental design has been greatly improved. An optimization
algorithm was introduced to locate design points within specified constraint bounds.

. LSTCVM has been added as a Secure Proxy Server for distributing solver jobs across a computer
cluster. Running LS-OPT on a Windows machine controlling solver jobs on a Linux cluster is now
possible.

Individual jobs can be stopped using LSKILLJOB from the LS-OPT GUI. This feature has been
implemented to kill lagging jobs which tend to hold up the entire optimization run. Accelerated job
killing is provided as an option. A job can also be flagged for restart. LSTCVM and LSKILLJOB
combined with LSCHEDULER and other auxiliary programs provide a sophisticated job distribution
system.

More injury criteria are now available, namely MOC, NNIC, NIC, Nkm, LNLI, TTl and TI. A 3-
node version of the injury criterion Clip3m has been added.

Kinematics for NODOUT-based responses and histories. Includes the calculation of deformation and
distance in global, local and local-in-reference-frame coordinate systems.

DBFSI (fluid structure interaction) is available in the history and response interfaces.

Curve Mapping has been added to improve the curve matching metric for material identification,
especially for hysteretic curves, curves with steep sections and cases where only partial test data is
available. A newly developed Partial Curve Mapping algorithm is used.

Metamodel prediction accuracy based on PRESS error has been added as a stopping criterion for the
Sequential Response Surface Method (SRSM).

Automatic internal constraint scaling based on the constraint bounds has been added to the GUI.
This feature ensures that constraint violations are treated equally irrespective of their magnitudes.

The Dominated Hypervolume method as a stopping criterion for multi-objective optimization
methods (GA). Crowding Distance and Spread of the Pareto Optimal Front can be monitored
graphically.
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33. Self-Organizing Maps is available to visualize simulation results.

34. Refinements have been made to the 2D Metamodel Cross-Section display by adding simulation
points. The History display was improved by allowing the selection and display of multiple histories.
There is stronger unification amongst the different types of displays.

35. LS-OPT database archiving has been expanded to include extra files such as solver input files.

36. Histories have been added to the GenEx (generic extraction) result extraction feature. In the past,
only responses could be extracted.

37. The input file environment can be used to store include files. LS-OPT will in this case automatically
be able to parse and transmit the files (e.g. to a cluster).

38. A derivative history function has been added to compute the derivative of a time history, e.g.
acceleration from velocity.

39. A general filtering feature for time histories has been added. Filtering has been available for LS-
DYNA-extracted data, but can now be applied to any time history, also those produced using
expressions or generic extraction.

Version 4.3

40. The MAC criterion replaces the Generalized Mass criterion for mode tracking (merged to Version
4.2). An option to turn off mode tracking was added.

41. Mode tracking is supported for all versions of LS-DYNA, including LS-DYNA MPP (merged to
Version 4.2).

42. Sampling of the Pareto Optimal Front as a sampling option. A Space Filling algorithm, to maximize
the distance between any two points in the design space, is used.

43. Option for selecting the number of verification runs for the trade-off curve of multi-objective
optimization. Space Filling sampling is done to obtain a well-distributed trade-off set.

44. Head injury criterion (HIC) using three nodes for the different coordinate directions.
45. Support Vector Regression introduced as a metamodeling type.
46. User-defined postprocessor option.

The automotive and other industries have again made significant contributions to the development of new
features in LS-OPT. In addition to long-time participant Professor Larsgunnar Nilsson (Mechanical
Engineering Department, Linkdping University, Sweden), Dr. Daniel Hilding, Mr. David Bjorkevik and Mr.
Christoffer Belestam of Engineering Research AB (Linkoping) as well as Dr.-Ing. Heiner Millerschén and
Dipl.-Math. Katharina Witowski of DYNAmore GmbH, Stuttgart, Germany have made major contributions
as developers. Dr. Trent Eggleston has recently created LSTCVM and LSKILLJOB and, while working
with customers, has made vast improvements to solver job scheduling via queuing systems.

Nielen Stander and Anirban Basudhar
Livermore, CA
August, 2012
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PREFACE TO VERSION 5

The development of LS-OPT has continued with an emphasis on the integration with LS-DYNA. The main
focus of Version 5 has been the development of a new graphical pre-processor to accommodate design
processes, in which the design stages are dependent on one another, as well as the improvement of the job
scheduling system to enable handling of job dependencies. Transparency of the job scheduling process has
also been improved. The following features have been added:

Version 5.0:

1.

9.

A process consisting of a chain of dependent stages can be analyzed. The process can be defined in
the form of a flow chart which can merge and branch. Solver stages have been added as a new
concept and building block for defining a flow chart.

File operations such as deleting and copying between dependent stages are available.
GUI features have been added to easily identify sources of design parameters.

Job monitoring has been enhanced by allowing progress visualization on a stage-by-stage basis. Any
run directory can be viewed.

Resource definitions have been added to enhance the concurrent job submission capability.

Variables can be de-activated arbitrarily using a table of checkboxes. This avoids the necessity for
changing variables to constants.

New metal forming failure criteria.

String variables. These variables allow the definition of discrete variables sets with names as might
be used for include file names. GUI support is provided.

The recovery of databases from remote servers has been added as a GUI feature.

10. A sorting feature has been added to the Correlation Matrix in the Viewer. The cross-correlations for

any entity can be sorted.

Version 5.1:

1. Multilevel optimization. An LS-OPT solver type can be selected to allow the nesting of any LS-OPT
task.

2. Parallel Feedforward Neural Networks. This feature allows the concurrent building of multiple
networks and network ensemble components. FFNN building can also be done remotely, e.g. on a
cluster. Job monitoring is provided in the GUI.

3. Significant enhancements have been made to histogram displays in the Viewer. Manual axis control
is allowed while statistical quantities such as mean and standard deviation as well as constraints are
depicted. Histogram types have been added.

4. Subregion-based sensitivity analysis is available using Sobol indices. Multiple subregions can be

analyzed in the same run and stored for display. Global Sensitivity Analysis can now be activated
from the GSA icon (as a post-processing function).
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5. Design categories can be specified for user-selected simulation points. Name, color and type
attributes can be chosen for each category display. Responses and histories are supported.

Excel is now supported as a solver type on Windows.

A new third party Finite Element solver is now supported. The support includes parameter
(*PARAMETER) recognition using recursive include files during the problem setup phase.

8. De-activation of variables in iterative methods. The user can seamlessly deactivate variables at any
stage of the iterative process. This is useful when performing other tasks such as optimization after
variable screening.

9. Metamodel formulae for polynomials and Radial Basis Function Networks can be exported.

10. Multiple plots are allowed in optimization history displays. All the available entities such as
variables, responses, etc. can be displayed on the same plot.

11. Differential Evolution was added as a global metamodel optimizer (unconstrained continuous
problems only).

12. Responses and/or histories can be cloned (Stage dialog in GUI).

Version 5.2:

1. A new integrated progress window has been created to unify Windows and Linux progress
monitoring. The window features separate tabs for text output and thermometer type progress
monitoring. Warnings and errors are displayed in a separate tab window. Global progress is
displayed. The window can be hidden while the older option via the stage dialog LED is still
available.

2. Navigation tools are available in the GUI for navigating between levels when using multilevel
optimization. E.g. the input setup and progress can be accessed with full functionality for lower
levels by navigating from the start (top) level.

3. Response variables were created to allow the substitution of simulation results in input files of a
child stage during a multi-stage process flow. Histories from simulation output can also be
transferred to LS-DYNA input files as *DEFINE_CURVE data sets. Response and history
expressions are fully supported.

4. The generation and display of comparison metamodels. A set of different metamodels based on the
same set of analysis results can be selected by the user for display. Parallel Neural Networks are also
available as comparison metamodels.

Histories can be displayed in three dimensions in which the third dimension is a variable.

Reliability statistics, e.g. as a result of direct or metamodel-based Monte Carlo analysis can be
extracted in a multilevel setup. This allows the setup of, for instance, tolerance optimization or
robust design problems using the direct Monte Carlo method. Mean values, standard deviation as
well as the probability of failure are supported for individual constraints as well as globally.

7. Matlab is supported as a solver type on the Windows platform.

8. LS-OPT metamodels (DesignFunctions.x file format) can be imported. This is useful for problems in
which a metamodel has already been constructed. Importing and optimization/Monte Carlo analysis

LS-OPT Version 5.2 Xi



10.
11.

12.
13.
14.
15.

16.

17.

18.

can be executed as a single step to allow for automatic importation preceding the inner level analysis
of a multi-level optimization.

Parallelization is now automatic for extraction repair. The number of processors available on the
local machine is automatically detected.

Mode tracking now runs in parallel.

Box plot options are available for histogram displays (reliability analysis). This includes whisker
type options for min./max., interquartile range, standard deviation and 9%/91%.

The FE postprocessor can be customized.
Encryption features are available to encrypt the LS-OPT (.Isopt) input file.
The efficiency of the Curve Mapping algorithm has been improved.

Features have been added to the GenEx text extraction tool to simplify the selection and extraction
of histories.

A response file option allows the specification of an output file with a single value that needs to be
extracted (user-defined response). This feature solves a portability issue by obviating “type”
(Windows) or “cat” (Linux) commands to write such a file to standard output as is required for user-
defined responses.

Retry and timeout attributes required by the job scheduler to handle abnormal termination can now
be specified in the GUI.

Special functions for differentiation have been improved. Irregular spacing of the history or crossplot
curve is allowed.

19. An image of the flow chart can be saved as a picture file.

As in previous years, the automotive and other industries have made significant contributions to the
development of new features in LS-OPT. In addition to long-time participant Professor Larsgunnar Nilsson
(Mechanical Engineering Department, Linkdping University, Sweden), Dr. Daniel Hilding, Mr. David
Bjorkevik, Mr. Ake Svedin and Mr. Christoffer Belestam of DYNAmore Nordic, Linkdping as well as Dr.-
Ing. Heiner Miillerschon and Dipl.-Math. Katharina Witowski of DYNAmore GmbH, Stuttgart, Germany
have made major contributions as developers. Special thanks go to Katharina for patiently editing and
managing the manual, a major task in this version.

Dr. Trent Eggleston redesigned the job scheduler to accommodate the launching and load balancing of jobs
with dependencies. Thanks also go to Prof. Satoshi Kitayama of Kanazawa University, Japan for providing
the Differential Evolution algorithm.

Nielen Stander and Anirban Basudhar
Livermore, CA
July, 2015
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1. Introduction

In the conventional design approach, a design is improved by evaluating its response and making design
changes based on experience or intuition. This approach does not always lead to the desired result, that of a
‘best” design, since design objectives are sometimes in conflict, and it is not always clear how to change the
design to achieve the best compromise of these objectives. A more systematic approach can be obtained by
using an inverse process of first specifying the criteria and then computing the *best” design. The procedure
by which design criteria are incorporated as objectives and constraints into an optimization problem that is
then solved, is referred to as optimal design.

The state of computational methods and computer hardware has only recently advanced to the level where
complex nonlinear problems can be analyzed routinely. Many examples can be found in the simulation of
impact problems and manufacturing processes. The responses resulting from these time-dependent
processes are, as a result of behavioral instability, often highly sensitive to design changes. Program logic,
as for instance encountered in parallel programming or adaptivity, may cause spurious sensitivity. Roundoff
error may further aggravate these effects, which, if not properly addressed in an optimization method, could
obstruct the improvement of the design by corrupting the function gradients.

Among several methodologies available to address optimization in this design environment, response
surface methodology (RSM), a statistical method for constructing smooth approximations to functions in a
multi-dimensional space, has achieved prominence in recent years. Rather than relying on local information
such as a gradient only, RSM selects designs that are optimally distributed throughout the design space to
construct approximate surfaces or ‘design formulae’. Thus, the local effect caused by ‘noise’ is alleviated
and the method attempts to find a representation of the design response within a bounded design space or
smaller region of interest. This extraction of global information allows the designer to explore the design
space, using alternative design formulations. For instance, in vehicle design, the designer may decide to
investigate the effect of varying a mass constraint, while monitoring the crashworthiness responses of a
vehicle. The designer might also decide to constrain the crashworthiness response while minimizing or
maximizing any other criteria such as mass, ride comfort criteria, etc. These criteria can be weighted
differently according to importance and therefore the design space needs to be explored more widely.

Part of the challenge of developing a design program is that designers are not always able to clearly define
their design problem. In some cases, design criteria may be regulated by safety or other considerations and
therefore a response has to be constrained to a specific value. These can be easily defined as mathematical
constraint equations. In other cases, fixed criteria are not available but the designer knows whether the
responses must be minimized or maximized. In vehicle design, for instance, crashworthiness can be
constrained because of regulation, while other parameters such as mass, cost and ride comfort can be treated
as objectives to be incorporated in a multi-objective optimization problem. Because the relative importance
of various criteria can be subjective, the ability to visualize the trade-off properties of one response vs.
another becomes important.
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Trade-off curves are visual tools used to depict compromise properties where several important response
parameters are involved in the same design. They play an extremely important role in modern design where
design adjustments must be made accurately and rapidly. Design trade-off curves are constructed using the
principle of Pareto optimality. This implies that only those designs of which the improvement of one
response will necessarily result in the deterioration of any other response are represented. In this sense no
further improvement of a Pareto optimal design can be made: it is the best compromise. The designer still
has a choice of designs but the factor remaining is the subjective choice of which feature or criterion is more
important than another. Although this choice must ultimately be made by the designer, these curves can be
helpful by limiting the number of possible solutions. An example in vehicle design is the trade-off between
mass (or energy efficiency) and safety.

Adding to the complexity, is the fact that mechanical design is really an interdisciplinary process involving
a variety of modeling and analysis tools. To facilitate this process, and allow the designer to focus on
creativity and refinement, it is important to provide suitable interfacing utilities to integrate these design
tools. Designs are bound to become more complex due to the legislation of safety and energy efficiency as
well as commercial competition. It is therefore likely that in future an increasing number of disciplines will
have to be integrated into a particular design. This approach of multidisciplinary design requires the
designer to run more than one case, often using more than one type of solver. For example, the design of a
vehicle may require the consideration of crashworthiness, ride comfort, noise level as well as durability.
Moreover, the crashworthiness analysis may require more than one analysis case, e.g. frontal and side
impact. It is therefore likely that as computers become more powerful, the integration of design tools will
become more commonplace, requiring a multidisciplinary design interface.

Modern architectures often feature multiple processors and all indications are that the demand for
distributed computing will strengthen into the future. This is causing a revolution in computing as single
analyses that took a number of days in the recent past can now be done within a few hours. Optimization,
and RSM in particular, lend themselves very well to being applied in distributed computing environments
because of the low level of message passing. Response surface methodology is efficiently handled, since
each design can be analyzed independently during a particular iteration. Needless to say, sequential methods
have a smaller advantage in distributed computing environments than global search methods such as RSM.

The present version of LS-OPT also features Monte Carlo based point selection schemes and optimization
methods. The respective relevance of stochastic and response surface based methods may be of interest. In a
pure response surface based method, the effect of the variables is distinguished from chance events while
Monte Carlo simulation is used to investigate the effect of these chance events. The two methods should be
used in a complimentary fashion rather than substituting the one for the other. In the case of events in which
chance plays a significant role, responses of design interest are often of a global nature (being averaged or
integrated over time). These responses are mainly deterministic in character. The full vehicle crash example
in this manual can attest to the deterministic qualities of intrusion and acceleration pulses. These types of
responses may be highly nonlinear and have random components due to uncontrollable noise variables, but
they are not random.

Stochastic methods have an important purpose when conducted directly or on the surrogate (approximated)
design response in reliability based design optimization and robustness improvement. This methodology is
currently under development and will be available in future versions of LS-OPT.
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1.1. Overview of the manual

This LS-OPT® manual consists of four main parts.

| - User’s Manual

This part guides the user in the use of LS-OPTui, the graphical user interface.

Il - Examples

Examples are used to illustrate the application of LS-OPT to a variety of practical applications.

11 - Theory

Fundamentals are provided for the various features in LS-OPT.

IV - Appendix

Appendices contain interface features, database file descriptions, a mathematical expression library, a
Glossary, etc. Two appendices are dedicated to helping the user install LS-OPT. The second of these is more
advanced and dedicated to remote job scheduling, e.g. using a queuing system.

1.2. How to read this manual

Most users will start learning LS-OPT by consulting the User’s Manual section beginning with Chapter 2
(Getting Started).

The Examples (Chapters 18 through 20) are included to demonstrate the features and capabilities and can be
read together with Chapters 2 to 17 to help the user to set up a problem formulation.

The Theoretical Manual (Chapters 21 through 25) serves mainly as an in-depth reference section for the
underlying methods.

The items in the Appendices are included for reference to detail, while the Appendix J: Document Type
Definition (DTD) provides an overview of all the features.

The manual functions as a hypertext document such that links in the manual body can be used for cross-
referencing and will take the reader to the relevant item such as Section 3.2.1, Reference [4] or Figure 22-5
(Just click on any of the afore-mentioned references). Alt+Left Arrow returns to the original reference
point.

Sections containing advanced topics are indicated with an asterisk (*).
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2. Getting Started

2.1. Installation of LS-OPT

Refer to Appendix H: (Installing LS-OPT) for information on the installation of LS-OPT.

Table 2-1 describes the LS-OPT execution commands.

Table 2-1: LS-OPT execution commands

Command Description

Isoptui command_file_name Execute the graphical user interface

Isopt command_file_name LS-OPT batch execution

Isopt env Check the LS-OPT environment setting. The LS-OPT
environment is automatically set to the location of the Isopt
executable.

viewer command_file_name Execute the graphical postprocessor (also accessible from main
GUI)

comz2lsopt com.abcde abcde.lsopt  Converts a legacy ‘com’ file to a .Isopt file in XML format

2.2. Name conventions in LS-OPT

2.2.1. Variable names

Variables as defined in this section are entities that can be used in mathematical expressions.

Variables are identified by their names. A name length is limited to 61 characters. In addition to numbers
0-9, upper or lower case letters, a name can contain a period (.) and/or an underscore (_ ). Spaces are not
allowed.

The leading character of a variable must be alphabetical. Variables must be given unique names, because
mathematical expressions can be constructed using various entities in the same formula.
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2.2.2. Stage and case (sampling) names

For entities that cannot be used in mathematical expressions, i.e. stage, sampling, distribution
and resource, the name can also include the characters —+%=. Spaces are not allowed.

Stage and Sampling names are limited by the software to 1023 characters (no spaces allowed). These names
are used as sub-directory names, so stricter limits may apply depending on the operating system.

2.2.3. Environment variable names

Envvar names may also include -+%.

2.3.

A modus operandi for design using response surfaces

2.3.1. Preparation for design

Since the design optimization process is expensive, the designer should avoid discovering major flaws in the
model or process at an advanced stage of the design. Therefore the procedure must be carefully planned and
the designer needs to be familiar with the model, procedure and design tools well in advance. The following
points are considered important:

1.

The user should be familiar with and have confidence in the accuracy of the model (e.g., finite
element model) used for the design. Without a reliable model, the design would make little or no
sense.

Select suitable criteria to formulate the design. The responses represented in the criteria must be
produced by the analyses and be accessible to LS-OPT.

Request the necessary output from the analysis program and set appropriate time intervals for time-
dependent output. Avoid unnecessary output as a high rate of output will rapidly deplete the
available storage space.

Run at least one simulation using LS-OPT (baseline design). To save time, the termination time of
the simulation can be reduced substantially. This exercise will test the response extraction
commands and various other features. Automated response checking is available, but manual
checking is still recommended.

Just as in the case of traditional simulation it is advisable to dump restart files for long simulations.
LS-OPT will automatically restart a design simulation if a restart file is available. For this purpose,
the runrsT file is required when using LS-DYNA as solver.

Determine suitable design parameters. In the beginning, it is important to select many rather than
few design variables. If more than one discipline is involved in the design, some interdisciplinary
discussion is required with regard to the choice of design variables.

Determine suitable starting values for the design parameters. The starting values are an estimate of
the optimum design. These values can be acquired from a present design if it exists. The starting
design will form the center point of the first region of interest.

Choose a design space. This is represented by absolute bounds on the variables that you have
chosen. The responses may also be bounded if previous information of the functional responses is
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available. Even a simple approximation of the design response can be useful to determine
approximate function bounds for conducting an analysis.

9. Choose a suitable starting design range for the design variables. The range should be neither too
small, nor too large. A small design region is conservative but may require many iterations to
converge or may not allow convergence of the design at all. It may be too small to capture the
variability of the response because of the dominance of noise. It may also be too large, such that a
large modeling error is introduced. This is usually less serious as the region of interest is gradually
reduced during the optimization process.

10. If the user has trouble deciding the size of the starting range, it should be omitted. In this case the
full design space is chosen.

11. Choose a suitable order for the design approximations when using polynomial response surfaces (the
default). A good starting approximation is linear because it requires the least number of analyses to
construct. However, it is also the least accurate. The choice therefore also depends on the available
resources. However, linear experimental designs can be easily augmented to incorporate higher order
terms.

Before choosing a metamodel, please also consult Sections 22.3 and 23.5.

After suitable preparation, the optimization process may now be commenced. At this point, the user has to
decide whether to use an automated iterative procedure (Section 22.3) or whether to firstly perform variable
screening (through ANOVA or Global Sensitivity Analysis) based on one or a few iterations. Variable
screening is important for reducing the number of design variables, and therefore the overall computational
time. Variable screening is illustrated in two examples (see Sections 18.5 and 18.6).

An automated iterative procedure can be conducted with any choice of approximating function. It
automatically adjusts the size of the subregion and automatically terminates whenever the stopping criterion
is satisfied. The feature that reduces the size of the subregion can also be overridden by the user so that
points are sequentially added to the full design space. This becomes necessary if the user wants to explore
the design space such as constructing a Pareto Optimal front. If a single optimal point is desired, it is
probably the best to use a sequential linear approximation method with domain reduction, especially if there
is a large number of design variables. See also Section 23.5.

A step-by-step semi-automated procedure can be just as useful, since it allows the designer to proceed more
resourcefully. Computer time can be wasted with iterative methods, especially if handled carelessly. It
mostly pays to pause after the first iteration to allow verification of the data and design formulation and
inspection of the results, including ANOVA and GSA data. In many cases, it takes only 2 to 3 iterations to
achieve a reasonably optimal design. An improvement of the design can usually be achieved within one
iteration.

A suggested step-by-step semi-automated procedure is outlined as follows:

2.3.2. A step-by-step design optimization procedure

1. Evaluate as many points as required to construct a linear approximation. Assess the accuracy of the
linear approximation using any of the error parameters. Inspect the main effects by looking at the
ANOVA and GSA results. This will highlight insignificant variables that may be removed from the
problem. An ANOVA/GSA is simply a single iteration run, typically using a linear response surface
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to investigate main and/or interaction effects. The ANOVA and GSA results can be viewed in the
post-processor of LS-OPT (see Section 15.3.4).

2. If the linear approximation is not accurate enough, add enough points to enable the construction of a
quadratic approximation. Assess the accuracy of the quadratic approximation. Intermediate steps can
be added to assess the accuracy of the interaction and/or elliptic approximations. Radial Basis
Functions (Section 22.1.3) can also be used as more flexible higher order functions (They do not
require a minimum number of points).

3. If the higher order approximation is not accurate enough, the problem may be twofold:
0 There is significant noise in the design response.

o There is a modeling error, i.e. the function is too nonlinear and the subregion is too large to
enable an accurate quadratic approximation.

In case (3a), different approaches can be taken. Firstly, the user should try to identify the source of
the noise, e.g. when considering acceleration-related responses, was filtering performed? Are
sufficient significant digits available for the response in the extraction database (not a problem when
using LS-DYNA since data is extracted from a binary database)? Is mesh adaptivity used correctly?
Secondly, if the noise cannot be attributed to a specific numerical source, the process being modeled
may be chaotic or random, leading to a noisy response. In this case, the user could implement
reliability-based design optimization techniques as described in Section 25.8. Thirdly, other less
noisy, but still relevant, design responses could be considered as alternative objective or constraint
functions in the formulation of the optimization problem.

In case (3b), the subregion can be made smaller.

In most cases the source of discrepancy cannot be identified, so in either case a further iteration
would be required to determine whether the design can be improved.

4. Optimize the approximate subproblem. The solution will be either in the interior or on the boundary
of the subregion.

If the approximate solution is in the interior, the solution may be good enough, especially if it is close to
the starting point. It is recommended to analyze the optimum design to verify its accuracy. If the
accuracy of any of the functions in the current subproblem is poor, another iteration is required with a
reduced subregion size.

If the solution is on the boundary of the subregion the desired solution is probably beyond the region.
Therefore, if the user wants to explore the design space more fully, a new approximation has to be built.
The accuracy of the current response surfaces can be used as an indication of whether to reduce the size
of the new region.

The whole procedure can then be repeated for the new subregion and is repeated automatically when
selecting a larger number of iterations initially.

2.4. Recommended test procedure

A full optimization run can be very costly. It is therefore recommended to proceed with care. Check that the
LS-OPT optimization run is set up correctly before commencing to the full run. By far the most of the time
should be spent in checking that the optimization runs will yield useful results. A common problem is to not
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check the robustness of the design so that some of the solver runs are aborted due to unreasonable
parameters which may cause distortion of the mesh, interference of parts or undefinable geometry.

The following general procedure is therefore recommended:

1. Test the robustness of the analysis model by running a few (perhaps two or three) designs in the
extreme corners of the chosen design space. Run these designs to their full term (in the case of time-
dependent analysis). Two important designs are those with all the design variables set at their
minimum and maximum values. The starting design can be run by selecting Baseline Run from the
control bar Run menu.

2. Modify the input to define the experimental design for a full analysis.

3. For a time dependent analysis or non-linear analysis, reduce the termination time or load
significantly to test the logistics and features of the problem and solution procedure.

4. Execute LS-OPT with the full problem specified and monitor the process.
Also refer to Section 2.2.

2.5. Pitfalls in design optimization

A number of pitfalls or potential difficulties with optimization are highlighted here. The perils of using
numerical sensitivity analysis have already been discussed and will not be repeated in detail.

2.5.1. Global optimality

The Karush-Kuhn-Tucker conditions govern the local optimality of a point. However, there may be more
than one optimum in the design space. This is typical of most designs, and even the simplest design problem
(such as the well known 10-bar truss sizing problem with 10 design variables), may have more than one
optimum. The objective is, of course, to find the global optimum. Many gradient-based as well as discrete
optimal design methods have been devised to address global optimality rigorously, but as there is no
mathematical criterion available for global optimality, nothing short of an exhaustive search method can
determine whether a design is optimal or not. Most global optimization methods require large numbers of
function evaluations (simulations). In LS-OPT, global optimality is treated on the level of the approximate
subproblem through a multi-start method originating at all the experimental design points. If the user can
afford to run a direct optimization procedure, a Genetic Algorithm (Section 23.8) can be used.

2.5.2. Noise

Although noise may evince the same problems as global optimality, the term refers more to a high
frequency, randomly jagged response than an undulating one. This may be largely due to numerical round-
off and/or chaotic behavior. Even though the application of analytical or semi-analytical design sensitivities
for ‘noisy’ problems is currently an active research subject, suitable gradient-based optimization methods
which can be applied to impact and metal-forming problems are not likely to be forthcoming. This is largely
because of the continuity requirements of optimization algorithms and the increased expense of the
sensitivity analysis. Although fewer function evaluations are required, analytical sensitivity analysis is
costly to implement and probably even more costly to parallelize.
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2.5.3. Non-robust designs

Because RSM is a global approximation method, the experimental design may contain designs in the remote
corners of the region of interest which are prone to failure during simulation (aside from the fact that the
designer may not be remotely interested in these designs). An example is the identification of the parameters
of a monotonic load curve which in some of the parameter sets proposed by the experimental design may be
non-monotonic. This may cause unexpected behavior and possible failure of the simulation process. This is
almost always an indication that the design formulation is non-robust. In most cases poor design
formulations can be eliminated by providing suitable constraints to the problem and using these to limit
future experimental designs to a ‘reasonable’ design space (see Section 21.2.8).

2.5.4. Impossible designs

The set of impossible designs represents a “hole’ in the design space. A simple example is a two-bar truss
structure with each of the truss members being assigned a length parameter. An impossible design occurs
when the design variables are such that the sum of the lengths becomes smaller than the base measurement,
and the truss becomes unassemblable. It can also occur if the design space is violated resulting in
unreasonable variables such as non-positive sizes of members or angles outside the range of operability. In
complex structures it may be difficult to formulate explicit bounds of impossible regions or “‘holes’.

2.5.5. Non-unique designs

In some cases multiple solutions will give the same or similar values for the objective function. The
phenomenon often appears in under-defined parameter identification problems. The underlying problem is
that of a singular system of equations having more than one solution. The symptoms of non-uniqueness are:

o Different solutions are found having the same objective function values
o0 The confidence interval for a non-linear regression problem is very large, signaling a singular system

For nonlinear regression problems, the user should ensure that the test/target results are sufficient. It could
be that the data set is large but that some of the parameters are insensitive to the functions corresponding to
the data. An example is the determination of the Young’s modulus (E) of a material, but having test points
only in the plastic range of deformation (see example Section 19.1). In this case the response functions are
insensitive to E and will show a very high confidence interval for E (Section 19.1.4).

The difference between a non-robust design and an impossible one is that the non-robust design may show
unexpected behavior, causing the run to be aborted, while the impossible design cannot be synthesized at
all.

Impossible designs are common in mechanism design.
2.6. Setup of a simple optimization problem

2.6.1. Working directory

Create a working directory for keeping the main command file, input files and other command files as well
as the LS-OPT program output. Make sure there are no blanks in the path names.
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2.6.2. Startup

Open the graphical user interface of LS-OPT as described in Section 3.1 and enter the required
specifications to generate an LS-OPT project file to start from, Figure 2-1. Selecting Create will open up the

main LS-OPT GUI window, Figure 2-2.

b

LS-0PT 5.0

B

tf M”'NALSTC

wmh‘w Technology Corp.

New project

‘Working Directory

Livermore Software |jyarmore Software Technology Corporation

[E ITERATE

<

Filename

[srsm

Problem Description

l.lsopt

l

Author

l

Initial Sampling name

[Sampling_CRASH

l

Initial Stage name

[CRASH

l

LS-OPT User Interface
Version 5.0 (Revision 79865)
by

(C) Copyright 2000-2011 - All Rights Reserved

Open recent project

com.iterate.correct
com.iterate.correct
singlestage.correct.lsopt
fhome/katharing/LSTC/optQA/CLASS_EXA
com_real_kaw.lsopt
/home/katharina/download/05_Test_130

com_real.lsopt
/home/katharina/download/05_Test_130
com.frequency.iterate.correct

com.frequency.iterate correct
msehistory.single.correct.lsopt
/homejkatharina/LSTC/optQA/CLASS_EXA
msehistory.lsopt
,fhomefkatharina,fSINGLECASE;msehistor“F]

[«] 1 | E|_

Create

[ een

|Open other project ... |

| qut |

Figure 2-1: LS-OPT Startup dialog. Select the working directory, enter a name for the LS-OPT project
file and a name for the initial sampling and initial stage to generate a new project.
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Figure 2-2: The main LS-OPT GUI window visualizes the optimization process flow. Selecting a box
opens the respective dialog. The stage box (CRASH) can be moved freely using the left mouse button.
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2.6.3. Task

Open the Task dialog by selecting the corresponding icon from the control bar (&3). Select the task to run,
Figure 2-3, e.g. Metamodel-based Optimization with Strategy: Sequential with Domain Reduction, Chapter

4. The main GUI displays the process flow of the selected task.

B Task selection (z3)

Main task
Metamodel-based

@ Optimization

() DOE study

() Monte Carlo analysis

() RBDO/Robust Parameter Design

Direct simulation
() Optimization
) Monte Carlo analysis

Strategy for Metamodel-based Optimization

() Single Iteration

() Sequential

@ Seqguential with Domain Reduction (SRSM)

1. Sampling points are added sequentially
in an adaptive subregion.

2. Metamodel optimization is done at each iteration
and is limited to the current subregion.

3. Suitable for finding a converged solution

(e.g. system identification).
4. Generally unsuitable for global exploration

[] Global Sensitivities
Do verification run

Batch Mode Options
[[] Baseline Run Only

Figure 2-3: Task dialog. Select the main task and strategy

2.6.4. Stage

Set up the process chain. In the simplest case, a single Stage is required to interface with a solver, e.g. LS-
DYNA. Select the already available Stage box, Figure 2-4. Select the solver Package Name, the solver
Command and the parameterized Input File, Chapter 5. In more complex cases further stages can be added,

e.g. for a pre-processor or post-processor.
Then switch to the Parameters tab to check the parameters found in the solver input file, Figure 2-5.

Next, switch to the Responses and Histories panel, Figure 2-6, to define results to be extracted from the
solver output database (to be used as objectives or constraints in the optimization phase), Chapter 6.
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oFT Stage CRASH

Setup | Parameters = Histories = Responses | File Operations

=)

General

Package Name[ LS-DYNA

?)

Command[lsg?l_single

[ orowee |

[] Do not add input file argument

Input File [main.k

[ orowse |

copies main.k (0 includes) to CRASH/it.run/| DynaOpt.inp

]

and substitutes parameters

[[] Extra input files

LS-DYNA Advanced Options

Execution
Resources

Resource Units per job Global limit Delete
1 1 |4 x

Create new resource

[[] Use Queuing

[[] Use LSTCVM proxy

] Environment Variables

[] Run Jobs in Directory of Stage

oK

Figure 2-4: Stage dialog - Setup. Select the solver package name, the command and the solver input file

)

(& Stage CRASH
Setup |Parameter5|‘ Histories | Responses | File Operations
Name Found in file(s) |
thumper main .k
thood main.k
Add .

OK

Figure 2-5: Stage dialog — Parameters. Displays the parameters found in the input file specified in Setup
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Cal Stage GRASH =
Setup | Parameters Histories | Responses | Fle Operations
Response definitions Add new
Disp2 Generic i
NODOUT: Last registered X Component of Displacement of node with USERDEFINED
ID 432
GENEX
Displ
NODOUT: Last registered X Component of Displacement of node with EXCEL 3
ID 167 EXPRESSION
Acc_max FUNCTION
NODOUT: Max X Component of Acceleration of node with ID 167 INJURY
filtered with SAE Filter m
MATRIX_EXPRESSION
Mass LS-DYNA
MASS: Mass of parts 2,3.4 and 5
ABSTAT
HIC x
INJURY: Head Injury Coef, maximum of 15ms, for Acceleration of node BNDOUT
with 1D 432 D3PLOT
DEBEMAC
DEFSI
DEFORC
ELOUT E
| ok |

Figure 2-6: Stage dialog - Responses page. Select a response type from the list on the right to add a new
response definition.

2.6.5. Setup

Select the Setup box at the top left of the main GUI, Chapter 8. All parameters that are defined in stage
input files should automatically be available as constants, Figure 2-7.

Select the desired variable Types. In most cases Continuous variables are used.

Then enter the requested values, e.g. the Starting value and Minimum and Maximum values to define the
design space for a continuous variable.

Now follow the arrows to the next box in the optimization process flow to define the respective settings and
options.
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&

Parameter Setup | Stage Matrix | Sampling Matrix = Resources = Features

[[] Show advanced options

Type Name Starting Minirnum Maximum Delete

[cormuons | ] () E— —
[cotmons | ] (Y B

Add...

Figure 2-7: Parameter Setup dialog. Define the parameter type and required values.

2.6.6. Sampling and Metamodels

Select the Sampling box, Chapter 9. Select the Metamodel and Point Selection types, or just use the default

values, Figure 2-8.

The Build Metamodels box is coupled to the same dialog as the Sampling box. It is displayed at the end of
the process to correctly represent the optimization process. Hence the Build Metamodels box can be

skipped.
s Sampling 1 &
Sampling Metamodel Settings | Active Variables | Features | Constraints
Metamodel Pointselection
@ Polynomial " Full Factorial
() Sensitivity () Linear Koshal
) Feedforward Neural Network () Quadratic Koshal
) Radial Basis Function Network ) Composite
() Kriging @ D-Optimal
() Support Vector Regression () Monte Carlo
O User-defined () Latin Hypercube
) Space Filling
Order _ )
. () User-defined
(@ Linear
() Linear with interaction Number of Simulation Points (per lteration per Case)
O Quadratic 5 (default)
) Elliptic
Set Advanced D-Optimal Options >=—|
oK

Figure 2-8: Sampling dialog. Select the metamodel type and point selection scheme.
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2.6.7. Optimization

Select the Optimization box, Chapter 11. From the previously defined Responses, select the objectives,
Figure 2-9.

Switch to the Constraints tab. From the previously defined Responses, select the constraints and specify
lower and upper bounds, respectively, Figure 2-10. Use the default setting for the algorithm.

Ber X
Objectives || Constraints | Algorithms

[[] Maximize the Objective Function (instead of minimize)

Objective components: Add new

Response/Composite Weight Responses

x HIC 1 Idefault).
|_ J

Composites

Intrusion

Figure 2-9: Optimization - Objectives. Select the objective components from the list on the right.

i B

Objectives || Constraints || Algorithms

[[] Constraint scaling

Optimization constraints: Add new
Response Lower Bound  Strict Upper Bound  Strict Responses
x Mass Set lower bound x | 0.5_| O Displ
) . Acc_max
x Intrusion Set lower bound x | 550_| O HIC
Composites

Figure 2-10: Optimization - Constraints. Select constraints from the list on the right. Specify lower and
upper bounds as required.
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2.6.8. Termination criteria

Select the Termination criteria box, Chapter 12. Specify the Maximum number of lIterations, e.g. 5
iterations. Use the default values for the other options.

Gad Termination Eriteria (=)

Tolerance Required for Termination

@ Design AND Objective AND Metamodel Accuracy
() Design OR Objective OR Metamodel Accuracy

Design Change Tolerance

|:D.Dl (default) |

Objective Function Tolerance

[D.Dl (default) |

Maximum number of Iterations

[5 <

Figure 2-11: Termination Criteria dialog. Specify the maximum number of iterations

2.6.9. Run

After setting up the optimization problem, run the task using the options from the control bar Run menu
(»), Section 3.3.

It is recommended to first run a Baseline Run to check if the stage process chain works correctly and the
results are extracted as expected. Then run the full task using the Normal Run option.

2.6.10. Viewer

Use the Viewer (Chapter 15) to evaluate the results by selecting & from the the main GUI window control
bar. The Viewer provides features to display metamodels and plot simulation results and optimization
progress.

2.7. REFERENCES

[1] Stander, N. Goel, T. Metamodel sensitivity to sequential sampling strategies in crashworthiness
design. In Proceedings of the 12™ AIAA/ISSMO Multidisciplinary Analysis and Optimization
Conference,Victoria, British Columbia, Canada, Sep 10-12, 2008.
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This chapter introduces the graphical user interface of LS-OPT. The LS-OPT GUI enables the user to
construct a simulation process, using a flowchart to define the stage dependencies. The process can then be
subjected to any of the available analysis tasks such as simulation, optimization, Monte Carlo analysis, etc.
Using progress bars and LEDs, the GUI also provides a window on the progress of each of the optimization
steps and simulation stages.

3.1. LS-OPT user interface (LS-OPTui)

On Linux, the user interface is launched with the command
Isoptui [command_file.lsopt]

On Windows, the user interface is launched using Isoptui.exe. A command file can be opened directly by
drag and drop or by double-clicking on the . Isopt filename.

If the user interface is launched without a command file argument, the Startup Dialog opens up, where the
user can either define a new LS-OPT project, or select an existing project to open, see Figure 3-1. The
options are explained in Table 3-1. Otherwise the specified LS-OPT project is opened in the user interface
(see Figure 3-2).

Legacy com.abcde files generated with previous LS-OPT versions (4.x and older) can be opened with
the command

Isoptui [com.abcde]
Saving the GUI contents produces a file abcde. Isopt in.xml format.

The file abcde.lsopt can also be generated by executing the following command in the command
prompt:

com2xml com.abcde abcde. lsopt

LS-OPT Version 5.2 18



CHAPTER 3: Graphical User Interface

LSTC
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New project
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LS-OPT User Interface
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Figure 3-1: Startup Dialog of Isoptui
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Table 3-1: Startup Dialog options

Option Description Reference
Working Directory where the LS-OPT project input files and some of the
Directory results are stored.
Filename Name of the .xml file that stores the LS-OPT project. The extension

- Isopt is automatically appended to the selected name.
Problem A description of the problem can be given. This description is
Description echoed in the Isopt_input and Isopt_output files, in the

plot file titles and in the GUI display (table at bottom right).

(optional)
Author Author information (optional)
Initial Sampling  Each LS-OPT project requires at least one Sampling definition. The  Chapter 9
name name of the first sampling has to be specified here. A default name is

provided.
Initial Stage Each LS-OPT project requires at least one Stage definition. The Chapter 5
name Stage definition includes the solver type and command as well as the

main input file name. The name of the first stage has to be specified

here. A default name is provided.
Create Creates a new LS-OPT project and opens it in the main GUI Section 3.2
Open recent A project from the list of the last ten LS-OPT projects can be Section 3.2
project opened.
Open other Option to open any existing LS-OPT project Section 3.2
project ...
Quit Quit Isoptui

3.2. The GUI main window

The flowchart in the main GUI of LS-OPT (Figure 3-2) mimics the process of the selected task, e.g. starting
from global parameters defined in Setup, through the sampling, the simulation process chain defined by the
stages and dependencies, the building of meta-models, the metamodel optimization, checking of
convergence, and domain reduction in one or more loops, and finally the verification run for a meta-model
based, sequential optimization. Refer to Chapter 4 for details on the available tasks.

Double clicking on any of the boxes opens the corresponding dialog, where settings can be viewed and
adjusted. The dialogs and options are explained in the respective chapters, see Table 3-3.
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The control bar menus are described in Table 3-1.

G Us-oPT 5.0 DR
h h + /" } l/ Metamodel-bas edcptlmuatmnm- ?

_| Sampling Samplingl
| 0 wars, 0 sp filling design:

L5-DYNA

‘-— —-J Stagel

‘- Setup

0 parameters

-

r o | Core Optimizer | _. -
Verification . .p - 2 Build Metamodels
P [ 0 objectives |
== ||-_ 0 constraints _,| .

Multi-disciplinary optimization
fhomefkatharina/LSTCloptQA/CLASS EXAMPLES/DESIGN OPTIMIZATION/mdaolsop

Figure 3-2: Main LS-OPT GUI window for a setup of a Metamodel-based optimization

Table 3-2: Main GUI Control Bar options

Icon Option Description Reference
5 New Opgns_ thg Startu_p Dialog (Figure 3-1) to create anew  Section 3.1
optimization project.
Open Option to open an existing LS-OPT project
Save Save current project
Saveas ... Save current project as ...
Encrypt project Encrypt the project file Section 3.7
Exit Exit Isoptui
= Input Open the Isopt_input file
Output Open the Isopt_output file

LS-OPT Version 5.2 21



CHAPTER 3: Graphical User Interface

Summary Report

Open the Isopt_report file

Warnings

Open the WARN ING_MESSAGE file

Errors

Open the EXIT_STATUS file

Open project
folder

Opens up the working directory

Other file... Option to open any other text file
Add Sampling Add additional Sampling. The name of the sampling Chapter 9
will be used as the name of a subdirectory used for
sampling related databases such as
Experiments_n.csv and
AnalysisResults _n.lIsox.
Add Stage in Add additional Stage in selected sampling. The name  Chapter 5
Sampling of the stage will be used as the name of a sub-
directory to the working directory. Stage-related
databases are stored in this directory.
Add Composite  Add Composite Chapter 10
Add Domain Use Domain Reduction (same as Sequential with Section 4.8
Reduction Domain Reduction option in Task dialog)
Add Termination  Switch to sequential Strategy Chapter 12
Criteria
Add Verification  Run an additional simulation using the parameter Section 4.11
Run values of the predicted optimum or Pareto optimal
solutions at the end of the optimization run.
Add Global Calculates Global Sensitivities on the meta-model. Section 4.10
Sensitivities
Re-layout stages  Layout the stage boxes according to the defined
dependencies.
Show XML Tree  Show the XML Tree for the current settings.
Repair Global repair or modification of an existing run. A Section 3.5
local repair can be done by right-clicking on a Stage
or Sampling.
Clean Clean from current iteration [iter]: Removes all Section 3.4
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simulation data as well as optimization data from the
specified iteration iter onwards.

Clean Verification Run: Removes the simulation data
as well as optimization data of the verification run.

Clean All: The directory structure created by LS-OPT
and all the files in this directory structure are deleted.

Archive LS-OPT
Database

This option collects relevant files and creates a single  Section 3.6
tar-zipped (on *nix operating systems) file or zipped
(on windows operating systems) file.

Save Flowchart

Saves an png image of the LS-OPT main GUI

image Window
DynaStats Opens DynaStats Chapter 16
2 Normal Run Run task Section 3.3.1
Baseline Run Run a single design, sampled at the initial values. Section 3.3.2
[ | Stop Button is only available while LS-OPT is running.
Stops the current optimization and all running jobs.
| Viewer Opens the viewer for post-processing. Chapter 15
oD Task Opens Task Dialog. Chapter 4
iz Iteration While running LS-OPT, this visualizes the current Section 3.4
running iteration. It is also used to select the current
iteration for restarting or repair.
Settings Settings dialog. Section 3.8
? Manual Opens the LS-OPT User’s Manual
About Information about LS-OPT
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Table 3-3: Process Boxes

Box Description Reference
Setup Parameters (global set), Global optimization settings, Chapter 8
variable connectivity, resource data.
Sampling Point selection and metamodel settings Chapter 9
Stage Interface to solver such as solver command and input file. ~ Chapter 5
File Transfers Transfer files to a downstream stage. Section 3.2.2
Build Metamodels Same as Sampling Chapter 9
Composites Define composites Chapter 10
Global Sensitivities  Calculate global sensitivities Section 4.10
Optimization Definition of objectives, constraints and optimization Chapter 11
algorithms
Monte Carlo Monte Carlo settings Section 11.5
Termination Criteria  Termination criteria for sequential strategies Chapter 12
Domain Reduction Domain reduction settings for strategy sequential with Section 4.8
domain reduction
Verification Run Perform (specified number of) verification run(s) Section 4.11

3.2.1. Setting up a Process Flow

A process can be constructed for the purpose of running a sequence of dependent simulations. A typical

simple process is a sequence: pre-processor — solver — post-processor which can be constructed by

defining three sequential stages. However, a process of high complexity can also be created. For instance
the flow of the process is allowed to merge and branch. See Figure 3-3.
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Figure 3-3: Setup of a complex optimization problem

The process can be constructed in multiple steps by adding stages and connecting the stages using the
mouse to create dependencies of one stage on another.

On creating a new optimization project, a first stage is generated. Additional stages can be added using the
Add stage option of the + menu in the control bar. A sampling has to be selected to which the new stage is
assigned. By default, the new stage is added in parallel to the already existing stages.

If similar stages are needed for e.g. a multi-case optimization, a stage can be added by using the Clone
option when right-clicking an already defined stage. This creates a new stage with the same definitions as
the original stage. History and response names are updated to ensure uniqueness of names. If the name of

the original stage is found in the original names, it is replaced, otherwise the name of the new stage is
prepended.

The desired dependencies are created as follows, see Figure 3-4:
1. Hover the mouse cursor over the Stage box. A circle appears at the lower edge of the box.

2. Move the mouse cursor to the circle (it should highlight in yellow) and drag the circle to the desired
dependent stage box.
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3. A connection will be created between the two boxes.

LSDYNA Crash Analysis 3
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Figure 3-4: Creating stage dependencies

Connections can be deleted using the small icon located on the connection line. This icon also allows the
definition of inter-stage file operations, Section 3.2.2.

Stages can be deleted by right-clicking on the stage and then selecting the delete function.

The layout of the stage boxes can be controlled by the user. Left-click and hold down on a stage box to
move it freely. For complex process setups, it could be helpful to use the Re-layout Stages option from the
Tools menu in the control bar.

If separate samplings are desired (as is often the case for MDO problems where different variables apply to
different loadcases), new samplings can be added at the origin of each process sequence. Stages can then be
assigned to the relevant samplings.

3.2.2. File Transfers between Stages

e File Transfers &)
Files to be copied from the run directory of FE_Morpher to Map_fiber_to_mesh:
Operation Source File Destination File On Error Delete
[Cup'_-,r e Hbumpermesh.k Hbumpermesh.k Hfail ~ |==
[Moue v Hbumper.inc Hbumper.inc Hfail w |x
Add ..
oK

Figure 3-5: File transfers between dependent stages
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To use results of upstream stages, LS-OPT allows file transfers between dependent Stages. The File
Transfer dialog is accessible by selecting the dependency icon located on the arrow connecting the stages,
see Figure 3-5 and Table 3-4. The requested file transfers are executed for all the run directories related to
the Stages, e.g. if the dependency is between CRASH and PRE_CRASH, file transfer will be executed
between PRE_CRASH/1 .1 and CRASH/1 .1, PRE_CRASH/1 .2 and CRASH/1 .2, etc.

Table 3-4: File transfer options between stages

Option Selections Description
Operation Copy Available operations
Move
Source File Name of source file, wildcards are supported
Destination File Name of destination file
On Error fail What to do if operation fails
warn
ignore

3.3. Run LS-OPT
3.3.1. Normal Run

This option runs the selected task.

An incomplete run can be restarted using the current state of the optimization and solver databases.
Completed simulation jobs are recognized by the presence of the finished file in each respective run
directory and the termination status of its contents. The presence of the finished file allows LS-OPT to avoid
a repeat of the simulation for either error or normal terminations. A clean start option is available (See
Section 3.4).

3.3.2. Baseline Run

This feature provides the user with an option to run a single design (often referred to as the baseline design).

The design is sampled at the initial values specified in the Parameter Setup panel, Section 8.1. The
simulations are executed in the Stage sub-directory 1.1 of the respective stage. This option facilitates a
verification of the design, i.e. it allows checking

1. the correct solver command,

2. communication between LS-OPT and the queuing system, if any,
3. presence of all relevant control cards, database formats,

4. data extraction from simulation results, and
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5. validity of responses and histories.

It is therefore recommended to use a single simulation using the “Baseline Run” option as a “dry” run before
launching a full scale optimization run in LS-OPT. A successful baseline run will be recognized as a
complete run, so will not have to be repeated in the full optimization run.

3.4. Restarting — Clean from Current Iteration

If the user wants to restart an existing optimization run from a specified iteration, the Clean - Clean from
Current Iteration [iter] feature can be used.

The current iteration is specified by the selection of the iteration number (using up/down arrows) in the
iteration icon located in the control bar. It is important to note that the clean option removes all simulation
data as well as optimization data from the specified iteration onwards.

The task is restarted by selecting Normal Run from the run menu.

3.4.1. Augmentation of an existing design

To retain existing (expensive) simulation data in the optimization process, it is advantageous to be able to
augment an existing metamodel with additional sampling points and simulations. In this manner, new
simulations can be added to old simulations to obtain a more accurate metamodel. This is performed by
increasing the number of sampling points in the Sampling dialog and restarting e.g. the metamodel-based
optimization.

When running the optimization, the experimental design table will be augmented, the additional simulations
will be executed, a new metamodel will be constructed and a new predicted optimum will be computed.
Note that if a verification run was previously calculated (e.g. Simulation 2.1), the Clean option Clean
Verification Run should be used before restarting in order to replace the verification run in directory 2.1.

3.5. Repair or modification of an existing job

Several types of repairs and modifications are possible for an existing optimization iteration or a
probabilistic analysis. The repair depends on the status of the LS-OPT database files as described in
Appendix E: Database Files.

Repair tasks can be executed globally or locally on individual Stages or Samplings.
0 Global repair can be executed using the Repair option under Tools (available in the control bar).

0 Local repair tasks are executed by right clicking on the relevant step (Stage or Sampling) in the main
GUI window.

The available repair tasks are:

0 Add points. Points are added to the existing sampling. This option is only available for the following
sampling types: D-Optimal, space-filling, and Latin Hypercube. The D-Optimal and space-filling
samplings will augment the previously computed points. The Latin Hypercube experimental design
points will be computed using the number of previously computed points as a seed to the random
number generator. If the database for the experimental design (Experiments_n.csv file for
iteration n) does not exist, new points will be created.
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0 Read points. The Experiments_n.csv file is reconstructed from the data in the XPoint
database files in the run directories.

Import results. Import results from a .csv (comma separated variables) file (see Section 9.5.3).
Run Jobs. The stage jobs will be scheduled. Designs previously analyzed will not be analyzed again.

Rerun failed jobs. The jobs that failed to run will be resubmitted. The stage input files used will be
regenerated from the files specified for the respective stage. If multiple stages are defined in the
process chain, all stages will be rerun.

0 Extract Results. The results will be extracted from the runs for all stages. This option also allows the
user to change the responses for an existing iteration or Monte Carlo analysis.

Rerun Verification Run. The verification run will be resubmitted.

Build Metamodels. The metamodels will be built. This option also allows revision of the
metamodels for an existing iteration or Monte Carlo analysis. The “ExtendedResults” file will be
updated. Metamodels can for instance be built from imported user results (see section on Import
results above).

o Evaluate Metamodels. Create a table with the error measures of a given set of points (Section 9.5.2)
or create a table (.csv file) with response values interpolated from a metamodel (Section 8.5.1).

Import Metamodels. Imports metamodels from an .xml file (see Section 9.5.4)
Calculate Global Sensitivities. Global Sensitivities are recalculated using the metamodels.

Optimize. The metamodels are used for metamodel optimization. A new optimum results database is
created. The “ExtendedResults” file will be updated. The optimization history database is deleted so
the history will not be displayed in the Viewer.

Remarks:

1. All the subsequent operations must be explicitly performed for the iteration. For example,
augmenting an experimental design will not cause the jobs to be run, the results to be extracted, or
the metamodels to be recomputed. Each of these tasks must be executed separately.

2. After repair of iteration n, and if the user is conducting an optimization task, verification runs of the
optimized result must be done by switching back to the Metamodel-based optimization task and
specifying the starting iteration (for a clean start) as n+1. If n+1 was a full iteration (not just a
verification run), it also has to be repaired.

3.6. Archive LS-OPT Database

Using the Archive LS-OPT Database option in the Tools menu, the database can be gathered up and
compressed in a file called Isopack.tar.gz (Isopack.zip on Windows) after completing the run.
The packed database is suitable for post-processing on any computer platform.
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["]Include history.x and response.x files(not required for full Viewer display)
[ ]Include Input Deck/Extra Input Files
Additional Files To Archive

Filename

Browse Add manually Delete

i Create Archive l Cancel

Figure 3-6: Dialog to specify options for archiving the LS-OPT database

By default, the files generated by LS-OPT in the working directory and the stage and sampling directories
are gathered, the run directories are omitted.

More sophisticated options are available to also gather the history and response files residing in the run
directories and all input files. The history/response files (e.g. history .0, etc.) are required to view history
plots using the DynaStats tool. The inclusion of both histories and input decks results in
Isopack_h_i.tar.gz (Isopack_h_i.zip in Windows).

The history/response files are not required for any of the Viewer functions since this data is available in the
AnalysisResults_n.lIsox fileincluded in the basic archiving selection.

Table 3-5: Archive LS-OPT database options

Option Description
Include Histories and Also gather the history and response files residing in the run
Responses directories. The file produced is Isopack_h.tar.gz

(Isopack_h.zip in Windows). History and response files are
only required for the use of DynaStats.

Include Input Deck/Extra Input  Various input files and other files required to run the LS-OPT job
Files seamlessly are added to the packed database file. The file produced
is Isopack_1.tar.gz (Isopack_1i.zip in Windows).

Additional Files to Pack List of additional files to pack. Files may be added by browsing or
manually.
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3.7. Encryption

The Isopt project file can be encrypted with a password by selecting “Encrypt project” from the file menu.
Only the project file itself will be encrypted and not any input files defined in stages. The file is encrypted
using 256-bit AES encryption.

When selecting “Encrypt project”, a dialog is shown where the encryption password should be entered.
When clicking OK, the encryption mode is enabled. This can be confirmed by the checkmark next to the
“Encrypt project” menu item. Note that the project itself is not encrypted on disk until you save it. This is to
make it possible to save the file under a different filename. The temporary file “Isopt_db” which mirrors the
Isopt project file but is used by the engine, will also be encrypted on the next run.

A password needs to be entered when opening an encrypted project file. There is no way to directly run the
engine on encrypted projects. This needs to be done through the GUI.

The encryption can be removed by clicking the “Encrypt project” when it’s checked. Remember to save the
project after this change.

3.8. Settings

3.8.1. Simulation postprocessor and text viewer

Both the simulation (e.g. Finite Element analysis) postprocessor and the text viewer used throughout the LS-
OPT GUI and Viewer can be set. The default settings are LS-PrePost v2 and GenEx which are both
included in the LS-OPT distribution. The example in Figure 3-7 shows the selection of a late version of LS-
PrePost (FE postprocessor) under the name LSPP_4.
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Path to executables

LS-PREPOST

Use default (LS-PREPOST v2)

Custom path: C:\Users\nielen\oldnk\LSOPT\DISTRIBUTIONS\5.2\LSOPT_EXE\Isprepost.exe Browse

Text-file viewer
[[]Use default (genex)
Custom path: C:\WINDOWS\system32\notepad.exe

User-defined postprocessors:

Name Path
LSPP_2 ‘ C\Users\nielen\oldnk\LSOPT\DISTRIBUTIONS\5.2\LSOPT_E ‘| Browse | x

LSPP_4 | CALSTC\LS-PrePostid 3-«64\Isprepostd.3_x64. exe | Browse |x
Add

>

[—r—

Figure 3-7: Dialog to specify FE postprocessor and text viewer settings
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4. Task Dialog — Selecting a Task
and Strategy

This chapter explains the available design tasks and strategies.

4.1. Task selection

The Task dialog allows the selection of a task and, for an optimization task, the optimization strategy. The
two basic branches are Metamodel-based and Direct optimization methods (Figure 4-1). The method
selections can be made in the GUI using the Show task settings icon in the control bar in the top menu bar of
the main GUI window. The available tasks and options are listed in Table 4-1.
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G Task selection =

Main task
Metamodel-based

) Optimization

DOE study

) Monte Carlo analysis

() RBDO/Robust Parameter Design

Direct simulation
() Optimization
) Monte Carlo analysis

Strategy for Metamodel-based Optimization
) Single Iteration

) Sequential

Sequential with Domain Reduction (SRSM)

1. Sampling points are added sequentially
in an adaptive subregion.

2. Metamodel optimization is done at each iteration
and is limited to the current subregion.

3. Suitable for finding a converged solution
(e.g. system identification)

4. Generally unsuitable for global exploration.

[] Global Sensitivities
Do verification run
] Import metamodel

Batch Mode Options
[C] Baseline Run Only

Figure 4-1: Task and Strategy selection
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Table 4-1: Task selection options

Option Description Reference
Metamodel based (1) Optimization ~ Optimization using meta-models Section 4.2
(2) DOE-study DOE study using meta-models Section 4.3
(3) Monte Carlo Monte Carlo analysis using meta-models Section 4.5.2
analysis
(4) RBDO Reliability based design optimization using Section 4.6
meta-models
Direct simulation (5) Optimization  Direct optimization using the Genetic Section 4.4
Algorithm
(6) Monte Carlo Direct Monte Carlo analysis Section 4.5.1
analysis
Strategy for Single Iteration Sampling and optimization are done in a Section 4.7.1
Metamodel based single iteration. Suitable for global design
optimization exploration.
(Available for Main
Task 1 and 4) Sequential Sampling points are added sequentially in ~ Section 4.7.2
the full design space. Suitable for global
design exploration.
Sequential with Sampling points are added sequentially in ~ Section 4.7.3
Domain an adaptive subregion. Metamodels are
Reduction then constructed using the current iteration
samples (in the subregion) or using all the
samples. The optimum solution is located
based on the metamodels. Suitable for
finding a converged solution. Generally
unsuitable for global exploration.
Available for Main Global Option to calculate Global Sensitivitieson  Section 4.10
Task 1, 2, 3, 4. Sensitivities the metamodel.
Available for Main Do verification Run an additional simulation using the Section 4.11
Task 1 and 4 run parameter values of the predicted
optimum. Multiple simulations can be run
for Multi-Objective optimization problems.
Import Automated Import metamodel on run Section 9.5.4
metamodel instead of manually importation,
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Available for global  Create Pareto Option, for Multi-Objective Optimization  Section 4.9
strategies with Optimal Front problems, to create Pareto optimal
multiple objectives. solutions instead of a single optimum.
Baseline Run Batch Mode option to run only the Section 3.3.2
Only Baseline Run

4.2. Metamodel based optimization

Metamodel-based optimization is used to create and optimize an approximate model of the design instead of
optimizing the design through direct simulation. The metamodel is thus created as a simple and inexpensive
surrogate of the actual design. Once the metamodel is created it can be used to find the optimum or, in the
case of multiple objectives, the Pareto Optimal Front. The basic steps are as follows:

1. Point selection

2. Run the simulations

3. Build the metamodels

4. Execute the metamodel optimization

4.3. DOE study

A DOE study is also a metamodel-based method used to explore the design space or to calculate
sensitivities. The DOE study has three steps:

1. Point selection
2. Run the simulations
3. Build the metamodels

4.4. Direct optimization

Direct optimization uses only simulation results to find the optimal values using a Genetic Algorithm.

Note that the choice of the Direct Optimization (Direct Genetic Algorithm) may require a large number of
simulations.

4.5. Probabilistic Analysis Tasks

This category of probabilistic tasks deals with the study of the effect of design parameter uncertainties on
the responses. The goal is to obtain the statistics of response variations caused due to the uncertainties in a
given design as well as the probability of failure for that design. Any probabilistic task requires the
definition of random variables associated with distributions (Section 8.1.5). The point selection scheme for a
probabilistic analysis depends on whether it is direct or metamodel-based (Section 13.5, Section 13.6). More
specific details about the available probabilistic analysis tasks are provided in Section 13.5 and Section 13.6
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Two probabilistic analysis tasks are currently available in LS-OPT - Direct Monte Carlo Analysis and
Metamodel-based Monte Carlo Analysis.

4.5.1. Direct Monte Carlo Analysis

Sampling is based on the distribution of random variables (Section 13.4). No metamodel is constructed to
perform this task.

4.5.2. Metamodel-based Monte Carlo Analysis

Sampling is not based on the distribution of random variables (Section 13.4). Statistics are calculated based
on metamodel approximations.

4.6. RBDO/Robust Parameter Design (Probabilistic Optimization Task)

This task allows one to perform an optimization under the effect of uncertainties. Considering the effect of
uncertainties can be important to avoid unforeseen failure of the design due to variations of loading
conditions, manufacturing process etc. In reliability-based design optimization (RBDO), a target probability
of failure (typically small) is defined for the constraints to ensure that the optimal design cannot have a
higher failure probability. In robust design, an optimal design is searched such that it is insensitive to
uncertainties in certain design parameters. More specific details about the available probabilistic analysis
tasks are provided in Section 13.7. The difference with deterministic optimization lies in the definition
variables that are associated with probabilistic distributions, as well as in the definition of objectives (robust
design) and constraints (RBDO).

4.7. Selecting strategies for metamodel-based optimization

In this section different strategies for building a metamodel are discussed. The strategies depend mostly on
whether the user wants to build a metamodel that can be used for global exploration or whether he is only
interested in finding an optimal set of parameters. An important criterion for choosing a strategy is also
whether the user wants to build the metamodel and solve the problem iteratively or whether he has a
"simulation budget™ i.e. a certain number of simulations and just wants to use the budget as effectively as
possible to build a metamodel for improving the design and obtaining as much information about the design
as possible.

There are three available strategies for automating the metamodel-based optimization procedure. These
strategies only apply to the tasks Metamodel-based Optimization and RBDO, Table 4-1. In the GUI, the
strategies are selected in the "Task selection” dialog (Figure 4-1). The available optimization strategies are

1. Single Stage,
2. Sequential and
3. Sequential with Domain Reduction (SRSM).

A strategy selection resets the Sampling Dialog (a warning is given!) with recommended selections for
Metamodel type and Point selection scheme, see Chapter 9 .

The strategies are discussed one by one in the following sections.
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4.7.1. Single iteration

In this approach, the experimental design for choosing the sampling points is done only once. The
metamodel selection defaults to Radial Basis Function Networks with Space Filling as the sampling scheme.

4.7.2. Sequential strategy

In this approach, sampling is done sequentially. A small number of points is typically chosen for each
iteration and multiple iterations can be requested in the Termination Criteria dialog, Chapter 12. The
approach has the advantage that the iterative process can be stopped as soon as the metamodels or optimum
points have achieved sufficient accuracy.

The default settings for sampling follow below (see Sampling dialog, Chapter 9):
1. Radial Basis Function networks
2. Space Filling sampling.
3. The first iteration is Linear D-Optimal.
4

. Choose the number of points per iteration to not be less than the default for a linear approximation
(1.5(n +1) +1) where n is the number of variables.

It was demonstrated in Reference [16] that, for Space Filling, the Sequential approach had similar accuracy
compared to the Single Stage approach, i.e. 10 x 30 points added sequentially is almost as good as 300
points. Therefore both the Single Stage and Sequential methods are good for design exploration using a
metamodel. Both these strategies work better with metamodels other than polynomials because of the
flexibility of metamodels such as RBF's to adjust to an arbitrary number of points.

4.7.3. Sequential strategy with domain reduction

This approach is the same as that in section 4.7.2 but, in order to accelerate convergence, an adaptive
domain reduction strategy is used to reduce the size of the subregion (see Section 23.6). During a particular
iteration, the new points are located within a subregion of the design space. This strategy is typically only
used for optimization in which the user is only interested in the final optimal point and not in any global
exploration of the design. For example, the method is often used in parameter identification (see
Section 24.3). This method cannot currently be used to construct a Pareto Optimal Front.

The default domain reduction approach is sequential response surface method (SRSM), which is the original
LS-OPT design automation strategy. By default, a linear response surface is used and points belonging to
previous iterations are ignored.

The default settings for sampling are listed below (see Sampling dialog, Chapter 9):
1. Linear polynomial
2. D-optimal sampling
3. Default number of sampling points based on the number of design variables.
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4.8. Domain reduction in metamodel-based optimization

The Domain reduction dialog is displayed in Figure 4-2.

Table 4-2 describes the options.

r

[

@

RESTART SETTINGS

[] Reset to Initial Range on lteration

[] Freeze Range from iteration

SR5M PARAMETERS

Proximity Zoom parameter

[D.E (default)

l

Oscillation Contraction parameter

[D.Ei (default)

l

Panning Contraction parameter

[1 (default)

l

Figure 4-2: Domain reduction dialog

Table 4-2: Restart Settings and Subdomain parameters

Option Description Reference

Reset to Initial Range on Resetting the subdomain range to the initial range for  Section 4.8.1

Iteration a specified iteration.

Freeze Range from Iteration Freeze the subdomain range from a specified Section 4.8.1
iteration

Panning Contraction parameter  y,,, Section 4.8.2

Oscillation Contraction Yosc Section 4.8.2

parameter

Proximity Zoom parameter Zoom parameter n Section 4.8.2
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4.8.1. Changing the behavior of the subdomain

Resetting the subdomain range

It is possible to reset the subregion range to the initial range, e.g. for adding points in the full design space
(or any specified range around the optimum) after an optimization has been conducted. This feature is
typically only used in a restart mode. The GUI option is "Reset to Initial Range on Iteration™ (Figure 4-2).

The point selection of the specified iteration will be conducted in the initial range around the most recent
optimum point. The subdomain will be adaptively updated again starting with the next iteration.

Freezing the subdomain range

This feature allows for points to be added without changing the size of the subregion. Adaptivity can be
frozen at a specified iteration number. The GUI option is "Freeze Range from iteration™ (Figure 4-2).

The subdomain range will be adaptively updated up to the previous iteration. Therefore the specified
iteration and higher will have the same range (although the region of interest may be panning). The flag is
useful for adding points to the full design space without any changes in the boundaries.

4.8.2. Setting the subdomain parameters*

To automate the successive subdomain scheme for SRSM, the size of the region of interest (as defined by
the range of each variable) is adapted based on the accuracy of the previous optimum and also on the
occurrence of oscillation (see theory in Section 23.6).

The following parameters can be adjusted in the GUI, Figure 4-2. The options are described in Table 4-2
(refer also to Section 23.6). A suitable default has been provided for each parameter and the user should not
find it necessary to change any of these parameters.

4.9. Create Pareto Optimal Front

This option is only available if multiple objectives are defined. If Create Pareto Optimal Front is selected,
multiple Pareto optimal solutions are calculated instead of a single optimum, see Section 23.9.2. If a
metamodel-based method is used, available strategy options are limited to the global strategies Single Stage
and Sequential (Section 4.7.2 and 4.7.3). Selection of the Create Pareto Optimal Front option resets the
optimization algorithm used on the metamodel to Genetic Algorithm, because this is the only algorithm that
has the capability to calculate Pareto optimal solutions.

4.10. Global sensitivity analysis

While the ANOVA (Analysis of Variance, Section 21.4) is a very popular method to assess the contribution
of different regression terms, Global Sensitivity Analysis (Sobol’s method, based on ANOVA) is widely
used to study the importance of different variables for higher order models. In this method, a function is
decomposed into sub-functions of different variables such that the mean of each sub-function is zero and
each variable combination appears only once. Then, the variance of each sub-function represents the
variance of the function with respect to that variable combination. The theory of Sobol’s global sensitivity
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analysis (GSA) method is described in Section 25.7.2. The GSA is carried out by selecting the appropriate
flag (Global Sensitivities) in the Task dialog or by selecting Add Global Sensitivities from the Add (+)
menu in the GUI. The GSA dialog is shown in Figure 4-3. The number of Monte-Carlo integration points
used to compute sensitivities is 10000 by default, but this number can be changed by the user. Except for the
linear case, the sensitivities depend on the region of design space under consideration. By default, the
sensitivities are calculated for the region defined by the variable bounds specified in the Global Setup.
These sensitivity indices are stored in the Sobol_GSA.iteration XML database files in the work directory.
Existing GSA results can be repaired by checking on the ‘Overwrite global computations’ box. This may be
needed, for example, if the metamodel is changed after carrying out an earlier sensitivity analysis; the old
Sobol_GSA.iteration files are then deleted and recreated based on the new analysis.

Ll

Global Sensitivities: (]

Number of Points for Integration

10000 (default) |

[] Overwrite global computations

Define subregions

oK
Figure 4-3: Global Sensitivities Dialog
Table 4-3: Global Sensitivities options
Option Description Reference

Number of Points for
Integration

Number of Monte-Carlo integration points required to
compute sensitivities

Overwrite global
computations

GSA results overwritten for the global region defined
by the variable bounds in Setup dialog.

Define subregions

Remarks:

Define a subregion of the design space for GSA. It is Section 4.10.1
possible to have the same bounds as the entire design

space (e.g. same domain analyzed with different

metamodels).

1. In LS-OPT, global sensitivities are evaluated on the metamodels. Therefore, the accuracy depends
on the quality of the metamodel.

2. Unless a subregion is considered (Section 4.10.1), the sensitivities are calculated for the global
bounds of the variables. Sampling constraints are not considered while calculating the sensitivities.

LS-OPT Version 5.2

41



CHAPTER 4: Task Dialog — Selecting a Task and Strategy

3. Analytical equations are used to compute sensitivities for polynomials and Gaussian radial basis

function metamodels.

4. The composite expressions and subregion sensitivities are always evaluated using the Monte-Carlo

integration.

5. The default number of sampling points for Monte-Carlo integration is 10000. This number should be

increased for better accuracy of sensitivity coefficients.

4.10.1. Sensitivity Analysis in Subregions

The Global Sensitivities dialog also provides the option to define subregions for GSA (Figure 4-4). The
sensitivities can be calculated for different variable ranges using this feature, which can be different from
the bounds specified in the Global Setup. By default, the subregions are created with the same ranges as the
global design space. The subregion variable ranges can, however, be modified by clicking on Edit, which
opens up another dialog. The dialog for variable bound definition or the Subregion Dialog is shown in
Figure 4-5. The definition of a GSA subregion requires a name to be associated with it. The corresponding
GSA results are stored in Sobol_GSA.RegionName.iteration files in the work directory.

oPT) Global 'Sensitivities'

=

Number of Points for Integration

110000 (default)

[] Owverwrite global computations

Subregion definitions

|:subﬁrst | =l O

[subsecond | =l O
Add...

All active [ All overwrite

Name Active Overwrite

Edit

Delete

e -

Figure 4-4: Global Sensitivities dialog with subregion definitions
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Table 4-4: GSA Subregion definition options

Option Description

Name Subregion name

Active GSA is performed for the Subregion (default on)

Overwrite Existing GSA results deleted (default off). GSA performed again if Active is on
Edit Open GSA Subregion dialog (Figure 4-5) to define variable bounds of subregion
All active All subregions active

All overwrite Overwrite existing GSA results for all subregions

= GSA subregion =
Name
subfirst ]

Active
[ Owverwrite

Bounds - Global bounds used for variable if not specified below

Variable Lower bounds Upper bounds Delete
| tbumper = Hl H3 x
' thood 3k |[3 x
Add...

oK

Figure 4-5: GSA Subregion dialog

Table 4-5: GSA Subregion dialog options

Option Description

Name Subregion name

Active GSA is performed for the subregion (default on)

Overwrite Existing GSA results deleted (default off). GSA performed again if Active is on
Bounds Define subregion lower and upper bounds for variables. The global region bounds
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defined in Setup dialog are used for other variables

4.11. Verification runs

After the last full iteration a verification run of the predicted optimal design is executed. This run can also
be omitted if the user is only interested in the prediction of the optimum using the metamodel.

The verification run options can be edited in the GUI either in th
option in the control bar.

For multi-objective optimization problems, multiple verification

e Task dialog or using the “Add ...” menu

runs can be done. A discrete Space Filling

algorithm is used to select Pareto Optimal points which are evenly distributed in the design space.

The number of verification runs can be set in the GUI using the Verification Run box (Figure 4-6).

" Verification Run

@)

Number of verification runs:

(Always 1 for non-pareto problems)

oK

Figure 4-6: Verification Run dialog
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5. Stage Dialog — Defining the
Solver

This chapter describes how to interface LS-OPT with simulation packages, parametric preprocessors or
postprocessors. Standard interfaces as well as interfaces for user-defined executables are discussed.

The main entity discussed here is the Stage dialog which allows the user to define a step in the simulation
process.

5.1. Introduction
Since an executable program is considered to be a key part of the stage definition it is often simply referred
to as the solver. Therefore, in addition to its normal meaning as a program to, for instance, solve a physics

problem, it can also refer to a pre- or postprocessor or any other executable program or script that is
essential to the execution or management of a step within a simulation process.

5.2. General Setup
Figure 5-1 shows the general setup dialog for a Stage in the process. The options are described in Table 5-1.

Table 5-1: Stage dialog Setup options: General options

Option Description Reference
Package Name The following software package identifiers are available:
LS-DYNA Section 5.3.1
LS-INGRID Section 5.3.4
LS-OPT Section 5.3.9
LS-PREPOST Section 5.3.3
ANSA Section 5.3.6
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Excel
HyperMorph
Matlab

META Post
MSC-NASTRAN
TrueGrid
User-Defined

User-Defined Postprocessor

Section 5.3.10
Section 5.3.7
Section 5.3.12
Section 5.3.8
Section 5.3.2
Section 5.3.5
Section 5.3.11

Section 5.3.14

Command Command to execute the solver. Section 5.2.1
Do not add input Prevents LS-OPT from appending a standard input deck  Section 5.2.1
file argument name to the execution command during run-time.
Use default Path to the solver executable filled in automatically (only  Section 5.3.9
command available for LS-OPT stage).
Display graphics Omit the —nographics option in the LS_PrePost Section 5.3.3
command for debugging (only available for LS-PrePost
stage).
Input File Parameterized input file for the preprocessor or solver. Section 5.2.2
The specification of an input file is not required for a
user-defined solver. The parameterization of the input
file is explained in Section 5.2.4.
(n includes) LS-OPT displays the number of include files parsed for ~ Section 5.3.1
parameters and copied to the run directories. A list
containing the include file names is accessible by
clicking on the hyperlink.
Name of standard Default standard input deck name depending on package. Section 5.2.1
input deck This can be edited in case another file name is required.
Changes are only required in exceptional cases.
Extra input files A list of extra input files can be provided. The files are Section 5.2.2

copied to the run directories from any user-defined
source directory. Parameter values are substituted by
default, but parsing can be omitted.

LS-DYNA Include files do not have to be specified as
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they are automatically and recursively searched by LS-
OPT when given the name of the main input file. This
feature is also supported for certain packages under the
user-defined solver type (see 5.3.11).

Model Database ANSA binary database file, typically with the extension  Section 5.3.6
(ANSA) .ansa

Output File HyperMorph: nodal output file produced by Templex Section 5.3.7

(HyperMorph,

HUETA, Matlab) META: output file used for parsing the history and Section 5.3.8
response names
Matlab: output file containing response and history Section 5.3.12
definitions

Session file (ULETA) File containing information about which results to extract Section 5.3.8

Excel File Input File template for parameterizing and running Excel  Section 5.3.10
jobs.

Do not copy Excel  Avoid copying of potentially big Excel input file to each  Section 5.3.10
file to job folder run directory and modify the original file instead. Option
available only if one job is run at a time.

Input definitions Parameterization of the Excel input file Section 5.3.10

LS-DYNA Advanced interfacing options for LS-DYNA. Section 5.3.1
Advanced Options
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o Stage 1 x

Setup | Parameters | Histories | Responses | File Operations

General
Package Name| LS-DYNA < |

Commandllsg?l_single || Browse |

[[] Do not add input file argument

Input File |main.k || Browse |

copies main.k and 2 includes to 1/it.run/| DynaOpt.inp |
and substitutes parameters

[[] Extra input files

LS-DYNA Advanced Options

Execution

Resources
Resource Units per job Global limit Delete

Create new resource

[[]|Use Queuing
[[] Use LSTCVM proxy
] Environment Variables

Figure 5-1: Stage dialog Setup panel
5.2.1. Command

The command to execute the solver must be specified. The command depends on the solver type and can be
an executable program or a script. Since a standard input deck name (also called the base file name) is
automatically appended during run-time the solver input file name argument should be omitted by default.
See respective package interface sections for details. In the case of the standard solvers, the appropriate
syntax is automatically used (e.g. 1=DynaOpt.inp for LS-DYNA). The execution command may
include any number of additional arguments.

The base file name can be changed. This is useful when the output file of one stage becomes the input of the
dependent stage (see Section 5.8).
Remarks:

1. The command must be specified in one of the following formats:
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o0 Browse. If browsing the project directory or a directory relative to the project directory, LS-OPT
automatically prepends the project directory environment ${LSPROJHOME} to the execution
command.

Absolute path, e.g. "/origin/users/john/crash/runmpp"

If the executable is located in a directory which is in the execution path, the command can be
specified using only the name of the respective executable, e.g. "1s971_single"

2. Linux: Do not specify the command nohup before the solver command and do not specify the
UNIX background mode symbol &. These are automatically taken into account.

Linux: The command name must not be an alias.
4. Windows: A path to a program or file cannot contain any blanks or - (dash) symbols.

5.2.2. Input Files

LS-OPT handles two main types of solver input files, namely
1. the main input file and
2. extrainput files.

LS-OPT converts the input template to an input deck for the preprocessor or solver by replacing the original
parameter values (or labels) with new values determined by the sampling procedure. The specification of an
input file is not required for a user-defined solver.

For LS-DYNA and most of the preprocessor interfaces, LS-OPT automatically searches for include files
specified in the main input file, see Table 5-2. Include files can be specified recursively, i.e. there can be
include file specifications in include files. The user-defined stage type also supports these features, but only
for certain solver types (see 5.3.11).

Input files are copied to the run directories, parsed to substitute parameter values and renamed. Each stage
type has its own standard input file name, e.g. for LS-DYNA, the file is renamed to DynaOpt.inp. For
remote runs, input files are automatically transmitted to a computer cluster.

A record of the specified input files and parameters is displayed in the GUI but can also be checked in the
Isopt_input file.

5.2.3. Extra input files

Extra files can be added for copying to run directories and substituting variables, Figure 5-2. For remote
runs, extra input files are automatically transmitted to a computer cluster.

The files can be placed in any directory and are copied to the run directories during the setup phase.
Parameters can be specified in the extra files using the native format (e.g. *PARAMETER for LS-DYNA) or
the generic LS-OPT format (<<parameter>>), see Section 5.2.4. LS-OPT will parse the files for variable
names if the Parse option is selected. In this case, parameters are listed on the Parameters page and
imported to the Setup dialog as constants. The user can then change them to variables.

If the user wants a file to be copied to the run directories, but not parsed for parameters, parsing can be
skipped by leaving Parse unchecked. This feature is typically used to move binary files to the run
directories.
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Extra files are also used in a multi-level setup (Section 5.3.9) to move input files to the lower level. In this
case, Parse should also be left unchecked to avoid premature substitution at the upper level, before
processing by the lower level LS-OPT run.

Setup | Parameters Histories = Responses | File Operations

General

Fackage Mame| Lser-Defined

<>

Command‘:perl | Browse

[l Do not add input file argument

Input File ‘g2.p| | Browse

copies g2.pl (0 includes) to G2/t runf[ Useroptinp |
and substitutes parameters

Extra input files

Filename Farse Delete
|extrafile_G2_1 | Browse x =
|Ext|‘afextraﬁ|e_G2_3 | EBrowse X

| Extra/extrafile_Gz_2 | Browse =
Add

1 »

Figure 5-2: Definition of Extra Input Files

Note that LS-DYNA include files do not have to be specified as extra files, since these are automatically
processed. However, if the user has parameters in include files with a relative (e.g.
MyFiles/geometry.inc) or absolute path (/Zhome/jo/LSOPT/MyFi1les/Material59.inc),
these include files must be specified as extra input files in order to force copying to the run directory. The
path option is mainly used to prevent the copying (and hence duplication) of very large files. Some user-
defined solver types also support this feature (see 5.3.11).

*INCLUDE specifications pertaining to extra files should not include any path specifications since the files
are automatically copied to the run directory and will reside together with the main input file.

5.2.4. Parameterization of Input Files

For all stage types, input files can be parameterized using the User-defined parameter format, Section 5.2.5.
For the packages listed in Table 5-2, LS-OPT supports native parameters, see the respective package
interface section for details. Native parameter types are also supported for certain solvers specified under
user-defined solver types (see 5.3.11).

LS-OPTui will automatically recognize the native and User-defined parameters for the formats indicated in
the table and list them on the Parameters panel, Figure 5-3. Parameters found in input files are also
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displayed as ‘Constants’ in the Setup dialog ‘Parameter Setup’ panel. The user can then change these
constants to variables or dependents. The parameter names cannot be changed in the GUI so, if desired,
must be changed in the original input file(s). A lock icon adjacent to the variable name indicates that the
parameter names were imported from the input or include files.

Table 5-2: Parameters and include files

Native parameters  User-defined Include files
Package rgcognized in input Paramgter Format 'recogn'ized in Reference

file recognized (see input file

Section 5.2.4)

LS-DYNA® Yes Yes Yes Section 5.3.1
LS-PREPOST® Yes Yes Yes Section 5.3.3
MSC-NASTRAN' Yes Yes No Section 5.3.2
ANSA? Yes Yes Yes Section 5.3.6
HyperMorph® Yes Yes No Section 5.3.7
Matlab Yes Yes No Section 5.3.12
TrueGrid* No Yes Yes Section 5.3.5
LS-INGRID No Yes Yes Section 5.3.4
LS-OPT Yes No No Section 5.3.9
Excel N/A No No Section 5.3.10
User-defined N/A Yes No Section 5.3.11

! Registered Trademark of MSC Software, Inc.

2 BETA CAE Systems S.A.

% Registered Trademark of Altair Engineering, Inc.

* Registered Trademark of XYZ Scientific Applications, Inc.
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- Stage CRASH =
Setup | Parameters | Histories Responses  File Operations
Name Found in file(s)
cradle_rails taurus_mod.dyn
cradle_csmbr taurus_mod.dyn
shotgun_inner taurus_mod.dyn
shotgun_outer taurus_mod.dyn
rail_inner taurus_mod.dyn
rail_outer taurus_mod.dyn
aprons taurus_mod.dyn
Add ..
oK

Figure 5-3: Parameter panel: list of parameters found in stage input files

The “include’ files are also scanned wherever this feature is available making it nonessential to define extra
files. Include files which are specified with a path, eg. “../../car5.k” or
“/home/jim/ex4a/car6 .k” are not copied to the run directories and no parameter substitutions will be
made in these files. This is solely to prevent unnecessary file proliferation. The user must however ensure
that files, which are to be distributed to remote nodes through a queuing system (see Appendix H.3 ,
Remote job scheduling), do not contain any path specifications. These files are automatically transmitted to
the relevant nodes where the solver will be executed. See also Section 5.3.1.

If parameters are specified in include files with path specifications, these files should be specified as extra
files if the user wants them to be parsed and copied to the run directories, Section 5.2.2.

The User-defined parameter format described next is recognized in all types of input files.

5.2.5. The User-defined parameter format

LS-OPT provides a generic format that allows the user to substitute parameters in any type of input file,
except LS-OPT stage .Isopt input file. The parameters or expressions containing parameters must be labeled
using the double bracketed format <<expression: [1]field-width>> in the input file.

The expression field is for a FORTRAN or C type mathematical expression that can incorporate constants,
design variables or dependents. The optional § character indicates the integer data type. The field width
specification ensures that the number of significant digits is maximized within the field width limit. The
default width is 10 (commonly used in e.g. LS-DYNA input files) for numeric fields. E.g. a number of
12.3456789123 will be represented as 12.3456789 and 12345678912345 will be represented as
1.23457e13 for a field-width of 10.

A field width of zero implies that the number will be represented in the “%g” format for real numbers or
“%ld” format for integers (C language). For real numbers, trailing zeros and a trailing decimal point will not
be printed. This format is not suitable for LS-DYNA as the field width is always limited. Real numbers will
be truncated if specified as integers, so if rounding is desired the “nearest integer” expression should be
used, e.g. <<nint(expression)>>.
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String parameters are indicated by the character ¢, <<expression: c¢ Ffield-width>>_ For string
parameters, the default width is the length of the replacement string up to a maximum of 64 characters. A
field width of zero implies that the entire replacement string is printed (same as not specifying a width).

Examples

Inserting the relevant design variable or expression into the preprocessor command file requires that a
preprocessor command such as

create fillet radius=5.0 line 77 line 89

be replaced with

create fTillet radius=<<Radius*25.4:0>> line 77 line 89

where the design variable named Radius is the radius of the fillet and no trailing or leading spaces are
desired. In this case, the radius multiplied by the constant 25.4 is replaced. Any expression can be specified.
An alternative option would be to specify:

create fillet radius=<<Radius_scaled:0>> line 77 line 89

while specifying the dependent Radius_scaled as a function of independent variable Radius, such that
Radius_scaled = Radius * 25.4 . This specification is done in the *Setup’ dialog.

Similarly if the design variables are to be specified using a Finite Element (LS-DYNA) input deck then data
lines such as
*SECTION_SHELL

1, 10, , 3.000
0.002, 0.002, 0.002, 0.002

can be replaced with

*SECTION_SHELL
1, 10, , 3.000
<<Thickness_3>>,<<Thickness_3>>,<<Thickness_3>>,<<Thickness_3>>

to make the shell thickness a design variable.

An example of an input line in a LS-DYNA structured input file is:

* shfact z-integr printout quadrule

.05.01.0 .0

* thicknl thickn2 thickn3 thickn4 ref._.surf
<<Thick_1:10>><<Thick_1:10>><<Thick_1:10>><<Thick_1:10>> 0.0

The field-width specification used above is not required since the default is 10. Consult the relevant User’s
manual for rules regarding specific input field-width limits.

5.2.6. System variables

System variables are internal LS-OPT variables. There are two system variables, namely i1terid and
runid. iterid represents the iteration number while runid represents the run number within an
iteration. Hence the name of a run directory can be represented by: 1terid.runid. System variables are
useful for using files such as postprocessing files that were already created in an earlier stage, but which are
re-used in the current stage. An LS-DYNA example of using system variables is as follows:
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*INCLUDE
../ ../Casel/<<iterid:i0>>_<<runid:i10>>/frontrail .k

After substitution the second line might become:
../../Casel/1.13/frontrail .k
so that the current stage will always include the file in the corresponding directory in Casel.

The 10 format forces an integer specification (see Section 5.2.5 for a more detailed description).
Unfortunately the feature cannot be used with LS-DYNA *PARAMETER parameters.

In an alternative, simpler approach to achieve similar efficiency, LS-OPT also allows pre-processing as a
first Stage of a process to generate a set of solver input files. This single Stage can be followed by multiple
parallel simulation Stages using the same files. These files are copied from the preprocessing Stage to the
simulation Stages. See Section 3.2.2.

5.2.7. How to avoid copying and parsing an include file
In some cases files might be very large, but they contain no parameters, so need not be parsed. For very
large files, this can save a considerable amount of time. The steps are the following:

1. Unset “Do basic check for missing *DATABASE cards”.

2. Specify the name of the include file with an absolute path, e.g. “../../largeincludefile.k”.

3. Specify the exact full pathname of the include file as an extra input file. E.g. if the file was specified
as “./.[largeincludefile.k” in the keyword file, it should also be specified as extra file
“../../largeincludefile.k”.

4. Do not select the “Parse” check box for this file.

It should be noted that if a file is not parsed, include files without paths specified in this file (for the purpose
of copying to the run directory) cannot be detected.

5.3. Package Interfaces

5.3.1. LS-DYNA

The file DynaOpt. inp is created from the LS-DYNA input template file. By default, LS-OPT appends
1=DynaOpt. inp to the solver command. Parameterization of the input file can be done using the User-
defined parameter format or the *PARAMETER keyword. Include files in input files are recognized and
parsed, see below for further information.

The LS-DYNA restart command will use the same command line arguments as the starting command line,
replacing the 1I=input file with r=runrst.
The *PARAMETER format

This is the recommended format. The parameters specified under the LS-DYNA *PARAMETER keyword
are recognized by LS-OPT and will be substituted with a new value for each of the multiple runs. These
parameters should automatically appear in the Parameter list of the GUI upon specification of the solver
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input file name. LS-OPT recognizes the “i1”, “r” and “c” formats for integers, real numbers and strings
respectively and will replace the number or string in the appropriate format. Note that LS-OPT will ignore
the *PARAMETER_EXPRESSION keyword so it may be used to change internal LS-DYNA parameters
without interference by LS-OPT.

For details of the *PARAMETER format please refer to LS-DYNA User’s Manual.
LS-DYNA include files
The handling (parsing, copying and transmitting) of include files by LS-OPT is automated. The following

rules apply:

1. Include files may also contain parameters and are also parsed and copied (or transmitted) if the
include file is specified in the keyword file without a path, for example:

*INCLUDE
input._k
2. If a path is specified for an include file, e.g.

*INCLUDE

C:\path\myinputfiles\input.k
the file will not be copied, parsed or transmitted.

3. If the main input file is placed in a subdirectory of the main working directory and is specified with a
relative path, e.g. myinputfiles/input_k, the directory (in this case myinputfiles)
becomes a file environment for any include files which may also be placed in this directory.
Therefore all include files specified without a path will automatically be copied (or transmitted) from
this sub-directory (my inputfi les) to the run directories.

LS-DYNA/MPP

The LS-DYNA MPP (Message Passing Parallel) version can be run using the LS-DYNA option in the
”Stage” dialog of LS-OPTui. The following run command is an example of how an MPP command can be
specified:

mpirun -np 2 Isdynampp

where Isdynampp is the name of the MPP executable.

LS-DYNA Advanced Options

LS-DYNA advanced options are available in the Stage dialog by selecting the LS-DYNA Advanced Options
button, Figure 5-4.
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LS-DYNA Options

Do Basic Check for Missing *DATABASE Cards

[] d3plot compress
[[] d3plot Part Extraction File
[[] d3plot Reference Node File

[ LS-DYNA Advanced Options ]

Reset

Figure 5-4: Stage Setup LS-DYNA advanced options

Table 5-3: LS-DYNA Advanced Options

Option

Description

Do Basic check for Missing
*DATABASE Cards

Check if the required binout data types and the required nodes and/or
elements are requested in the LS-DYNA input deck. For further
details, see below.

d3plot compress*

Compress the d3plot database. All results except displacements,
velocities, and accelerations will be deleted.

d3plot Part Extraction File*

Write the results for a user selected set of parts. A file specifying the
list of parts to be included/excluded is required. The file consists of
multiple lines with a single entry per line. The syntax of the file is:

id includes the part with id,
id1-id2 includes the parts from id1 to id2,

—id excludes the part with id. Only parts included with id or id1-id2
can be excluded.

For example: 5
7-20
-9.

d3plot Reference Node File*

* Remarks

Transforming the results to a local coordinate system specified by
three nodes. The first node is the origin and the other two nodes are
used to define the coordinate systems. The coordinate system moves
with the nodes. A file specified the three nodes consisting of a single
line is required. An example of the possible contents of the file:

1001 1002 1003.

1. Altering the d3plot databases does not work with adaptivity.
2. The *DATABASE_EXTENT_BINARY option in LS-DYNA also allows control over the size of the

d3plot databases.
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Checking the *DATABASE cards

LS-OPT can perform some basic checks of the *DATABASE cards in the LS-DYNA input deck. The
checks will be done using the input deck of the first run of the first iteration. The items checked are:

1. Whether the required binout data types are requested in the LS-DYNA input deck. For example, if
LS-OPT uses airbag data, then the LS-DYNA deck should contain a *DATABASE_ABSTAT card
requesting binout output.

2. Whether the required nodes and/or elements are requested in the LS-DYNA output. For example, if
the LS-OPT output request refers to a specific beam, then a *DATABASE_HISTORY_BEAM or a
*DATABASE_HISTORY_BEAM_SET card must exist and refer to the beam in question. Note
that *SET_option_GENERAL or *SET_option_COLUMN card will not be interpreted and that an
output entity specified using *SET_option_ GENERAL or *SET_option_ COLUMN may be
flagged incorrectly as missing; switch off the checking in this case.

5.3.2. MSC-NASTRAN® (SOL 103)

The user can interface with the NASTRAN implicit solver (sol 103) for modal analysis by selecting the
MSC-NASTRAN option in the LS-OPTui. The command can either execute a command, or a script. The
substituted input file NastranOpt. inp will automatically be appended to the command or script.
Variable substitution will be performed in the input File (which will be renamed NastranOpt. inp.
The NASTRAN solver is required to generatea ‘N o r m a I’ termination command to standard output
at the end of simulation. This can be done by executing NASTRAN using a script with its last statement
being the command (see remark 2):

echo ’Normal’.

Remarks:

1. The NASTRAN solver must not be run in the batch mode. This can be done by specifying the
"batch=no" option with the NASTRAN command.

2. A’Normal Termina t i o n”statement mustbe issued after finishing the
NASTRAN job. This can be easily done by using the following script as the solver command:

/home/bin/nastran ”batch=no’ $1

echo  Normal Termination’

3. Design Parameters: The design parameters can be specified using one of the following two options:

o defrepsym: The design variables can be specified using the

defrepsym varname default
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statement. The design variable value is accessed using %varname%. The user must be careful to use
the appropriate fieldwidth permitted by NASTRAN. This is the preferred option.

0 The User-defined parameter format discussed in Section 5.2.4.

4. Creating the Database: In order to facilitate the creation of appropriate LS-OPT readable database,
the user must include the following DMAP code at the beginning of the input deck.

$ open the binary file

ASSIGN OUTPUT4="nastEigout.op4” UNIT=39 UNFORMATTED DELETE $ binary
$

$ solver

SOL 103

DIAG 5, 6, 8, 56

$

$ Matrix manipulation

MALTER ~call modefsrs” $ after modes are calculated

LAMX, ,LAMA/LMAT/-1/0 $ convert eigenvalue table to matrix
MPYAD, MAA, PHA,/MTP/1 $ matrix multiplication

OUTPUT4 PHA, LMAT, MTP,,//-1/39///16 $ output desired matrices

The name of the output file (nastEigout.op4)and matrices (PHA, MAA, LMAT, MTP,...) must not
be changed for successful reading of the binary file.

5. Extracting data: To extract NASTRAN modal analysis results, the users must use Nastran-
Freqguency type on the response panel instead of FREQUENCY type that is used for LS-DYNA.

5.3.3. LS-PREPOST

The file LsPrepostOpt.inp is created from the LS-PREPOST input template file. LS-OPT

automatically appends “—nographics c=LsPrepostOpt.inp 2> /dev/null > /dev/null” to the
command.
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LS-PREPOST input file example with include:

testO1.cfile:

$# LS-PrePost command file created by LS-PREPOST 3.0(Beta) - 31Mar2010(17:08)
$# Created on Apr-06-2010 (13:42:14)
cemptymodel

openc command *‘paraOl.cfile”
genselect target node

occfilter clear

genselect clear

genselect target node

occfilter clear

genselect clear

meshing boxshell create 0.000000 0.000000 0.000000 é&size &size &size &num &num
&num

ac

meshing boxshell accept 1 1 1 boxshell
genselect target node

occfilter clear

refcheck modelclean 9

ac

mesh

save keyword "lsppout™

exit

para0l.cfile

parameter size 1.0
parameter num 2

5.3.4. LS-INGRID

The file ingridopt.inp is created from the LS-INGRID input template file. LS-OPT appends
automatically “i1=ingridopt.inp —d TTY” to the command. Only the User-defined parameter format
IS supported.

5.3.5. TrueGrid

The file TruOpt. inp is created from the TrueGrid input template file. LS-OPT appends automatically
“I=TruOpt.inp"” to the command. Only the User-defined parameter format is supported.

The TrueGrid input file requires the line:
write end

at the very end.
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5.3.6. ANSA (BETA CAE Systems SA)

General 7
Package Name[ ANSA |C |
Command [ANSA ” Browse |
[l Do not add input file argument
DV File [ansa_variable_def.txt ” Browse |
copies ansa_variable_def txt (0 includes) to Stagel/it run/|ANSAOpt.inp l
and substitutes parameters
[[] Extra input files
Model Database[data_base_name.ansa ” Browse 1

Figure 5-5: Stage Setup for ANSA
The ANSA preprocessor can be interfaced with LS-OPT allowing for shape changes to be specified. Several
files must be specified:

1. Command: ANSA executable, typically named ansa.sh. Do not use an alias.

2. DV File: ANSA Design parameter file, typically with the extension .txt or .dat. This file is generated
using ANSA and LS-OPT will read the ANSA design parameter names, types and values from this
file. If LS-OPT already has a design variable with the same name then this variable will be used to
drive the value of the ANSA parameter.

3. Model Database: ANSA binary database, typically with the extension .ansa.

ANSA can produce multiple output files. These files can be used as LS-DYNA input files or include files
(specified under *INCLUDE) in downstream stages. Make sure to specify the output files in the ANSA
optimization task without a path to generate them in the respective run directory.

5.3.7. HyperMorph

General
Package Name| HyperMorph = |

Command [templex ” Browse |

[[] Do not add input file argument

Input File [input.tpl ” Browse |

copies input.tpl to Stagel/it.run/| HyperMorphOpt.inp ]
and substitutes parameters

[[] Extra input files

Output File[nodes.include ” Browse

Figure 5-6: Stage Setup for HyperMorph
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To allow the specification of shape variables, the geometric preprocessor HyperMorph® has been interfaced
with LS-OPT. Several files must be specified:

1. Command: templex command
2. Input file: At the top, the variables are defined as:
{parameter(DVAR1,"Radius_1",1,0.5,3.0)}
3. Output File: Templex produces a nodal output file, this file can e.g. be used as an include file in a
downstream stage.
The command will enable LS-OPT to execute the following command in the default case:
/origin 2/john/mytemplex/templex input.tpl > nodes.include

or if the input file is specified as in the example:
/origin 2/user/mytemplex/templex a.tpl > h.output

Remarks:
1. LS-OPT uses the name of the variable on the DVARI line of the input file:

{parameter(DVAR1l,""Radius_1",1,0.5,3.0)}

{parameter(DVAR2,""Radius_2",1,0.5,3.0)}

to replace the variables and bounds at the end of each line by the current values. This name, e.g.
Radius_1 is recognized by LS-OPT and automatically displayed in the *Setup’ dialog. The lower and
upper bounds (in this case: [0.5,3.0]) are also automatically displayed. The DVARI designation
is not changed in any way, so, in general there is no relationship between the number or rank of the
variable specified in LS-OPT and the number or rank of the variable as represented by i in DVARI.

5.3.8. uETA (BETA CAE Systems SA)

The pETA interface allows extraction of data from any database it supports, so makes LS-OPT accessible to
interface with any such supported solvers. This allows HETA to read results from the solver database and
place them in a simple text file.

® Registered Trademark of Altair Engineering, Inc.
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General

Package Name| METAPost

<>

Command |-METAPost | Browse
Session File |sessionﬁ|e.txt | Browse
Output Fle |METAPost_resuIts.t>:t | Browse
Database File| A | Browse

Figure 5-7: MetaPost interface

Several files must be specified:

1.
2.

Command: The uETA executable

Session File: The session file containing information about which results to extract. This can be
created interactively using HETA.

Output File: This specification is only used for parsing the history and response names (to be
automatically displayed in the GUI) during the LS-OPT setup phase (see below). The output file
(result file) is the name of a file containing those results requested in the input (session) file. This is a
text file so it can be easily parsed. This file has a predetermined format so that LS-OPT can
automatically extract the individual results. The specified path + name is not used during the
optimization run, but only during the setup phase while the user is preparing the LS-OPT input data.
During this phase, the responses are parsed from a baseline result file and automatically displayed in
the "Histories™ and "Responses™ pages of the GUI.

Database File: This is the path for finding the solver database. The default "./" means that pETA will
look for the database locally. This specification has no effect during the optimization run as LS-OPT
will always force LETA to look for the solver database locally, e.g. in the run directory Stage_A/1.1.

Setting up an LS-OPT problem:

1.

Run pETA and use the session file thus created to create the result file. This is done manually,
separately from the LS-OPT data preparation (an integrated feature might be provided in the future).

Open the LS-OPT GUI on the Stage dialog and select METAPost as the package name.

Specify the uETA settings in the LS-OPT GUI (see Figure 5-7). The user can browse for the uETA
executable, session file and result file. The result file is the one that was created in the manual step
(Step 1. above). The database path need not be changed.

The result file is parsed for history and response names to display in the relevant GUI pages. These
can then be used to complete the optimization problem setup: define composites, objectives and
constraints, etc.

After completion of the optimization setup, run LS-OPT.
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5.3.9. LS-OPT

The LS-OPT stage allows one to extract optimized LS-OPT response values, which can then be used in
another optimization with respect to a different set of variables. The LS-OPT stage can also be used to call a
reliability task from an optimization task, e.g. for tolerance optimization or a robust design task using the
direct Monte Carlo method at the lower level.

The LS-OPT stage simply executes another instance of the LS-OPT software in a nested optimization
framework. Thus, it allows a user to set up a Multilevel Optimization problem, explained in Section 17.7.
The LS-OPT stage setup dialog is shown in Figure 5-8.

Sefup | Parameters | Histories = Responses = File Operations

General

Package Name| LS-OFT

i

Command||sopt Erowse

[] Use default command
[[J Do not add input file argument

Input File |inner.|sopt Browse Open

copies inner.lsopt (0 includes) to 1/t runf|..fnnert.fsopa‘(defau.fz‘is LsoOptinp) |
and substitutes parameters

Extra input files

Filename Farse Delete
[main.k | Browse a x
| cars.k | Browse | [ J'f
|. rigid2 | Browse | [J x

Add

Figure 5-8: LS-OPT stage interface

The fields that need to be specified for an LS-OPT stage are as follows.

1. Command: Like all other solver interfaces, the user needs to provide the command to run LS-OPT.
There is a Use default command option that automatically fills in the path to the LS-OPT executable
being used for the setup.

2. Input file: The input file for an LS-OPT stage is a .Isopt file itself that contains the setup for an inner
level LS-OPT sub-problem. The file LsoOpt. inp (or a user specified name) is created from the
LS-OPT input template file. By default, LS-OPT appends LsoOpt. inp to the solver command.
Parameterization of the input file is done using Transfer Variables (Figure 5-9).

3. Extra Files: An important aspect to note in the LS-OPT stage setup is the use of extra input files with
the Parse option unchecked (Figure 5-14). This is important because the input files of the lower
level(s) need to be passed down from the upper level while not considering the lower level variables
in the upper level. The details of the directory structure for multilevel problems are presented in
Section 14.5.
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LS-OPT input file parameterization

The LS-OPT input file, i.e. the .Isopt file, is parameterized using Transfer Variables. The transfer variables
are indicated using type=""iconstant’ in the LS-OPT stage input file. Continuous and Discrete variables can
be set as a Transfer Variables using the LS-OPT GUI (Figure 5-9); these are then considered as constants at
that level, but can be set as variables in preceding levels. These variables are automatically detected as
constants by LS-OPT and populate the outer level Global Setup (for which the parameterized .Isopt file is a
stage input file). The user can either use them as constants in the outer level or set them as variables.

Problem global setup [ x|

Parameter Setup | Stage Matrix | Sarnpling Makrix | Resources | Features |

™ show advanced options

Edit Input Parameter References |

Type | Marne | Skarking | Minirnurn | Mazximurn | Delete |
IContinuous jltbumper I 3| 1 | s &

| Continuous x| thood | 1 L 5 &
Transfer Yariable | ISIG’T’ I 400 & A
Continuous IVM I 00000 @&

Constant
Dependert

Discrete
Skrin

Figure 5-9: Parameterization of inner level LS-OPT setup using Transfer Variables. The values of

transfer variables are passed down from the upper level(s).

[ CFTRRES Problem global setup

Parameter Setup = Stage Matrix | Sampling Matrix = Resources  Features

Show advanced options
Type s Mame : Starting : Minimurm ¢ Maxirmum : Delete
Continuous v 400 350 450
Continuous W 200000 150000 250000

Figure 5-10: Outer level global setup. SIGY and YM are automatically detected in the input file (i.e. inner
level .Isopt file) and locked as they are Transfer Variables in the inner level.
Remarks:

1. The user-defined parameter format <<variable_name>> is not allowed for the LS-OPT stage.

2. LS-OPT stage responses are extracted using the LSOPT response type (Section 6.16).

Navigating to view lower level setups and progress

Because of the complex recursive nature of a multilevel setup, simple navigation options are provided so
that lower level setups can be inspected or edited recursively starting at the main (upper level) setup. During
runtime, job progress can also be viewed recursively starting at the main progress window.
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1. The Open button opposite the Input file text box allows the user to navigate down to the next level
and will display the GUI for inner.lsopt, see Figure 5-8.

2. While a multilevel run is in progress, the user can also navigate to display the progress of a selected
lower level job by clicking on the LS-OPT button in the progress dialog. Lower level job progress
can also be monitored using the View log button to display the text output, see Figure 5-11.

H_ E_ 'l'_ /: . B Metamodel-based optimization BX <= Single lteration

Setup | Sampling 1
1 parameter | 1 wvar, 10 sp filling designs
‘ Finish - 1 l
T 1 par 1 hist, & resps o
- = optimization | i
Verification — P —
o E— 1 objective
1 design | - |
1 constraint J
| Composites Build Metamodels
1 definition 5 ibf sufaces
Small car crash optimization problem: LINEAR [
thomednielen/L S OF ITRUNK/DEV fopt QANRMULTILEY EL/BA SIC/outer Isopt |+
Output () | Output (W) | Output (E) | Progress [ D
Show status for: | All hg Tools E
Global progress Iteration: 1 12 % Wiew log
Job ID/FID Component Iter Exp Status
Open folder
Running...
7818 1 1 2 Running... LS-0OFT
7817 1 1 3 Running...
7821 1 1 4 Running...
7823 1 1 =] Running... e
i
7827 1 1 5] Running...
7832 1 1 7 Running... Accelerated kill
7888 1 1 8 Running...
0 1 1 9 Waiting...
0 1 1 10 Waiting...

Figure 5-11: Progress window for the LS-OPT stage. Selecting the LS-OPT button for the selected job
displays the LS-OPT GUI for that job which allows the user to monitor a lower level optimization run.

5.3.10. Excel

An Excel stage can be used as a solver or a post-processor. It can be seen as being similar to any other
solver, with the main differences lying in its parameterization and in the response and history definitions.
Because the results need to be computed for several samples within an LS-OPT task, the Excel input file
needs to be parameterized. This is achieved using Input definitions specified in the Stage dialog itself. These
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inputs may correspond to a single Excel cell or a group of cells in the input file, and are substituted for each
sample (Figure 5-12).

Setup | Parameters | Histories | Responses | File Operations

General
Package Name| Excel

Excel File/dataxlsx Refresh
Do not copy Excel file to job folder

Input definitions

Sheet Cell Type Fill direction Delete
Sheetl A3 Parameter x1 Vertical

Sheet1 Param2 Parameter X2 Vertical
Sheet2 StageZ_in_resp1 Response Stagel_out resp Vertical
Sheet2 Stage?2_in_hist History Stage1_out_hist Vertical

Sheet2 Stage?_in_resp2 User-defined type response.2 Vertical
\Add...

Execution

Resources

Resource Units per job Global limit Delete
EXCEL 1 1 x
Create new resource

[]Use Queuing

[JUse LSTCVM proxy
["]Environment Variables

["]Run Jobs in Directory of Stage

Figure 5-12: Excel stage interface

The attributes used for Input definitions are Sheet, Cell, Type, Value and Fill Direction. The details are
given below.

1. The Sheet and Cell options direct LS-OPT to a unique location within the Excel document. A Cell
can be assigned using the Excel row-column format (i.e. by typing A2, B4 etc). If cell names have
been already defined in the parsed Excel document, LS-OPT displays all the existing names as a list
under Cell option and the required cell can be selected directly. The displayed names under Cell
option can also correspond to an array of Excel cells, used to assign LS-OPT histories.

2. Type and Value options are used to link LS-OPT design parameters, histories and responses with
corresponding fields of the parsed Excel document. There are four different options within Type -
Parameter, Responses, History and User-Defined.
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o0 Parameter is used to link the global LS-OPT parameters defined in Setup dialog to the specified
cells of the Excel document. When Parameter is selected as type, all the global LS-OPT
parameters defined in Setup dialog are listed under the Value option.

O Response as a parameter type facilitates the use of LS-OPT responses defined in previous stages
as input parameter for the current Excel stage. A list of responses defined in the previous stages
is displayed under Value option and the user can select which response has to be written to the
Excel document.

O History as a type allows LS-OPT to input histories obtained from previous stages to the Excel
document.

o0 User-defined option as a type can be used to write histories and responses of previous stages to
the Excel document using a command. For example the command ‘type response.0” will write
the value present in file response.0 of previous stage, to the Excel document; provided a file
transfer operation is defined to transfer the file response.0 from previous stage directories to the
run directories of current Excel stage directory.

3. Fill Direction specifies how the history values are written to the Excel fields i.e. in Vertical or
Horizontal directions.

If the Global limit for Execution Resources is set to 1, the option ‘Do not copy Excel file to job folder’ is
available in the Excel stage setup dialog. If the option is checked on then the original Excel input file
template is modified for each sample analysis. This avoids copying of the (potentially large) input file to
each run directory. All the possible combinations of Input definitions are illustrated in Figure 5-12. These
are also listed below.

1. The first input definition in Figure 5-12 shows a parameter x1 defined in Setup dialog of main GUI
(also populated under Value option), has been assigned a cell A3 in Sheetl of Excel document
data.xlsx.

2. Similarly, if a user has assigned a name to the cell using Name Manager within Excel, all the Sheet
specific cell names are populated as a list. In the second input definition, Param2 is a name defined
to a cell in Sheetl which is assigned to parameter x2 using Value option.

3. The third input definition writes the response Stagel out resp obtained from previous stage to the
cell Stage2_in_respl of the Excel document data.xIsx.

4. The fourth input definition writes the history Stagel out_hist obtained from previous stage to an
array of Excel fields defined with name Stage2_in_hist in Sheet2 of data.xlsx in Vertical direction.

5. The last input definition shows a response obtained from previous stage (where response.2 is the file
with response value) is being written to a cell with name Stage2_in_resp2 of Sheet2 using User-
defined option. This option allows writing values available in the output files of previous stages to
the Excel document. .

5.3.11. User-defined program

A user-defined solver or preprocessor can be specified by selecting User-defined in LS-OPTui. The
command can either execute a command, or a script. The substituted input file UserOpt. inp will
automatically be appended to the command or script. Variable substitution will be performed in the input
file (which will be renamed UserOpt. inp). The specification of an input file is optional. In its simplest
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form, the prepro own preprocessor can be used in combination with the design point file: XPoint to
read the design variables from the run directory.

If the own solver does not generate a ‘Normal’ termination command to standard output, the solver
command must execute a script that has as its last statement the command:

echo “Normal’.

5.3.12. Matlab

A Matlab stage can be specified by selecting MATLAB as the package name in the stage setup dialog of
LS-OPTui (Figure 5-13).

Seftup  Parameters Histories Responses File Operations

General

Package Name MATLAB v

Command matlab Browse
Do not add input file argument

Input File | input.m Browse

copies input.m to Stagel/ft.run/ MatlabOpt.m
and substitutes parameters

| Bxtra input files

Output File MatlabOutput Browse

Figure 5-13: Matlab stage interface

The input file is a Matlab script consisting of the variable definitions using the 1nput function in Matlab
(e.g. variablel = input(“description of the variable”);). LS-OPT parses the input
file and identifies the variable name. It then replaces the input function with a value during the run.
Before replacement, the input file is copied to subdirectories under the stage directory. The default name for
the copied file is MatlabOpt.m. It should be noted that this file must have the suffix .m. The Matlab input
file must write the histories and responses in the METAPost format described in 5.3.14. In addition, it must
write the termination status, as shown below, using try-catch and diary.

Try
% Definition of variables x1 and x2
X1 = input("x1-7);
X2 =input("x2:");

% Computation of response(s) and histories
s X1+Xx2;
h [0 s;1 s+1;2 s+4;3 s+9];

% Write responses and histories to MatlabOutput fTile
fid = fopen("MatlabOutput”®, "w");
fprintf(fid, "#\n");
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fprintf(fid, "RESPONSES\n") ;
% response 1
fprintf(fid, "%d, %s, %f\n",0,"s",s);
fprintf(fid, "END\n");
fprintf(fid, "#\n");
% history 1
t=1:size(h,l);
fprintf(fid, "HISTORY 99: h\n");
for i=1:size(h,l)

fprintf(fid, "%F, %F\n",t(i),h(i));
end
fprintf(fid, "END\n") ; fprintf(fid, "#\n");
ChkClose=fclose(fid);

% Write Normal termination status
diary matstatus;
disp("(Normal termination?);
diary off
catch
% Write error termination status
diary matstatus;
disp("E rror termination?);
diary off;
end
exit

An output file also needs to be provided in the stage dialog that contains the response and history
definitions. LS-OPT automatically populates the histories and responses to be extracted based on the
definitions in this file (See Section). The output file must have the same format as METAPost.

5.3.13. Third Party solvers

LS-OPT supports certain popular Finite Element Analysis solvers under the User-defined solver type. For
these solver types all the syntax rules (e.g. recursive include files, parameter keywords, etc.) associated with
the input file are obeyed so that parameters can automatically be imported to the LS-OPT setup dialog.

LS-OPT recognizes the solver type by initially parsing the first line of the main input file. This line should
be a comment line which contains the name of the package it represents.

Special response interfaces are not available, but response and history extraction are supported using
0 GenEx (Chapter 7)
0 the user-defined post-processor (5.3.14)
o commercially available post-processors supported by LS-OPT (see e.g. 5.3.8).

5.3.14. User-defined post-processor

The postprocessor allows extraction of data from any database it supports, so makes LS-OPT accessible to
interface with any such supported solvers. This allows the postprocessor to read results from the solver
database and place them in a simple text file or files for individual extraction of results.
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In the case of user-defined post-processor, the full command needs to be provided, because LS-OPT does
not internally construct the command using the input, database and result files. The output file needs to be
written in the same format as for the pPETA package. The format is as follows:

#

RESPONSES

0, Weight, 0.591949043101576

1, StressL, 3.74281176328897

2, StressR, 1.99975762786926

END

#

HISTORY 99 : hisl

0,0
0.0795849328001081,0.23516125192977
0.159169865600216,0.274354793918065
0.238754798400324,0.31354833590636
0.318339731200433,0.352741877894655
0.397924664000541,0.39193541988295
#

END

#

RESPONSES

END

#

HISTORY 100 : his2

0,0
0.0795849328001081,0.627096671812721
0.159169865600216,0.666290213801015
0.238754798400324,0.705483755789311
0.318339731200433,0.744677297777606
0.397924664000541,0.783870839765901
#

END

Setting up an LS-OPT problem is similar to pETA, except that User-defined Postprocessor is selected as
the package, and the session file and database path need not be provided as the related information is
available in the command.

It is also possible to run uETA as a user-defined post-processor. In this case, the command provided in
“ful lcommandscript”is:

<metapost_executable> -b -s -foregr <path/sessionfile> "<database_path>"
"<path/result_file>"

Unlike in the case of uETA, the full command is not constructed internally by LS-OPT. Therefore,
metapost_executable, path/sessionfile, database path, and path/result file need to be provided in
fullcommandscript. Because all the information is available in the command, it is not necessary to
provide the input and database files separately in this case.

The output file name must however be specified for the following reason. The output file is parsed for
history and response names to import and display in the relevant GUI pages. These can then be used to
complete the optimization problem setup: define composites, objectives and constraints, etc.
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5.4. Solver Execution

oFT Stage 1 =)

Setup | Parameters ‘ Histories ‘ Responses ‘ File Operations ‘

General
Package Namel L5-DYNA 3]
Ccmmand[lsg?l_single ][ Browse ]

[] Do not add input file argument

Input File [main.k H Browse ]

copies main.k and 2 includes to 1/it.run/| DynaOpt.inp ]
and substitutes parameters

[[] Extra input files

LS-DYNA Advanced Options

Execution
Resources

Resource Units per job Global limit Delete
LSDYNA 1 I[x x

Create new resource

[[] Use Queuing
[[] Use LSTCVM proxy
[ Environment Variables

[] Run Jobs in Directory of Stage

Advanced execution options

Figure 5-14: Stage dialog Setup panel
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Table 5-4: Stage dialog Setup options: Execution options

Option Description Reference

Resources Settings for concurrent processing Section 5.4.1

Use Queuing Interfacing with load sharing facilities to enable running Section 5.4.2
simulation jobs across a network.

Use LSTCVM Enabling LSTCVM, Secure Proxy Server, for distributing Section 5.4.3

proxy solver jobs across a computer cluster.

Environment Environment variables that will be set before executing a Section 5.4.4

Variables solver command.

Run jobs in If multiple stages are defined, the command can be executed in -

Directory of Stage the directory of another stage.

Recover Files List of files to be recovered from remote machine, only Section 5.4.5
available if a queuing system interface is used

Advanced execution  Options related to retry of job submissions for Section 5.4.6

options Abnormal Termination

5.4.1. Specifying Computing Resources for Concurrent Processing

Multiple resource limits can be defined for each stage. The resource attributes consist of Units per job as
well as the Global limit (see Figure 5-15). This feature is non-dimensional and therefore allows the user to
specify limits on any type of computing resource such as number of processors, disk space, memory,

available licenses, etc.

Example:

A user has 10,000 processors available and wants to execute an optimization run using MPP simulations
requiring 128 CPUs per job. She therefore specifies the units per job as 128 and the global limit as 10,000.
For this same optimization run, the user has 5,000Gb disk space available while using 40 Gb of disk space
per job (which is deleted after the completion of each job). A second resource therefore has to be specified
with attribute values 40 units per job and a global limit of 5,000. The resource setup is shown in Figure

5-15. The job scheduler will launch jobs that will not exceed any of these two limits.
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Resources

Resource Units per job Global limit Delete
DISK_SPACE 40 || s000 E
CPU 128 || 10000 | »

Create new resource

Figure 5-15: Definition of Resources for a Stage

Resources must be defined at the Stage level, but can be viewed in the Resource tab of the Setup dialog (see
Section 8.4). The limits can be changed in either the Stage or Setup dialogs.

Stages can share resources. For instance, as part of an MDO problem, the same resource can be defined for
multiple stages.

When using multiple computer clusters, independent resources are typically defined for each cluster. Jobs
will then be run concurrently on all clusters within the limits defined for each cluster.

A single resource with a default of 1 Units per job and a Global limit of 1 is assumed for each stage at the
beginning of the creation process. The default name is the solver type name. That also implies that if
multiple stages use the same solver type, there will by default be only one resource definition. Resources
can then be added or deleted as desired. To change a resource name, a new resource has to be added and the
old resource deleted.

Remark

A resource definition related to e.g. the number of processors to be used for a simulation run does not
replace the specification of the number of processors as a command line option or in the command script.
The resource definitions are only used to calculate the number of jobs that are submitted concurrently.

5.4.2. Interfaces to Queuing Systems

The LS-OPT Queuing Interface interfaces with load sharing facilities (e.g. LSF® or LoadLeveler’) to enable
running simulation jobs across a network. LS-OPT will automatically copy the simulation input files to each
remote node, extract the results on the remote directory and transfer the extracted results to the local
directory. The interface allows the progress of each simulation run to be monitored via LS-OPTui. See
Appendix H.5 for information on how to setup the interface.

® Registered Trademark of Platform Computing Inc.
" Registered Trademark of International Business Machines Corporation
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Table 5-5: Queuing options

Option Description Reference
LSF LSF

PBS PBS®

PBSPRO PBS PRO

SLURM SLURM

AQS AQS

LoadLeveler LoadLeveler

NQE NQE?®

NQS NQS™

Black-Box Black box Appendix H.7
Honda dedicated queuer Appendix H.8
SGE SGE

User-Defined User Defined Appendix H.7

5.4.3. Using the LSTCVM secure proxy server

Selecting this option enables the interface to use LSTCVM. LSTCVM is a Secure Proxy Server for
distributing solver jobs across a computer cluster, e.g. for running LS-OPT on a Windows machine
controlling solver jobs on a Linux cluster. See Appendix H.11 for information on the installation of
LSTCVM.

8 portable Batch System. Registered Trademark of Veridian Systems
® Network Queuing Environment. Registered Trademark of Cray Inc.
0 Network Queuing System
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5.4.4. Environment Variables

Environment Variables

Name Value Delete

|'DYNA_EXPLICIT | |',"homefbin;'solversfmppdyna |
Add manually Set by browsing Edit browse list

Figure 5-16: Definition of Environment Variables

LS-OPT provides a way to define environment variables that will be set before executing a solver
command. The desired environment variable settings can be specified in the Stage dialog if the Environment
Variables checkbox is selected.

Passing environment variables to stage commands can be a convenient way to control the behavior of a
command. For example, the command might be a script which queues a job on a remote machine; the
environment variable settings might be used by the script to select various queuing options. Or, the
environment variable settings might be passed along through the queuing system to set options for the
remotely executed job, such as license server locations, input file names, whether to run the MPP version of
LS-DYNA, whether to run a single or double precision solver, etc.

Select the button Add manually to define a single environment variable. After selecting this option, a new
line will appear in the Environment Variables list where you can enter the variable name and an arbitrary
value. We do not allow the names of variables to contain anything other than upper- or lower-case letters,
numbers, and underscore (_ ) characters. This guarantees that all environment variable definitions can be
used on all platforms. Variable values are not so limited.

The Set by Browsing option is used to set variables in bulk. This is done by running a user-supplied
program or importing a user-supplied file (see Appendix H: Installing LS-OPT for further information).
Activate the Set by browsing button in order to select from the available executables or files. A selection
list containing all available files and programs will show up.

Selecting a file or executable will directly import all the specified variables into the Environment Variables
list in bulk. In addition to these Browse List variables, a special browse variable is created that should not be
edited. This variable records the program name used to create the Browse List.

NOTE: Strings in the Environment Variables list appearing above the browse line are all part of the Browse
List. Strings that appear below browse are never part of the Browse List. User-defined environment
variables will always follow after the browse variable definition.

Selecting the Edit Browse list button does nothing unless a Browse List has been previously created. If a
valid Browse List is present in the Environment Variables list, then selecting this option will run the original
program that created the Browse List, together with all of the current Browse List options passed as
command line arguments, one per existing environment variable.

Executing the 'Edit Browse List' will cause the original file to be reread, which is convenient for testing
purposes.
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Note: The browse command can ABORT the replacement operation by printing a blank line to the standard
output and immediately terminating. Otherwise the current Browse List may be deleted. If the browse
command abnormally terminates, then an error box will appear with a title bar indicating that the command
failed.

How the browse list is used by LS-OPT

The Browse List (indeed, the complete Environment Variables List) is used to set environment variables
before running the solver command specified by LS-OPT. However, if the first variable returned by the
browse command is exe, then a pre-processing command is run before running the actual solver command.
The pre-processing command is the value of the exe variable. The pre-processing command has a command
line

$exe varl=$varl, var2=%var2, ... varN=$varN

That is, the command executed is the value of the exe variable; additional command line arguments consist
of all Browse List strings with a comma delimiter appended to each intermediate one. (The final argument
is not followed by a comma.)

Note: Such a pre-processing command is always run from within the current LS-OPT Job Directory.
Therefore, any file that the pre-processing command references must be specified by a fully-qualified path
or must be interpreted relative to the current LS-OPT Job Directory. So, the LS-OPT Stage Directory
will be **.."" and the LS-OPT Project Directory will be *../.."".

5.4.5. Recovering Output Files

Recover Files

Filename/Filetype Delete
d3plot <=
' binout* |

Add file manually Select file type

Figure 5-17: Database recovery options

This option is only available if a queuing system interface is used, Section 5.4.2. When distributing the
simulation runs, the information needed by LS-OPT is automatically extracted and transferred to the local
node in the form of files response.n and/or history.n.

If the user wants to recover additional data to the local machine to do local post-processing (e.g. using LS-
PREPOST), the Recover Files options can be used.

For LS-DYNA, the Select file type option can be used to recover d3plot, d3hsp, binout, d3eigv or eigout
files. Each name is a prefix, so that e.g. d3plot0O1, d3plot02, .. will be recovered when specifying
d3plot.

Any database can be recovered by using the Add file manually option. Each name is a wildcard.
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The requested database files will appear in the local run directory. The details of the recovery procedure is
logged and available in the job_log file in the run directory on the local machine. Job logs can be viewed
by double-clicking on the Stage LED during or after running. See Section 14.3.

5.4.6. Advanced Execution Options

Table 6: Advanced execution options

Option Description Reference

Abnormal retry timeout Submission script timeout (seconds) Appendix H.9.1
Abnormal retry count Number of retries if submission fails Appendix H.9.1
Queuer timeout Time LS-OPT will wait for the wrapper to Appendix H.9.2

connect, otherwise it sets an abnormal
termination status.

5.5. File Operations

Setup = Parameters = Histories = Responses | File Operations

Operation Source File Destination File (wildcard ok) Sequence On Error De...
|Copy hd |:|'igid2 | |:|'igid :||befo|'e A |warn WX
|Move v |:ca|5.k | |:car.k :||a1’cer hd |fai| S
|De|ete v [junk i||a1’cer hd |ignore S
Add .

Jok

Figure 5-18: File Operations within a Stage run directory

LS-OPT allows file operations between Stages or within a Stage.

The requested Stage file operations are executed for all the run directories related to the Stage, e.g.
CRASH/1.1, CRASH/1.2, etc. Within a Stage run directory, several file operations can be executed on
files previously copied to the run directories or generated by the stage command before or after executing
the stage command. See Figure 5-18 and Table 3-4.

File operations between stages are discussed in Section 3.2.2.
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Table 5-7: File Operations

Option Selections Description
Operation Copy Available operations
Move
Delete
Source File Name of source file

Destination File

Name of destination file, wildcards are supported

Sequence before Execute operation before or after executing the stage
after command

On Error fail What to do if operation fails
warn
ignore

5.6. The ‘Normal termination status

LS-OPT can only detect the solver termination status by reading the information that the solver prints to the
screen (also called standard output or stdout). The LS-DYNA solver type as well as late versions of
ANSA automatically outputs the phrase ‘N o r m a 1’ which LS-OPT detects as a normal termination.
If'N o r m a I’ isabsent, LS-OPT assumes an error termination status and will not attempt to extract
any results from the database. For all other solvers, the user has the responsibility to write the status to
standard output. This can be accomplished by inserting the solver command into a script or program in

whichthe ‘N o r m a I’ string is written at the end using a print statement. See also Appendix H.9 .

5.7. Managing disk space during run time

As multiple result output sets are generated during a parallel run, the user must be careful not to generate
unnecessary output. The following rules should be considered:

o0 To save space, only those output files that are absolutely necessary should be requested.

o0 A significant amount of disk space can be saved by judiciously specifying the time interval between
outputs (DT) e.g., in many cases, only the output at the final event time may be required. In this case
the value of DT can be set slightly smaller than the termination time.

0 The result extraction is done immediately after completion of each simulation run. Database files can
be deleted immediately after extraction using the ‘Delete’ file operation after the solver run (see

Section 5.5).

o0 Database files can also be deleted by using the clean file (see Section 5.7.1).
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o If the simulation runs are executed on remote nodes, the responses of each simulation are extracted
on the remote node and transferred to the local run directory.

5.7.1. Using the clean file to delete solver output files

During a sequential approximation procedure, superfluous data can be erased after each run while keeping
all the necessary data and status files (see Section 14.6). For this purpose the user can provide a file named
clean (clean.bat on Windows) containing the required erase statements such as

rm -rf d3*

rm -rf elout

rm -rf nodout
rm -rf rcforc

on Linux or

del d3*

del elout
del nodout
del rcforc

on Windows, respectively.

The clean file will be executed immediately after each simulation and will clean all the run directories
except the baseline (first or 1.1) and the optimum (last) runs. Care should be taken not to delete the lowest
level directories or the log files started, finished, response.n or history.n (which must
remain in the lowest level directories). These directories and log files indicate different levels of completion
status which are essential for effective restarting. Each file response.response_number contains the
extracted value for the response: response_number. The essential data is thus preserved even if all solver
data files are deleted. The response_number starts from 0.

Complete histories are similarly kept in history . history_number.

The minimal list to ensure proper restarting is:

XPoint
started
finished
response.0
response.1l

History.o
history.1

Remarks:
1. The clean file must be created in the work directory.
2. Ifthe clean file is absent, all data will be kept for all the iterations.

3. For remote simulations, the clean file will be executed on the remote machine.
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5.8. Alternative setups for running pre-processors

The easiest way of running a pre-processor is to define a separate stage for the pre-processor and solver and
to make the solver stage dependent on the pre-processor stage. Because the output file of the pre-processor
has to be used as input by the solver, the setup is important. There are at least three ways of setting up a pre-
processor run:

1. Specify the output file of the pre-processor as an include file of the solver.

2. Copy the output file to the base file of the solver. E.g. if Isppout is the output file name of the
pre-processor, copy Isppout to DynaOpt.inp which is the standard base file name for the
LS-DYNA solver type. An inter or intra-stage file operation is used for this purpose.

3. Rename the base file name of the solver to the output file name of the pre-processor (see Section
5.2.1). E.g. if the output file name of the pre-processor is Isppout rename the basefile of the
solver (in this case the LS-DYNA type) from DynaOpt.inp to Isppout. LS-DYNA will then
use EI=Isppout as part of the solver command.

It should be noted that both the pre-processor and the solver can be run in the same directory by selecting
the “‘Run Job in Directory of Stage’ option in the Setup tab of the Stage dialog. They can both be run in the
directory of the pre-processor or the solver.

If they are both run in the pre-processor directory, a copy file operation (Section 5.5) should be specified in
the ‘File Operations’ tab to copy the file after the pre-processor stage.

If they are both run in the solver directory, a copy file operation should be specified in the ‘File Operations’
tab to copy the file before the solver stage (Section 5.5).

If they are run in different directories (i.e. their own home directories), an inter-stage copy operation should
be specified (Section 3.2.2).
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This chapter describes the specification of the history or response results to be extracted from the stage
database. A history is a vector or curve data, whereas a response is a scalar value. Responses can be used to
define objectives or constraints (Chapter 11), histories are intermediate entities that can be used to calculate
responses or composites (Chapter 10). Interfaces for result extraction from LS-DYNA and MSC-
NASTRAN output files are available, as well as mathematical expressions, file import, an interface for
extraction of values from ASCII database and a user-defined interface where any program may be used for
result extraction. The dialogs are accessible from the Stage dialog Histories and Responses tab,
respectively.

6.1. Defining histories and responses

A history or a response can be defined by using the interfaces in the Histories and Responses tab of the
Stage dialog, respectively, Figure 6-1. To add a new definition, select the respective interface from the list
on the right. The available interfaces are explained in Table 6-1. To edit an already defined history or
response, double-click on the respective entry from the list on the left. Histories and responses may be
deleted using the delete icon on the right of the respective definition.

There are five types of interfaces:

o Standard LS-DYNA, MSC-Nastran or LSOPT result interfaces. These interfaces provide access to
the LS-DYNA binary databases (d3plot or binout, d3hsp or d3eigv), the Nastran and LSOPT
database, respectively. The interfaces are an integral part of LS-OPT.

User specified interface programs. These can reside anywhere. The user specifies the full path.
Mathematical expressions.

GenEx. This interface allows the user to extract selected field values from a text file.

O O O O

Excel.

The extraction of responses consists of a definition for each response and a single extraction command or
mathematical expression. A response is often the result of a mathematical operation of a response history,
but can be extracted directly using the standard LS-DYNA interface (see Section 6.1.1) or a user-defined
interface.

Each extracted response is identified by a name, Table 6-2, and the settings to be specified using the
respective interface.
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= Stage CRASH E
Setup | Parameters || Histories || Responses | File Operations
History definitions Add new
N1_Vel x | | Generic =g
NODOUT: x_velocity of node 2061916 USERDEFINED
N2_Vel * | | GENEX
NODOUT: x_wvelocity of node 2061917
EXCEL
N1_Disph * | | EXPRESSION
NODOUT: x_displacement of node 2061916
FUNCTION
N2_Disph * | | INJURY
NODOUT: x_displacement of node 2061917
Derived =
N1l_Accel x
NODOUT: x_acceleration of node 2061916 Crossplot
N2_Accel x| LS-DYNA
NODOUT: x_acceleration of node 2061917 ABSTAT
Avg_Vel « | | BNDOUT
EXPRESSION: (N1_Vel+N2_Vel)/2 D3PLOT
Avg_Disp x | | DBBEMAC
EXPRESSION: (N1_Disph+N2_Disph)/2 DBFSI
Avg_~Accel x | | DEFORC
EXPRESSION: (N1_Accel+N2_Accel)/2 ELOUT
GCEOUT
GLSTAT
NTFORC
MATSUM
NCFORC
[~
File Histories |
[ ok |
Figure 6-1: Histories definition in the GUI
Table 6-1: Interfaces for Response and History extraction
Option Description Reference
Generic USERDEFINED Result extraction using any script or Section 6.13
program
FILE Result extraction from a text file Section 6.14
(responses only)
GENEX Tool for extracting results from text files Chapter 7
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EXCEL Result extraction from an Excel document  Section 6.17
EXPRESSION Definition of mathematical expressions Section 6.4.1
using previously defined entities
FUNCTION Expressions using previously defined Section 6.4.3
histories
INJURY Injury criteria Section 6.5
MATRIX_EXPRESSION (Response only) Section 6.4.4
Derived Crossplot Crossplot (History only) Section 6.4.1
LS-DYNA  ABSTAT Binout interface Section 6.2.1
BNDOUT Binout interface Section 6.2.1
D3PLOT D3plot interface Section 6.2.3
DBBEMAC Binout interface Section 6.2.1
DBFSI Binout interface Section 6.2.1
DEFORC Binout interface Section 6.2.1
ELOUT Binout interface Section 6.2.1
FLD Metal Forming results (Response only) Section 6.3.2
FREQUENCY D3eigv interface (Response only) Section 6.2.5
GCEOUT Binout interface Section 6.2.1
GLSTAT Binout interface Section 6.2.1
JNTFORC Binout interface Section 6.2.1
MASS D3hsp interface (Response only) Section 6.2.4
MATSUM Binout interface Section 6.2.1
NCFORC Binout interface Section 6.2.1
NODOUT Binout interface Section
6.2.1,
NODFOR Binout interface Section 6.2.1
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PSTRESS Metal Forming results (Response only) Section 6.3.3
RBDOUT Binout interface Section 6.2.1
RCFORC Binout interface Section 6.2.1
RWFORC Binout interface Section 6.2.1
SBTOUT Binout interface Section 6.2.1
SECFORC Binout interface Section 6.2.1
SPCFORC Binout interface Section 6.2.1
SPHOUT Binout interface Section 6.2.1
SWFORC Binout interface Section 6.2.1
THICK Metal Forming results (Response only) Section 6.3.1

MSC- NAST_FREQUENCY Frequency, matched mode number or Section 6.15

NASTRAN MAC value (Response only)

LS-OPT LSOPT Optimized inner level variables, responses, Section
composites, objective functions, 6.16.2,
constraints, histories and reliability Section
statistics 6.16.1

LSOPT_STATISTICS Statistical values produced by a Monte Section
Carlo analysis (Response only) 6.16.3

File Histories Global file histories (History only) Section 6.19

Copy Copy the selected History/Response

Paste Paste a previously copied
History/Response, also possible between
stages. The next free number is
automatically appended to the name.
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Table 6-2: General History and Response options for all interfaces

Option Description
Name History/Response name
Subcase Integer CASE ID associated with the *CASE parameter in LS-DYNA. This

option is mandatory for disciplines that use the *CASE parameter in LS-
DYNA input files but is not required for other cases. For all other cases,
first/last commands should be used.

Multiplier (Response only) If scaling and/or offsetting of the response is required, the
Offset final response is computed as (the extracted response x Multiplier ) + Offset.

Not metamodel linked (Response only) Sometimes it is beneficial to create intermediate responses
without associated metamodels, although the task is metamodel-based. This
promotes efficiency. Responses that are not metamodel linked cannot be
included directly in composites, as composites rely on metamodel-based
calculations.

Dump formula file (Response only) Dump metamodel formula to file
formula_dump_responsename.iteration in the working directory.

DEFINE_CURVE (History only) *DEFINE_CURVE definition of history

6.1.1. Result extraction

Each simulation run is immediately followed by a result extraction to create the history.n and
response.n files for that particular design point. For distributed simulation runs, this extraction process
is executed on the remote machine. The history.n and response.n files are subsequently transferred
to the local run directory. If the extraction on the remote machine is not successful, it is done again on the
local machine. Hence programs and scripts needed for result extraction do not have to be accessible from
the remote machine. These results are stored in the AnalysisResults_n.lsox database.

6.1.2. Creating a history file with an LS-DYNA *DEFINE_CURVE keyword

The DEFINE_CURVE selection allows the creation of an LS-DYNA include file (e.g. his.k) with the
*DEFINE_CURVE keyword and history data. The LCID, which represents the load curve ID required by
LS-DYNA, should be entered in the appropriate text box. See e.g. Figure 6-11.

6.2. Extracting history and response quantities: LS-DYNA

LS-OPT provides interfaces for history and response result extraction from binout, d3plot, d3hsp and
d3eigv. The user must ensure that the LS-DYNA program will provide the output files required by LS-OPT.
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The options for the extraction of LS-DYNA responses and histories are identical, except for the selection
attribute.

Aside of the standard interfaces that are used to extract any particular data item from the database,
specialized responses for metal-forming are also available. The computation and extraction of these
secondary responses are discussed in Section 6.3.

6.2.1. LS-DYNA binout results

All LS-DYNA history and response result extraction options except for D3PLOT, MASS and
FREQUENCY interface with the LS-DYNA binout output. The BINARY flag in the respective
*DATABASE_OPTION card and the desired entity ID in the *DATABASE_HISTORY_OPTION card has
to be set correctly in the LS-DYNA input file. Note that the LS-DYNA executable is interpreted as a single
process (SMP) by LS-OPT, hence the default binary flag value 0 is not supported.

The response options are an extension of the history options — a history will be extracted as part of the
response extraction.

Results can be extracted for the whole model or a finite element entity such as a node or element. For shell
and beam elements the through-thickness position can be specified as well.

Filtering and averaging options are available for histories and responses.

For responses, the Select attribute has to be specified to extract a scalar value from the curve. The optional
attributes From time and To time can be specified to slice the curve before extracting the requested scalar
value. The defaults are 0 and the end value of the history.

These operations will be applied in the following order: averaging or filtering, and slicing.

The available results types and components are listed in Appendix A: LS-DYNA Binout Commands and
Appendix B: LS-DYNA Binout Components.

The NODOUT components Deformation and Distance are described in detail in Section 6.2.2.
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= New response =
Name Subcase Multipiler Offset
x_displ l [ |_1 | |.D |

[] Mot metamodel-linked

Component Direction

() Coordinate @ X Component
@ Displacement () ¥ Component
) Velocity () Z Component
() Acceleration () Resultant

() Rotational Displacement
() Rotational Velocity

(_) Rotational Acceleration
) Deformation

) Distance

IdentifierType 1D

D ¢ | [300105 |

Select From time To time

| Maximum Value $| [ l [ ]
Filtering

None |?|

Cancel | | oK

Figure 6-2: Response extraction: LS-DYNA NODOUT interface

6.2.2. Kinematics
Additional kinematics such as distances and deformations can be computed directly using NODOUT results
by defining two nodes on the finite element mesh. Kinematics consist of two main quantities:

0 The distance vector g computed using the differences between the coordinates of the two nodes.

0 The deformation derived using the difference between the distance vector computed at time t and the
original distance vector (t = 0).

These quantities can be computed in
o the global coordinate system,
o0 alocal coordinate system or
o local coordinates referred to the global reference frame (t = 0).

The local axes are computed using the convention defined in Section 0 to define the rotation matrix A where
A is a function of time. The quantities are therefore defined as follows.
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Table 6-3: Definitions of the kinematics of a displaced rigid body

Frame Distance Deformation

Global d=q u=q-q(0)

Local d'= A(t)a(t) u'=A(t)q(t) - A(0)a(0)
Local n reference C=ATOADAD  u=ATOADA-40)

The orthogonal matrix A(t) is defined by a local coordinate system (x’y’z’ in Figure 6-3) which in turn is
defined by three nodes on the finite element mesh as it displaces over time. Nodes 2 and 3 represent the
local x-axis direction (see Figure 6-3) while Node 1 represents the third node. This is the same convention
as defined in Section 0.

The second and third kinematic categories are both denoted “local” since deformation should be totally
absent for pure rigid body systems.

If the triangles 1-2-3 and 1-2'-3" are congruent (i.e. they represent a rigid body), the quantity defined as
Local in reference frame is invariant with respect to the node numbering. E.g. the triplets (1, 2, 3), (2, 3, 1)
or (1, 3, 2) should yield the same value.

To monitor congruence, A Congruence ratio for each history or response is displayed in the job_log (run
directory) or Isopt_output files. The ratio for a node is defined as the ratio of the side length opposite the
node i at time t;y divided by the same quantity applied to the undeformed structure (see equation below).
Three values are therefore printed. The ideal ratio is unity, signifying a perfectly rigid body.

_ xa®-xa®) L,
ECHOENS0 .

Kinematic quantities are available as both histories and responses.
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Figure 6-3: Local and global coordinate systems

6.2.3. LS-DYNA d3plot results

The D3PLOT interface is related to the Binout interface. The D3PLOT results differ from the Binout
commands in that a response or history can be collected over a whole part. For example, the maximum
stress can be evaluated in a part or over the whole model. Results can also be extracted for a finite element
entity such as a node or element. For shell and beam elements the through-thickness position can be
specified as well. Element results such as stresses will be averaged in order to create the NODE results.

If the location of extraction is specified by x,y,z coordinates, the quantity will be extracted from the element
nearest to x,y,z at the time of reference state. Only elements included in the *SET_SOLID_GENERAL
element set are considered (only the PART and ELEMENT options).

The response options are an extension of the history options — a history will be extracted as part of the
response extraction. For responses, the Select attribute has to be specified to extract a scalar value from the
curve. The optional attributes From time and To time can be specified to slice the curve before extracting the
requested scalar value. The defaults are 0 and the end value of the history.

If the selection must be done over parts as well, the maximum, minimum or average can be selected for the
part, followed by the selection of the maximum, minimum, or average over time.

The available results types and components are listed in Appendix C: LS-DYNA D3Plot Commands and
Appendix D: LS-DYNA D3Plot Components.
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The LS-PREPOST fringe plot capability can be used for the graphical exploration and troubleshooting of
the data.

- New response )
Narme Subcase Multipiler Offset
max_xx_stress l [ | 1 | |0 |

[] Not metamodel-linked

Location
@ Part O D
) Coordinate

Parts to be included g
@ All Parts =

esults Type Component

) Ndw @ xx_stress ) von_mises
& e @ Stress ) yy _stress () 1st prin_dev_stress
) Result () zz_stress ) 2nd_prin_dev_stress
() Strain O xy_stress (0 3rd_prin_dev_stress
) Misc () yz_stress () max_shear_stress
) FLD (O zx_stress () 1st_principal_stress
() Beam O plastic_strain ) 2nd_principal_stress
() pressure ) 3rd_principal_stress
Select From time To time

Maximum Value |C

Cancel oK

Figure 6-4: Response extraction from d3plot

D3Plot FLD results

If FLD results are requested then the FLD curve can be specified using (i) the t and n coefficients or (ii) a
curve in the LS-DYNA input deck. The interpretation of the t and n coefficients is the same as in LS-
PREPOST. Note that the THICK, FLD and PSTRESS interface options are an alternative, Section 6.3.

6.2.4. Mass — Interfacing with d3hsp
The MASS response interfaces with the LS-DYNA output file d3hsp. The Mass and related entities, Figure
6-5 and Table 6-4, can be extracted for the whole model or a list of parts.

Values are summed if more than one part is specified (so only the mass value will be correct). However for
the full model (part specification omitted) the correct values are given for all the quantities.
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i New response ]
Name Subcase Multipiler Offset
[ma55| l l 1 | [D |

[ Mot metamodel-linked

Parts to be included Attribute
'_ All Parts Mass -~

@ List of parts:

x1001, =1002,

x1003, =1004,
x1005, @

‘ Cancel || oK

Figure 6-5: Interface for extraction of Mass and related entities from LS-DYNA output d3hsp

Table 6-4: Mass item description

Item Description

Parts to be included  Entity is extracted for the entire model or for the part IDs specified in the list.

Attribute Type of mass quantity:
Mass Mass
Principal Inertias Component 111, 122, 133
Inertia Tensor Component IXX, IXY, IXZ, 1YX, 1YY,
1Yz, 1ZX, 12Y, 1ZZ
Mass Center Component X-Coordinate, Y-Coordinate or Z-

Coordinate of mass center

6.2.5. Frequency — Interfacing with d3eigv

The FREQUENCY response interfaces with the LS-DYNA output file d3eigv, Figure 6-6. See Table 6-5 for a
description of the available extraction options.
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- New response &
Name Subcase Multipiler Offset
frequency ] [ |1 | |D |

[ Not metamodel-linked

Baseline Mode Number

2

Modal Output Option
@ Frequency of Mode
) New Mode Mumber

() Modal Assurance Criterion
Mode Tracking Status

@ On

O Off

| Cancel || oK

Figure 6-6: Interface for extraction of frequencies from LS-DYNA output d3eigv

Table 6-5: Frequency item description

Item Description

Baseline Mode Number  The number (sequence) of the baseline modal shape to be tracked. It cannot
exceed 999. The user must identify which baseline mode is of interest by
viewing the baseline d3eigv file in LS-PrePost.

Modal Output Option Type of modal quantity

Frequency of Mode Frequency of current mode corresponding in
modal shape to baseline mode specified.

New Mode Number Number of current mode corresponding in
modal shape to baseline mode specified.

Modal Assurance Criterion  Modal assurance criterion.

DR AR N

j {(pO}H {®oXo; }H o} i !

Mode Tracking Status ~ Enable or disable mode tracking, see Theory section below
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Mode Tracking - Theory

Mode tracking is required during optimization using modal analyses as mode switching (a change in the
sequence of modes) can occur as the optimizer modifies the design variables. In order to extract the
frequency of a specified mode, LS-OPT calculates the modal assurance criterion (MAC). The scalar MAC
value provides the degree of consistency between baseline modal shape and each mode shape of the current
design. The maximum MAC value indicates the mode most similar in shape to the original mode selected.
LS-OPT reads the eigenvectors from the d3eigv files, for calculating the MAC values. The MAC value for

the reference modal vector ¢, and the jth modal vector of the current design ¢; is calculated as:

MAC = oo} o e} o}
J {‘PO}H feoHe }H {o;} (6-1)

where H is the Hermitian operator. The MAC value corresponding to the most similar mode can be
extracted using the respective Modal Output Option (see Table 6-5).

In certain cases, the user may be interested in the frequency corresponding to a specific mode number. To
enable this option, the ability to turn mode tracking off is provide. By default this feature is on, but turning it
off enables one to extract the responses corresponding to a specific mode number, irrespective of the mode
shape.

6.3. Extracting metal forming response quantities: LS-DYNA

Responses directly related to sheet-metal forming can be extracted, namely the final sheet thickness (or
thickness reduction), Forming Limit criterion and principal stress. All the quantities can be specified on a
part basis as defined in the input deck for LS-DYNA. Mesh adaptivity can be incorporated into the
simulation run.

The user must ensure that the d3plot files are produced by the LS-DYNA simulation. Note that the
D3PLOT interface options are an alternative.

6.3.1. Thickness and thickness reduction

Either thickness or thickness reduction can be specified using the THICK interface, Figure 6-7.
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Name Subcase Multipiler Offset
Thickness_thi_max l l |1 | |CI |

] Not metamodel-linked

Cancel | | oK

Figure 6-7: Thickness or Thickness reduction interface

Table 6-6: THICK options description

Item Description

Parts to be included  Entity is extracted for the entire model or for the parts 1Ds specified in the list.

Reported Value Final shell thickness

Type Percentage thickness reduction

Extracted response  Minimum, maximum or average computed over all the elements of the selected

parts

6.3.2. FLD constraint

The FLD constraint is shown in Figure 6-8. Two cases are distinguished for the FLD constraint.

0 The values of some strain points are located above the FLD curve. In this case the constraint is

computed as:

g=d

max

with dpax the maximum smallest distance of any strain point above the FLD curve to the FLD curve.

o All the values of the strain points are located below the FLD curve. In this case the constraint is

computed as:

g=-d

min

with dmin the minimum smallest distance of any strain value to the FLD curve (Figure 6-8).
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&1

Constraint Active

g= dmax

&

a) FLD Constraint active

&

Constraint Inactive

g= —0min

&

b) FLD Constraint inactive
Figure 6-8: FLD curve — constraint definition

It follows that for a feasible design the constraint should be set so that g(x) < 0.

General FLD constraint

A more general FLD criterion is available if the forming limit is represented by a general curve. Any of the

upper, lower or middle shell surfaces can be considered.
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Remarks:

0 A piece-wise linear curve is defined by specifying a list of interconnected points. The abscissae (&, )

of consecutive points must increase (or an error termination will occur). Duplicated points are
therefore not allowed.

0 The curve is extrapolated infinitely in both the negative and positive directions of (,). The first and
last segments are used for this purpose.

0 The computation of the constraint value is the same as shown in Figure 6-8.
The following must be defined for the model and FLD curve:

L Edit response =
Narme Subcase Multipiler Offset
FLD1 l l |1 | |:° |

] Not metamodel-linked

Parts to be included Sampling location

O All Parts Lower surface |2

@ List of parts:
Load curve ID

e

Cancel [s] 4

Figure 6-9: Definition of General FLD constraint

Table 6-7: LS-DYNA General FLD constraint options description

Option Description

Parts to be included  Entity is extracted for the entire model or for the parts IDs specified in the list.

Sampling location Lower, middle or upper surface of the sheet

Load curve ID Identification number of a load curve in the LS-DYNA input file. The
*DEFINE_CURVE keyword must be used. Refer to the LS-DYNA User’s
Manual for an explanation of this keyword.

Remarks:

0 The interface program produces an output file FLD_curve which contains the & and & values in
the first and second columns respectively. Since the program first looks for this file, it can be
specified in lieu of the keyword specification. The user should take care to remove an old version of
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the FLD_curve if the curve specification is changed in the keyword input file. If a structured input
file is used for LS-DYNA input data, FLD_curve must be created by the user.

0 The scale factor and offset values feature of the *DEFINE_CURVE keyword are not utilized.

6.3.3. Principal stress

Any of the principal stresses or the mean can be computed using the PSTRESS interface. The values are

nodal stresses.

-

Name

Subcase Multipiler Offset

PStressl

J : | [o |

0 All Parts
@ List of parts:

=3, Q@

Parts to be included Stress value to extract

[ Mot metamodel-linked

Extracted response

Maximum principal stress & | | Maximum stress <

Cancel | [ oK

Figure 6-10: Principal Stress Interface

Table 6-8: Principal Stress options description

Item

Description

Parts to be included  Entity is extracted for the entire model or for the parts 1Ds specified in the list.

Stress value to
extract

Maximum principal stress o1
Second principal stress o)
Minimum principal stress o3

Mean of principal stress (o1 + 02+ 03)3

Extracted response

Minimum, maximum or average computed over all the elements of the selected
parts
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6.4. Generic Interfaces for History and Response extraction

6.4.1. Expressions

Mathematical expressions using previously defined entities can be defined here. The expression syntax and
the available mathematical functions are described in Appendix F: .

6.4.2. Crossplot history

A special history function Crossplot is provided to construct a curve g(f) given f(t) and g(t).

his.k

Mame Subcase
|F_vs_d | |

Filename LCID
W DEFINE_CURVE | [l Browse 100002

A crossplot will create the history F(z), given F(t) and zit).
General expressions are allowed.

z(f)
-Dispt v
FiD
|.Furce‘l b

Mumber of points (blank for default)

From time

To time

Figure 6-11: Interface to define a crossplot history

The DEFINE_CURVE selection allows an LS-DYNA include file (e.g. his.k) with the *DEFINE_CURVE
keyword and history data to be created. LCID represents the load curve ID required by LS-DYNA.

The options are explained in Table 6-9.
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Table 6-9: Description of Crossplot arguments

Option Description Default

z(t) History of abscissa -

F(t) History of ordinate -

Number of points Number of points created in crossplot Smallest of the numbers of points

defining fand g

From time Begin time Largest tp-value of F and z

To time End time Smallest tp-value of F and z,

6.4.3. Function Interface

The functions available for the extraction of response values from previously defined histories are explained
in Appendix F.3.

The History functions are described below.

Derivative history

df (t)
dt
difference weights based on a 3-point template are used for the calculation [3]. The grid spacing of the

reference history can be arbitrary.

given f(t). Finite

A special history function DerivativeHistory is provided to construct a curve

Mame Subcase

| DerivativeHistory_a_= | |

[] DEFINE_CURVE

Function History

o

@ Derivative | @
) Filter

Figure 6-12: Interface to define derivative history

Remarks:

o0 Since the derivative approximation is based on a multipoint scheme, it is recommended to avoid
having too few points in the history.
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o Irregular grid spacing is automatically supported.

Filtered history

A special history function Fi I'ter is provided to construct a filtered curve.

Mame

Subcase

| DerivativeHistory a S

[] DEFINE_CURVE

Function History
() Derivative | @
@ Filter

<)

Filtering
SAE Filter >

Freguency Time unit

Figure 6-13: Interface to define a filtered history

Table 6-10: Description of FilterHistory arguments

Argument name Description

History Pre-defined history

Filtering Filtering type: SAE Filter, Butterworth Filter or Time Average
Frequency Filtering frequency in Hz

Time unit Units of time

Number of points ~ Number of averaging points

6.4.4. Matrix operations

Matrix operations can be performed by initializing a matrix, performing multiple matrix operations, and
extracting components of the matrix as response functions or results. All these operations are defined using

the MATRIX_EXPRESSION interface, Figure 6-14.
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= Edit response =
Name Subcase Multipiler Offset
[Ml ] [

] Mot metamodel-linked

Matrix-Expression

[Matrix3x3|nittR1_1,Rz_1,R3_1,R4_1,0,0,0,0,0)| ]

Cancel oK |

Figure 6-14: Matrix Expression: Initialization of a matrix

There are two functions available to initialize a matrix, namely Matrix3x3Init and Rotate. Both
functions create 3x3 matrices.

The component of a matrix is extracted using the format A.aij (or the 0-based A[1-1][jJ-1]) e.0.
Strain.a23 (or Strain[1][2]) wherei and j are limited to 1,2 or 3.

The matrix operation A — | (where 1 is the unit matrix) is coded as A-1.
Initializing a matrix

The command to initialize the matrix:

Matrix3x3lInit(all,al2,al3, a21,a22,a23, a31,a32,a33)

where a;; is any previously defined variable (typically a response or result).

Creating a rotation matrix using 3 specified points
The expression is:
Rotate(x1,y1,z1, x2,y2,z2, x3,y3,z3)

where the three triplets represent points 1, 2 and 3 in 3-dimensional space respectively.
0 The vector v,3 connecting points 2 and 3 forms the local X direction.
0 Z=V3XVy
o0 Y=ZxX

The vectors X, Y and Z are normalized to X, y and z which are used to form an orthogonal matrix:

LS-OPT Version 5.2 101



CHAPTER 6: History and Response Results

X Xy X5
T=lY, Y, Vs
Z; I3 4

where TT =1.

6.5. Injury criteria

All of the injury criteria were developed according to the specification in [1].

Injury criteria must be defined as responses, for some criteria, the intermediate histories are also available
for extraction.

6.6. Head Injury Criteria
6.6.1. HIC

See Section 6.11.

6.7. Neck Criteria
6.7.1. MOC

MOC is the abbreviation for total Moment about Occipital Condyle. The criterion for the Total Moment
calculates the total moment in relation to the moment measurement point.

The Total Moment MOC value for the Upper-Load-Cell is calculated as follows

MOC =M —(D-F)

with  MOC Total moment [Nm]
F Neck axial force resultant [N]
M Neck s-moment resultant [Nm]
D Distance between the force sensor axis and the Condyle axis,

depends on the dummy type, Table 6-12.
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Table 6-11: Options for MOC

Option Description Symbol
Neck Force x Neck axial force resultant F

Neck Moment y Neck s-moment resultant M
Dummy_type Dummy type -
Length unit Length units -

Force unit Force units -

Table 6-12: Input constants for various dummy types

Dummy Type D[m]
Hybrid 111, male 95% 0.01778
Hybrid 111, male 50% 0.01778
Hybrid 111, female 5% 0.01778
Hybrid 111, 10-year 0.01778
Hybrid 11, 6-year 0.01778
Hybrid 111, 3-year 0

Crabi 12, 18 month 0.00584
TNO P1,5 0.0247
Crabi 6 month 0.0102
TNO P 3/4, P3 0

ES-2 0

TNO Q series 0
SID-lIs 0.01778
BioRID 0.01778
WORLDSID 0.0195
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6.7.2. NIC (rear impact)

NIC is the abbreviation for Neck Injury Criterion. LS-OPT calculates the NIC value specified for rear
impact. The NIC value is calculated with the following formula:

NIC =a,, 0.2+ V2 i
with a,,..=a —a™ relative x-acceleration
Vrelative = Iarelative

Table 6-13: Options for NIC
Option Description Symbol
Acceleration 1. thorax spine x-acceleration of first thorax spine aI'
Acceleration head x-acceleration at the height of the c.0.g. of the head aXHead
Time unit Time units -
Length unit Length units -

6.7.3. Nij (Nce, Ncf, Nte, Ntf)

Nij is the abbreviation for Normalized Neck Injury Criterion and is the four neck criterion Nte (tension-
expression), Ntf (tension-flexion), Nce (compression-extension) and Ncf (compression-flexion).
The Nij value is the maximal value of Nte, Ntf, Nce, Ncf.

The Nij value is calculated with the following formula

NIJ :£+ MOc
I:C c
with F Force at the point of transition from head to neck (t-shear resultant)

F Critical force (depending on dummy type)
MOC Total Moment (see MOC, section 6.7.1)

M Critical moment (depending on dummy type)

c
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Table 6-14: Options for Nij arguments

Option Description Symbol
Neck Force x Neck axial force resultant See MOC
Neck Moment y Neck s-moment resultant See MOC
Neck Force z Force at the point of transition from head to neck F
Dummy type Dummy type -

Length unit Length units -

Force unit Force units -

Table 6-15: Input constants for various dummy types

Dummy type Test Fc[N] Fc [N] Mc [Nm] Mc [Nm]
Tension Compression Flexion Extension
Hybrid 111; male 50%  In position 6806 -6160 310 -135
Hybrid I11; female 5%  In position 4287 -3880 155 -67
Hybrid 111; female 5%  Out of position 3880 -3880 155 -61
Hybrid I11; 6-year Out of position 2800 -2800 93 -37
Hybrid 111; 3-year Out of position 2120 -2120 68 -27
Hybrid I11; 12 month ~ Out of position 1460 -1460 43 -17

6.7.4. Nkm (Nfa, Nea, Nfp, Nep)

Nkm corresponds to the four neck criteria Nfa (flexion-anterior), Nea (extension-anterior), Nfp (flexion-
posterior) and Nep (extension-posterior).

The Nkm value is calculated with the following formula, [2]:

NKm(t) = F(t) N MOC(t)
int M int
with F Force at the point of transition from head to neck (axial force resultant)

F.. Critical force
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MOC Total Moment (see MOC, section 6.7.1)

M

it Critical moment

Table 6-16: Options for Nkm arguments

Option Description Symbol
Neck Force x Neck axial force resultant F
Neck Moment y Neck s-moment resultant See MOC
Dummy type Dummy type -
Length unit Length units -
Force unit Force units -
Criterion Nfa, Nea, Nfp, Nep -
Table 6-17: Input constants
Criteria Description Value
*_anterior Positive Shear Fiy 845N
* _posterior Negative Shear Fin -845 N
flexion_* Flexion Mint 88.1 Nm
extension_* Extension Mi -47.5 Nm
6.7.5. LNL
LNL is the abbreviation for the Lower Neck Load Index. The LNL value is calculated with the following
formula:
UNL = M +M; +\/Ff+Ff L |F o]
Cmoment Cshear ‘ Ctension
with M, s-Moment resultant
M, Torsional resultant
Croment Critical moment
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T

<

O

shear

n

z

(@]

tension

off

s-Shear resultant
Axial force resultant
Critical force
t-Shear resultant

Critical force

offset to include pre-load, depends on dummy position

Table 6-18: Options for LNL arguments

Option Description Symbol
y Force Axial force resultant F,

x Force s-Shear resultant F

z Force t-Shear resultant F,

y Moment s-Moment resultant M y

X Moment Torsional resultant M,
Length unit Length units -

Force unit Force units -

Table 6-19: Input constants

Force/Moment Description Value

Crmoment Critical moment 15 [Nm]
Cshear Critical force 250 [N]
Ciension Critical force 900 [N]
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6.8. Chest Criteria

6.8.1. Chest compression

Maximum relative rotation multiplied by a constant:

C, mtax[®(t)]

Table 6-20: Options for Chest Compression arguments

Option Description Symbol
History relative rotation history O(t)
Dummy type dummy type -

Table 6-21: Input constants for various dummy types

Dummy Type Scaling factor C;
Hybrid I11; male 95% 130.67
Hybrid I11; male 50% -139.0
Hybrid I11; female 5% -87.58
Remarks:

0 The user is responsible for any required filters of the input history.

6.8.2. Viscous criterion (VC)

VC is an injury criterion for the chest area. The VC value [m/s] is the maximum crush of the momentary
product of the thorax deformation speed and the thorax deformation. Both quantities are determined by
measuring the rib deflection (side impact) or the chest deflection (frontal impact). The formula is:

—min &Y (t)m
c, . dt
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Table 6-22: Options for Viscous Criterion arguments

Argument name Description Symbol
History Thoracic deformation (m) Y(t)
Dummy type Dummy type -

Time unit Time units -
Length unit Length units -

Table 6-23: Input constants for various dummy types

Dummy Type Scaling factor C; Deformation constant C, (m)
Hybrid I11; male 95% 1.3 0.254
Hybrid 111; male 50% 1.3 0.229
Hybrid I11; female 5% 1.3 0.187
BioSID 1.0 0.175
EuroSID-1 1.0 0.140
EuroSID-2 1.0 0.140
SID-lIs 1.0 0.138
Remarks:

o The derivative is computed using the 4™ order (template size = 5) finite difference approximation:

where h is the time interval between the single measurements.

0 The user is responsible for any required filters of the input history.

ﬂ _ fi—2 _8fi—1+8fi+1_ f
dt 12h

6.8.3. Thoracic Trauma Index (TTI)

42 4 O(h*)

TTI is the abbreviation for Thoracic Trauma Index (Thorax Trauma Index).

The TTI value is calculated using the following formula:
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A(max.rib) + A(lwr.spine)
2

1Tl =

A(max.rib) = max{A(upr.rib), A(lwr.rib)}

with  A(upr.rib)  Maximum y-acceleration of the upper rib
A(lwr.rib)  Maximum y-acceleration of the lower rib
A(lwr.spine) Maximum y-acceleration of the lower spine

The result is divided by the gravitational acceleration g (9810mm/s?).

Table 6-24: Options for TT1 arguments

Option Description Symbol
Acceleration upper rib y-acceleration of the upper rib A(upr.rib)
Acceleration lower rib y-acceleration of the lower rib A(lwr.rib)
Acceleration lower spine y-acceleration of the lower spine A(lwr.spine)
Time unit Time units -

Length unit Length units -

6.9. Criteria for the Lower Extremities

6.9.1. Tibia Index (TI)

Tl is the abbreviation for the Tibia Index.
The calculation of the TI value in based on the equation

F

Fe

TI:£+
MC

M =(M,)* +(M,)?

with M, Bending moments [Nm] (torsional resultant, s-moment resultant)

M. Critical bending moment

F Axial compression [kN] (t-shear resultant)
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F Critical compression force

Table 6-25: Options for T1 arguments

Argument name Description Symbol
Bending moment x Bending moment, torsional resultant M,
Bending moment y Bending moment, s-moment resultant M,
Axial compression z Axial compression, t-shear resultant F
Dummy type Dummy type -
Length unit Length units -

Force unit Force units -

Table 6-26: Input constants for various dummy types

Dummy type Critical bending moment [Nm]  Critical compression force [KN]
Hybrid 111, male 95% 307.0 44.2
Hybrid 111, male 50% 225.0 35.9
Hybrid 111, female 5% 115.0 22.9

6.10. Additional Criteria
6.10.1. A3ms

The smallest resultant acceleration level maintained for 3ms. [I,is computed as the level of

r=yX*+y°+7° exceeded for the specified time interval At (3ms). The resulting acceleration level is
divided by the gravitational acceleration, g = 9810mm/s2.
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Table 6-27: Options for a3ms arguments

Argument name Description Symbol

X History x-acceleration history X

y History y-acceleration history y

z History z-acceleration history z

Time unit Time units -

Length unit Length units -
Remarks:

o0 Yy History () and z History ( Z ) are optional.

0 The user is responsible for any required filters of the input history.

6.11. LS-DYNA Binout injury criteria

The injury criteria such HIC, HIC (3 nodes), Chest Severity Index, CLIP3m and CLIP3m (3 nodes) can only
be compute for LS-DYNA. The acceleration components for the specified nodes will be extracted from
binout, the magnitude computed, and the injury criteria computed from the acceleration magnitude history.

Note:

0 The length and time units are used to compute the gravity value based on 9.81 m/s®

6.12. The GenEx tool for extracting responses and histories from a text file.

The GenEx tool is described in Chapter 11.

6.13. User-defined interface for extracting results

The user may provide an own extraction routine or any program, e.g. a postprocessor, to get response or
history results. For responses, the command has to output a single floating-point number to standard output.
For histories, the values have to be output to a file LsoptHistory in two columns. The command has to
be specified in the Definition field in the USERDEFINED interface dialog, Figure 6-15.

Examples of the output statement in such a program for response extraction are:
0 The C language:

printf ('%I1f\n", output_value);
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or

fprintf (stdout, "%IF\n", output value);
The FORTRAN language:

write (6,*) output_value

The Perl script language:

print "$output_value\n";

= New response =
Name Subcase Multipiler Offset
[Force ] l |1 | |c| |

] Not metamodel-linked

Definition

[Isprepost c=_/./get_force -nographics| l

Cancel DK |

Figure 6-15: Extracting a Response using a user-defined program

Examples:

1. The user has an own executable program “ExtractForce” which is kept in the directory

$HOME/own/bin. The executable extracts a value from a result output file.
The relevant response definition command must therefore be as follows:

$HOME/own/bin/ExtractForce

If Perl is to be used to execute the user script DynaFLD2, the command may be:
$LSOPT/perl $LSOPT/DynaFLD2 0.5 0.25 1.833"

In this example the post-processor LS-PREPOST is used to produce a history file from the LS-
DYNA database. The LS-PREPOST command file get_force:

open d3plot d3plot

ascii rcforc open rcforc O

ascii rcforc plot 4 Ma-1

xyplot 1 savefile xypair LsoptHistory 1

deletewin 1
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quit

produces the LsoptHistory file. See Figure 6-15 for the LS-PREPOST command.
Note : The rcforc history in this example can be obtained more easily by direct extraction (see
Section 6.2.1 and Appendix A.1 : Binout Histories.)
Remark:
1. An alias must not be used for an interface program.
2. The program should be run in batch mode.
3. The program is called from the run directories. This has to be considered if relative paths are used.

6.14. Response file

This is also a user-defined option, typically used in conjunction with a user-defined solver type. An output
filename can be specified for extracting a single response output value. The user must write the calculated
response value to the specified file during the simulation. The default for the filename is the name of the
response. Figure 6-16 shows the dialog.

Mame Subcase Multiplier Offset
f || i | lo

[] Mot metamodel-linked [] Dump formula file

Filename

|fsu| | Browse

Figure 6-16: Dialog for extracting a response value from a file

6.15. Nastran Frequency

The Nastran Frequency feature allows the user to extract the frequency, matched mode number or MAC
value from the Nastran database. This interface is similar to the LS-DYNA Frequency interface. Please refer
to Section 6.2.5.
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™ New response )
Narme Subcase Multipiler Offset
Frequency ] l |1 | |CI |

] Mot metamodel-linked

Baseline Mode Number
E

Modal Output Option

@ Frequency of Mode
) New Mode Number
) Modal Assurance Criterion

Cancel oK

Figure 6-17: Interface for Extraction of Frequencies from Nastran results

6.16. Extraction of LS-OPT entities
6.16.1. LS-OPT responses

The LS-OPT stage is used in the context of multilevel optimization, which involves running an inner level
optimization within an outer level optimization. Each outer level sample evaluation, i.e. LS-OPT stage
evaluation, involves an inner optimization. The results of these evaluations consist of entities that are
optimized with respect to the inner level variables, which can be defined by the user as responses for the
outer level LS-OPT setup.

The response dialog of the LS-OPT stage type provides the option to define an LSOPT response, which lists
the available entities optimized in the inner level. These entities can be the optimized inner level variables or
the corresponding optimized responses, composites, objective functions or constraints (Figure 6-19). It is
also possible to extract responses at any specific inner level iteration by clicking the *“Iteration’ radio button
and providing the required iteration number.

Since the inner level can also be a Monte Carlo analysis, statistical values such as standard deviation, mean
and probability of failure are available in the LSOPT_STATISTICS interface.
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Disp2_1

Disp1_1

Acc_max_1

Massl

HIC_1

Setup  Parameters

Response definitions

LSOPT: Optimized entity "Disp2"

L50OPT: Optimized entity "Disp1"

L50OPT: Qptimized entity "Acc_max"

LSOPT: Optimized entity "Mass"

LSOPT: Optimized entity "HIC"

File Operations

Add new
Stage specific
LSOPT
LSOPT STATISTICS

Generic

USERDEFINED

EILE

GENEX

EXCEL

EXPEESSION
EUMCTION

INJURY
MATEE_EXPRESSION

Figure 6-18: Main dialog for the extraction of LS-OPT stage responses. A special category (LSOPT

STATISTICS) is available for statistical results produced by a Monte Carlo analysis.
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Mame Subcase Multiplier Offset
|LSOPT | |

[] Mot metamodel-linked [ Dump formula file

Component [teration
= “fariahles @ Last iteration
thumper () Iteration:
thood
SIGY
R
¥ FResponses
Disp2
Disp1
Acc_max
Mass
HIC
=  Composite responses
Intrusion
=  Objectives
HIC
= Constraints
Intrusion

Figure 6-19: Dialog for the extraction of LS-OPT optimal response results

6.16.2. LS-OPT histories

Figure 6-20 depicts the dialog for defining an LS-OPT history. Optimal histories produced by an
optimization run can be extracted and converted to an LS-DYNA *DEFINE_CURVE keyword file. This file
can then be inserted into a subsequent stage analysis as an include file. Multiple *DEFINE_CURVE data
sets can be dumped in the same file.

LS-OPT Version 5.2 117



CHAPTER 6: History and Response Results

Mame Subcase
|INCLUDE_DEF_CURV_F_vs_d | |
Filename LCID
DEFINE_CURNVE [ | '
v - his_outer. k | Browse 1200013
Component [teration
¥ Histories @ Last iteration
Disp1 () Iteration:
Forcel
F vs_d

INCLUDE_DEF_CURV_Disp1
INCLUDE_DEF_CURV_Force1

INCLUDE_DEF_CURV_F_vs_d

Figure 6-20: Dialog for defining an LS-OPT history. The DEFINE_CURVE option has been selected to

produce an LS-DYNA keyword file.

6.16.3. LS-OPT reliability statistics

Reliability statistics is a special category of the LS-OPT solver type responses which represent statistical
values produced by a Monte Carlo analysis (direct or metamodel-based). VValues can be extracted for global
statistics (see Figure 6-21) or for individual entities such as constraints (see Figure 6-22), variables,

dependents, responses and composites.

Mame Subcase

Multiplier Offset

[exceededTutal | |

Component

“ariables

Dependents
Fesponses
Composite responses
Ohjectives
Constraints

A A A

[] Mot metamodel-linked [ Dump formula file

Iteration
() Last iteration

@ Iteration: |1

Statistical entity
) Number of samples

) Failure probability

® MNumber of exceeding bounds

Figure 6-21: Dialog for extraction of global statistics produced by a Monte Carlo analysis
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Mame Subcase Multiplier Offset
|LSOPT_STATISTICS2 | |

[] Mot metamodel-linked [ Dump formula file

Component Iteration
Global @ Last iteration
¥ Mariables ) Iteration:
Warl
War3 Statistical entity
Ward ® MNumber of samples
Wars ) Mean
~ Dependents ) Standard deviation
Depiarl ) P[Resp<LB]
¥ Responses O P[Resp>UB]
R ) Mumber of samples > LB
i _ ) Mumber of samples < UB
=  Composite responses
1
c2
C3
c4
¥  Ohjectives
Rz
¥ Constraints
1
R2

Figure 6-22: Dialog for extraction of constraint statistics produced by a Monte Carlo analysis

6.17. Excel

The histories and responses specific to Microsoft Excel can be defined using EXCEL option listed under
Generic history and responses interfaces. The cells and/or array of cells of an Excel document can be
defined as LS-OPT histories or responses and hence can also be utilized as design objective/constraints
based on analysis Task.

LS-OPT Version 5.2 119



CHAPTER 6: History and Response Results

Name Subcase Multipiler Offset
Responsel v| n/a n/a
[_] Not metamodel-linked

Name Subcase

'history1

File
data.xlsx Browse

File
data.xlsx Browse
Worksheet Worksheet

Sheet1 v Refresh Sheet1 v Refresh

X/time range Y/value range Value cell
hist_1 Stress

Auto increment

f OK Cancel oK Cancel
(a) (b)

Figure 6-23: Microsoft Excel (a) History and (b) Response interface

Figure 6-23 shows the interface for defining Excel histories and responses. The options are described in
Table 6-28.

Table 6-28: Description of Excel History and Response options

Option Description

File Excel document for extraction

Worksheet Worksheets of the Excel document are listed

X/time range This field lists all the Excel names defined for cells and cell arrays.

The name corresponding to the abscissa values of the history
(typically time) should be selected. If auto increment is used, a
positive integer sequence of length equal to the number of Y values
is used starting from 1 (1, 2, 3...).

Y/value range Lists all the cell names assigned to array of cells used for ordinate
values of the histories.

Value cell Excel cell assigned to response value.

6.18. Matlab

The histories and responses for a Matlab stage, Section 5.3.12, are defined in an output file specified in the
stage setup dialog. The output file has the same format as for a METAPost or a User-defined stage, Section
5.3.14. Upon specifying an appropriate file, LS-OPT automatically populates the history and response
dialogs. The response/history name cannot be edited manually, as only the responses and histories defined
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in the Matlab input files are allowed. Thus the effort associated with manual definition is avoided while
avoiding errors at the same time.

Setup Parameters Histeries Responses | File Operations

Response definitions Add new
Generic
LUSERDEFINED
[orT Edit response & & kY RLE
GEMEX
Name Multiplier Offset -
[ | -l ] -CI | EXCEL
| Not metamodellinked = Dump formula file ¢ EXPRESSION
FUMNCTION
| @cancel | | 0K | INIURY

MATRIX_EXPRESSION

Figure 6-24: Matlab response dialog. The response name cannot be edited manually.

6.19. File Histories

A history can be provided in a text file with arbitrary format. Coordinate pairs are found by assuming that
any pair of numbers in a row is a legitimate coordinate pair. History files are typically used to import test
data for parameter identification problems.

File histories are global curves. They are neither sampling nor stage dependent; hence they are not listed in
the Stage dialog history list.
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- File Histories! =
Defined file histories
«| History Name
Testl |
Test2 ®
Filename
Add new
[Testl.txt || Browse |
Preview
-~
1.6E+04
x
1.4E+04
»
1.2E+04
0.5

Figure 6-25: File Histories

File History Text File Example:

Time Displacement

1.2, 143.97
1.4, 156.1
1.7, 923.77
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7. GenEX: Extracting responses
and histories from a text file

A user may choose to use a non-LS-DYNA solver for his application in which case the only elegant option,
except for using commercial extraction tools (see e.g. Section 5.3.8), is to use a special graphical tool for
identifying and extracting response values and history vectors from an output text file containing the
analysis results. This chapter describes the use of the GenEx tool for extracting responses (scalars) and
histories (vectors) from such a text file. GenEx is included in the LS-OPT distribution as the executable file
genex and can be activated from the Responses or Histories dialog.

7.1. The main window

GenEx can be started from the command line by typing genex <filename> or by selecting the Create/Edit
button after selecting GenEx on the Responses or Histories page.
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File Edit
& T
N Start of File 195. 361 «  Anchor name:
SR New Anchor 3
End of File 202. 364 Origin:
203, 365
204, 266 Start of File S
205. 367
206. 368 Type:
207. 369 Plain search 4
208, 70 Text to search for:
209. 371
210. 372
211. 373
21z, 374
213, 375 Direction
214, 376 ® Forward Backward
215. 377
216. 378 Match
® Anywhere
Start of line only
End of line only
nodal point velocities N
Skip over | O » Matches
node id x-vel y-vel z-vel Relative location:
1 -1.5640E+04 0.0000E+00 0.0000E+00 0.001 -
2 -1.5640E+04 0.0000E+00 0.0000E+00 0.001 v .
3 -1.5640E+04 0.0000E+00 0.0000E+00 0.001 -~ -
4 -1.5640E+04 0.0000E+00 0.0000E+00 0.001 v
5 -1.5640E+04 0.0000E+00 0.0000E+00 0.001 Column separators
&  -1.5640E+04 0.0000E+00 0.0000E+00 0.00
7 -1.5640E+04 0.0000E+00 0.0000E+00 0.001
2 -1.5640E+04 0.0000E+00 0.0000E+00 0.001
2 -1.5640E+04 0.0000E+00 0.0000E+00 0.001
10 -1.5640E+04 0.0000E+00 0.0000E+00 0.00(a
11 -1.5640E+04 0.0000E+00 0.0000E+00 0.00(+ Move to start of line
4 |

Figure 7-1: GenEx dialog.
When first starting GenEx, there will be two predefined anchors in the tree on the left, Start of File and
End of File. It is not possible to change or remove these two anchors.

The middle part of the window displays the data file, with symbols for anchors and entities. The current
entity/anchor will be highlighted or have a thin black border around it.

On the right is the dialog box for specifying/selecting options for the currently selected anchor/entity.

Anchors

Anchors describe how to find a certain position in the data file. This can be done with searching for
keywords or with an absolute position.

Entities

An entity is a quantity we want to extract from LS-OPT. Entities describe both what the number should look
like as well as where, relative to the parent, to find it. There are three types of entities, scalar, column and
repeated anchor vectors (see Section Options specific for entities

for the difference between them).
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Options

When an anchor or an entity is selected, it is possible to change the options shown in the dialog box. A new
search will be performed whenever an option is changed that requires it. The only exception is the Text to
search for, this requires the user to hit Enter (on the keyboard) to start the new search.

Table 7-1: Options

Option

Description

Origin

This is the parent anchor of the anchor/entity.

Column separator

If columns are selected in Relative positions it is possible to change what
separates the columns in the input file.

Options specific for anchors

Table 7-2: Options specific for anchors

Option

Description

Type

There are four types of searches. Three of them are keyword-based

(search-phrase based).

Plain text: This is the most basic search. The search looks for the given

text in the file and positions the anchor in front of the match.

Glob search: The main goal of the glob search is to be able to match the
strings with the aid of the wild cards, ' and '?'. The asterisk matches
any character any number of times and the question mark matches any

character one time.

Regular expression search: The asterisk * matches the preceding
element zero or more times and the dot . matches any character one
time. If letters are put inside brackets this matches any single character
inside the brackets. If a ' is put inside the brackets this means that we

should match any character not inside the brackets.

Absolute search: In this search the user positions the anchor simply by
specifying the row and the column at which the anchor should be

positioned in the file.

Text to search for

This is the text/regular expression/glob to search for.

Direction

Starting from the origin, this is the direction to search in.
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Match

This is where on the line the search text will have to match.

Relative Location

When Absolute search is selected, this section will be enabled. Here it is
possible to enter the absolute position of the anchor if known.

Skip over

Since the input file can contain several instances of the search term it is
possible to skip some of them to find the desired position.

Move to start of line

Examples:

Glob search

*abc

When this is checked the anchor will be positioned at the start of the line,
even if it is found somewhere else.

will match any word ending with abc (xxxabc, yyyabc, etc.) and the anchor will be placed
where the match begins ((A)xxxabc, (A)yyyabc).

a’c

will match all three letter words starting with 'a’ and ending with 'c' (axc, ab5c, etc.) and the
anchor will be placed before the match begins ((A)axc, (A)a5c).

Regular expression search

ab*c

matches "ac", "abc", "abbbc", etc.

a.c

matches all three letter strings starting with ‘a’ and ending with'c' (ahc, a8c, aHc, etc.)

[csad]bc

matches all strings starting with c, s, a or d followed by 'bc’ (cbc, sbc, abc, and dbc).

[~csad]bc

matches all strings not starting with ¢, s, a or d followed by 'bc' (xbc, 5bc, kbc, etc.).

These can all be combined into a larger regular expression,"[skjfrdzh]*esp[ohjd]n.e" will
match "response" (but also "espdnle" for example).

Plain text, glob and regular expression search searches for a specific text string. The absolute search
positions the anchor relative to the parent. The glob and regular expression searches are very similar to the
search capabilities in the Perl language or the Unix/Linux scripting language.
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Options specific for entities

Table 7-3: Options specific for entities

Option

Description

Relative Location

This is the position of the entity relative to the parent anchor

Type of entity

Scalar

Column vector

Repeated anchor vector

Here there are three options, scalar, column vector and
repeated anchor vector

The scalar entity is used for extracting responses and it
extracts one result

A column vector extracts a column of data

A repeated anchor vector repeats the search of the selected
anchor to extract several entities found in different places in
the input file

Number format

Here it is possible to specify what a number looks like

Maximum length

The default behavior is that an entity starts at the specified
position and ends with a white space. Here it is possible to
specify the length of the entity if this is not the case.

Maximum number of components

When using GenEx to extract histories the default behavior
Is to keep extracting until a match is not found, this option
limits the number of extracted results

Stopping anchor

An anchor can be defined as a stopping criterion if the
number of components of a column vector is unknown

Anchor to repeat

If the entity type is “repeated anchor vector” this will show a
menu with valid anchors. Start of file and End of file will
not be available since they cannot be repeated.

7.2. Creatinga .g6 file for LS-OPT

First we have to select the input file in which to search. This is done from the File menu: Select input file.
The file will be displayed in the middle window of the application.

Creating an anchor or entity

There are three ways to create anchors or entities. The first is to select the anchor used as parent and then
click on the anchor or entity button in the menu depending on what is needed. This will create a new
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uninitiated child. By selecting the new anchor or entity in the tree view on the left side, the options will be
visible on the right side panel.

The second way is to simply make a selection in the text file, right click and select Create Anchor Here or
Create Entity Here. This will create a new child at that position with the currently selected anchor as the
parent anchor. It is also possible to select a column of numbers from the text file to create a column vector.
The column entity uses white space as the delimiter.

The third option is to make a selection in the text and drag that selection to the anchor we want to use as
parent in the tree.

Creating a - g6 file without an input file

It is possible to create a .g6 file without access to the input file we want to extract from. However, this
requires some knowledge of the file format and syntax.

Editing a . g6 file

From the “File” menu, select “Open GenEx file”.
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7.3. How to use GenEx from LS-OPT for extracting responses

= Edit response 5a)
Name Subcase Multipiler Offset

SWEner [

Input GenEx file

[SWEnerg}r.gﬁ l | Browse | | Create/Edit

Input data file
[d3h5p l

Entities

Ywelocity

InternalEnergy

(e[ T |

ErnarrmeA Qnmn

Reread entities

Cancel | [ oK

Figure 7-2: Definition of a GenEx Response
From the Responses panel select GENEX as a response. This will open up a dialog showing a few options
related to GenEx .

The first selection to be made is which .g6 file to use. This option provides a list of available entities to
choose from. The entities need to be of the “Scalar” type. It is also possible to edit a file by clicking the
Create/Edit button. If no file name is given the default action is to create a new . g6 file.

Secondly, enter the name of the input data file from which the responses are to be extracted. LS-OPT will
look for this file in each of the run directory.

7.3.1. An example using GenEx to extract responses

This example explains how to extract a number of responses from the LS-DYNA d3hsp file. Different
search options are employed to demonstrate the various options.

0 Open the GenEx GUI by selecting Create/Edit. Then select d3hsp as the input file by using
File—Select input file. The d3hsp file is displayed in the middle. We are interested in 3 responses at
various cycles and a fourth response to be the last one in the file.

Defining an anchor:
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o0 Define an anchor with the name Cycle4800_Plain by clicking on the anchor icon or using the
Edit option.

0 Use a plain search to search for the string "dt of cycle 4800". If you want to change the
string in the text box, remember to hit the "Enter"” key on the keyboard. The anchor is displayed as a
small anchor icon in the leftmost column of the line that matches the search string. The next step
would be to find the desired field relative to this anchor.

File Edit
P i
= Start of File average cpu time per zmonme cycle.... 735 nancseconds + Anchor name:
- Cycle4B00_Plain average clock time per zone cycle.. 735 panoseconds Cycledad0_Plain
[x swener 4737 t 2.9998E-02 dt 7.93E-06 write d3plot file Origin:
[x vvelocity Start of File
- Cycle4700_Glob E of cycle 42800 is controlled by shell element 37
Type:
= InternalEnergy_Absclute time 3.04981E-02 ¥
[x InternalEnergy EAME BEED e e v et i 7.93994E-06 Plain search
- End of File kinetic eDergy ... cce i nnnannn 4.35734E+08 Text to search for:
= LastCyel internal EOErg¥ .. s srannanns 8.68588E+07 dt of | 4800
astCycle cle
Y SONEWAll EOEIGY ««seusrrassnses 7.65915E+05 wall# 1 i
[x Eneray4s00 stomewall EMErgY....eeeeneeennn 1.55782E+06 wall# 2 Direction
spring and damper EOergy ... .... 1.00000E-20 ® Forward Backward
system damping SDErgy . ...ce...e. 0.00000E+0D0D
s5liding interface energy....... -4.56670E+04 Match
external work.oeivinnairnnraans 0.00000E+00Q ®) Anywhere
i i Woeeramaaaan - + .
eroded kinetic energy 0.00000E+00 Start of line only
eroded internal ener 0.00000E+00
total EDErgY .« aenrannennnnennn 5.24930E+08 End of line only
total enmergy / initial energy.. 9.65837E-0L
-
energy ratioc w/o ercded energy. 9.658327E-01 Skip over | 0 » Matches
global ®x velocity.vee e nerunenn -1.35505E+04 Relative location:
glokal ¥ velocity. -1.62068E+00 - i
glokal = velocity . vee s tnnnennn 1.31314E-01 v lInes,
cpu time per mone oycle....iiiaaiaas 0 panocseconds -
average cpu time per mone cycle.... 734 panocseconds v
average clock time per zone cycle.. 736 nanocseconds Column separators

4863 t 3.0993E-02 dt 7.95E-06 write d3plot file

dt of cycle 4900 is controlled by shell element 37

Figure 7-3: GenEx dialog; definition of an anchor

Defining an entity:
o0 Define a new entity SWEner by using the leftmost x-icon or the Edit option.
0 Choose the previously defined anchor as the Origin.

0 Find the desired field by searching 6 lines below the anchor, 2 columns across. The desired field is
displayed as highlighted in yellow with a black border. See figure below.
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File Edit
E &0
= Start of File

B Cycled800_Plain
5
E Yvelocity

== Cycle4900_RegExp
E Energy4900

== Cycled700_Glob

bt InternalEnergy_Absclute
E InternalEnergy

End of File

4737 t 2.9998E-02 dt 7.93E-06 write d3plot
gt of cycle 4800 is controlled by shell
time..seess it i na s aa s 3.04981E-02
time BtEp ..t inn i snnn s nnns 7.93954E-06

4.35794E+08
8.68582E+07
stonewall ENergy...... . 1.55782E+06
1.00000E-20
0.00000E+0D0
-4 .56670E+04
0.00000E+0D0

kinetic energy

internal energy
stonewall enerq;

spring and damper energy.
system damping energy...

eroded kinetic energy . 0.00000E+00
eroded internal energy......... 0.00000E+00
total ENErgY ... eee e annsrrnnns 5.24930E+08
total energy / initial energy.. 2.65837E-01
snergy ratic w/o eroded smergy. 9.65837E-01

-1.35505E+04
global ¥ weloci . -1.62068E+00
global = welocity....... . 1.321214E-01

global = weloci

cpu time per mome cycle....ieiiinas o
average cpu time per zone cycle.... 734
average clock time per zeome cycle.. 736

4863 t 3.0999E-02 dt 7.95E-06 write d3plot

Figure 7-4: GenEx dialog; definition of an entity

o0 Now define a new entity referred to the same anchor Cycle4800_PIlain. This entity is 18 lines

file «  Entity name:
SWEner
element 37
Crigin:
Cycled800_Plain =
Mumber format

¥| Decimal separatoris): | .

wall# 1 ®| Exponent character(s): | Ee
wall# 2
e Thousands separators:
Space
Relative location:

-
5] + lines,

-
-
~ | columns

2

Column separators

Tab Space X Whitespace
|

Cther:
nanoseconds
nanoseconds Maximum length
nancseconds 4 character(s)

-

file

below the anchor and 3 columns across as shown in the Relative location dialog below:

File Edit
&0
= Start of File
B CycledB00_FPlain
E SWEner

r

~ Cycle4700_Glob
s InternalEnergy_Absolute
E InternalEnergy
= End of File
B LastCycle
E Energy4300

4737 t 2.9998E-02 dt 7.93E-06 write d3plot
dt of cycle 4800 is controlled by shell
timeE. o e 3.049B1E-02
time SteP.... 7.93994E-06
kinetic energy. 4.35794E+08
internal energy 8.68588E+07
stonewall energy 7.65915E+05
Stonewall EOErgyY..aseeeonserenas 1.55782E+06
spring and danper ENErgy....... 1.00000E-20

0.00000E+00
-4.56670E+04
0.00000E+00

system damping emergy.

eroded kinetic energy .. 0.00000E+00
eroded internal EDErgY ......ss. 0.00000E+00
£Otal ETOETGY e rn . rrnncrnnnernnnn 5.24930E+08
total energy / initial energy.. 2.65837E-01
energy ratic w/oc sroded emergy. 9.65837E-01

global x velocity -1.35505E+04

-1 .62068E+00|

1.31314E-01

global y veloci

global =z velocity

Cpu time per Zone CyCle....vsvssnaas 1]
average cpu time per zome cycle.... 734
average clock time per mone cycle.. 736

AZAT ¢ 3 NAAAT-N7 A+ T ARR-NA writa AInlat

Figure 7-5: GenEx dialog; definition of an entity

o Define a second anchor using a global search for the string "4700
of this anchor is also the start of the file and the search is forward from that point. Note the anchor

«  Entity name:

file Yvelocity
slement 37  Origin
Cycle4B00_Plain -
Number format
®| Decimal separatoris): | .
®| Exponent character(s): | Ee
wall# 1
e Thousands separators:
wall# 2
Space

Relative location:

-
18 ¥ lines,

-
3 » | columns 4

Column separators

Tab Space % Whitespace
|
Other:
neanoseconds Maximum length
nancsesconds * character(s)
-
nanoseconds

Fila

placement on the figure below just before the string "4700 i1s controlled".
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File Edit
& O
~ Start of File
= Cycled4ail_Plain
[x swener
[x vvelocity

b Cycled4700_Glob

== InternalEnergy_Absolute
E InternalEnergy
& End of File
b LastCycle

E Energy43900

average cpu time per zone cycle.... 734
average clock time per zone cycle..

4610 t 2.8333E-02 dt 7.21E-06 write d3plot

dt of cvcle E’DD is controlled by shell

EiME. svvvnncrnnnnnnsnnnnnnnrnnn 2.37048E-02
time step.... 7.92546E-06
kinstic emargy 4.37773R+08
internal energy 2.52571E+07
stonewall energy 7.65915E+05
stonewall EDNEXgY ..o osnsnsann 1.55782ZE+06
spring and damper emergy....... 1.00000E-20
system damping energy... 0.00000E+00
sliding interface enen -4.53854E+04
external work...... 0.00000E+00D
eroded kinetic ensrgy. 0.00000E+00
ercded internal emergy 0.00000E+00
LOLAl SOEEGY « v v v vrrernnnnnnsnnn 5.25308E+08
total energy / initial energy.. 9.66533E-01
energy ratio w/c sroded energy. 9.66533E-01
glokal =x velocity -1.35898E+04
global ¥y velocity 8.30546E+00
global = velocity....... 1.31277E-01
cpu time per zome cycleé............ 0
average cpu time per zome cycle.... 735
average clock time per zone cycle.. 735

4737 t 2.9992E-02 dt T7.93E-06 write di3plot

at of cycle 4800 is controlled by shell

4

Figure 7-6: GenEx dialog; definition of an anchor

nanoseconds
nanoseconds

file

element

wall# 1
wall# 2

nancseconds

nancseconds

nanoseconds

file

element

« Anchor name:
Cycle4700_Glob
Crigin:
Start of File
Type:

Glob search

Direction

8 Forward Backward

Match
®* Anywhere

Start of line only

End of line only

Skip over | 0 : matches
Relative location:

-

- lines,

-

-

Column separators

0 Now define an anchor InternalEnergy_Absolute relative to the previous anchor by setting
the origin as Cycle4700_Glob, then searching 5 lines down and one column across. Note the
anchor icon just before the yellow-highlighted number in the figure below.
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File Edit
Y
&0
] average CpU Time per Zomne CyClE.... /34 mancseconas S Anchorname:
~ Start of File average clock time per zone cycle.. 734 nanoseconds E
- Cycle4B00_Plain [ InternalEnergy_Absclute ]
E SWEner 4610 t 2.8993E-02 dt 7.91E-06 write d3plot file B
[x vvelocity 4t of cycle 4700 is controlled by shell slement 37 [ Cycle4700_Glob |'l
v Cycled700_Glob
i 7 - Type:
= InternalEnergy_Absolute time...... 2.870488-02 e
time step 7.92546E-06 [hb | l
solute -4
[x internalEnergy kinetic emergy. 4.37773E+08
= End of File internal energy E 52571E+07
- LastCycle stonewall energy 7.65915E+05 wall# 1 [ ]
stonewall EO0eIrgy.....ss 1.55782E+06 wall# 2 "
E Energy4900 . Direction
spring and danper energy. 1.00000E-20 ® o
system damping emergy 0.00000E+00 Forward Backward
8liding interface ey -4.59854E+04 Match
external work..... 0.00000E+D0 @ A h
nywhere
eroded kinetic energ: 0.00000E+D0 yw
eroded internal energy 0.00000E+0Q0 O Start of line only
total energy 5.25308E+08
total emergy / initial energ: 9.66533E-01 () End of line only
energy ratic w/o eroded emergy. 9.66533E-01 ) o~
global x velocity...... -1.35898E+04 iy WE’Dv HIRUE
global ¥y wvelocity 2.30546E+00 Relative location:
global z velocity. 1.31277E-01 2 lines,
Cpu time per Zone C¥Cle...eewiansss 0 nanoseconds
average cpu time per mone cycle.... 735 nancs=sconds 1 : columns |'l
average clock time per zome cycle.. 735 pancseconds

Column separators
\:| Tab |:| Space @ Whitespace

LI= O
At of cycle

3 (&
4800 is controlled by shell element 37 -0
e —
] ] ar

4737 t 2.3398E-02 dt 7.33E-06 write d3plot file

Figure 7-7: GenEx dialog; definition of an anchor

o Define a new entity InternalEnergy using the InternalEnergy_ Absolute anchor as
reference point. The desired field is immediately found since the anchor is already at the desired

location.

File Edit
-
Fal"Ru}
- Start of File dt of cycle 4700 is controlled by shell slement 37 [+ Entityname
bl CycledB00_Plain InternalEnergy l
= T 2.97048E-02 Origin:
[x swEner EAME BLED . essrnnrnnrnnrnnsnnsen 7.92546E- 06 -
[x vvelocity Kinetic ENErgy...ceeeeeeeeannn. 4.37773E+08 [ InternalEnergy_Absolute |'l
= Cycled700_Glob internal ENErgY..ueesestennnnnss B.52571E+07 MNumber format
- stonewall EDEIgY .ueserrrrnrnnns 7.65915E+05 wall# 1 @ iz e ) -
InternalEnergy_Absolute Stonewall ENErgy....seeeeseesss 1.55782R+06 wall# 2 :
B3 internalEnergy spring and damper ENSrgY....... 1.00000E-20 [%| Exponent character(s):
= End of File system damping energy 0.00000F+00 Thousands separators:
8liding interface energy....... -4.59854E+04
< 1 LastCycle 0.0 .0 space
2 Sternal WOrk. e ee.nieeeennns 0.00000E+00
[x Energy4soo eroded kinetic energy 0.00000E+00 Relative location:
eroded internal eDErgy........- 0.00000E+D0 - lines.
- 5
total energy 5.25308E+08
total energy / initial energy.. 9.66533E-01 o : [ characters |'|
energy ratio w/o eroded energy. 9.66533E-01 Col t
global x velocity -1.35892E+04 olumn separators
global ¥ velocity. 8.30546E+00
global = velocity 1.31277E-01
CPUu time per Zone CyCle...eveiensns 0 panoseconds
average cpu time per zone cycle.... 735 pnanoseconds |:]
average clock time per zome cycle.. 735 panoseconds
|:| Maximurm length
4737 t 2.9998E-02 dt 7.93E-06 write d3plot file :]: character(s)
dt of cycle 4800 is controlled by shell element 37

3.04381E-02

Figure 7-8: GenEx dialog; definition of an entity
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0 The next desired entity is the final total energy ratio (i.e. the one in the last cycle in the file). In this
case we will set the reference anchor called LastCycle to be the end of the file (Origin) and

search backwards (Direction)

0 The search string is "total energy" and the regular expression search type is used. The settings

to find the anchor are shown

below.

File Edit
> & O
v Start of File sliding interface energy.. -2.54329E+04
= Cycleasoo_Plain external work............ 0.00000E+00
eroded kinetic eDergy.......... 0.00000F+00
[z swener eroded internal SOETGY.se...e.. 0.00000E+00
[x vvelocity otal SMErgY............. 5.17577E+08
- Cycled700_Glob jutnl energy / initial energ 9.52308%-01
- energy ratio w/oc ercded emergy. 9.52308E-01
T EE T e i global 3 velocity.e e enonnnneens -1.26595E+04
E InternalEnergy global ¥ velocity¥ e nnnnn 4.14072E+01
- End of File global = veloCity e oeeunrussns 4.47599E-01
Cpu time per mome CYCle.....essss.s 0 nanoseconds
= LastCycle . * -
average cpu time per zome cycle.... 751 nancseconds

E Energy4900

average
7000
7019
7013

xxxxxxxx

7013

Norm

stor

Memory T
Addition

T imi

clock time per zone cycle.. 762 nanossconds

t 4.9819E-02 dt 9.94E-06 write runrsf file
t 4.9998E-02 dt 9.95E-06 write diplot file

t 5.0002E-02 dt 9.95E-06 write d3dumpOl file

xxxxxxxx

a 1l termimnation

age allocation

equired to complete solution 286361

al dynamically allocated memory: 5283
Total: 291644

information
CPU (seconds)

ng

clock (seconds) ®clo:

4 Anchorname:

LastCycle
Crigin:

End of File A
Type:

Regular Expression =

Text to search for:
total energy
Direction
Forward (® Backward
Match
o Anywhere
Start of line only

End of line cnly

Skip over | O : matches
Relative location:

-

+ lines,

s
-

Column separators

X| Move to start of line

Initial
Element
Binary

ASCIT 4

ization ....... B.0000E-02 1.27 7.44B0E-02

processing ... 3.3000E+00 52.55 3.3588E+00
databases ... 2.1000E-01 3.24 1.0776E-01
atabase ....... 6.6000E-01 10.51 7.9649E-01

Figure 7-9: GenEx dialog; definition of an anchor

0 The entity is found by using LastCycle as the anchor and searching in the sixth column.

relative location dialog box

below.

See
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File Edit
&0
v Start of File 51liding interface energy....... -2.54389E+04 « Enfity name:
- Cycle4B00_Plain external work.u.issrensiiannnns 0.00000E+00 Energy4900
eroded kinetic energy.......... 0.00000E+00 .
E SWEner Crigin:
eroded internal EOECgY......... 0.00000E+00
[x ‘velocity TOTAL EHETEY .-+t rnnnnrrernnnns 5.17577E+08 LastCycle v
- Cycled4700_Glob total energy / initial energy.. [?.52308E-01 MNumber format
energy ratio w/o eroded snergy. 9.52308E-01 .
- ®| Decimal separator(s): | .
IntzellEnE R e 1obal % TELOCILY . eererenennnn -1.26595E+04 s )
E InternalEnergy global ¥ weloCity .o weue . anen.x 4.14072E+01 ®| Exponent character(s): | Ee
- End of File global z velocity ..ot nnnnns 4.47599E-01 Thousands separators:
U time per zone oycle. . ciaaaa s 0 panoseconds
A LastCycle F P i - . Space
average cpu time per zone cycle.... 751 nanoseconds
[ER Energy4000 average clock time per zone cycle.. 762 nanoseconds Relative location:
-
0 ~ lines,
7000 t 4.3B813E-02 dt 3.324E-06 write runrsf file
7019 t 4.9998E-02 dt 9.95E-06 write d3plot file 3] : columns i

7012 t 5.0008E-02 dt 9.35E-06 write d3dump0l file
Column separators

******** termination time reached *#*+x*++* T EEECE X| Whitespace
|
7019 t 5.0008E-02 dt 9.95E-06 write d3plot file
Other:
Hormal termibnation .
Maximum length
“ character(s)
-
storage allocation
Memory required to complete solutiom 286361
Additional dynamically allocated memory: 5283
Total: 251644

Figure 7-10: GenEx dialog; definition of an entity

This completes the GenEx setup. Save the file.

Now open the Stage dialog on the Responses page and select the GENEX response type on the
right. Open the Input GenEx file. A browse option is available. Importing the file will display the
selected entities in the Entities box.

0 Select the input data file, namely d3hsp. This file must be available in the run directory during the
LS-OPT run.

0 Select an entity, define a response name at the top of the dialog and hit Ok. The response will appear
in the list on the Responses page.

0 Repeat the procedure for the remaining three response entities.

LS-OPT can now be run and the response entities will be extracted for each simulation run.

7.4. Extracting histories

7.4.1. An example using ""Repeated anchor vector'' to extract histories

In this example we will use GenEx to extract histories of the value for "kinetic energy" in the "glstat™ file
created by LS-DYNA. We first start by creating the anchor dt_of_cycles. This anchor will be the base
for further anchors. With this anchor as parent we now create the KE_anchor to search for the string we
are looking for, in this case "kinetic energy".
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File Edit
E & O
~ 1 Start of File [~]  Entity name:
dt of cycle 1 is controlled by shell element 51474/ 2 5
¥ 1 dt_of cycle 3 [KE_Entlt‘f
B R R R 0.00000E+00 :
¥ I KE_anchor File B Tap e o e e 5. 00B40E - 07 Origin: -
[x kinetic energy................. | KE anchor o~
T internal energy................ 7.96128E-06 g e
ndor rile stonewall energy............... 0.00000E+00 wall# 1 -
spring and damper energy....... 1. 6O000E - 19 T}fpe of entity
joint internal energy.......... 0. DOOOOE+00 @ Scalar
hourglass energy .............. 0.D0ODOE+00 ~ col t
system damping energy.......... 0.00000E+00 LA QI S EELOF
sliding interface energy....... 0. DOODOE+00
external work.................. 0. OPOOOE+00 = Repeated anchor vector
eroded kinetic energy.......... 0.D0ODOE+00
eroded internal energy......... 0.00000E+00 Number. e _—
totatienergy ot e 3.67699E+08 Decimal separator(s): [
total energy / initial energy.. 1.00189E+00 ————
energy ratio w/o eroded energy.  1.00189E+00 Exponent character(s): |Ee |
global x velocity.............. 1.40547E-02 g —
global y velocity.............. 7.24379E-11 Thousands separators:
global z velocity.............. -2.15360E- 11 [0 .01 . [ Space
time per zone cycle. (nanosec).. 549 > >
Relative location:
PO
number of shell elements that [O !1‘ lines,
reached the minimum time step.. 0 T ]
[34 |Z! | characters |
added Mas5. ... 00ivuiiiniaiain 5.69522E-03 Column separators
percentage increase............ 1.62208E-01 -
dt of cycle 400 is controlled by shell element 1948
T s ST R RO R 1.99516E-04
time SEap. e e 5.00040E-07 ) )
kinetic energy..............o..s 3.440904E+08 Maximum horizontal length
internal energy................ 2.05286E+07 P e
stonewall energy............... 0.00000E+00 wall# 1 |_11 |v1 character(s)
spring and damper energy....... 1. 60000E - 19
joint internal energy.......... 3.35910E-02
hourglass energy .............. 2.09104E+06
system damping energy.......... 0. DOOOOE+00
sliding interface energy....... 8.07489E+04
external work..........o00iii 2.78063E+00 Anchor to repeat
eroded kinetic energy.......... 0. DODOOE+00 I
eroded internal energy......... 0. DOODOE+00
total enargy. . i.iivi i 3.67604E+08 [v]

Figure 7-11: GenEx dialog; definition of an entity

As seen in the screenshot above, this entity is of the Scalar type and needs to be changed to Repeated
anchor vector. When creating a repeated anchor vector the default value for Anchor to repeat is the parent
of the entity. Since "kinetic energy" appears twice between every dt_of cycle the result is not
what we want yet. In order to skip “eroded Kinetic entity", we pick the grandparent dt_o¥f _cycle anchor
as the one to repeat.

The result of this setup will be that the extractor will find "dt_of_cycle", then search forward for
"kinetic energy" and extract the first element of the vector. Then, it will find the next occurrence of
"dt_of_cycle" and repeat, extracting the other elements of the vector.
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File Edit

& O

= Start of File A Entity name:
dt of cycle 1 is controlled by shell element 51474 2
b dt_of_cycle [KE_Ent\ty ]
........................... 0. 00000E+00 B
~ I KE_anchor .. 5.00848E-07 Origin:
kinetic energy | KE anchor A|
i o £t internal energy................ 7.96128E-06 o b
ndor rile stonewall energy............... 0.00000E+00 wall# 1 -
spring and damper energy....... 1.60000E-19 T}.’pe of entity
joint internal energy.......... 0. DOO0OE+00 O Scalar
hourglass energy .............. 0.D0O0DE+00 A cal t
system damping energy.......... 0.00000E+00 LA QI Ve Or
sliding interface energy....... 0. DOO0OE+00 @
L Rl g He 0. DROOBE-+00 @ Repeated anchor vector

eroded kinetic energy. 0.00000E+00
eroded internal energy.. .. D.DOOOBE+OD Number. et
totatienergie e e 3.67699E+08 Decimal separator(s): |.
total energy / initial energy.. 1.00189E+00 —————
energy ratio w/o eroded energy.  1.00189E+00 Exponent character(s): |Ee |
global x velocity.............. 1.40547E-02 3 ——
global y velocity.............. 7.24379E-11 Thousands separators:
global z velocity.............. -2.15360E-11 7.0 . [ Space
time per zone cycle. (nanosec).. 549 > >
Relative location:
PO
number of shell elements that [O v| lines,
reached the minimum time step.. ] ~
[34 2| | characters =
added Mas5......o00vuiiiaiiinian 5.69522E-03 Column separators
percentage increase............ 1.62208E-01 -
dt of cycle 400 is controlled by shell element 1948
T s S R R 1.99516E-04
time stap. coo i i s 5.00040E -07 ) )
kinetic energy................. 3. Maximum horizontal length
internal energy................ 2.05286E+07

| BOO0OE+90 wall# 1 [11 2| character(s)
-60D00E - 19 =
'35010E-02 [] Maximum number of components

stonewall energy............... o]

spring and damper energy....... 1

joint internal energy.......... 3
hourglass energy .............. 2.09104E+06

system damping energy.......... 0. DOO0DE+00

sliding interface energy....... g.@?dSQEﬂM Anchor to repeat
9]
0]
3

external work. ...c.oooiviiinnas it
KE_anchor ‘C |

eroded kinetic energy..........
eroded internal energy.........
total energy...........oovvun..

. DOO0BE+00
.67604E+08 [v]

Figure 7-12: GenEx dialog; definition of an repeat anchor vector

After we have changed the Anchor to repeat to dt_of_cycle, we will have the correct result. The color
of the other vector elements will be in light yellow with a dotted border.
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File Edit
&0
- Start of File CARAVAN MODEL (NCAC vel) (Fully integrated shell) E Entity name:
1s-dyna mpp971sR4.2..53450 dat
¥ 1 dt_of cycle [KE_Ent\ty l
e KE_anchor dt of cycle 1 is controlled by shell element 51474 Origin:
Pl KE Entity | ~ |
: d[fF'I HMEL e 0. 00000E+00 e Rncher <)
ndor File time step. vl s i s A 5.00040E-07 -
kinetic energy..........cvvvues B.67699E+08 T_Vpe i SR
internal energy................ 7.9612BE- 06 ) Scalar
stonewall energy............... 0.00000E+00 wall# 1 A Col t
spring and damper energy....... 1.60000E- 19 LS TINEVECTOE
joint internal energy.......... 0. DOOOOE+00 @
hourglass energy .............. 0.0000BE+00 wlep=atediEncionyerion
system damping energy.......... 0.0000BE+00
sliding interface energy....... 0. DOOOOE +00 Number Sz ——
external work.................. 0.00000E +00 Decimal separator(s): |.
eroded kinetic energy.......... 0.D0ODRE+00 ——————
eroded internal energy......... 0. 00OOE+00 Exponent character(s): |Ee |
total energy. .....iviiiiiiaens 3.67699E+08 3 = =
total energy / initial energy.. 1.00189E+00 Thousands separators:
energy ratio w/o eroded energy.  1.00189E+00 0.0 . [0 Space
global x velocity.............. 1.40547E-02 -
global y velocity.............. 7.24379E-11 Relative location:
global z velocity.............. -2.,15360E- 11 O—|7 I
time per zone cycle. (nanosec).. 649 [ Iv| Ieh=y
[34 2| | characters 2
number of shell elements that : =
reached the minimum time step.. 0 Column separators
¥
added MasE v v T 5.69522E-03
percentage increase............ 1.62208E-01
dt of cycle 480 is controlled by shell element 1948 ) )
Maximum horizontal length
TIME. T
tine Gien L ENBURE A [11 |2| character(s)
kinetic: energy. .. v o s i :
internal energy................ 2. 05286E+07 [ Maximum number of components
stonewall energy............... 0.D00DRE+DD wall# 1
spring and damper energy....... 1.60000E- 19
joint internal energy.......... 3.35910E-02
hourglass energy .............. 2.09104E+06 ‘w’a_at
system damping energy.......... 0. 00O0E+00 dt_of cycle |3 |
sliding interface energy....... 8.07489E+04 —_—
axternal: WorK: . vty s 2. 78063E+00 [~

Figure 7-13: GenEx dialog; definition of a history

We are now finished with the GenEx part and the file can be saved.

7.4.2. An example using ""Column vector' to extract histories

Column vectors are useful for extracting vectors in tables. In this example we extract a position vector
generated by a fictitious solver. Just as in the previous example we start with the creation of the entity we

want to be the first. We then change the type to Column vector.
It’s possible to create the vector by selecting a column in GenEx and right click to choose New Entity.
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File Edit

&0

o Start of File

Gravity:
- Header
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Time
End of File 0
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Figure 7-14: GenEx dialog; definition of a column vector entity

14,7234
14,6252

14.527
14,4288
14,3306
14,2324
14,1342

14,036
15.9378
15.8396
13.7414
15.6432

13.545
15.4468
15.3486
15.2504
15,1522

153.054
12,9558
12,8576
12,7594
12,6612

12.563
12,4648
12,3666
12,2684
12,1702

12.072
11.9738
11.8756
11.7774

7.4.3. How to extract the histories from LS-OPT

Entity name:
[Position |

arigin:

| Header 5 i

Type of entity

) Scalar

@ Column vector

) Repeated anchor vector

Number format

Decimal separator(s): |

Exponent character(s): |Ee |
Thousands separators:

0.0 . O Space

Relative location:
T P
[2 2] lines,

[11 2] | characters e

Column separators

Maximum horizontal length

B i:| character(s)

[] Maximum number of components

Anchor to repeat

Using GenEx for extracting histories is very similar to using it for responses. The main difference is that
you have to select two entities to define the history, one for the x-axis and one for the y-axis. It’s possible to
use "Auto increment” for the x-axis, in which case the x-axis values will simply be 0,1,2,3...
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(= Edithistory X

Name Subcase

Kinetic_E [

Input GenEx file

SPONSES/a.g6| | Browse | | Create/Edit

Input data file

Xftime vector Yivalue vector
Auto increment KineticEnergy
KineticEnergy

| Reread entities |

| Cancel |[ QK l

Figure 7-15: Interface to define a GenEx History

When creating the entities in GenEx they need to be either Column vector or Repeated anchor vector to
be used for history extraction.

7.5. Small car crashworthiness example using GenEx to extract
histories/responses from data files

Refer to Section 18.9 for the GenEx example.
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8. Setup Dialog — Defining the
Variables

This chapter discusses the conversion of parameters defined in input files to design variables of different
types. Graphical features allow the user to view file sources of parameters and the activation or de-
activation of variables for selected samplings.

Resource definitions and other global features are also available in this dialog.

8.1. Parameter Setup

Parameters defined in the input files of the stages are automatically displayed in the Parameter Setup
panel, Figure 8-1. The names of these parameters are not editable, and they cannot be deleted as indicated
by the lock symbol displayed in the Delete column. If only a name and value are specified in the stage input
file, the parameter type is set to Constant by default. The default starting value is 0.

L Problem' global setup x
Parameter Setup | Stage Matrix | Sampling Matrix | Resources | Features

[] Show advanced options
Type Name Starting Minirmum Maximum Sampling Ty... Delete

[continuous v |, e | 5|
@ ~ | 20|values: 15.2.0.25.50 .. @ ~
@ v | 25|Values: 15.2.0,25.50 | .. @ v

|

|

|

|

3 il 5|

Ep B

Ep BB

@ v 0.1 0.1 0.9

1.0]

280 |

b B B

10:|

Add...

Figure 8-1: Setup Dialog — Parameter Setup panel in LS-OPTui
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Other attributes such as parameter values or discrete sets defined in the input files are also displayed here,
but can be overridden. The desired parameter type and other appropriate options can also be specified, Table

8-1.

Advanced options, such as initial range, that are not required can be specified by selecting the Show

advanced options checkbox, Table 8-2.

Additional (non-file) parameters, although unusual, can be defined using the Add button at the bottom of the

panel.

Table 8-1: Parameter Setup options to be specified for each parameter

Option Description Reference
Type Parameter type:
Continuous Continuous variable -
Constant Constant value Section 8.1.1
Dependent Parameter depending on other parameters  Section 8.1.2
Discrete Discrete variable Section 8.1.3
String Discrete variable using string values Section 8.1.3
String Constant Constant using string values Section 8.1.1
Transfer Variable  Parameter treated as variable at upper Section 8.1.4
level and constant at lower level (multi-
level optimization)
Transfer String Transfer Variable using string values Section 8.1.4
Variable
Response Variable which inherits the value of a Section 8.1.5
Variable response
Noise Probabilistic variable described by a Section 8.1.5
statistical distribution
Name Parameter name. If the parameter is imported from a stage -
input file, the name is not editable
Starting Initial value of the variable, used in baseline run (1.1) -
Minimum Lower bound of the design space -
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Maximum Upper bound of the design space -

Values List of allowable values for discrete and string variable Section 8.1.3
Definition Mathematical expression specifying a dependent parameter Section 8.1.2
Distribution Statistical distribution used to define a probabilistic variable Section 8.1.7
Sampling Type Sampling type for discrete variable: continuous or discrete Section 8.1.3
Edit Input Set the relation of a transfer variable with another variable Section 8.1.4
Parameter

References

Table 8-2: Parameter Setup advanced options

Option Description Reference
Init. Range Size of subregion of the design space used in the first iteration ~ Section 8.1.8
Saddle Direction  Saddle direction specification used for worst-case design Section 8.1.9

Table 8-3: Parameter Setup options

Option Description Reference
Show advanced Shows Init. Range and Saddle Direction option for each Table 8-2
options parameter

Noise Variable Bounds are required for noise variables to construct the -
Subregion Size metamodels. The bounds are taken to a number of standard

(in Standard deviations away from the mean; the default being two standard

Deviations) deviations of the distribution. In general, a noise variable is

bounded by the distribution specified and does not have upper
and lower bounds similar to control variables.

Enforce Variable  Assigning a distribution to a control value may result in -
Bounds designs exceeding the bounds on the control variables. The
default is not to enforce the bounds.

8.1.1. Constants

Each variable above can be modified to be a constant. A constant can be a number or a string. Constants are
used:
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1. to define constant values in the input file such as z, e or any other constant that may relate to the
optimization problem, e.g. initial velocity, event time, integration limits, etc.

if native parameters defined in the input file are not to be used as optimization parameters.

to convert a variable to a constant. This requires only changing the designation variable to constant
in the command file without having to modify the input template. The number of optimization
variables is thus reduced without interfering with the template files. Variables can also be eliminated
by unchecking them in the Sampling matrix (see Section 8.3)

8.1.2. Dependent variables

Dependent variables are functions of the basic variables and are required to define quantities that have to be
replaced in the input template files, but which are dependent on the optimization variables. They do
therefore not contribute to the size of the optimization problem. Dependents can be functions of dependents.

Dependent variables are specified using mathematical expressions (see Appendix F: Mathematical
Expressions).

The dependent variables can be specified in an input template and will therefore be replaced by their actual
values.

8.1.3. Discrete and String variables

i) Problem global setup (x]]

[m Stage Matrix Sampling Matrix | Resources
Type Name Starting Init. Range  Minimum Maximum Sampling Ty... Saddle Dire... De...
continuous | v |[tbumper I 3 I 1[ 5| [Minimize | v |
|Discrete | v |[thood I 1/values: (1,2, 3,4, 5 .|| continuol| v |[Minimize | v |

1 |m
Add .. |:2 | %

|:3 | * oK

4 |=

|

Add new value

Figure 8-2: Definition of discrete values
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For Discrete variables, a list of allowable values has to be specified. This can be done in the Parameter
Setup dialog using the ... button to the right of the Values textfield of the respective parameter, Figure 8-2.
A list opens up showing the already defined values, a textfield to enter a new value appears by selecting the
Add new value button or by using the return key.

For String variables, allowable string values are defined in the same way. The string values are internally
treated as integers in LS-OPT. The mapping of these integer values and the actual strings is stored in the
StringVar.lsox database in the work directory.

In addition to a list of values, the sampling type has to be specified for discrete variables. By default, the
discrete variables are treated as continuous variables for generating experimental designs. The optimal
values will assume an allowable value. If discrete sampling is selected, all experimental design points use
allowable values. If possible, a continuous sampling is recommended, because it usually leads to a better
distribution of the points within the design space and hence to a better metamodel quality.

8.1.4. Transfer variables

Transfer variables are used in the context of multilevel optimization (see Section 5.3.9). These variables are
sampled in one of the levels, but these sample values are passed down to the lower levels where these are
treated as constants. Transfer variables can be referenced by preceding higher levels or by other variables in
the same level. Within the same level, a transfer variable can be the starting value or the lower/upper bound
for another variable (Figure 8-3).

- Input’Parameter References =
Name Starting Minimum Maximum
tl Set Set Set
t2 Set Set Set
t3 x| t73 < |Set Set
t4 Set Set Set
t5 Set Set Set
5] Set Set Set
t1l0 Set Set Set
te4d Set Set Set
[ ox ]

Figure 8-3: Input Parameter References. Transfer Variable t73 is set as the starting value for t3.

8.1.5. Response variables

Response variables are used to define variables which inherit the values of responses. The main purpose is
to allow substitution of response values in input files. The response must be calculated in an ancestor of the
stage in which the substitution is done.
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1. The main parameter setup allows the user to link a parameter to a response (See Figure 8-6). This
selection causes the selected parameter value to be replaced by a response value defined in an
ancestor stage. The transferred response value is substituted into the input file(s) of stages
downstream where the parameters are defined.

2. The response value to be linked can be any response value which was directly extracted from the
solver database or a mathematical expression involving any variables, dependents, histories or
responses defined in any parent stages.

3. Response variables can be transferred between any two stages of a particular thread. They do not
need to be consecutive as long as the response is defined in a stage which comes before the stage
where the substitution is done.

4. A specific response can be linked to any number of parameters.

5. Response variables are not independent design variables, so have no effect on the sampling.

Example

The example is explained using the series of figures below. The optimization consists of an outer loop with
three stages. The first stage is also an optimization loop which calibrates a parameter YMod to produce
YMod_OPT. The second stage uses the optimized YMod_OPT as a constant parameter but optimizes a
second variable Yield to produce Yield OPT.

After the first two stages, YMod_OPT and Yield_OPT are converted using mathematical expressions and
then transferred as material constants to a vehicle simulation stage. The outer loop optimizes the vehicle
design variables tboumper and thood.

Figure 8-4 through Figure 8-11 show various parts of the problem setup.
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H' E' 'l'_ /‘: [ ["_.’ Metamodel-based optimization B El = Sequential with Domain Reduction

‘ Setup

4 parameters

‘ Finish

Domain reduction

2wvarz, 4 d-opt designs

Sampling sampling &

YMOD_CPT
2 resps

Composites

(SRSM)
\erification Termination criteria O ' —
1 design 3 iterations YlELD_OPT
2 1esps
Optimization : +

[ 1 objective | LS _'

L 0 constraints Jlo SIMULATION 4

S — 4 pars, 2 resps
f__ I

1 definition

2 linear surfaces

Build Metamodels &

Edmond Laguerre

MULTILEVEL WITH RESPONSE-VARIABLES

homeiielen/L S0P TITRUNK/DEW fopt QA/PROCESS _SIMULATION/RESP ONSEVARIABLES/MULTILEVEL/DY NA_SIMRESUL Timulti Isopt

Figure 8-4: LS-OPT Problem multilevel setup. The first two stages (YMOD_OPT) and (YIELD_OPT) are
sublevel optimization stages. YMOD_OPT produces an optimal material parameter YMod_OPT and
converts it to YMod_OPT_EXPR using an expression. This value is transferred to the parameter
YModRV defined as an input parameter to the YIELD_OPT stage. The YIELD_OPT stage therefore uses
this value as a constant but optimizes a second variable Yield to produce Yield OPT which is then
converted to Yield OPT_EXPR. Both YMod OPT_EXPR and Yield OPT_EXPR are then transferred to
the SIMULATION stage as input parameters. The outer loop depicted here optimizes over design
variables tbumper and thood to minimize vehicle intrusion.
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Setup = Parameters Histories | Fesponses | File Operations

Fesponse definitions Add new
YMod_OPT x  Stage specific
LSOPT: Optimized entity "vMod" LSOPT
YMod_OPT_EXPR x | (I i

EXPRESSION! exp (log ( ¥Mod_OFT )3
USERDEFINED

GEMEX
EXCEL
ok
Figure 8-5: Response output definition for Stage YMOD_OPT.
Parameter Setup | Stage Matrix = Sampling Matrix | Resources = Features
[ Show advanced options
Type Mame Starting Minimum Maximum Delete
|.Response “ariable | ¥ YMod _OFT_EXPR z|6E
[Response “ariable | ¥ Yield OFT_EXPR S|E
|.Continunus hd | 3” 1 | | 5.| @
|.Continuous v | 1 || 1 | | 5_| &
Add..
ok

Figure 8-6: The main parameter setup (clicking green box at top left of Figure 8-4) to define two
response-variables YModRV and YieldRV. These respectively link to YMod OPT_EXPR and
Yield_ OPT_EXPR produced by the parent optimization stages. The parameters tboumper and thood are
optimization variables used in the outer loop.

LS-OPT Version 5.2 148



CHAPTER 8: Setup Dialog — Defining the Variables

[ Parameter Setup ] Stage Matrix = Sampling Matrix | Resources = Features

[l Show advanced options

Type Mame Starting Minirmum Maximum Delete
| Continuous v |[¥Mod I 700000 | 500000 || 2e+06 | A\ *
| Constant v || vielac I 1500| A
[<] n | E|
Add...

Figure 8-7: Input parameters for the YMOD_OPT stage. YMod is an optimization variable defined in this
stage while YieldC is a constant.

Setup = Parameters Histories | Responses | File Operations
Fesponse definitions Add new
YMod_OPT x | | Stage specific
LSOPT: Optimized entity "vMod LSOPT
YMod_OPT_EXPR X | | @eneric
EXPRESSION: exp ( log ( ¥Mod_OFT ) )
USERDEFINED
GEMEX
EXCEL
S— [~
Jok

Figure 8-8: Response output definition for Stage YMOD_OPT.
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Paramefer Setup | Stage Matrix | Sampling Matrix | Resources = Features
[l Show advanced options
Type Mame Starting Minimurm Maximum Delete
Continuous v || vield (| 1500 || 500 | 2000 | A
Constant v || YModRY I 700000 | A
Add. ..
Jok

Figure 8-9: Input parameters for the YIELD_OPT stage. Yield is an optimization variable defined in this
stage. YModRYV is a response-variable replaced by YMod_OPT_EXPR (see Figure 8-6 for definition).

Setup = Parameters Histories | Responses | File Operations

Response definitions Add new
Yield_OPT x | | Stage specific
LSOPT: Optimized entity ™vield" LSOPT
Yield_OPT_EXPR % | | Generic 3

EXPRESSION: sqit Yield_OPT ) * sqrt( Yield_OFT)
USERDEFIMED

GEMNEX
EXCEL
EXFRESSION b

Figure 8-10: Response output definition for Stage YIELD_OPT.
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[STDOUT] ~

[STDOUT]

[STDOLT] H

[STDOUT] Extractor pre-processor.

[STDOUT]

[STDOUT]

[STDOUT]

[STDOUT] Opened Extraction database: "/home/nielen/LSOPT/TRUNK/DEV/optQA/PROCESS SIMULATION/RESPONSEVARIABLES/MULTILEVEL

[STDOUT]

[STDOUT] Assembling job results from Stage "YIELD OPT".

[STDOUT]

[STDOUT] Constant YModRY: linked to response "YMod OPT _EXPR" = exp ( log ( YMod _OPT ) ) = 500000,

[STDOUT] Constant YieldRY: linked to response "Yield OPT_EXPR" = sqrt( Yield_OPT ) * sqrt( Yield_OPT) = 1007.21.

[STDOUT]

[STDOUT] Number of response-variables = 2

[STDOUT]

[STDOUT] Creating variable definitions from job results.

[STDOUT]

[STDOUT] System command "/bin/cp main.k DynaOpt.inp" successful

[STDOUT] System command “/bin/rm -f DynaOpt.inp" successful

[STDOUT]

[STDOUT] ¥
1 »

Search Dismiss

Figure 8-11: Job log of SIMULATION stage of the example (the display represents the pre-processor
phase prior to simulation). Note the linking of the two parameters to responses.

8.1.6. Probabilistic VVariables - Noise and Control VVariables

Probabilistic variable values, unlike deterministic variables, cannot be stated with absolute confidence. In
other words, there is uncertainty associated with these variables because of which we can only state that
their value will lie within a certain interval with specific level of confidence. This difference makes
probabilistic analysis and optimization much more involved than their deterministic counterparts. Therefore,
a separate chapter (Chapter 13) is dedicated to probabilistic tasks and problem setup.

Probabilistic variables can either be control variables, whose nominal values are modified during
optimization to get a more suitable design, or noise variables that are not controlled during optimization and
only serve the purpose of introducing uncertainty in the problem. The variable type can be selected in the
Parameter Setup panel (Figure 8-12).

8.1.7. Probabilistic distributions

In order to represent variable uncertainties, they are associated with probabilistic distributions, which are
also part of the Parameter Setup panel when the selected task is probabilistic (Figure 8-12). Several types of
distributions are available in LS-OPT. Further details of how to set up probabilistic variables and
distributions are provided in Chapter 13.
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iv ﬁv +v /ﬂv ’v M REDO/Robust Param

FProblern global setup L)X

[OF SR

Parameter Setup = Stage Matrix  Sampling Matrix =~ Resources  Features

| Enforce Variable Bounds

Type : Mame : Starting . Init. Range : Minimum : Maximum : Distribution : Saddle Direct... : Delete

Continuous v | Area 2 4 0.2 4| area_dist w | Minimize v x
Noise v | Base base_dist | v My x
Add...

¥ oK

Figure 8-12: Parameter setup panel for probabilistic tasks

8.1.8. Size and location of initial region of interest (range)
If an initial range is specified, the initial subregion is defined as [starting — range/2, starting + range/2].

Remarks:
1. The full design space is used if the range is omitted.

2. The region of interest is centered on a given design and is used as a sub-space of the design space to
define the experimental design. If the region of interest protrudes beyond the design space, it is
moved without contraction to a location flush with the design space boundary.

8.1.9. Saddle direction: Worst-case design

Worst-case or saddle-point design is defined as a method to minimize (or maximize) the objective function
with respect to some variables, while maximizing (or minimizing) it with respect to the remaining variables
in the variable set. The maximization variables are set using the Maximize option in the Saddle Direction
field of the Parameter Setup panel. The default selection is Minimize.
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8.2. Stage Matrix

- Problem global setup &)

Parameter Setup || Stage Matrix || sampling Matrix | Resources

T

w

3
cradle_rails (|
cradle_csmbr [3
shotgun_inner [4
shotgun_outer [3
rail_inner (|
rail_outer (|
aprons (|

FFFEFEFIFIF NVH

Legend: [J - Parameter found in file(s) (hover mouse above to see filename(s) (= - Parameter manually added 1 - Parameter defined upstream

oK

Figure 8-13: Stage Matrix
The Stage Matrix provides an overview of the parameters defined in each stage. A parameter influences a

stage if it is defined in a stage input file, manually added to a stage, or defined in an upstream stage.
Hovering the mouse over a file icon shows a list of the files where the respective parameter is defined.

8.3. Sampling Matrix

L Problem global setup @]

Parameter Setup | Stage Matrix || Sampling Matrix || Resources | Features

Reset

cradle_rails
shotgun_inner
shotgun_outer
rail_inner
rail_outer
aprons

B & & & O & CRASH
AW A& & NVH

Figure 8-14: Sampling Matrix

For multidisciplinary design optimization (MDO) certain variables could be relevant for some but not all
disciplines. In such examples, several samplings (or cases) can be defined and the variables assigned to
some but not all samplings. The assignment of a variable to a sampling can be selected in the Sampling
Matrix. If a variable is absent in a particular sampling, it assumes the current global value as generated by
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the previous iteration for substitution in the input files of the next iteration. The number of variables selected
for a sampling directly affects the number of sampling points (and hence the computational effort) required
for that sampling. Each column is coupled to the Active Variables tab of the respective Sampling Dialog,
Section 9.4.

Clicking the Reset button reassigns the variables to the samplings as defined in the input files.

If a variable has been deselected for all the Samplings, it is treated as a constant value. Therefore the
baseline value will be assumed throughout the optimization. This option can be selected in lieu of explicitly
defining the parameter as a constant.

The sampling matrix can be changed between iterations. Variables detected as insensitive in the first or any
other iteration could be switched off for the following iterations.

See Section 18.5 for an MDO example.

8.4. Resources

ai Problem global setup &)

Parameter Setup | Stage Matrix | Sampling Matrix | Resources | Features

Resource Global limit
USERPOST 12
USERDEFINED |:1
METAPOST |:1
LSDYNA_IMPLICIT |:50

MOLDFLOW _LICENSE 33
ANSA_LICENSE |:22
NASTRAN_LICENSE |:66
LSTC_LICENSE |:99

The abowve list is the union of the resources defined in stages

Figure 8-15: Setup — Resources

Resources are defined in the Stage dialogs, but, for convenience, allows editing of the global limits in the
Setup dialog. The Resources tab shows a summary of all resources defined for all the stages, Section 5.4.1.
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8.5. Features

ai Problem| global setup &)

Features

Parameter Setup | Stage Matrix | Sampling Matrix = Resources

Evaluate Metamodel
.csv file with variable values

|UserP0ints2 Browse

Figure 8-16: Setup — Features

Sampling independent features are available in the Features tab of the Setup dialog, Figure 8-16.

8.5.1. Evaluate Metamodel

The response values of any number of points can be computed using an existing metamodel and written to a
.csv file (file with comma-separated variables that can be read by most spreadsheet programs). The input
data is sampling independent.

There are two simple steps to obtain a table with response data.

1. Browse for the file with the sampling point information using the Evaluate Metamodel option in the
Features tab in the Setup dialog. The file must be in .csv format although spaces, commas or tabs
are allowed as delimiters. The file must contain two header lines. The first header line contains the
variable names. The second header line contains the variable types; in this case "dv" (design
variable) suffices. The variable types “nv” (noise variable), “dc” (discrete variable) or “st” (string
variable) can also be used and will achieve the same result (see also Appendix E.3.1). It should be
noted that the entry for a string variable is the corresponding mapped integer value that can be found
in the file StringVar.lsox. The variable coordinates are specified as one row for each design point.
See example below.

2. Use the Setup dialog Repair option Evaluate Metamodels.

o Input: Each sampling point file must represent all the variables. LS-OPT checks whether all the
variables defined in the file are represented in the LS-OPT input. Variable order is not important.

o Output: The ExtendedResults output can be found as a META file in the main working
directory, e.g. ExtendedResultsMETAMaster_3.csv. The ExtendedResul ts file has
variable, dependent, response, composite, objective, constraint, multi-objective and constraint
violation values.
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o If sampling points are defined before the start of an optimization run, the META file will be
automatically computed for each iteration.

Example .csv file:
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9. Sampling & Metamodel Dialog

This chapter describes the specification of sampling settings, i.e. the metamodel types, point selection
schemes (design of experiments or DOE), and related options available in the Sampling dialog, Figure 9-1.
The terms point selection and experimental design, are used interchangeably.

Ber Sampling CRASH =

Sampling & Metamodel Settings | Active Variables | Features = Constraints = Comparison Metamodels

Metamodel Pointselection
@ Polynomial ) Full Factornal
) Sensitivity ) Linear Koshal
) Feedforward Neural Network () Quadratic Koshal
() Radial Basis Function Network () Composite
) Kriging @ D-Optimal
() Support Vector Regression () Monte Carlo
) User-defined () Latin Hypercube
) Space Filling
O-rde.r ) User-defined
@ Linear
() Linear with interaction Number of Simulation Points (per Iteration per Case)
0 Quadratic [10 (default) |
() Elliptic

Set Advanced Options ==

o)

Figure 9-1: Sampling dialog — metamodel and point selection settings

9.1. Metamodel types

The user can select one of the metamodel types shown in Figure 9-1 and Table 9-1, respectively. The default
selection for the metamodel type and the point selection scheme depends on the choice of task and
optimization strategy, Chapter 4. For the sequential response surface method (SRSM) strategy, the default
choice is the polynomial response surface method (RSM) where response surfaces are fitted to results at
data points using polynomials. For global approximations fitted in the single iteration and sequential
strategies, the radial basis function networks are set as the default approximation models. For all strategies,
the feed-forward neural network, Kriging, Support Vector Regression and user-defined approximation
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models are also available. Sensitivity data (analytical or numerical) can also be used for optimization. This
method is more suitable for linear analysis solvers. For details see the sections referred to in Table 9-1.

Table 9-1: Sampling dialog options — Metamodel types

Metamodel Type Description Reference

Polynomial Polynomial approximations up to quadratic order Section 9.1.1

Sensitivity Uses gradients to determine linear metamodels. Section 9.1.2

Feedforward Neural Network  An artificial Neural network with sigmoid basis Section 9.1.3
functions

Radial Basis Function A Neural Network with radial basis functions Section 9.1.3

Network

Kriging A Gaussian process. Form of Bayesian inference. Section 9.1.4

Support Vector Regression Support Vector Regression Section 9.1.5

User-defined Interface for user-defined, dynamically linked Section 9.1.6
metamodel.

9.1.1. Polynomial

When polynomial response surfaces are constructed, the user can select from different approximation
orders. The available options are linear, linear with interaction (linear and off-diagonal terms), elliptic
(linear and diagonal terms) and quadratic, Section 21.1.1. In the Sampling dialog, the approximation order is
set in the Order field, Figure 9-1. Increasing the order of the polynomial results in more terms in the
polynomial, and therefore more coefficients that need to be determined, hence more simulation runs are
needed. The default number of simulation runs is automatically updated for the polynomial type.

The polynomial terms can be used during the variable screening process (see Section 21.4) to determine the
significance of certain variables (main effects) and the cross-influence (interaction effects) between
variables when determining responses. These results can be viewed graphically (Section 15.3.4).

The recommended point selection scheme for polynomial response surfaces uses the D-optimality criterion
(Section 9.3.2).

9.1.2. Sensitivity

In this approach, sensitivities are used to generate linear metamodels. Both analytical and numerical
sensitivities can be used for optimization, Figure 9-2.
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Ber Sampling| 1 =
Sampling Metamodel Settings | Active Variables | Features | Constraints
Metamodel
) Polynomial
@ |Sensitivity

" Feedforward Neural Network
1 Radial Basis Function Network
() Kriging

() Support Vector Regression

1 User-defined

Sensitivity Type
@ Numerical
) Analytical

Perturbation relative to design space

|-O.Cll (default)

Figure 9-2: Sampling Dialog: Sensitivity options
Analytical sensitivities

If analytical sensitivities are available, they must be provided for each response in its own file named
Gradient. The values (one value for each variable) in Gradient should be placed on a single line,
separated by spaces.

In the Sampling dialog, the Sensitivity Type must be set to Analytical.
A complete example is given in Section 18.7.

Numerical sensitivities

To use numerical sensitivities, select Numerical in the Sensitivity Type field in the Sampling dialog and
assign the perturbation as a fraction of the design space, Figure 9-2.

Numerical sensitivities are computed by perturbing n points relative to the current design point x°, where the
j-th perturbed point is:

Xij = Xi0 +;6(Xy —X,)

5; =0 if i# ] and 1.0 if i = j. The perturbation constant & is relative to the design space size. The same
value applies to all the variables. The value of ¢ is assumed to be 0.001.
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9.1.3. Feedforward Neural networks and radial basis function networks

To apply feedforward neural network or radial basis function approximations, select the appropriate option
in the Metamodel field in the Sampling dialog, see Figure 9-3 and Figure 9-6, respectively. The
recommended Point Selection scheme for feedforward neural networks and radial basis functions is the
space filling method (which is also the default), Section 9.3.4.

FENN Efficiency Options*

Neural Network construction calculation may be time-consuming because of the following reasons:
1. The committee size is large
2. The ensemble size is large.

Committee size. The default committee size as specified above is largely required because the default
number of points when conducting an iterative optimization process is quite small. Because of the tendency
of NN’s to have larger variability when supplied with fewer points, committees are relied on to stabilize the
approximation through averaging. When a large number of points has been simulated however, the
committee size can be reduced to a single neural net by setting Number of Committee Members to 1.

Ensemble size. The ensemble size can be reduced in two ways:
1. Dby exactly specifying the architecture of the ensemble and
2. by providing a threshold to the RMS training error.

The architecture is specified using the Number of Hidden Nodes in Ensemble options. Higher order neural
nets are more expensive to compute.

FFNN efficiency options are available in the Sampling dialog if the Set Efficiency Option button is pressed,
and may be reset to the default settings using the Reset button, Figure 9-3. The available options are
explained in Table 9-2.

Please refer to Sections 22.3 and 23.5 for recommendations on how to use metamodels.
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oy normmgl

() Sensitivity

| Kriging
() Support Vector Regression
() User-defined

Include pts of Previous Iterati

First iteration Linear D-Optim

[] Parallel Builder

Default = Lin-1-2-3-4-5

Number of Committee Members

) Feedforward Neural Network

) Radial Basis Function Network

Set Efficiency Options Reset
Number of Hidden Nodes in Ensemb
Lin 1 2 3

4 5 Oes 7
8 19 [] 10

U raceonigl

) Latin Hypercube

) Space Filling

' Space Filling of Pareto Frontier
) User-defined

Number of Simulation Points (per Ilteration per Case)

|'1CI (default)

al

ons

|'9 (default)

Half Number of Discarded Nets

|'2 (default)

Figure 9-3: Feedforward Neural Network

Efficiency Options

Table 9-2: Feedforward Neural Network Efficiency Options

Option

Description

Number of Hidden Nodes in
Ensemble

Ensemble size from which one will be selected according to
the minimum Generalized Cross Validation (GCV) value
across the ensemble. The default is Lin-1-2-3-4-5.

Number of Committee Members

Because of the natural variability of neural networks (see
Section 22.1.2), the user is allowed to select the number of
members in a neural net committee. To ensure distinct
members, the regression procedure uses new randomly
selected starting weights for generating each committee
member.

Half Number of Discarded Nets

The discard option allows the user to discard committee
members with the lowest mean squared fitting error and
committee members with the highest MSE. This option is
intended to exclude neural nets which are either under- or
over-fitted. The total number of nets excluded is therefore 2
times the specified number. The discard feature is activated
during the regression procedure.
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Execution options for FFNN calculation (Parallel Builder)

FFNNs can be solved concurrently. Select the Parallel Builder option in the Settings tab to enable the
Execution tab.

The Parallel Builder involves the application of the job scheduler to treat each response and each member of
a neural network ensemble as a job to be run in parallel. The committee (which constitutes a particular
ensemble member and which is solved using a serial Monte Carlo analysis) is solved serially. Figure 9-4
shows the dialog. The main features are as follows:

1. Job monitoring is available by clicking on the LED on the Metamodel box of the main dialog (see
Figure 9-5). All the features that apply to the monitoring of simulations (except LS-PrePost) are also
available for FFNN calculation.

2. Remote computation is supported, so if a cluster setup is available for e.g. LS-DYNA jobs, the
FFENN solution setup may only involve a few special settings.

Sampling & Metamodel Settings = Active Variables = Features = Constraints | Execution

Execution options for FFNN calculation
Fesources

Fesource Units per job Global limit Delete

FFBUILDER " [[120 |
Create new resource

n »

Use Queuing
SLURM v
Use LSTCWVIM proxy

Command | ${LSPROJHOME}/fhuilder_script ‘ Browse

ok

Figure 9-4: Dialog for Parallel FFNN builder
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Show status for: |Metamodel Casel ‘ ~ l Tools
Job ID/PID Component fter  ResplD  Nodes Status 3 [ viewlog

e

27626 Casel 1 0 4 Nomal Termination

27628 Casel 1 0 S Normal Termination

27630 Casel 1 0 € Normal Termination

27634 Casel 1 0 8 Normal Termination

27637 Casel 1 0 5 Normal Termination

27640 Casel 1 0 10 Running...

27643 Casel 1 1 I NommalTemmination

27647 Casel 1 1 2 Normal Termination

27650 Casel 1 1 3 Normal Termination

27654 Casel 1 1 4 Normal Termination

2TERE Casel 1 1 A Runninn )

Figure 9-5: Job progress display for parallel FFNNs

Advanced RBF options: Basis functions and optimization criterion for RBF*

The performance of the RBFs can significantly vary with the choice of basis function and the optimization
criterion. Two basis functions available for selection are Hardy’s multi-quadrics (HMQ), and Gaussian
RBF. HMQ is often preferred and has therefore been set as the default. The user is also allowed to select the
optimization criterion to be generalized cross-validation error or the pointwise ratio of the generalized cross
validation error, Figure 9-6.

The options are available in the Sampling dialog if the Set Advanced RBF Options button is pressed, and
may be reset to the default settings using the Reset button, Figure 9-6. The available options are described in
Table 9-3.
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Table 9-3: RBF Advanced Options

Option Description Option Description

Transfer Function  Basis function Hardy’s Multi-Quadrics Gy (X oo X ) = /1+(r—)2 /o)

Gaussian gy (X Xy ) = exp[— r /2csﬁ]
Topology Optimization Leave-one-out Generalized cross-validation
Selection Criterion  criterion error (PRESS)

GCV-Ratio Pointwise ratio of the
generalized cross validation
error

Noise variance Variance of the fitting error

& Sampling|1 £
| sampling Metamodel Settings | Active Variables | Features | Constraints

Metamodel Pointselection

) Polynomial 0 Full Factorial

) Sensitivity () Latin Hypercube

() Feedforward Neural Network @ Space Filling

@ Radial Basis Function Network ) User-defined

() Kriging

Number of Simulation Points (per lteration per Case)

5 (default) |

() Support Vector Regression
) User-defined

First iteration Linear D-Optimal

Include pts of Prewvious lterations

Set Advanced RBF Optians] | Reset

Transfer Function
@ Hardy's Multi-Quadrics
() Gaussian

Topology Selection Criterion
@ Leave_one_out
() GCV-Ratio

() Moise variance

Figure 9-6: Radial Basis Function Network Advance Options

LS-OPT Version 5.2 164



CHAPTER 9: Sampling & Metamodel Dialog

9.1.4. Kriging parameters

< Sampling 1 B
| Sampling Metamodel Settings | Active Variables | Features | Constraints

Metamodel Pointselection

) Polynomial ) Full Factorial

() Sensitivity () Latin Hypercube

) Feedforward Neural Network @ Space Filling

 Radial Basis Function Network 1 User-defined

@ Kriging ] ] ] _

& S e T Number of Simulation Points (per lteration per Case)

1 User-defined 5 (default) |

First iteration Linear D-Optimal

Include pts of Prewvious Iterations

Set Advanced Kriging Opticns] | Reset

Correlation Function
@ Gaussian

() Exponential

Trend Model
) Constant
@ Linear

) Quadratic

[[] Fixed theta for all responses

Figure 9-7: Kriging Advanced Options

The Kriging fit depends on the choice of appropriate correlation function and the trend model, Section 22.2.
Two correlation functions available for selection are Gaussian and exponential. The user can also select
either a constant, linear, or quadratic trend model. The available options are displayed in Table 9-4.
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Table 9-4: Advanced Kriging Options

Option Option Description
Correlation Function  Gaussian, Correlation function used in stochastic component of
Exponential metamodel function, see Section 22.2.
Trend Model Constant, Polynomial component of metamodel function.
g&]:jrrétic The linear trend model requires at least (n+ 2) design points,
. . n+1)(n+2
a quadratic trend model requires at least M +1
design points, where n is the number of variables.
Fixed theta for all responses By default, a single set of theta values is fit to all responses,

however the user can also fit individual set of correlation
function parameters (theta) for each response by selecting this
option.

9.1.5. Support Vector Regression

The support vector regression fit depends on the choice of appropriate kernel function (similar to correlation
function), Section 22.3. Two kernel functions available for selection are Gaussian and polynomial. The
available options are displayed in Table 9-5.

Table 9-5: Advanced Support Vector Regression Options

Option Option Description
Kernel Type Gaussian, Basis function used in SVR expansion that maps the input variable
Polynomial space to a high dimensional feature space, see Section 22.3 .
) Kriging U.ser—deﬁne_d

@ Support Vector Regression ] ] ) )
Number of Simulation Peints (per Iteration per Case)

) User-defined .
| 10 (default) |

First iteration Linear D-Optimal

Include pts of Previous Iterations

Set Advanced SVR Options Reset

Kernel Type
@ Gaussian

() Polynomial

Figure 9-8: Metamodel selection Support Vector Regression
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9.1.6. User-defined metamodel*

Ser Sampling 1 =

Sampling Metamodel Settings | Active Variables | Features =Constraints

Metamodel Pointselection

) Polynomial () Full Factorial

() Sensitivity () Linear Koshal

() Feedforward Neural Network () Quadratic Koshal
( Radial Basis Function Network () Composite

) Kriging ) D-Optimal

) Support Vector Regression () Monte Carlo

@ |User-defined () Latin Hypercube

@ Space Flling

Name . ) User-defined
mymetamodel |
! " Number of Simulation Points (per Iteration per Case)
|:5 (default) |
[ o
Figure 9-9: User Defined Metamodel Options
The user-defined metamodel distribution is available for download at

http://ftp.Istc.com/user/lIs-opt/Add On Libraries/.
Please ask LSTC or your local LS-DYNA distributor for the password.

Building the example

Under Linux, issue the command "make" while in this directory. Your resulting metamodel is called
umm_avgdistance_linux_1386.so (or umm_avgdistance_linux_x86_64.so if running
under 64-bit OS).

Under Windows, open usermetamodel .sln in Visual Studio. Open the Build menu, select "Build
solution™. Your resulting metamodel is called umm_avgdistance_win32.dl1

Along with the metamodel binary you also get an executable called "testmodel”. This program can be used
for simple verification of your metamodel. Just give the name of your metamodel as a parameter, i.e.:

testmodel avgdistance

Note that you are not supposed to supply the full .dl'1/.so filename as a parameter.

Using the example as a template

If you wish to use the example as a template for your own metamodel, do the following steps (in this
example, your metamodel is called mymetamodel):

Copy avgdistance.* to mymetamodel.*
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Replace any occurrence of the string "avgdistance" with "mymetamodel” in the following files:
Makefile, mymetamodel.def, mymetamodel.vcproj, Makefile, usermetamodel.sin

Distributable metamodel

When compiled, your metamodel binary will be called something like:
umm_mymetamodel _win32._dll1

or
umm_mymetamodel_linux_i1386.d11

This is the only file that is needed in order to use the metamodel from LS-OPT.

Referring to user-defined metamodels in the Sampling dialog

In order to use a user-defined metamodel for a certain sampling, select the User-defined option in the
metamodel selection in the Sampling dialog and add the metamodel name to the Name textfield, (e.g.
umm_mymetamodel li1nux_1386.s0), Figure 9-9.

Note that the name should not include the "umm_" prefix or the platform dependent suffix. LS-OPT will
look for the correct file based upon the current platform. This allows for cross platform operation.

9.2. General Options for Non-Polynomial Metamodels

Additional options available for Feedforward Neural Networks, Radial Basis Functions, Kriging and
Support Vector Regression are summarized in Table 9-6.

Table 9-6: FFNN, RBF, Kriging and SVR options

Option Description Reference
First iteration Linear Use linear metamodels and the D-optimality point selection 9.2.1
D-Optimal criterion for the first iteration instead of the selected types.
Include pts of The new points for each iteration are selected within the new 9.2.2
previous iterations subregion while considering the locations of points from previous

iterations.

The metamodels are constructed using the new points as well as
points from all previous iterations.

Parallel Builder Only FFNN, calculates metamodels in parallel 9.1.3
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9.2.1. First Iteration Linear D-Optimal

For Feedforward Neural Networks, Radial Basis Functions, Kriging and Support Vector Regression, the
main scheme can be replaced in the first iteration by linear polynomials with D-optimal point selection,
using the “First iteration Linear D-Optimal” option, because

1. D-optimality minimizes the size of the confidence intervals to ensure the most accurate variable
screening, usually done in the first iteration.

2. It addresses the variability encountered with neural networks due to possible sparsity (or poor
placement) of points early in the iterative process, especially in iteration 1, which has the lowest
point density.

9.2.2. Include points of previous iterations

Updating the experimental design involves augmenting an existing design with new points. Updating only
makes sense if the response surface can be successfully adapted to the augmented points such as for neural
nets, Radial Basis Function networks or Kriging surfaces in combination with a space filling scheme.

The new points have the following properties:
1. They are located within the current region of interest.

2. The minimum distance between the new points and between the new and existing points, is
maximized (space filling only).

9.3. Point selection schemes

9.3.1. Overview

Table 9-7 shows the available point selection schemes (experimental design methods). The default point
selection scheme depends on the selected metamodel type, e.g., the D-optimal point selection scheme (basis
type: Full Factorial, 11 points per variable (for n = 2)) is the default for linear polynomials, and the space-
filling scheme is the default for the Feedforward Neural Network, Radial Basis Function Network, Support
Vector Regression and Kriging methods.
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Sampling CRASH

Sampling & Metamodel Settings | Active Variables

Features ‘ Constraints | Comparison Metamodels

Metamodel ~Pointselection
@ Polynomial 1 Full Factonial
() Sensitivity ) Linear Koshal
) Feedforward Neural Network () Quadratic Koshal
() Radial Basis Function Network () Composite
() Kriging @ D-Optimal
() Support Vector Regression () Monte Carlo
) User-defined () Latin Hypercube
. () Space F|I.I|ng
) 1 User-defined
@ Linear .
() Linear with interaction Number of Simulation Points (per Iteration per Case)
() Quadratic 10 (default) l
() Elliptic

Set Advanced Options == l

Figure 9-10: Point selection schemes
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Table 9-7: Point selection schemes

Point Selection Description Reference
Scheme
Full Factorial - Section 21.2.1
Linear Koshal Saturated design for first order Polynomials Section 21.2.2
Quadratic Koshal Saturated design for quadratic Polynomials Section 21.2.2
Composite Central Composite design Section 21.2.3
D-optimal Design obtained by minimizing the determinant of the moment  Section 9.3.2,
matrix Section 21.2.4
Latin Hypercube Stratified random design Section 9.3.3,
Section 21.2.5
Monte Carlo Random design
Space Filling Design obtained by maximizing the minimum distance between Section 9.3.4,
any two points. Section 21.2.6
Space Filling of Design obtained by maximizing the minimum distance between Section 9.3.5
Pareto Frontier any two points sampled from the Pareto Optimal Frontier.
User-defined - Section 9.3.6
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9.3.2. D-Optimal point selection

= Sampling CRASH -

Sampling & Metamodel Settings | Active Variables | Features | Constraints | Comparison Metamodels

Metarmodel Pointselection Basis Type

@ Polynomial () Full Factorial @ Full Factorial

) Sensitivity () Linear Koshal () Latin Hypercube
() Feedforward Neural Network () Quadratic Koshal () Space Filling

) Radial Basis Function Network () Composite _ _
g — ) Points per Variable
) Kriging @ D-Optimal

02 O3 04 OS5 06

) Support Vector Regression () Monte Carlo - - - - -
— ) - . o7 O8 w9 O100 11
) User-defined () Latin Hypercube
2 Space Filling Reset Basis to Default
Order ~ )
. ) User-defined
@ Linear Random Number Seed
() Linear with interaction Number of Simulation Points (per Iteration per Case) [0 (default)
) Quadratic |10 (default) | .
) Elliptic Reset to Default

Set Advanced Options >:sl

Figure 9-11: D-optimal point selection: advanced options

The D-Optimality design criterion is available for Polynomial and User-defined metamodels and can be
used to select the best (optimal) set of points for a response surface from a given set of points. The basis set
can be determined using any of the other point selection schemes. The default basis experiment for the D-
optimal design is based on the number of variables n. For small values of n, the Full Factorial design is
used, whereas larger n employs a Space Filling method for the basis experiment. The Latin Hypercube
design is also useful to construct a basis experimental design for the D-optimal design for a large number of
variables where the cost of using a Full Factorial design is excessive. E.g. for 15 design variables, the
number of basis points for a 3-level design is more than 14 million.

The basis experiment attributes can be overridden using the Set Advanced Options in the Sampling Dialog.

The type and order of the metamodel used has an influence on the distribution of the optimal experimental
design. The default number of points selected for the D-optimal design is int(1.5(n + 1)) + 1 for linear,
int(1.5(2n + 1)) + 1 for elliptic, int(0.75(n* + n + 2)) + 1 for interaction, and int(0.75(n + 1)(n + 2)) + 1 for
quadratic. As a result, about 50% more points than the minimum required are generated. If the user wants to
override this number of experiments, this can be done using the respective textfield in the Sampling dialog.

The D-optimal scheme is the recommended point selection scheme for polynomial response surfaces.

The D-optimal scheme is repeatable, but a random number seed can be provided to create different sets of
random points, Section 9.3.7.

9.3.3. Latin Hypercube Sampling

The Latin Hypercube point selection scheme is typically used for probabilistic analysis. Like Monte Carlo
and Space-Filling point selection schemes, it requires a user-specified number of experiments.
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Latin Hypercube Sampling may be used to fit a response surface, but even if the Latin Hypercube design
has enough points to fit a response surface, there is a likelihood of obtaining poor predictive qualities or
near singularity (when fitting polynomials) during the regression procedure. It is therefore better to use the
D—-optimal experimental design for RSM.

For details on the default algorithm, see the description of Algorithm 2 in Section 21.2.6. Other latin
hypercube algorithms may be selected using the advanced options, Table 9-8.

All latin hypercube algorithms are repeatable, but a random number seed can be provided to create different
sets of random points, Section 9.3.7.

Table 9-8: Latin Hypercube advanced options

Option Description Reference
Generalized ‘Generalized' LHS design with random pairing Section 21.2.5
Central Point ‘Central point' Latin Hypercube Sampling (LHS) design with ~ Section 21.2.5

random pairing

9.3.4. Space Filling

The default Space Filling algorithm maximizes the minimum distance between experimental design points
for a given number of points. For details on the algorithm, see the description of Algorithm 5 in Section
21.2.6. Other space filling approaches may be selected using the advanced options, Table 9-9. The only data
required is the number of sampling points that has to be specified in the Number of Simulation Points text
field in the Sampling dialog. The default number of points depends on the number of variables, the
metamodel type and also on the task and strategy. Space Filling is suitable for the Radial Basis Function,
Neural Networks, Support Vector Regression as well as Kriging methods (see Section 9.1.3).

All space filling algorithms are repeatable, but a random number seed can be provided to create different
sets of random points, Section 9.3.7.

LS-OPT Version 5.2 173



CHAPTER 9: Sampling & Metamodel Dialog

Table 9-9: Space Filling advanced options

Option

Description

Reference

Maximin distance

Given an arbitrary design (and a set of fixed
points), randomly moves the points so as to
optimize the maximin distance criterion using
simulated annealing.

Section 21.2.5

Maximin LHD permute

Given an LHS design, permutes the values in each
column of the LHS matrix so as to optimize the
maximin distance criterion taking into account a
set of existing (fixed) design points. This is done
using simulated annealing. Fixed points influence
the maximin distance criterion, but are not
allowed to be changed by Simulated Annealing
moves.

Section 21.2.5

Maximin LHD subinterval

Given an LHS design, moves the points within
each LHS subinterval preserving the starting LHS
structure, optimizing the maximin distance
criterion and taking into consideration a set of
fixed points.

Section 21.2.5

9.3.5. Space Filling of Pareto Optimal Frontier

By selecting to create the Pareto Optimal Frontier (POF) as a strategy, a Space Filling algorithm which
applies discrete Space Filling sampling of the POF is available. This sampling method uses the POF created
in the previous iteration as a basis design point set. The distance between the points is maximized and can
also be maximized with respect to previous simulation points by selecting to augment the design points. The
user can specify the number of points required.

How to use the Pareto Optimal Frontier as a basis set for sampling

The following procedure can be followed to conduct simulations based on the POF. It is assumed that the
user has conducted one or more metamodel-based iterations and that the POF has been created based on the

metamodel.

1. Task: If not selected already, select any Sequential strategy in the Task selection dialog.

2. Sampling:

a. Choose to conduct Space Filling of Pareto Frontier as a Sampling option.

b. Choose whether previous simulation points are to be considered in the Space Filling
algorithm (check the box “Include pts of Previous Iterations”).
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c. Choose the number of simulation points required using the Number of Simulation Points
textfield. The simulation will stop automatically if the POF basis set is too small.

d. If the number of simulations required differs from the current setting, choose “Do not
augment sampling before iteration” in the Sampling dialog Features tab and set the iteration
number at which you want to restart. For example, if one iteration is already available, set the
starting iteration to 2, Section 9.5.4.

e. Constraints: The constraint values can be adjusted to filter POF points. Select those
constraints which are to be applied as sampling filters as Sampling Constraints in the
Sampling dialog Constraints tab, Section 9.6.

The constraints can be added or changed immediately before the final run, so do not have to be
precise from the very beginning.

Termination Criteria: Increase the iteration limit by 1 assuming only 1 more iteration is to be done.

4. Run: To delete any existing runs which may exist in the current iteration (such as a previous
verification run), choose “Clean from Current Iteration [it]” from the Tools menu and set the current
iteration in the top menu bar.

9.3.6. User-defined point selection

Oer Sampling/'1 )

Sampling Metamodel Settings | Active Variables | Features | Constraints

Metamodel Pointselection

@ Polynomial ) Full Factorial

_) Sensitivity () Linear Koshal

1 Feedforward Neural Network ) Quadratic Koshal

() Radial Basis Function Network () Composite

_) Kriging ) D-Optimal

() Support Vector Regression () Monte Carlo

) User-defined () Latin Hypercube
) Space Filling

O-rde.r @ User-defined

(@ Linear

_) Linear with interaction Import file

) Quadratic sampling csv] l

) Elliptic

Browse

Figure 9-12: Sampling Dialog: User-defined point selection

The User-defined point selection option allows the user to specify own sampling points. This may be useful
if LS-OPT is used as a process manager. There are two formats supported to import the data, csv (comma
separated variables) and a free format.

LS-OPT Version 5.2 175



CHAPTER 9: Sampling & Metamodel Dialog

Comma separated variables

A user-defined experimental design can be specified in a text file using the .csv (comma separated
variables) format. This allows the user to import a table from a text file with the following keyword-based
format:

"Point","tbumper", ""thood",

sk, tdv', tdvt,
1,3.0000000000000000e+00,1.0000000000000000e+00,
2,5.0000000000000000e+00,1.0000000000000000e+00,
3,1.0000000000000000e+00,1.0000000000000000e+00,
4,1.0000000000000000e+00,5.0000000000000000e+00,
5,5.0000000000000000e+00,5.0000000000000000e+00,

The two header lines are required. The variable types are design variables (dv), noise variables (nv), discrete
variables (dc) or string variables (st), respectively (see also Appendix E.3.1 ). The variable names assure
that each column is tied to a specific name and will be displayed as variables in the “Parameter Setup” panel
in the Setup dialog. The variable types defined in the user file will take precedence over other type
definitions of the same variable (e.g. from the input files).

The sk variable type can be used to screen out variables. Therefore variables of the sk type will not appear
on the Parameter setup page when importing the file.

This format is convenient for use with Microsoft Excel which allows the export of a .csv text file. The
browser for specifying an input file has a filter for .csv files. This feature is also ideal for setting up an LS-
OPT run with using an exported file of Pareto Optimal points. Such a file can be produced using the Viewer.

Free format

A user-defined experimental design can also be specified in a text file using the following keyword-based
free format:

Iso_numvar 2
Iso_numpoints 3

Iso_varname t_bumper t_hood

Iso_vartype dv nv

This is a comment Iso_point 1.0 2.0
Iso_point 2.0 1.0
Iso_point 1.0 1.0

The keywords (e.g. Iso_numvar) except Iso_vartype are required but can be preceded or followed by any
other text or comments. The variable types are design variables (dv) or noise variables (nv) respectively.
The variable names assure that each column is tied to a specific name and will be displayed as variables in
the Parameter setup pane in the Setup dialog. The variable types defined in the user file will take
precedence over other type definitions of the same variable (e.g. from the input files).

This format is convenient for use with Microsoft Excel which allows the export of a .txt text file. The
browser for specifying an input file has a filter for .txt files.
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9.3.7. Advanced point selection options

Random number seed

All point selection schemes are repeatable, but a random number seed can be provided to create different
sets of random points for methods that use randomness. The feature is particularly useful for Monte Carlo or
Latin Hypercube point selections which both directly use random numbers. Because D-Optimal and Space
Filling designs also use random numbers, albeit less directly, they may only show small differences due to
the occurrence of local minima in the respective optimization procedures.

9.3.8. Replicate experimental points

For direct Monte Carlo analysis, when using stochastic fields, any particular design point can be (re-
)analyzed using different stochastic fields. These are then replicate evaluations of the same design. The
Number of Replicate Simulations can be specified in the Sampling dialog Advanced Options, Figure 9-13.
The stochastic field is controlled using the LS-DYNA® *PERTURBATION and *PARAMETER cards.
Note that the RND (random number seed) field of the card can be set to 0 to allow the field to vary freely, or
set to a positive number to get a specific stochastic field.

Ber Sampling/SGLVER 1 &

[ Metamodel Settings l Active Variables

Pointselection

Number of Replicate Simulations
() Monte Carlo .

|.5 (default is 1)

@ Latin Hypercube

) User-defined Latin Hypercube algorithm
) ] ) @ Generalized
Number of Simulation Points (per Case)

. () Central point
|1O {default is 50} |

Random Mumber Seed

Set Advanced Options :=-:=-| |'0 (default)

Reset to Default

Figure 9-13: Sampling Dialog options for direct Monte Carlo Analysis

So, in the above, the original experimental design has 10 point, hence 50 FEA evaluations will be done. See
also the example in Section 19.1.

9.3.9. Remarks: Point selection

1. The database files Experiments _n.csv, AnalysisResults n.lIsox and
AnalysisResults_n.csv are synchronous, i.e. they will always have the same experiments
after extraction of results. These files also mirror the result directories for a specific iteration.

2. Design points that replicate the starting point are omitted during the sampling phase.
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9.4. Active Variables

= Sampling ERASH ()
Sampling Metamodel Settings | Active Variables | Features | Constraints

t1
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/10
t64
t73

Figure 9-14: Sampling Dialog: Active Variables panel

The Active Variables panel shows a list of all previously defined variables, Figure 9-14. Each variable has a
checkbox that allows the user to select or deselect it for the respective sampling. Deselected variables are
treated as constants using the optimal value of the previous iteration.

The selection in the Active Variables dialog is coupled to the respective column of the Sampling Matrix
shown in the Setup Dialog, Section 8.3.

If a variable has been deselected across all the available samplings it will assume the baseline value over all
iterations. It will therefore effectively be assumed to be a constant.

The active variable selection can also be changed between iterations.
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9.5. Sampling Features

== Sampling CRASH

&

[[] Approximate Histories
Import:
[] Analysis Results
[] Metamodel
Verify:
Verify Metamodel using Checkpoints

csv-file with variable and response values

sampling & Metamodel Settings | Active Variables || Features | Constraints | Comparison Metamodels

|. | Erowse
Restart:
[] Do not augment sampling before iteration
0K
Figure 9-15: Sampling Features
Table 9-10: Sampling Features
Feature Description Reference
Approximate Histories Extension of the metamodel concept to curves. Section 9.5.1
Import Analysis Results Import table of design points (variable and response  Section 9.5.3
values)
Import Metamodel Import previsouly generated metamodel Section 9.5.4
Verify Metamodel using Calculate error measures of the metamodel usinga  Section 9.5.1
Checkpoints given metamodel and set of checkpoints (variables
and response values)
Restart: Do not augment Use larger number of sampling points from a Section 9.5.4
sampling before iteration specified iteration

9.5.1. Approximate histories

Each history curve can be pointwise (at each sampled time-step) approximated using metamodels. These
approximations of the entire history curves in time-domain are called predicted histories. These history
approximations are used to study the influence of changes in the variables as well as for parameter
identification problems. The approximation of histories is enabled by setting the Approximate Histories flag
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on the Features page of the Sampling dialog as shown in Figure 9-15. The user can approximate the data
using either linear or quadratic polynomials or by radial basis functions. The approximations are carried out
on the sampling points used for response approximations. While the approximation models for the histories
and responses can be different, the number and location of sampling points remain the same such that all
options for history approximation may not be suitable depending on the number of available data points, for
example, if the response sampling is linear polynomial the number of points sampled would not be
sufficient to approximate the histories using a quadratic polynomial and that option should be avoided. It is
also important to note that approximation of histories may take significantly long as approximations at
thousands of time-steps are carried out.

Remarks:

1. Itisassumed that the each history curve has the same number of time-steps for all points.

2. For sequential strategies, all points sampled so far would be used for creating RBF approximations,
whereas only the points sampled in the current iteration are used for polynomial approximations.

9.5.2. Verify Metamodel using Checkpoints

The error measures of any number of designs (checkpoints) can be evaluated using an existing metamodel.
There are two simple steps to obtaining a table with error data.

Browse for the file with the checkpoint information using the “Verify Metamodel using Checkpoints” option
in the Features tab in the Sampling panel. The file must be in .csv format although spaces, commas or
tabs are allowed as delimiters. The file must contain two header lines. The first header line contains the
variable and response names. The second header line contains the variable and response types; in this case
"dv", "nv”, “dc” and “st” for variables and "rs" for responses (see also Appendix E.3.1 ). For string
variables (“st”), the corresponding mapped integer values need to be provided. The mapping is stored in the
file StringVar.lsox. The variable coordinates are then specified as one row for each design point. See
example below.

Use the Evaluate Metamodels option from the Tools menu Repair option to run (see Section 3.5).
Cases without checkpoint files will be ignored.
The results are available in Isopt_report.

Example of a checkpoints file:

x1, x2, x3, Disp, Acc

dv, dv, dv, rs, rs

1.0, 1.3, 1.2, 123.6, 1278654.7
2.1, 2.2, 639.2, 2444588.1

9.5.3. Importing user-defined analysis results

A table (in text form) of existing analysis results can be used for analysis.

Browse for the file with the analysis results to import using the Import User Results option in the Features
tab in the Sampling panel.
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Two header lines are required. The first header line contains the variable names. The second header line
contains the variable types. The following lines contain the variable and response values for each design
point, see example below. The types are defined as described in Table 9-11 (see also Appendix E.3.1). The
parsing code looks for double quotes, commas, spaces and/or tabs as delimiters.

Table 9-11: Variable types

Symbol Explanation

Dv Design variable

Nv Noise variable

Rs Response

Sk Ignore
Example:

An example of a analysis results file (with 2 simulation points) is:
“varl','"var2","var3","Displacement”," Intrusion”,"Acceleration"
tdv'',  tfdv', "nv', "rs", "rs”, "rs”

1.23 2.445 3.456 125.448 897.2 223.0
0.01,2.44,1.1,133.24,244,89,446.6

The steps for importing user-defined analysis result files are as follows:

1. Sampling panel, Features tab: Browse for the text file in the Import User Results textfield. The
browser has a preference for .csv and .txt files. Variables and responses are imported
automatically into the GUI, the responses are added to the first stage of the respective sampling.

2. Sampling panel. Check that the number of points defined in the sampling panel is the same as the
number of points in the user-provided file. If fewer points are available in the file, LS-OPT will
augment the sampling points and try to run simulations.

3. Sampling pane, right mouse menu. Select "Repair”, "Import results”. This is a critical step to convert
the .csv format to the LS-OPT database format ready for analysis.

4. The user can now choose the type of analysis in the Task dialog.

a. DOE Study: Change to the Metamodel-based DOE Study task and Run. Metamodels will be
created and the Viewer can be used to study the metamodel results.

b. Optimization: Define the Objectives and/or constraints. For RBDO, define the distributions
for the input variables as well as the probability of failure.

Change to the Metamodel-based Optimization or Metamodel-based RBDO task, choose the Single Stage
strategy and Run. An optimization history is created.
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9.5.4. Importing metamodels

Metamodels can be imported for the purpose of performing metamodel-based tasks such as optimization or
reliability analysis. Only files in the LS-OPT DesignFunctions.x format (xml format) can be imported.
Figure 9-16 shows the feature for browsing an input file. To import the file, select the Import Metamodels
option in the global Repair option found in the menu bar. The import repair feature can also be found by
right-clicking on the Metamodel dialog box and selecting Repair—Import.

An automatic import feature can be selected in the Task settings (Import metamodel). This feature can be
used to automatically activate the metamodel import function as a pre-processor task before executing other
tasks such as optimization or reliability analysis. This feature is useful when performing inner level tasks in
a multi-level optimization based on existing metamodels. In such cases it is not possible to manually import
a metamodel file for each inner level run.

Sampling Sampling1
Sampling Metamodel Settings | Active Variables Features  Constraints

Import:

ANanysis Resuit
[#] Metamodel
xml-file with metamodel information

ffnnaxml Browse

Verify:
|| Verify Metamodel using Checkpoints

Restart;

Do not a Igr ent sa P g | etore iteration

oK

Figure 9-16: Sampling Dialog: Selection of metamodel import feature

9.5.5. Changing the number of points on restart*

The number of points to be analyzed can be changed starting with any iteration. This feature is useful when
the user wants to restart the process with a different (often larger) number of points. This option avoids
adding points in iterations prior to the specified iteration. The feature is sampling-specific, so must be added
to all the sampling definitions.

Example 1:

In the first analysis, the following sampling scheme was specified: a single iteration with 5 D-optimal points
was performed. By default, a single verification run is done in iteration 2.
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After the first analysis, the user wants to restart, using 10 points per iteration and 3 iterations in total. Do not
augment sampling before iteration is set to 2. Iterations 2 and 3 will then be conducted with 10 points each
while iteration one will be left intact.

Example 2:

Starting with a single iteration with 5 D-optimal points and restarting with 10 D-optimal points, but now, Do
not augment sampling before iteration is set to 1. Iteration 1 of the restart will be augmented with 5 points
(to make a total of 10), before continuing with 10 points in further iterations.

Note: The user will have to delete the single verification point generated in the first analysis before
restarting the run. For this example, this can be done by using the Run with clean start from current
iteration run option, and setting the current iteration to 2. The restart will then generate a new starting point
for iteration 2 and conduct 10 simulations altogether.

9.6. Sampling Constraints

Sampling constraints are used to specify an irregular design space. An irregular (reasonable) design space
refers to a region of interest that, in addition to having specified bounds on the variables, is also bounded by
arbitrary constraints. This may result in an irregular shape of the design space. This region of interest is thus
defined by constraint bounds and by variable bounds. The purpose of an irregular design space is to avoid
designs which may prove to be impossible to analyze.

Sampling constraints are defined in the Constraints tab of the Sampling dialog, Figure 9-17. Previously
defined constraints are available for selection in the Add new list, new constraints may be defined using the
Sampling constraint wizard, Figure 9-18, accessible by the Create sampling constraint button.

Only explicit constraints, i.e. constraints that do not require simulations, can be specified for the reasonable
design space. A typical explicit constraint could be a simple inequality relationship between the design
variables.
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] Sampling 2 3]
Sampling Metamodel Settings | Active Variables | Features | Constraints
Sampling Constraints Add new
REAS1 = Constraints
REAS2 x c3

Create sampling constraint]

Figure 9-17: Definition of Sampling Constraints by selection from list or new creation.

] Sampling constraint wizard =]
Enter a variable expression and any upper/lower bounds:
[] Lower bound: Expression: Upper bound:
|x_2-2%y_2 l<lo ]

Name: [RE,ﬂ.s 1 ]

Upon clicking "Create", a composite and a constraint will be created.

| Create | | Cancel

Figure 9-18: Sampling constrain wizard: definition of an expression and bounds

This specification of the Sampling constraint ensures that the points are selected such that the bounds are
not violated.

Remark:

A reasonable design space can be created using the D-optimal experimental design as well as the Space
Filling experimental design. These are the most commonly used options that accompany the choice of
polynomials, Radial Basis Function Networks, Neural Networks or Kriging as metamodels.
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9.7. Comparison metamodels

Additional metamodels, not used in optimization or metamodel-based Monte Carlo analysis, can be created.
These metamodels are based on the same analysis result set as the main metamodel and can be used for
comparison (see Figure 9-19). Comparison metamodels are calculated in all iterations.

A comparison metamodel is identified by a user-provided name and can be de-activated or overwritten. The
attributes of a comparison metamodel can be edited as shown for e.g. Feedforward Neural Networks in
Figure 9-20.

Sampling & Metamodel Settings ‘ Active Variables | Features ‘ Constraints ‘ Execution Comparison Metamodels

MName ‘ Active | Cwverwrite | ‘ Delete ‘ Type

|PolyLinear < il Edit x Polynormial

|Kriging < [<] Edit x Kriging

|FFNN-Serial = =] Edit  |[x FENN

|RBF g m Edit  |[x REF

BG =] m Edit = SWR

|FFNN-Parallel -] = Edit = FENMN
Add...

All active [] All overwrite
Jok

Figure 9-19: Definition of comparison metamodels.
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MName

|FFNN-Parallel

Active

Overwrite

Metamodel

O Polynomial

(») Feedforward Meural Network
() Radial Basis Function Network
() Kriging

(O Support Vector Regression

Parallel Builder

|:E-et Efficiency Options Reset

Mumber of Hidden Modes in Enseml
Lin 1 2 3
4 5 6 [7

:] [1s 110
Default = Lin-1-2-3-4-5

Murmber of Committee Members
|9 (default)

Half Number of Discarded MNets
|2 (default)

Jok

Figure 9-20: Definition of the attributes of a selected comparison metamodel.
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Composite functions can be used to combine response surfaces and variables as well as other composites.
The response components can belong to any stage. The objectives and constraints can then be constructed
using the composite functions.

10.1. Introduction

10.1.1. Composite vs. response expressions

There is an important distinction between response expressions and composites. This distinction can have a
major impact on the accuracy of the result. Response expressions are converted to response surfaces after
applying the expression to the results of each sampling point in the design space. Composites, on the other
hand, are computed by combining response surface results. Therefore the response expression will always
be of the same order as the chosen response surface order while the composite can assume any complexity
depending on the formula specified for the composite (which may be arbitrary).

Example

If a response function is defined as f(x, y) = xy and linear response surfaces are used, the response
expression will be a simple linear approximation ax + by whereas a composite expression specified as xy
will be exact.

10.2. Defining Composites

A composite can be defined by using the interfaces in the Composites dialog, Figure 10-1. To add the first
Composite, select Add Composite from the main GUI control bar Add (+) menu. To add a new definition,
select the respective interface from the list on the right. The available interfaces are explained in Table 10-1.
To edit an already defined composite, double-click on the respective entry from the list on the left.
Composites may be deleted using the delete icon on the right of the respective definition.

Remarks:

1. An objective definition involving more than one response or variable requires the use of a composite
function.

2. In addition to specifying more than one function per objective, multiple objectives can be defined
(see Section 11.2).
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Lt

ET[ i!ﬂ?@igaz"; @

Composite definition

Disp_scaled

Mass_scaled

Standard Composite: Targeted composite with components Disp
Frequency_scaled

Standard Composite: Targeted composite with components Frequency
EXPRESSION: Vehicle_Mass_NVH/39.078 Standard

StagelPulse_scaled
EXPRESSION: StagelPulse/14 512408

Stage2Pulse_scaled
EXPRESSION: Stage2Pulsef17.586303

Stage3Pulse_scaled
EXPRESSION: Stage3Pulse/20.745213

Add new
% | Composites
EXPRESSION

x Curve Matching

Standard
x Composite

Deviation

0K
Figure 10-1: Composites Dialog
Table 10-1: Composite types
Composite type Description Reference
EXPRESSION Mathematical expression using previously defined entities Section 10.3
Curve Matching Curve matching metrics Section 10.5
Standard Composite Weighted or targeted composites Section 10.4
Standard Deviation Standard deviation of another response or composite Section 10.6

Copy

Copy the selected Composite

Paste

Paste a previously copied Composite. The next free number is
automatically appended to the name.
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10.3. Expression composite

MNarme:

REAS2 |
Expression: _
|2%x_2-y_2 |

Figure 10-2: Definition of a Composite Expression

A mathematical expression can be specified for a composite. The composite can therefore consist of
previously defined constants, variables, dependent variables, responses and other composites (see Appendix
F: Mathematical Expressions).

10.4. Standard composite

The Standard composite dialog is displayed in Figure 10-3. First the composite function type has to be
selected, Table 10-2. Then select the Response or Variable components to be used to calculate the
composite from the list on the right. The selected components appear in the list on the left with text fields to
specify weighting and scaling factors and target values, respectively. Selected components can be deleted
from the list by using the delete icon on the left of the entity name.

The composite function types are explained in detail in the following sections, Table 10-2.
Note that each formulation could alternatively be defined as a composite expression, examples are given in
the following sections. Using the Standard Composite interface is convenient in many cases.

Table 10-2: Standard Composite function types

Composite function type Reference

Weighted Section 10.4.3
MSE Section 10.4.2
Sgrt MSE Section 10.4.1

LS-OPT Version 5.2 189



CHAPTER 10: Composite Dialog

Mame for composite Composite function type
Intrusion | | Weighted > |
Composite components Add new
Entity Multiplier Divisor Responses -]
) o _ Acc_rmax
% Intru_2 |_-1 (default is lII_| | 1 idefault}] Mass
® Intru_1 | 1 I:default.‘.l] | 1 I:default]'] Variables )
t_hood
t_burnper
t_arill
t_roof
t_rail_front [ |
t_rail_back
[~]

Figure 10-3: Standard Composite Interface

10.4.1. Targeted composite (square root of MSE)

This is a standard composite in which a target is specified for each response or variable in the Target text
field. The composite is formulated as the “‘distance’ to the target using a Euclidean norm formulation. The
components can be weighted and normalized.

:

m 2 n
(x) — F x;: — X
j=1 J i=1 Xi

where o and y are scale factors (to be specified in the Divisor text fields) and W and o are weight factors
(to be specified in the Multiplier text fields). These are typically used to formulate a multi-objective
optimization problem in which F is the distance to the target values of design and response variables.

In the GUI this type is selected as the Sqrt MSE composite function type.
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- ompa ®
Name for composite Composite function type

F_damage l | Sqrt MSE v |

Composite components Add new

Entity Multiplier Divisor Target Responses

. N y | | Disp2
x intrusion_3 | 1 Edefault}] | 30 (default is 1]!_| | ED_| Disp1

ACC max

x intrusion_4 | 1 I:default]l] [25 (default is 1}][ |35]

intrusion_3

intrusion 4

Variables

thurmper
thood

Cancel | | oK

Figure 10-4: Definition of targeted (Root MSE) composite response in LS-OPTui

A suitable application is parameter identification. In this application, the target values F; are the
experimental results that have to be reproduced by a numerical model as accurately as possible. The scale
factors oj and y; are used to normalize the responses. The second component, which uses the variables, can
be used to regularize the parameter identification problem. Only independent variables can be included. See
Figure 10-4 for an example of a targeted composite response definition. Here, F_damage will be calculated
as

intrusion; — 201°  rintrusion, — 35 2
Faamage = [ 30 ] * [ 25

The equivalent expression composite is:
sgrt(((intrusion_3 - 20)/30)**2 + ((intrusion_4 + 35)/25)**2)}
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10.4.2. Mean squared error composite

This standard composite is the same as the targeted composite, except that the square root operation is
omitted. This allows for composites to be added to make a larger composite (similar to the vector ordinate-
based Mean squared error composite in Section 10.5.1).

10.4.3. Weighted composite

Weighted response functions and independent variables are summed in this standard composite. Each
function component or variable is scaled (to be specified in the Divisor text fields) and weighted (to be
specified in the Multiplier text fields).

n

m
F=ZW]-f’( )+Zwi—l
= Oj Xi

i=1

These are typically used to construct objectives or constraints in which the responses and variables appear in
linear combination.

An example is given in Figure 10-3.

The equivalent expression composite is
Intru_1 — Intru_2.

Needless to say, this is the preferable way to define this composite.

10.5. Curve Matching Composite
The Curve Matching interface provides two metrics for comparison of a target curve and curves extracted
from simulation runs, Figure 10-5. The options are explained in Table 10-3.

To evaluate these composites, predicted histories (histories approximated by metamodels) are used, see
Section 9.5.1 for details.
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- History matching composite

Name:

|MSE1

Algorithm:
@ Mean Square Error (difference in curve Y values)

() Curve Mapping (size of area between curves)

Target curve:

Computed curve:

lTestl ‘ ~ | add new file history

[Fl_vs_dl

| v]

Regression points
@ From target curve

) Fixed number (equidistant, interpolated)

You can convert this composite to an expression for further fine-tuning.

Figure 10-5: History Matching Composite Dialog

Table 10-3: History Match Composite options

Option Description

Reference

Algorithm Curve matching metric to calculate “distance” between
target and computed curve:

0 Mean Square Error (Ordinate-based)
o Curve Mapping

Section 10.5.1
Section 10.5.2

Target Curve Previously defined File history containing target values.
add new file history If the file history to be used as Target curve is not already ~ Section 6.17
defined, this can be done here.
Computed curve Previously defined history or Crossplot extracted from
simulation results
Regression points Regression points used to calculate composite:
From target curve
Fixed number (equidistant, interpolated)
convert this composite  Use a composite expression to define curve matching Appendix F:
to an expression metric to be able to add further arguments
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10.5.1. Ordinate-based Curve Matching

A composite function is provided to compute the Mean Squared Error € for the discrepancy between two

curves:
2 2
gzlpw M zlpw ep(x)
P& P s P& °l s

p

It is constructed so that G, , p=1, ..., P are the values on the target curve G and f,(x) the corresponding
components of the computed curve f. f,(x) are represented internally by response surface values. x is the
design vector. s, = max |G| , p=1, ..., P. By using the default values, the user should obtain a dimensionless
error € of the order of unity. See Section 24.3.1 for more detail.

Note:

1. Only points within range of both curves are included in Equation (13-3), so P will be automatically
reduced during the evaluation if there are missing points. A warning is issued in
WARNING_MESSAGE .

2. The Mean Square Error composite makes use of response surfaces to avoid the nonlinearity
(quadratic nature) of the squared error functional. Thus if the response curve f(x) is linear in terms of
the design variables x, the composite function will be exactly represented.

3. Mean Square Error composites can be added together to make a larger MSE composite (e.g.
for multiple test cases).

4. The simplest target curve that can be defined has only one point.

Ordinate-based Curve Matching should not be used for a non-monotonic abscissa (e.g. as found in
hysteretic behavior) of the target curve. For this purpose, Curve Mapping (Section 10.5.2, Section
24.3.2) is available.

10.5.2. Curve Mapping

In contrast to the Mean Square Error curve-matching metric described in Section 10.5.1, Curve Mapping
incorporates the ordinate and the abscissa into the curve-matching metric Points of the one curve are
mapped onto the second curve and the volume (area) between the two curves is computed. It is therefore
highly suited to matching hysteretic curves. Both curves are normalized internally to adjust the magnitude of
ordinate and abscissa, respectively. Since the curves could be of significantly different length, partial
mapping is done.

Please refer to Section 24.3.2 for the theory of Curve Mapping.

Note:

It is recommended that both curves be filtered before matching to obtain curves which are as noise-free as
possible. This avoids discrepancies in curve length which will affect the result. A general history filtering
feature is available (see Section 6.4.3).
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10.6. Standard Deviation Composite

The standard deviation of another response or composite can be specified to be a composite, Figure 10-6.
The dialog shows a list containing all previously defined responses and composites. The one to be used to
calculate the standard deviation has to be selected.

= Standard Deviation )]

Mame for composite

| Std_Stress |

= Stage SOLVER_1
Weight

Composites

| Cancel || [a]4

Figure 10-6: Definition of a Standard Deviation composite

The variation of response approximated using response surfaces is computed analytically as documented for
the LS-OPT stochastic contribution analysis, Section 25.7. For neural nets and composites a quadratic
response surface approximation is created locally around the design, and this response surface is used to
compute the robustness. Note that the recursion of composites (the standard deviation of a composite of a
composite) may result in long computational times especially when combined with the use of neural
networks. If the computational times are excessive, then the problem formulation must be changed to
consider the standard deviations of response surfaces.
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Objectives, Constraints and
Algorithms

This chapter describes the specification of objectives and constraints for the design formulation and the
optimization algorithms used for metamodel optimization.

11.1. Formulation of the optimization problem

Multi-criteria optimal design problems can be formulated. These typically consist of the following:
1. Multiple objectives (multi-objective formulation)
2. Multiple constraints.

Mathematically, the problem is defined as follows:

Minimize F(D,,@,,...,0y)

subject to

where F represents the multi-objective function, @, :(Di(xl,Xz,...,Xn) represent the various objective

functions and g; = gj(xl,xz,..., Xn) represent the constraint functions. The symbols x; represents n design
variables.

In order to generate a trade-off design curve involving objective functions, more than one objective @,
must be specified so that the multi-objective
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N
F=> 0o, (11-1)

k=1

A component function must be assigned to each objective function where the component function can be
defined as a composite function F (see Chapter 10) or a response function f (see Chapter 6).

11.2. Defining objective functions

Objectives are defined in the Objectives tab of the Optimization dialog, Figure 11-1. To define an
objective, select a response or composite from the list on the right, that contains all previously defined
responses and composites. The entity will show up in the list on the left. For each objective, a weight has to
be specified using the Weight text field. If multiple objectives are defined, LS-OPT uses the weights to build
a multi-objective function as described in Section 11.1. The weight applies to each objective as represented
by ax in Equation (11.1). Note that the optimization result depends in the specified weights.

The weights are not used in Multi-Objective Optimization, except to record the scalar multi-objective value.
Additional options are described in Table 11-1.

(Zad @ptimization =)

Objectives | Constraints = Algorithms

[[] Maximize the Objective Function (instead of minimize)

[] Create Pareto Optimal Front (Multi-Objective Mode)

Objective components: Add new
Response/Composite Weight Responses =
— Disp
® Disp_scaled | 1 Edefault)l time to 184
) ) time_to_334
x Mass_scaled | 1 fdefault)l

time_to_max
Integral_0_184
Integral_184_334
Integral_334_max
StagelPulse
StageZPulse 3
Stage3Pulse
Vehicle_Mass_NVH
Frequency

Mode

Generalized_Mass
Composites

Frequency_scaled

StagelPulse_scaled
Stage2Pulse_scaled | |
Stage3Pulse_scaled [~]

o |

Figure 11-1: Objective panel in LS-OPTui Optimization dialog.
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Table 11-1: Objective options

Option Description

Maximize Objective The default is to minimize the objective functions. The program can
Function (instead of however be set to maximize the objective functions.

minimize)

Create Pareto Optimal Front  Pareto optimal solutions are calculated instead of a single optimum.
(Multi-Objective Mode) This option is only available if multiple objectives are defined. See
also Section 4.9.

11.3. Defining a constraint

Constraints are defined in the Constraints tab of the Optimization dialog, Figure 11-2. To define a
constraint, select a response or composite from the list on the right, that contains all previously defined
responses and composites. The selected entity will show up in the list on the left. To specify a lower or an
upper bound, select the respective hyperlink and enter the desired value in the text field.

Additionally, for Reliability Based Design Optimization, the probability of exceeding a bound on a
constraint can be set.

Internal constraint scaling can be defined by selecting the Constraint scaling option and defining the
respective scaling factors in the Divisor text field, Section 11.3.1.

To delete a constraint definition or a bound, use the respective delete icon.
If Show advanced options is selected, the Strict option is available. For details, see Section 11.3.2.
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Objectives | Constraints | Algorithms

Constraint scaling (interna

[[] Show advanced options

Optimization constraints: Add new
Response Lower Bound Diwvisor Upper Bound  Divisor Responses ]
. L . Disp
x StagelPulse x| 14.512408| |14.5124 (def| Set upper bound time to 184
time_to_334

x Stage2Pulse

x

[ 17586303 [17.5863 (def| Set upper bound .
L )L ) time_to_max

Integral_0_184
Integral_184 334 1
Integral_334_max
Disp_scaled

Vehicle_Mass_MNWVH

x Stage3Pulse

x

| 20.745213| (207452 (def] Set upper bound

x

* Frequency | 41384691 (413847 (def| x [ 42381500 [42.3815 (def|

Mode
Generalized_Mass

Mass_scaled

Composites

Figure 11-2: Constraints panel in LS-OPTui

11.3.1. Internal scaling of constraints

Constraints can be scaled internally to ensure normalized constraint violations. This may be important when
having several constraints and an infeasible solution so that when the maximum violation over the defined
constraints is minimized, the comparison is independent of the choice of measuring units of the constraints.
The scale factor s; (to be specified in the respective Divisor test field) is applied internally to constraint j as
follows:

_gj(XL)—i-Lj <0 gj(x)U—Uj <
| !

0

A logical choice for the selection of sis s} =L, and s =U,, so that the above inequalities become

(X
+1<0; glJJ—()—léo

i i

_gj(x)
L.

internally and in the infeasible phase:

-1<e;e>0.

_gj(x)+1§e; gj(X)
L. U

i i
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11.3.2. Minimizing the maximum response or violation*

Refer to Section 24.1 for the theory regarding strict and slack constraints. To specify hard (strict)
constraints, select the respective Strict checkboxes. Otherwise constraints are soft (slack) constraints.

The purpose of a formulation using strict and slack constraints is to compromise only on the slack
constraints if a feasible design cannot be found.

Remarks:

o M W D oE

The objective function is ignored if the problem is infeasible.

The variable bounds of both the region of interest and the design space are always hard.
Soft constraints will be strictly satisfied if a feasible design is possible.

If a feasible design is not possible, the most feasible design will be computed.

If feasibility must be compromised (there is no feasible design), the solver will automatically use the
slackness of the soft constraints to try and achieve feasibility of the hard constraints. However, there
is always a possibility that hard constraints must still be violated (even when allowing soft
constraints). In this case, the variable bounds may be violated, which is highly undesirable as the
solution will lie beyond the region of interest and perhaps beyond the design space. This could cause
extrapolation of the response surface or worse, a future attempt to analyze a design which is not
analyzable, e.g. a sizing variable might have become zero or negative.

Soft and strict constraints can also be specified for search methods. If there are feasible designs with
respect to hard constraints, but none with respect to all the constraints, including soft constraints, the
most feasible design will be selected. If there are no feasible designs with respect to hard constraints,
the problem is ‘hard-infeasible’ and the optimization terminates with an error message.

11.4. Algorithms

Optimization algorithms for metamodel-based optimization can be selected in the Algorithms tab of the
Optimization dialog, Figure 11-3.

The core solvers that can be used for metamodel optimization are LFOP, the Genetic Algorithm (GA),
Adaptive Simulated Annealing (ASA) and Differential Evolution. Hybrid algorithms may also be selected
by selecting Switch to LFOP, namely the Hybrid GA and Hybrid ASA. The hybrid algorithms start with the
GA and ASA to find an approximate global optimum after which LFOP is used to sharpen the solution. The
solution to a hybrid algorithm will be at least as good as the one provided by the global optimizer (GA and

ASA).

Hybrid Simulated Annealing is the default.

For each algorithm, advanced settings are available using the respective Show *** Settings button.
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o Optimization B

Objectives | Constraints | Algorithms

Optimization Algorithm
() LFOP

O GA

@ ASA

() Differential Evolution

Switch to LFOP
Show LFOP Settings

Show ASA Settings

Figure 11-3: Selecting the optimization algorithm used for the optimization on the metamodel

Table 11-2: Algorithms options

Option Description Reference

LFOP Leapfrog Optimizer Section 11.4.1, Section 23.7
GA Genetic Algorithm Section 11.4.2, Section 23.8
ASA Adaptive Simulated Annealing Section 11.4.3, Section 23.10
Differential Evolution Differential Evolution Section 11.4.4, Section 23.11
Switch to LFOP Hybrid version Section 23.12

11.4.1. Setting parameters in the LFOPC algorithm*

The values of the responses are scaled with the values at the initial design. The default parameters in
LFOPC should therefore be adequate. Should the user have more stringent requirements, the following
parameters may be set for LFOPC. These can be set in the GUI if Show LFOP Settings is selected. See
Section 23.7 for the theory of LFOPC.
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= Optimization. =)
Objectives | Constraints | Algorithms
Optimization Algorithm Number of Multi-Start Points
@ LFOP [(defautt) |
O GA Penalty Parameter mu
) ASA
§ | 100 (default) |
Show LFOP Settings l Penalty Parameter mumax
| 10000 (default) |
Convergence Criterion xtol
| 1e-08 (default) |
Convergence Criterion eg
| 1e-05 (default) |
Maximum Step Size
|1 (default) |
Maximum Number of Steps
| 1000 (default) |
Print Control Number
|10 (default) |
Reset Defaults |
oK
Figure 11-4: LFOP settings
Table 11-3: LFOPC parameters and default values
Option Parameter Remark
Number of Multi-Start Points  Number of Multi-Start Points
Penylty Parameter mu Initial penalty value u
Penalty Parameter mumax Maximum penalty value g max 1
Convergence Criterion xtol Convergence tolerance & on the step movement 2
Convergence Criterions eg Convergence tolerance & on the norm of the gradient 2
Maximum Step Size Maximum step size & 3
Maximum Number of Steps ~ Maximum number of steps per phase 1
Print Control Number Printing interval 4
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Remarks:

1. For higher accuracy, at the expense of economy, the value of x max Can be increased. Since the
optimization is done on approximate functions, economy is usually not important. The maximum
number of steps must then be increased as well.

2. The optimization is terminated when either of the convergence criteria becomes active that is when
A <&,
or
[Vf ()] < &,

3. It is recommended that the maximum step size, o6, be of the same order of magnitude as the
“diameter of the region of interest”. To enable a small step size for the successive approximation

scheme, the maximum step size has been defaulted to & = O.OSJZ?ﬂ(range)2 .

4. If the Print Control Number = Maximum umber of steps + 1, then the printing is done on step 0 and
exit only. The values of the design variables are suppressed on intermediate steps if the Print Control
Number < 0.

In the case of an infeasible optimization problem, the solver will find the most feasible design within the
given region of interest bounded by the simple upper and lower bounds. If LFOP is selected as a non-hybrid
optimizer, a global solution is attempted by multiple starts from a set of random points.

11.4.2. Setting parameters in the genetic algorithm*

The default parameters in the GA should be adequate for most problems. However, if the user needs to
explore different methods, the following parameters may be set in the GUI (see Figure 11-5). See Section
23.8 for the theory of the Genetic Algorithm.

Objectives | Constraints | Algorithms

Optimization Algorithm Constraint Handling Selection Operator Crossover Type Mutation Distribution
) LFOP Deb ECH & | | Tournament | $| | SBX < |W|
. GA Restart Interval Tournament Size  Crossover Distribution ~ Mutation Probability
S ASA |:25 (default) | |2 (default) | |:10 (default) | |:0-155557 (default) |

[] Switch to LFOP - ) ) -
Max Repeat Optimum/Generations Number of Elites Crossover Probability

|:D.1 (default) | |2 (default) | |:1.D (default) |

Population Size

|-1CICI (default)

Number of Generations Reset Defaults

|:250 (default) |

| Show GA Settings |

Figure 11-5: GA settings
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Table 11-4: GA parameters and default values

Option

Parameter Remark

Population Size

Population size (always even)

Number of Generations

Number of generations

Selection Operator

Selection operator: Tournament, Roulette, SUS

Tournament Size

Tournament size for tournament selection operator

Elitism

Switch elitism for single objective GA: ON/OFF

Number of Elites

Number of elites passed to next generation

Encoding variable

Type of encoding for a variable: Binary=1, Real=2

Numbits variable

Number of bits assigned to a binary variable

Crossover type

Type of real crossover: SBX, BLX

Crossover probability

Real crossover probability

Alpha value for BLX

Value of a for BLX operator

Crossover distribution

Distribution index for SBX crossover operator

Mutation probability

Mutation probability in real-space

Mutation distribution

Distribution index for mutation operator

Algorithm Subtype

Multi-objective optimization algorithm: NSGA2,
SPEA2

Restart Interval

Frequency of writing restart file. For multi-
objective problems, this parameter governs the
frequency of writing TradeOff files

Max Repeat
Optimum/Generations

Maximum number of generations allowed to repeat
as a fraction of the total number of generations
allowed.

Constraint Handling

Constraint handling types: Deb Efficient
Constraint Handling, Penalty
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11.4.3. Setting parameters in the simulated annealing algorithm*

The adaptive simulated annealing parameters can be modified in the GUI, Figure 11-6. See Section 23.10
for the theory of Adaptive Simulated Annealing.

Ber Optimization =
Objectives | Constraints | Algorithms

Trmin/Trmax (Ratio)

|:1e-6 (default) |

Optimization Algorithm
O LFoP

O GA

@ ASA

Annealing Scale
11000 (default) |

[[] Switch to LFOP i
Cost-Parameter Anneal Ratio

|:1.0 (default) |

Show ASA Settings l

Maxirmum Function Evaluations
110000 (default) |

Function Evaluations/Temp step

|:1 (default) |

Reset Defaults

Figure 11-6: ASA settings

Table 11-5: ASA parameters and default values

Option

Parameter

Tmin/Tmax (Ratio)

Ratio of minimum and maximum temperature

Annealing Scale

Annealing scale

Cost-Parameter Anneal Ratio

Ratio of cost temperature ratio and parameter temperature ratio

Maximum Function Exaluations

Maximum number of function evaluations

Runction Evaluations/Temp step

Number of function evaluations at some temperature

11.4.4. Differential Evolution

This algorithm is only available if discrete and string variables as well as constraints are absent from the
optimization problem.
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11.5. Algorithms for metamodel based Monte Carlo analysis

Ga @ptimization (3]

Objectives = Constraints || Algorithms

[[] Use Approximation Residuals

Reliability Resolution

|1e+06 (default)

Figure 11-7: Algorithm Options for Metamodel based Monte Carlo Analysis

Table 11-6: Algorithm Options for Metamodel based Monte Carlo Analysis

Option Description

Use Approximation Residuals  If noise was found when the metamodel was created, then this noise
may be reproduced whenever the metamodel is used for reliability
computations. This is possible only for the response surfaces and
neural nets. The noise is normally distributed with a zero mean and a
standard deviation computed from the residuals of the least square
fit.

Reliability Resolution The number of Monte Carlo samples to be analyzed can be set by the
user. These samples are evaluated based on the metamodels and not
using the actual solver.
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12. Termination Criteria

This chapter explains termination criteria for iterative tasks.

12.1. Metamodel based methods

Depending on the optimization task and strategy, the user can specify tolerances on the design change (Ax;),
the objective function change (Af) or the accuracy of the metamodel. The user can also specify whether
termination is reached if any one (or condition), or all (and condition) of these criteria are met, Figure 12-1.
The options are described in Table 12-1.

Tolerance Required for Termination

@ Design AND Objective AND Metamodel Accuracy
) Design OR Objective OR Metamodel Accuracy

Design Change Tolerance

|D.D1 idefault is 0.01) |

Objective Function Tolerance

|D.Dl (default is 0.01) |

Maximurm number of lterations

= |

[10 :

Figure 12-1: Termination Criteria dialog for metamodel based optimization, strategy sequential with
domain reduction
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Table 12-1: Termination Criteria options for metamodel based optimization

Option Parameter Reference
Tolerance Required for Design AND Objective AND Metamodel Accuracy -

Termination Design OR Objective OR Metamodel Accuracy

Design Change Tolerance Tolerance on design accuracy & Section 12.1.1
Obijective Function Tolerance on objective function accuracy & Section 12.1.1
Tolerance

Response Accuracy Tolerance on accuracy of response surface & Section 0
Tolerance

Maximum number of Maximum Number of Iterations Section 12.1.3
Iterations

12.1.1. Design Change Tolerance and Objective Function Tolerance

The design change termination criterion and the objective function termination criterion are available for
the strategy sequential with domain reduction and the sequential strategy, if no Pareto optimal solutions are
calculated.

The design change termination criterion becomes active if

o -t

— <&
d]

X

where X refers to the vector of design variables and d is the size of the design space.
The objective function termination criterion becomes active if

£ _ f D

= <&

where f denotes the value of the objective function, (k) and (k—1) refer to two successive iteration
numbers.

The use of these termination criteria is recommended for a metamodel based optimization with strategy
sequential with domain reduction.

12.1.2. Response Accuracy Tolerance

The response accuracy tolerance criterion is available for the sequential strategy.
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The tolerance on the metamodel accuracy is based on the change of the prediction accuracy measure (square
root of the PRESS error, Section 21.3.5). The measure is divided by the mean of the simulated values used
to construct the response surface unless this mean is zero. The value of the most critical response is used.

The response accuracy tolerance termination criteron becomes active if

50 -5 <,

where s; denotes the approximation error of i response characterized by the ratio of square root PRESS
statistics and the mean value of response and, (k) and (k — 1) refer to two successive iteration numbers.

The use of this termination criterion is recommended for the sequential strategy, if the iterative process is
used to improve the quality of the metamodel. Make sure to use the OR option and set the other tolerances
to 0.

12.1.3. Maximum Number of Iterations

The maximum number of optimization iterations is specified in the appropriate field in the Termination
Criteria dialog. If previous results exist, LS-OPT will recognize this (through the presence of results files in
the Run directories) and not rerun these simulations. If the termination criteria described above are reached
first, LS-OPT will terminate and not perform the maximum number of iterations.

12.2. Direct Optimization

% Termination Criteria (X

Terrnination Criteria

@ Maximum Functions/Generations
() Fixed Consolidation Ratio

() Consolidation Ratio Change

) Hypervolume Change

Generation gap

|:10 (default) |

Max Repeat Optimum/Generations

[D.l (default) |

Number of generations

|:1OD (default) |

Figure 12-2: Termination Criteria dialog for multi-objective direct optimization

Termination criteria are available for multi-objective optimizers. While the default selection is maximum
number of function evaluations/generations, one can also use consolidation ratio or hypervolume based
metrics to terminate the search as shown in Figure 12-2. The available options are described in Table 12-2.
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,w Termination Criteria

&)

Max Repeat Optimum/Generations

|D.1 (default)

Number of generations

100 (default)

Figure 12-3: Termination Criteria Dialog for single-objective direct optimizationTable 12-2: Termination

criteria and default values

Table 12-3: Termination Criteria options for multi-objective optimization

Item

Parameter

Termination Criterion

MOO performance metric": Consolidation Ratio | Variable
Consolidation Ratio | Hypervolume

“No information needed for maximum function criterion

Generation gap

Interval to calculate MOO performance metrics

Normalized hypervolume
change threshold

Threshold value for the change in normalized hypervolume

Utility fraction cutoff

Parameter F defining bound (CR;/F) on the variation in the

consolidation ratio

Consolidation ratio threshold

Threshold value of the consolidation ratio

Max Repeat
Optimum/Generations

Fraction of the limit on the total number of generations. This
fraction acts as a limit on the number of repeated solutions.

Number of generations

Maximum number of generations. If the termination criteria
described above are reached first, LS-OPT will terminate and not
perform the maximum number of generations.
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13. Probabilistic Modeling and
Tasks

This chapter summarizes the specifications for probabilistic problems, such as tasks, variable setup,
constraint definition etc. It also provides additional probabilistic task-specific details of these definitions.
Probabilistic evaluations investigate the effects of uncertainties in the system parameters on the responses.

Based on the uncertainty model and problem specification, the statistics of variation of the system
responses, such as the nominal value of the response, reliability, and extreme values, can be computed. The
results can be viewed using the Viewer. The simulation statistical tools (histogram, probability of constraint
violation, summary, correlation and covariance plots), scatter, parallel coordinate and correlation matrix
plots are pertinent to a pure Monte Carlo (MC) analysis. For a metamodel-based Monte Carlo evaluation,
the Accuracy, Sensitivities, and Stochastic Contribution plots are relevant in addition to the statistical tools,
scatter, and correlation plots.

More background on the probabilistic methods is given in Chapter 25 (the theoretical manual), while
example problems can be found in Chapter 20. The LS-DYNA results can be investigated for possible
bifurcations using DY NAStats described in Chapter 16.

13.1. Probabilistic problem modeling
The definition of a probabilistic problem has several differences and additional features compared to a
deterministic problem. The specifications for introducing probabilistic effects are:

1. Modeling of uncertainties: The source of the variation can be the variation of the design variables
(control variables) as well as the variation of noise variables, whose value is not under the control of
the analyst such as the variation in a load. The variation of the system parameters is described by:

o0 Defining a statistical distribution
0 Assigning the statistical distributions to design variables, Section 13.2

2. Definition of the probabilistic task: The available task options are Direct Monte Carlo Analysis,
Metamodel-based Monte Carlo Analysis and RBDO/Robust Parameter Design.

3. Additional task-dependent problem specifications:

0 Experimental Design: For Monte Carlo analysis, a suitable sampling strategy based on the
variable statistical distributions is needed. This is not the case in metamodel-based tasks.
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0 Objective and constraint: Constraint bounds are used as failure limits for reliability
computations. In the case of RBDO a target failure probability is also needed.

13.2. Probabilistic distributions

The most common way of describing the randomness or uncertainty of an input is through probabilistic
distributions associated with random variables. The definition of a probabilistic distribution using the
Distribution menu of the Parameter Setup panel in the LS-OPT GUI is presented in Figure 13-1. A
distribution can be defined using “Add new distribution”. It is not required for a distribution to be associated
with a variable. Many design variables can refer to a single distribution. New distribution definitions can be
added and already defined distributions edited by using the Statistical Distribution dialog accessible from
the Distribution menu in the Parameter Setup panel, Figure 13-1. The Distribution menu is also used to
assign a distribution to a parameter. For each distribution, a name has to be specified, and the type selected.
Additional parameters to be specified are described in the following sections for each distribution type.

| Parameter Setup | Stage Matrix = Sampling Matrix | Resources @ Features

[[] show advanced options

] Enforce Variable Bounds

Type Narme Starting Minirmurm Maxirmum Distribution Delete
| Continuous v |[xa i 2000 1926 || 2120 for X1 |w|x
[Continuous | ~ |[><2 H 5][ 2” 8] (none)
[Continuous | v |[><3 H 100][ 44_?][ 159_8] for_X2 Edit Delete
lContinuous | v |[><4 ][ 60][ 50_3][ 76.g|| for_X3 Edit Delete
- for_X4 Edit Delete
lContmuous | ~ |[>(5 H 50][ 21.?” 102.2] for_X5 Edit Delete
[Continuous | v |[><6 H 60][ 53_?][ ?5_9] for_x6 Edit Delete
for X7 Edit Delete
[continuous [ v |[x7 I y ossssos| 35002 " et pelete
[Continuous | v |[x8 I 1500|| 1465 45| | 1528.5 | for_X10 Edit Delete
- for_X11 Edit Delete
[NOISE | s ng l for_X12 Edit Delete
lNoise | v |[>(1CI l Add new distribution
lNoise | v |[x11 |
lNoise | v [[x12 |
Add...

Figure 13-1: Setup Dialog, Parameter Setup: Definition of Probabilistic Distributions
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Beta distribution

The beta distribution is quite versatile as well as bounded by two limits. The shape of the distribution is
described by two parameters g and r, Table 13-1. Swapping the values of g and r produces a mirror image of
the distribution.

m  statistical Distribution X

Distribution Name[distBeta

Type [ Beta |

|
|
. . —| L a=2 b=5
Upper [5 | 0.8 I
q 1 | q=1 r=2 q=2 r=1
r 1 | ]

Preview Mean = 3.5; Std Dev = 0.866 f(x)

0.4 -
0.36
0.35
0.2
0.34
& 4 0 |
1.5 53
o x

Figure 13-2: Beta distribution

Table 13-1: Parameters defining a Beta distribution

Item Description
Lower Lower Bound
Upper Upper Bound

Q Shape parameter g
R Shape parameter r

Binomial distribution

The binomial distribution is a discrete distribution describing the expected number of events for an event
with probability p evaluated over n trails, Table 13-2. For n=1, it is the Bernoulli distribution (experiments
with two possible outcomes — success or failure) with probability of success p.
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m  Statistical Distribution (%
Distribution Name[distBin l
Type | Binomial s |
p [0-1 l 05
n [3| l 045
Preview Mean = 0.3; Std Dev = 0.5196 04
0.8 035 -
~ 03+
0.6
% 025 -
T
0.4 02—
0.15
0.2
01
0 2 005
0 | 1 | | |
| ok | 0 2 4 6 8 I
n

Figure 13-3: Binomial distribution

Table 13-2: Parameters defining a Binomial distribution

Item Description
P Probability of event (Success)
N Number of trials

Lognormal distribution

If X is a lognormal random variable with parameters p and o, Table 13-3, the random variable Y = In X has
a normal distribution with mean p and variance o°.
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m  Statistical Distribution %

Distribution Name[logDist

l
Type l Lognormal |i|
Mean [12.3 l
Standard Dev [1.1 l
Mramiewd 023e+05; Std Dev = 6.172e+05
3E-06-
2.5E-06 \ fla)
2E-06 \
1.5E-06 \
1E-06 \
5E-07 N
0
0 2E+06
| oK | T SI- §I|' J.:

Figure 13-4: Lognormal distribution

Table 13-3: Parameters defining a Lognormal distribution

Item Description
Mean Mean value in logarithmic domain
Standard Dev Standard deviation in logarithmic domain

Normal distribution

The normal distribution is symmetric and centered about the mean p with a standard deviation of c.
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m!  Statistical Distribution (/%]

Distribution Name[normaIDist

l

Type | Normal s |

Mean [12.3 l
Standard Dev [1.1 l orr
013

Preview Mean = 12 3; Std Dev =11
0l6 -

0.4 |
fla)

0.3 /\ olz -
[\

ol

0.2
/ \ oos |-
0.1

/ \ 4l ]

o -
10 15 oo -
a 1 : LT
QK -0 -3 -& -4 -1 4] 2 4 & 4 u

Figure 13-5: Normal Distribution

Table 13-4: Parameters defining a Normal distribution

Item Description
Mean Mean value
Standard Dev Standard deviation

Truncated normal distribution

The truncated normal distribution is a normal distribution with the values constrained to be within a lower
and an upper bound. This distribution occurs when the tails of the distribution are censored through, for
example, quality control.
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= Statistical Distribution m

Distribution Name[truncNormaI

Type l Truncated Normal IC

Mean [12.3

Standard Dev [1.1

Lower [10

Upper [12

|
|
l
| |
l
l

Preview

Mean = 11.3; Std Dev = 0.4999

f(x)

1

e

0.25 pd

0.75 =
0.5 /

oL~

10

12 B

m=0 s=2 low=-2 upper=4

— 0
|. oK | -10

Figure 13-6: Truncated Normal Distribution

Table 13-5: Parameters defining a truncated Normal distribution

Item

Description

Mean

Mean value

Standard Dev

Standard deviation

Lower

Lower bound on values

Upper

Uniform distribution

The uniform distribution has a constant value over a given range.

Upper bound on values
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m Statistical Distribution =
Distribution Name[uniDist |
Type [ Uniform |C |
Lower |.1.2 | o5 - lf{b—ﬂ:l
Upper |.3.4 | Q45 =
04 -
Preview Mean = 2.3; Std Dev = 0.6351 a1s b 2 bed
0.5 ' a=
03+
0.4 fx)
025 -
0.3 0 L
0.2 0ls -
ol
0.1
0os -
0
o ! ! ! ]
0 5 o 1 2 k| 4 5 4
ok |
x

Figure 13-7: Uniform Distribution

Table 13-6: Parameters defining a Uniform distribution

Item Description
Lower Lower bound
Upper Upper bound

User defined distribution

A user-defined distribution is specified by referring to the file containing the distribution data.

The probability density is to be assumed piecewise uniform and the cumulative distribution to be piecewise
linear. Either the PDF or the CDF data can be given:

o PDF distribution: The value of the distribution and the probability at this value must be provided
for a given number of points along the distribution. The probability density is assumed to be
piecewise uniform at this value to halfway to the next value; both the first and last probability must
be zero.

o0 CDF distribution: The value of the distribution and the cumulative probability at this value must be
provided for a given number of points along the distribution. It is assumed to vary piecewise
linearly. The first and last value in the file must be 0.0 and 1.0 respectively.

Lines in the data file starting with the character ‘$” will be ignored.
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PDF File
-1000
0020
1030
2000

CDF File
-0.500
05 04
1510

= Statistical Distribution =
Distribution NamelDist_U_P |
Type lUserPDF fgw
User File |U_PDF.dat || Browse |
Preview Mean = 11; Std Dev = 0.2887
1 PiX)
0.8 5
0.6
2 1
0.4
1 1
0.2
: |
10 12
-1
o

Figure 13-8: User defined distribution

Table 13-7: Parameters defining a User defined distribution

Item Description

User File Name of file containing the distribution data

Example: User PDF file

$ Demonstration of user defined distribution with
$ piecewise uniform PDF values

$ x PDF

$ First PDF value must be O
-5 0.00000
-2.5 0.11594

0 0.14493

2.5 0.11594
$ Last PDF value must be O
5 0.00000

Example: User CDF file

$ Demonstration of user defined distribution with
$ piecewise linear CDF values

$ x CDF

$ First CDF value must be O
-5 0.00000
-4.5 0.02174
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-3.5 0.09420
-2.5 0.20290
-1.5 0.32609
-0.5 0.46377
0.5 0.60870
1.5 0.73913
2.5 0.85507
3.5 0.94928

$ Last CDF value must be 1
1.00000

Weibull distribution

The Weibull distribution is quite versatile — it has the ability to take on various shapes. The probability
density function is skewed to the right, especially for low values of the shape parameter.

= Statistical Distribution (=)

Distribution Name|wDist

~
w

|
Type [vumbuu 2]
Scale |23 |
Shape 3.1 |

Preview Mean = 2.057; 5td Dev = 0.7259 Eacle=10

0.5
0.4 / \ fix

Figure 13-9: Weibull distribution

Table 13-8: Parameters defining a Weibull distribution

Item Description
Scale Scale parameter
Shape Shape parameter
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13.3. Parametrization of distributions

Distributions can be parameterized by using the “&” operator. This allows the distribution parameters to
vary during the solution, instead of being fixed numbers. A distribution parameter can be defined as a
constant, a transfer variable or a dependent of transfer variables and constants. This has application in
multilevel tolerance optimization, in which the distribution bounds may not be fixed a priori (Section 20.5).

13.4. Probabilistic variables

The uncertainty of a probabilistic variable is described by associating it with a statistical distribution. In the
LS-OPT GUI, this is done in the Parameter Setup panel (Section 13.2). The statistical distribution defines
the mean or nominal value and the variation around this nominal value. The nominal value, the probabilistic
counterpart of a deterministic variable, may or may not change during the course of LS-OPT run. This
depends on the task and variable type. The two main probabilistic variable types (Figure 13-10) are:

0 Noise variables: These variables are completely described by the associated probabilistic
distribution. These variables are not controlled at the design and production level, but only at the
analysis level. A probabilistic variable can be defined as a noise variable either because the user
chooses to study the effect of uncertainty around a fixed mean value or because it may not be
possible to control the variable. An example of the later is wind velocity for which a statistical
distribution can be defined from measurements, but one cannot design or control it. A noise variable
will have the nominal value as specified by the distribution, i.e. it follows the distribution exactly.

o Control variables: Variables that can be controlled in the design, analysis, and production level; for
example: a shell thickness. The nominal value can be adjusted during the design optimization phase
in order to have a more suitable design. The associated distribution only provides the variation
around this nominal value. A probabilistic control variable can be either continuous or discrete. A
discrete variable is a special case of a control variable, in which the nominal value can only be
among the specified list of values. However, due to uncertainty about the discrete nominal value, the
variable can actually have a value that does not belong to the list. In other words the nominal value is
discrete, but the variable value is continuous.
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Design Variable Noise Variable

Lower Bound

3 Nominal Value

P(x) P()

J\ Upper Bound J\

X p:4

Allowable range |

Discrete Variable

Nominal Value
P(x) |

FAY

==

Allowable values

Figure 13-10: Probabilistic variables. The nominal value of a control variable can be adjusted by the
optimization algorithm between the lower and upper bound; the probabilistic variation of a design
variable is around this nominal value. A noise variable is described completely by the statistical
distribution. A discrete variable, like design variable has a nominal value selected by the optimization
algorithm; the probabilistic variation of the discrete variable is around this nominal value.
A variable is declared probabilistic by:

o Creating it as a noise variable or

0 Assigning a distribution to a control variable.
Three associations between probabilistic variables are possible:

0 Their nominal values are the same but their distributions differ

0 Their nominal values and distributions are the same

o0 Their nominal values differ, but they refer to the same distribution.

13.4.1. Setting the nominal value of a probabilistic variable

The specified nominal value is used for a control variable; the associated distribution will be used to
describe the variation around this nominal value. For example: a variable with a nominal value of 7 is
assigned a normal distribution with u=0 and c=2; the values of the variable will be normally distributed
around a nominal value of 7 with a standard deviation of 2.

This behavior is only applicable to control variables; noise variables will always follow the specified
distribution exactly, i.e. they will have the same nominal value and variation as defined for the associated
distribution.
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13.4.2. Bounds of a probabilistic variable

The bounds of a control variable are defined by the user (minimum and maximum) like for deterministic
variables. It should be noted, however, that if the nominal value of a variable is close to a bounding value,
then the bound can be exceeded because of the uncertainty (Figure 13-11). This is the case by default, unless
specified otherwise Using “Enforce Variable Bounds” in the Parameter Setup panel.

Nominal value Upper Bound

Lower Bound;
1

fx) i
' /\Zound exceeded
1
1
1

r Allowable Range L

Figure 13-11: Bounds exceeded due to variable uncertainty

Noise variables are completely defined by their distributions; they are not bounded unless specified in the
associated distribution. Thus no bounds are required in direct Monte Carlo Analysis. However, in a
metamodel-based analysis or optimization, bounds are required even for noise variables to select the
samples for metamodel construction. In such tasks, noise variable bounds are defined as multiples of the
standard deviation (“Noise Variable Subregion Size”, Table 8-3). By default, two standard deviations are
used on either side of the nominal value.

13.5. Monte Carlo analysis

Monte Carlo analysis is used to simulate the uncertainty of variables using random samples based on the
associated distribution.

The Monte Carlo evaluation will:

o Select the random sample points according to a user specified strategy and the statistical
distributions assigned to the variables.

o Evaluate the structural behavior at each point.
0 Collect the statistics of the responses.

The user must specify the experimental design strategy (sampling strategy) to be used in the Monte Carlo
evaluation. The Monte Carlo, Latin Hypercube and space-filling experimental designs are available. The
experimental design will first be computed in a normalized, uniformly distributed design space and then
transformed to the distributions specified for the design variables.

Only variables with a statistical distribution will be perturbed; all other variables will be considered at their
nominal value.

The following will be computed for all responses:
o Statistics such as the mean and standard deviation for all responses and constraints
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0 Reliability information regarding all constraints:

o0 The number of times a specific constraint was violated during the simulation

0 The probability of violating the bounds and the confidence region of the probability

o A reliability analysis for each constraint assuming a normal distribution of the response.

The exact value at each point will be used. Defining multiple samplings is not allowed for Monte Carlo
analysis; multiple disciplines must share the same samples.

13.6. Monte Carlo analysis using a metamodel

The Monte Carlo analysis will be done using metamodels — response surfaces, neural networks, Kriging or
SVR - as prescribed by the user. Unlike the direct Monte Carlo method, in which the Monte Carlo samples
are evaluated using the actual stage solvers, this is a two step process:

1. First the metamodels are constructed based on a few samples evaluated using the actual stage
solvers. These samples need not (typically do not) follow the variable statistical distributions.

2. Next, Monte Carlo Samples are randomly generated (typically a large number) based on the variable
statistical distributions. These samples are evaluated using the metamodels. The number of Monte
Carlo points can be set by the user using the Reliability Resolution option, Section 11.5. The default
value is 10°. A higher number of samples represents the underlying distribution more closely, and
gives more accurate results provided the metamodel approximations are accurate.

| Step 1: Building the Metamodel | | Step 2: Monte Carlo Analysis

Response

< “FEEEET)

I_/K Metamodel
i [
LLLL

-
\
1

Response

— Tens of FE Analyses Millions of samples

| |
A Metamodel,

[ [l
Lower Bound ! Start Value . Upper Bound

Design Variable Design Variable

Figure 13-12: Metamodel-based Monte Carlo analysis. The method proceed in two steps: firstly a
metamodel is created, and then the Monte Carlo simulation is done using the metamodel and the
statistical distribution of the variable. Note that the metamodel for a design/control variable is
constructed considering the upper and lower bound on the variable and not considering the statistical
distribution. For a noise variable the upper and lower bounds for the creation of the metamodel are
selected considering the statistical distribution.

Metamodel-based probabilistic analysis or optimization is accompanied by the calculation of stochastic
contributions of the variables. It can be useful to know how the variation of each design variable contributes
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to the variation of a response. These computations are also known as Stochastic Sensitivity Analysis or
Sobol’s analysis. The stochastic contribution will be printed for all the responses in a metamodel-based
procedure. If no metamodel is available the covariance of the responses with the variables can be
investigated. The stochastic contributions of the variables can also be examined in the Viewer component of
the GUI (Section 15.6.2). The amount of variation due to noise or the residuals from the fitting procedure
will be indicated. This term is taken as zero for composite functions, as they do not have associated
metamodels and corresponding residuals.

The following data will be collected:
o Statistics such as the mean and standard deviation for all responses, constraints, and variables
The reliability information for each constraint:
The number of times a specific constraint was violated during the simulation
The probability of violating the bounds and the confidence region of the probability.

O O O O

Stochastic contributions of variables

13.7. RBDO/Robust parameter design

To find a robust parameter design, use the task RBDO/Robust parameter design, Section 25.8 and Section
25.9, and the strategy Sequential with Domain Reduction, Section 4.7.3.

LS-OPT has a reliability/robustness-based design capability based on the computation of the standard
deviation of any response. The standard deviation of a response is available as a composite, Section 10.6,
and therefore available for use in a constraint or objective, or in another composite. The theoretical concerns
are discussed in Section 25.8.

The method computes the standard deviation of the responses using the same metamodel as used for the
deterministic optimization portion of the problem using the First Order Second Method (FOSM), Section
25.4.4. No additional FE runs are therefore required for the probabilistic computations.

The method requires very little information additionally to what is required for deterministic optimization.
Specify the following:

o Statistical distributions associated with the design variables
0 Probabilistic bounds on the constraints.

The statistical distributions associated with the design variables are specified in the same manner as for a
Monte Carlo analysis using a metamodel.
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Figure 13-13: Probabilistic constraint definition for RBDO. A target failure probability is defined.

The difference between RBDO and robust design lies in the optimization problem formulation; therefore,
both capabilities are provided under the same task. In RBDO, “safety” of the design is ensured by the
probabilistic bounds on the constraints (target failure probability) while the objective is defined such that it
provides a better “deterministic” design goal (e.g. lowest cost or weight calculated at the variable means of
the design). In robust design, the objective is to provide a design that is least sensitive to slight variations of
the design. This can be achieved by minimizing the standard deviation of the response (Figure 13-14).

One extra consideration is required to select an experimental design for robust analysis: provision must be
made to study the interaction between the noise and control variables. Finding a robust design requires that
the experimental design considers the x;x;cross-terms (considering variables x; and x;), and therefore, a
linear metamodel should not be used. Thus, when using a polynomial approximation, the order should at
least be linear with interaction terms. The xf and xf terms can be included for a more accurate variance

computation. Non-polynomial metamodels such as RBF, FF, Kriging, SVR etc. can also be used. An
example for robust design is presented in Section 20.4.
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Figure 13-14: An example of objective function for RBDO (top) and robust design (bottom). Standard
deviation is defined as the objective in latter case.
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14. Running the Design Task

This chapter explains simulation job-related information and how to execute a design task from the
graphical user interface as well as monitoring the status of the task and the simulation runs from the GUI.

14.1. Running the design task

After setting up the task, run the design task using Normal Run or Baseline Run from the Run menu (» ) in
the control bar of the main GUI as described in Section 3.3. If needed, previous results can be deleted using
the Clean options in the Tools menu (/), Section 3.4.

14.2. Analysis monitoring

While running LS-OPT, the status and progress of the task can be visualized in the main GUI, Figure 14-1.

The currently running iteration number is displayed in the control bar at the top (I~ **). The stage LED of
the currently running task process is highlighted (glows) in yellow while the green “pie” fraction inside the
LED visualizes the solver progress. For the stage LED’s, green and red is used for solverN o r m a 1
and E r r o r terminations, respectively. Double-clicking on a stage LED launches the Progress dialog
described in Section 14.3. The status of individual jobs is also displayed in the Progress tab of the integrated
output window, Section 14.3.2.
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Figure 14-1: Main GUI showing scheduled jobs in progress
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14.3. Job monitoring — the Progress dialog

Show status for: [Stage CRASH | v ] Tools
Job ID/PID Compeonent lter Exp Status [~] View log
SRS ermal veminaten S | o oider
14677 CRASH 1 5- Running 11% _
Accelerated kill
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14707 CRASH 1 ?I Running 2% Show plot
Plot . .
° : Time History

Kinetic Energy 3E-05
Internal Energy

o 2.5E-05
Total Energy @
Energy Ratio | ‘3 2E-05
Global X Velocity £ 1.5E-05

. =
Global Y Velocity |-
Global Z Velocity | | (0] 2 4
Total CPU Time || Simulation Time
-

Figure 14-2: Progress dialog displaying progress of stage runs

Table 14-1: Tools for selected run

Tool Description Reference
View log Opens job_log file of selected run Section 14.6
Open folder Opens run directory of selected job -

LS-OPT Opens LS-OPT GUI if solver type is LS-OPT -

LS-PREPOST Opens selected run in LS-PREPOST (LS-DYNA only) -

Kill Kills selected job Appendix 1.2
Accelerated kill Appendix 1.2
Show plot Show Time History plot

The progress of the simulation jobs can be displayed for a selected stage or for all stages. If a job is selected
from the list, the tools described in Table 14-1 are enabled.

When using LS-DYNA, the user can also view the progress (time history) of the analysis by selecting one of
the available quantities from the Plot list (Time Step, Kinetic Energy, Internal Energy, etc.), Figure 14-2.

LS-OPT Version 5.2 230



CHAPTER 14: Running the Design Task

The Progress dialog allows a graphical indication of the job progress with the green horizontal bars linked
to estimated completion time, Figure 14-2. This progress is only available for LS-DYNA jobs. The job
monitoring is also visible when running remotely through a supported job distribution (queuing) system.
The job status is automatically reported at a regular interval.

The text screen output while running both the batch and the graphical version as well as the integrated
output window, Section 14.3.2, also report the status as follows:

JobID Status PID Remaining

1 Normal termination!

2 Running 8427 00:01:38 (91% complete)
3 Running 8428 00:01:16 (93% complete)
4 Running 8429 00:00:21 (97% complete)
5 Running 8430 00:01:13 (93% complete)
6 Running 8452 00:21:59 (0% complete)
7 Waiting ...

8 Waiting ...

In the batch version, the user may also type control-C to get the following response:

Jobs started

Got control C. Trying to pause scheduler

Enter the type of sense switch:

swl: Terminate all running jobs

sw2: Get a current job status report for all jobs
t: Set the report interval

v: Toggle the reporting status level to verbose
stop: Suspend all jobs

cont: Continue all jobs

c: Continue the program without taking any action
Program will resume in 15 seconds if you do not enter a choice switch:

If v is selected, more detailed information of the jobs is provided, namely event time, time step, internal
energy, ratio of total to internal energy, kinetic energy and total velocity.

14.3.1. Error termination of a solver run

The job scheduler will mark an error-terminated job to avoid termination of LS-OPT. For error-terminated
solver jobs, the progress bars in the GUI are colored in red. Results of abnormally terminated jobs are
ignored, hence they are not used in the optimization, e.g. to construct metamodels. If there are not enough
results to continue, e.g. to construct the approximate design surfaces, LS-OPT will terminate with an
appropriate error message.

14.3.2. Integrated output and display window

An integrated window which shows job progress (Figure 14-3) as well as output (comprehensive [I],
warnings [W] and errors [E] — Figure 14-4) is also available. The window size can be adjusted or hidden
using the V above the top left corner of the progress window. Global progress is shown at the top. The tool
functionality (except for Show plot) is the same as for the stage-based progress window shown in Figure
14-2 (see also Table 14-1).
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Figure 14-4: LS-OPT output showing error diagnostic
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14.4. Restarting

Restarting is conducted by selecting the appropriate option from the Run menu ( » ) in the control bar panel
of LS-OPTui.

Completed simulation runs will be ignored, while half completed runs will be restarted automatically.
However, the user must ensure that an appropriate restart file is dumped by the solver by specifying its
name and dump frequency.

The following procedure must be followed when restarting a design run:

1. As a general rule, the run directory structure should not be erased. The reason is that on restart, LS-
OPT will determine the status of progress made during a previous run from status and output files in
the directories. Important data such as response values (response.n files), response histories
(history.nfiles) are kept only in the run directories and may not be available elsewhere (with the
exception of the AnalysisResults_n.lsox database in the sampling directory).

2. In most cases, after a failed run, the optimization run can be restarted as if starting from the
beginning. There are a few notable exceptions:

0 A single iteration has been carried out but the design formulation is incorrect and must be
changed. In this case the design formulation must be corrected before re-optimizing lIteration 1
using the Optimize repair function in the Tools (/) menu (see Section 3.5). If histories or
responses are added, the “Extract Results’ repair function in the Tools menu must be used to re-
extract the data.

o Incorrect data was extracted, e.g., for the wrong node or in the wrong direction. In this case, the
user must re-extract the results using the ‘Extract Results’ repair function in the Tools menu after
correcting the response definitions.

0 The user wants to change the response surface type, but keep the original experimental design. In
this case the user must use the ‘Build Metamodels’ repair function in the Tools menu after
correcting the metamodel type.

After completing the repair functions mentioned above, a normal restart can be executed ( » ).

Note: A restart will only be able to retain the data of the first iteration if more than one iteration were
completed. The directories of the other higher iterations must be deleted in their entirety. This can be
accomplished by using the *Clean from current iteration [iter]’ selection in the Tools menu. Unless
the database was deleted (by, e.g., using the clean file or a ‘Delete’ file operation, see Section 5.6),
no simulations will be unnecessarily repeated, and the optimization procedure will continue.

3. A restart can be made from any particular iteration by selecting the Clean from current iteration
[iter] option from the Tools menu, see Section 3.4, and selecting the iteration number. The
subdirectories representing this iteration and all higher-numbered iterations will be deleted after
confirmation. Then select a Run option to restart.

4. The number of points can be changed for a restart (see Section 9.5.4).
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14.5. Directory structure

When running an optimization, LS-OPT will generate a directory in the work directory for each sampling
and for each stage using the sampling or stage name, respectively. If a sampling and a stage have the same
name, the same directory will be used.

In the stage directories a subdirectory will be created for each simulation.

These sub-directories are named mmm.nnnn, where mmm represents the iteration number and nnnn is a
number starting from 1.

The work directory needs to contain at least the .Isopt file.

An example of a subdirectory name, defined by LS-OPT, is side_impact/3.11, where 3.11
represents the design point number 11 of iteration 3. The creation of subdirectories is automatic and the user
only needs to deal with the working directory.

In the case of simulation runs being conducted on remote nodes, a replica of the run directory is
automatically created on the remote machine. The response.n and history.n files will automatically
be transferred back to the local run directory at the end of the simulation run. These are the only files
required by LS-OPT for further processing. More files can be transferred back by using the recover files
options, see Section 5.4.5.

If some of the stages are of type LSOPT (Section 5.3.9) then the sub-directories mmm.nnnn act as the
working directories for inner level LS-OPT processes. Therefore, these directories have further sublevel
directories. In Figure 14-6, the directory structure is shown for multilevel optimization with a single LSOPT
stage named ‘Stage 3’.

Jsopt file, input files,

 output files Mo D ctory

1 A
Stage database | | stage3 | | stage2 || Stage | e r"| samplingl |
| |

| l | | | | | |
£J|1.3”1.3||1.4| [1a][12][13|[1a] [11][12]|13]]14

Run directories

Simulation files, Sompling
 status fles, resile files dotabase

Figure 14-5 : Directory structure in LS-OPT
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Stage {_Sampling| iSampling: | Stage Stage |_[Sampling| Sampling | Stage |
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___________________________________________________________________________

Sampling
database

Figure 14-6 : Directory structure for multilevel optimization with one LSOPT stage.

14.6. Log files and status files

Status files started, Finished, history.n, response.n and EXIT_STATUS are placed in the run
directories to indicate the status of the solution progress. The directories can be cleaned to free disk space
but selected status files must remain intact to ensure that a restart can be executed if necessary.

A brief explanation is given below.
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Table 14-2: Status and log files generated by LS-OPT

File

Description

Directory

job_log

The simulation run/extraction log is saved
in that file in the local run directory.

Simulation home
directory

jJjob_command

Contains the command of the job executed

Simulation home

directory
started The run has been started. Simulation home

directory
finished The run has been completed. The Simulation home

completion status is given in the file.

directory

response.n

Response number n has been extracted.

Simulation home
directory

history.n

History number n has been extracted.

Simulation home
directory

EXIT_STATUS

Error message after termination. The user
interface LS-OPTui uses the message in the
EXIT_STATUS file as a pop-up message.

Project directory

Ifop.log

The file contains a log of the core
optimization solver solution.

Project directory

Ischeduler.debug

This file is generated by the Ischeduler
executable and is used for debugging
purposes.

Project directory

Isopt.debug

Traceback of the solver termination. Used
for debugging purposes.

Project directory
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15. Viewing Results

This chapter describes the post-processing of LS-OPT result data using the Viewer.

15.1. Viewer overview

15.1.1. Plot Selector

New plot A
New plOt Simulations Metamodel
(&
l:a Correlation Matrix Surface
LTl

“:.. Scatter Plots = 2D Interpolator
2 e

% Parallel Coordinates
s Self-Organizing Maps
L Statistical Tools

Pareto Optimal Solutions

1_ i Accuracy
k% Sensitivity

Stochastic analysis

Optimization

& History
l-;g'i Variables

Figure 15-1: Plot Selector

To start the Viewer, select the respective icon ( 1544 ) from the control bar of the main GUI or start the

executable viewer located in the LS-OPT installation directory (Section 15.1.7).

The plots are grouped into five categories (Figure 15-1):

o Simulations,
o Metamodel,
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0 Optimization,
o0 Pareto Optimal Solutions and
0 Stochastic Analysis.

Depending on the optimization task, the selected options and the database availability, specific plot types
are enabled or disabled. For example, in Figure 15-1 History plots are disabled due to the absence of history
definitions. The Pareto Optimal Solutions and Stochastic Contribution plots are also disabled. Hovering of
the mouse over a particular plot type gives additional information about that plot (Figure 15-2).

lw New plot E] E]
New p|0t Simulations Metamodel

el
Ll Correlation Matrix @ Surface

Bt

Z 2D Interpolator
g 2P

i‘-_%: Parallel Coordinates 1 -i'/ Accuracy

Figure 15-2: Plot Selector with additional information. Note the difference with Figure 15-1.

If plots already exist, the placement of the new plot may be specified in the plot selector, Figure 15-3. The
default is to create a new plot. All available options are explained in Table 1515-1. For details see Section
15.1.5.

B4 New plot r:—-

New plot EHT

Placement
EF‘I
EEm

=T

Figure 15-3: Selection for placement of new plot in the plot selector

Table 1515-1: Plot placement options

Option Description

Create a new plot window

Replace current plot

v 1 ] [E:]  Split window and place new plot at the highlighted position
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15.1.2. General Plot Options

General plot options are available on the toolbar at the top of the plot window (Figure 15-1). Table 15-2
explains the options.

[

Project: simple.correct.|sopt =

Figure 15-4: General options

Table 15-2: General plot options

e Ee e e

% BB & E @3 m% |:|| Scatter | Iteration

Option Description
New plot Opens Plot Selector with placement selection for the new plot,
Section 15.1.1.
X Delete plot Deletes active plot
Save plot setup Saves current plot setup to be reused later, Section 15.1.6.
Iy Pointer tool [F1] Rectangular selection (rubber-banding) in plot or clicking marks
points or curves and opens Point selection window, Section
15.1.4.
@ Zoom in tool [F2] Rectangular selection in plot specifies zoom region
S Zoom out [F3] Clicking on plot zooms out
@ Reset zoom Resets plot to initial range
B Split vertical Splits plot window vertical, Section 15.1.5.
[4¢]  Split horizontal Splits plot window horizontal, Section 15.1.5.
Print Prints the current plot, options see Figure 15-5.
% Save image Saves the current plot, options see Figure 15-5.
Bs Visualize relations between If several plots are displayed in the same plot window, this
controls and plots option helps to find each plot’s control panel.
Tl Point selection window Shows/hides a window showing the values of all entities for

selected points in a table. If point selection changes, this window
shows up automatically, Section 15.1.4.
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Figure 15-5: Options for printing (right) and saving (left) images

15.1.3. Plot Rotation

For all 3D plots, image rotation is performed by holding down the Ctrl key while moving the mouse (same

as LS-PREPOST).

15.1.4. Point Selection

The points on Scatter, Tradeoff, Surface, Accuracy, Optimization History and HRV plots, and lines on
Parallel Coordinate plots (PCP) and History plots may be selected by clicking on a single point or by
selecting several points within a rectangular box. The selected points are highlighted in the plot. The
computed and predicted values of all entities for the selected points are displayed in a spreadsheet in a
separate plot selection window (Figure 15-6 and Figure 15-7). Options for point selection are explained in
Table 15-3. Points may also be selected from the list of all points available in the current plots on the left in

the Point selection window (Table 14-3).
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Figure 15-6: Point selection window for single point selection
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15 14 3.18057 4.01865 3345 1.10789 -648.162 -152.051 496.111 496.111 3345 3345 0
3 16 3.39183 198931 2241 0659116 -701.094 -163.585 537.509 537.509 2241 2241 0
17 18 4.99997 1.40334 1018 0.623893 -720.024 -164 492 555.533 555.533 1018 1018 5.53258
19 3.72984 3.0925 303.9 0.930552 -663.165 -155.568 507.595 507.595 303.9 303.9 0
1 ﬁ 1.1z 245612 3.00449 286.1 0.832866 -672.394 -148 624 523.77 52377 286.1 286.1 0
1.15 1.25505 4.94792 5733 1.20172 -645.819 -156.095 489.724 489.724 5733 5733 0
iii 1.17 4.04064 1.00003 5798 047378 -734.245 -161.957 572.288 572.288 57.98 57.98 222884

==~

Figure 15-7: Point selection window for multi-point selection. Infeasible designs are highlighted in red.
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Table 15-3: Point selection options

Option

Description

Open selected run in LS-
PREPOST

This option is only available for LS-DYNA runs, if the
d3plot or d3eigv database is available

sp Add to set of selected points Options for new point selection
== Subtract from set of selected
points
= Replace set of selected points
a'2 Toggle set of selected points
(within rectangle)
¥ Deselect all points
[ Export as text file (.csv) The exported file has the format of a user defined sampling

als

Add points to category

Define and manage point categories for user defined
coloring or plotting of points, Section 15.1.10.

Hide colors

Display multi-point table without feasibility background
color
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Figure 15-8: Cross-display of selected points

The SOM plot (Section 15.5.4) also supports selection. If a cell is selected, all points that are mapped to the
selected cell are displayed in the point selection window. Point selection is integrated; hence selected points
are highlighted in all plots within the same plot window.

15.1.5. Split Window

To display several plots side by side, there are two basic selections available to split the plot window - (i)
options to split the window horizontally or vertically in the toolbar at the top of the plot window or (ii)
select the new plot together with a placement option for the new plot in the Plot Selector.

If the split window options are used, the plot is repeated with the same settings, which is useful for e.g.,
displaying 3D surface plots for different responses side by side, Figure 15-9.
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Figure 15-9: Example for split option

If split window options are used several times, the plots may become too small, and as much as possible
space on the screen is needed to get a good view. Hence all control panels are detachable or may even be
hidden by pushing the respective button in the toolbar at the top of the plot window, Figure 15-10.
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15.1.6. Save Plot Setup

Window splitting and placement selection of new plots allows complex plot setups. To reuse a plot setup
several times, even across problems, it may be saved. Later you can bring this plot state back by clicking on
the preview in the plot selector, Figure 15-11.

The plot setup is stored in XML format in ~/.LS-OPT Viewer/plotname.plot on Linux machines. On
Windows, the plot setup is stored in Application Data\LS-OPT Viewer in the user’s home directory. The full
path depends on the Windows version and setup, e.g. C:\Documents and Settings\user\Application Data\LS-
OPT Viewer.

The command line option “-I” makes the viewer load a plot setup from a file immediately, without showing
the plot selector. That makes it possible to write a script that generates the plot state XML file and then calls
upon the viewer to display the plots. For more details on command line options, see Section 15.1.7.

B New plot =

NeW p|0t Simulations Metamodel
[T
il
Saved setups B Correlation Matrix @ Surface
i niv
“i.. Scatter Plots .~ 2D Interpolator
& e
7
%ﬁ% Parallel Coordinates I Accuracy
11‘ Histories I% Sensitivity
‘L Statistical Tools I : Histories
E E Correlation Bars Optimization
. . Histol
Pareto Optimal Solutions E i
j@ Tradeoff lﬁ Variables
%‘% Parallel Coordinates
L@Z"- Hyper-Radial Visualization
ﬁ Self-Organizing Maps

Figure 15-11: Plot Selector with previously saved setups
15.1.7. Command line options

The post-processing tool of LS-OPT may be started from the Viewer Panel in LS-OPTui, or the executable
viewer located in the LS-OPT installation directory may be called from the command line:

viewer [-p <str>] [-1 <str>] [-f <str>] [-n <str>] [-h] [--verbose] [.Isopt
file]

Table 15-4 explains the command line options.
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Table 15-4: Command line options

Option Description

-p <str>, --show- Open the given plot, valid plot types are

plot=<str>
accuracy Accuracy (Section 15.3.3)
correlation Correlation Bars (Section 0)
corrmatrix Correlation Matrix (Section 15.2.1)
history Histories — Metamodel (Section 15.3.5)
history_ar Histories — Simulations (Section 15.2.4)
hrv Hyper-Radial Visualization (Section 15.5.3)
interpol 2D Interpolator (Section 15.3.2)
opthist Optimization History (Section 15.4.1)

parallelcoord

Parallel Coordinates — Pareto Optimal Solutions
(Section 15.5.2)

parallelcoord_ar

Parallel Coordinate — Simulations (Section 15.2.3)

scatter Scatter Plots (Section 15.2.2)
sensitivities Sensitivity (Section 15.3.4)
som Self-Orgamizing Maps — Pareto Optimal Solutions
(Section 15.5.4)
statistics Statistical Tools (Section 15.2.6)
stoch Stochastic Contribution (Section 15.6.2)
surface Surface (Section 15.3.1)
tradeoff Tradeoff (Section 15.5.1)
variable Variables (Section 15.4.2)
-| <str>, --load- Load plot Setup from file, see section Save Plot Setup
setup=<str>
-f <str>, -- Image format to export to (png, bmp, jpg, svg, tiff, pdf, ps)
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format=<str>

-n <str>, -- Filename to export to
filename=<str>

-h, --help show help message for command line options
--verbose generate verbose log messages
JIsopt file LS-OPT command file. By default, the viewer loads the LS-OPT database

called Isopt_db

15.1.8. Iteration Panel

Except for the Optimization History plot which displays the iteration history, all plots allow specifications
for the iteration data to be shown. The available options depend on the plot type (see Figure 15-12).

tteration %] tteration 53]

n.m| n all

. 2
First: =
irs

Last:

U3

Step: |2

Figure 15-12: Iteration Panel- only current iteration (left), all previous/ all iterations (middle), iteration
range and step size (right)

A slider is available to select the current iteration to be plotted. Some plots allow plotting all previous
iterations or all iterations, and the Scatter- and Tradeoff plots also allow the specification of a range and a
step size, e.g. the selection in the right iteration panel in Figure 15-12 plots iterations 2,4,6,8 and 10.

15.1.9. Ranges and Axes options

Most plots allow specification of the ranges for all plotted entities (Figure 15-13). The user can manually
specify any desired plot range by providing the lower and upper bounds using the Manual option. However,
there is also an option to let the Viewer automatically select the ranges based on the data. If the Auto option
(default) is used, the range is set to include the minimal and maximal values based on the data.

For surface plots, there are three options for the plot range type when the Auto range is selected. The first
option (Auto, Entire design space) plots the surface across the full design space. The second option (Auto,
region of interest) uses only the sample selection subregion (Section 23.6) of the selected iteration. The
third option (Auto, GSA Region of interest) uses only the selected GSA subregion (Section 4.10.1). For
scatter plots, only the first and third options are available. For both surface and scatter plots, the option GSA
Region of interest is available only if subregions for the calculation of global sensitivities are used. For
surface plots, the selected GSA region of interest is displayed using a rectangle (two variable axes) or a line
(one variable axis) on the xy plane (variable plane). For scatter plots with variable axes, the GSA subregion
intervals are displayed using a different color for the relevant parts of the variable axes.
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If never shrink plot range is selected (Figure 15-13), ranges of the new plot cannot be smaller than the
previous plot. The previous ranges are used if all the values in the new plot lie within these ranges; the new
plot may have some empty spaces in this case. If the new plot has values outside any of the previous ranges,
those ranges are expanded to accommodate the new values. If the user selects a different quantity, the
selections made for the shrinking and the plot range type options stay the same. However, the ranges for the
new entity are unrelated to the previous entity. Therefore, the ranges of the new plot for a different entity
will usually be different from the old plot ranges even if never shrink plot range is selected.

EC]  [ES ®
Setup | Points | Ranges Setup | Ranges | Points | Fringe
@ Auto

- @ Auto, Entire design space
) Manual B . .
) Auto, Region of interest

) Manual

| Mever shrink plot range 47 s Y G

Figure 15-13: Ranges selections

For Histogram plots (Statistical Tools), manual steps for the tick marks can be specified in addition to the
manual range selection. The step length determines the number of grid lines and tick marks on the
corresponding axis.

15.1.10. User-defined Categorization of Points

Points can be categorized in the Point Categories dialog, Figure 15-14. Point Categories can be used for
User-defined coloring and plotting of points in the Scatter Plot (Section 15.2.2) and the Parallel Coordinate
Plot (Section 15.2.3). The dialog is accessible from the Point Selection window, Section 15.1.4.
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- Point Categories’ )
B catl (4 points) « Name Color Shape
&, cat? (6 points) x ==
Description

x [This is category 3
T —

Add new

lAdd selected points to category

Save Cancel

Figure 15-14: Point Categories dialog to define and manage Point Categories for user-defined coloring
and plotting of points

In the list on the left, categories can be added and deleted. For the selected category, the attributes Name,
Color, Shape and Description can be modified using the options on the right. Spaces are allowed in the
Name. Selecting the button Add selected points to category assigns the currently selected points that are
displayed in the Point Selection window to the selected category on the left. Points that are already assigned
to another category are moved to the new category. The definitions are stored in xml format in the file
CategorizedPoints.Isox in the working directory.

Categories of points can be displayed using the User-defined selection (see Table 15-6, Table 15-7) and/or
color-coded using the User-defined selection (see Table 15-5, Table 15-7).

15.2. Visualization of Simulation Results

15.2.1. Correlation Matrix

The correlation matrix displays 2D scatter plots, histograms and the linear correlation coefficients calculated
from the simulation results of the selected load case for the selected variables, dependents, responses and
composites, Figure 15-15.

Moving the mouse on a scatter plot displays its ranges and marks the respective correlation coefficient with
a yellow border, and vice versa. Row and column entities may be selected separately. Hence it is also
possible to display, for example, only correlation coefficients (Figure 15-16).

By double-clicking on a scatter plot or histogram, the respective plot may be reached, see Section 15.2.2 or
Section 15.2.6, respectively.

The correlation coefficients are color-coded from blue to red. Blue indicates a strong negative correlation,
red a strong positive correlation, whereas grey indicates almost no correlation.

Using the Sort option, the order of the rows in the correlation matrix is sorted with respect to the selected
column entity values. In the sorted correlation matrix, only correlation values are displayed.

The button Export plot data stores the correlation values in a .csv file in the working directory.
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Figure 15-15:
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Figure 15-16: Correlation matrix, only correlation coefficients

15.2.2. Scatter Plot

The results of all the simulated points for the selected iterations appear as dots on the scatter plots. This
feature allows the three-dimensional plotting of any three entities. A fourth entity may be displayed using
the color of the points. Other coloring options are explained below. 2D plots can be obtained by selecting
No entity for the z axis. For 3D plots, the image rotation is performed by holding down the Ctrl key while
moving the mouse (same as LS-PREPOST).
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To be able to view

the results of composite functions spanning two or more disciplines or stage, the same

sampling (Section 24.2) must be selected before starting an analysis. This also implies that the number of

variables must be th

Color Entities —

e same for all the disciplines involved and yields coincident experimental designs.

3D Plots

Table 15-5: Color entity options

Selection

Description

Feasibility

Feasible points are shown in green, infeasible points in red

(with previous
in b/w

The points for the current iteration are shown in green (feasible) or red (infeasible).
Previous points as light grey (feasible) or dark grey (infeasible)

Iterations

The iteration sequence is shown using a color progression from blue through red.

Neutral

All points are shown in blue

User-defined

g 8
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User-defined colors and shapes, only available if Point Categories are defined,
Section 15.1.10.

‘Scatter Plot
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[Results of leraticns 2-4)

1E#05

Figure 15-17: Scatter plot. The 4" dimension is represented by point color.
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Points Options

Table 15-6: Point options

Selection

Description

Experiments

Plot Experiments (Default if no simulation results are available)

Analysis Results

Plot simulation results (Default for the Scatter Plot)

Feasible

Plot Feasible simulation results (Default for the Scatter Plot)

Infeasible

Plot Infeasible simulation results (Default for the Scatter Plot)

Pareto Optimal

Plot Pareto optimal solutions (Default for the Tradeoff Plot, Section 15.5.1)

Solutions

Use reduced set of
points

Only active for Pareto optimal solutions, plots 100 uniformly distributed
points selected from the Pareto optimal solutions

User-defined Plot points that are assigned to selected categories and other selected point

options, only available if Point Categories are defined, Section 15.1.10.

Plot points that satisfy other selected point options and are within the
selected GSA subregion in the Ranges tab. Only available if subregions for
GSA are defined (Sections 4.10.1 and 15.1.9).

Only in GSA subregion

15.2.3. Parallel Coordinate Plot

In contrast to the Scatter Plot, the number of dimensions that can be visualized using the Parallel Coordinate
Plot is not restricted. Each dimension is visualized on a vertical axis and each data point is shown as a poly-
line connecting the respective values on the vertical axis, Figure 15-18. The ranges of the entities may be
changed using the sliders at the ends of each vertical axis rendering the points outside the ranges
unselectable. Points within the selected ranges are colored in blue, while the remaining points are colored in
grey. Selected points are colored in purple, if only a single point is selected, the corresponding value for
each entity is displayed in the plot.
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Figure 15-18: Parallel Coordinate Plot with selected point
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Options

Table 15-7: Parallel Coordinate Plot options

Selection Description

Analysis Results Plots simulation results (Default)

Pareto Optimal Solutions  Plots Pareto optimal solutions (Section 15.5.2)

Use reduced set of points  Only active for Pareto optimal solutions; plots 100 points selected from
the Pareto optimal solutions

Select from active points  Selects all points that are not outside the constraints set by the handles, see
Section 15.1.4. Useful for visualizing this set of points in another plot.

Only selected Plot only selected runs, see 15.1.4.

User-defined colors User-defined colors, only available if Point Categories are defined,
Section 15.1.10.

User-defined points Plot points that are assigned to selected categories, only available if Point
Categories are defined, Section 15.1.10.

15.2.4. Self-Organizing Maps

The Self-Organizing Maps plot in the Simulations category functions similar to the Self-Organizing Maps
Plot described in Section 15.5.4, but here, the default setting is to visualize Analysis results.

15.2.5. History Plot

This plot visualizes history curves based on time data or crossplots obtained from simulations, Figure 15-19.
If a variable is selected as y entity, a 3D plot will be displayed. The coloring options are the same as the
point coloring options, see 15.2.2. If histories from files are defined in the optimization problem, they can be
visualized in addition to the simulation curves, Figure 15-20. The Multi option enables plotting of multiple
histories in the same plot.

Other History options are explained in Table 15-8.
History statistics may also be displayed, Table 15-9 and Table 15-10.
The Predicted Histories option and Statistics of residuals are explained in Section 15.3.5.
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Figure 15-19: History Plot, curves colored by variable

Options

Table 15-8: History Plot options — Histories from Experiments

Selection Description

Feasible Plot feasible runs

Infeasible Plot infeasible runs

Only optimal Plot the optimal runs of the selected iterations

Only selected Plot only selected runs, see 15.1.4.. In this case, the selected curves are
not highlighted

Only best computed Plot the run with the smallest multiobjective and constraint violation,
respectively

Points Plot the discrete history points in addition to the interpolation line
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Figure 15-20: Histories from simulations colored by variable with target curve (File history)

Table 15-9: History Plot options - Statistics

Selection

Description

Use Metamodels and Distributions

Use metamodels and statistical distribution of the input
variables to construct statistics

Mean

Mean values of history values

Standard deviation

Standard deviation of history values

Mean +- Standard deviation

(Mean value + Standard deviation) and (Mean value —
Standard deviation) of history values

Max Maximal values of history values (Mean + two standard
deviations if metamodels and distributions are used)
Min Minimal values of history values (Mean - two standard

deviations if metamodels and distributions are used)

LS-OPT Version 5.2

256



CHAPTER 15: Viewing Results

Table 15-10: History Plot Options - Advanced Statistics

Selection

Description

Range

Range of the history values (maximum values minus the
minimum values; four standard deviations if
metamodels and distributions are used)

Sample index of Min

ID of the simulation job where the maximum value
occurred. This can be used to identify the jobs likely to
contain a different bifurcation.

Sample index of Max

ID of the simulation job where the minimum value
occurred. This can be used to identify the jobs likely to
contain a different bifurcation.

Safety margin

The margin of safety (constraint margin) considering (i)
a given bound on the response and (ii) the variation of
the response as computed using the Monte Carlo
analysis

Lower/Upper bound

Constraint bound

Value

Safety margin value

Scaled with standard deviation

Safety margin value scaled with standard deviation

Probability of failure

Probability of failure

95% confidence interval

95% confidence interval of probability of failure
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Figure 15-21: Histories from Experiments and selected Statistics

15.2.6. Statistical Tools

The Statistical Tools option offers multiple types of plots - Histogram, Statistics Summary, Probability of
constraint violation, Correlation and Covariance.

The feature enables display of statistical measures based on either the simulation results directly or based on
metamodel approximations. The simulation results are read from the ExtendedResults file of the relevant
sampling. If the use of the metamodels is selected, then a Monte Carlo simulation (MCS) is performed to
calculate the statistics. The MCS points are generated using a Latin Hypercube experimental design, based
on the statistical distributions of the variables. The user can control the number of points in this Monte Carlo
simulation in the viewer, as mentioned among the available options in Table 15-11. A large number of MCS
points can be used, as only inexpensive metamodel calculations are done at these. If desired, the residuals of
the metamodel fit can be added to results of the Monte Carlo simulation as a normal distribution.

For optimization results, iteration can be selected, while for probabilistic evaluations the default iteration,
iteration 1, will automatically be selected.
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General Options

Table 15-11: General options

Selection

Description

Use Metamodels and
Distributions

Use metamodels and statistical distribution of the input variables to
construct statistics

Metamodel Points

Number of points used for Monte Carlo Simulation on the metamodel to
construct statistics

Add Residuals

Add residuals of the metamodel fit (“noise™) to the results of the Monte
Carlo simulation as a normal distribution

Use Opt. Iter. Start Design

Histogram

Display statistics using the starting design for selected iteration as the
mean. If not checked, by default, the optimum solution of the iteration,
I.e., starting point of next iteration is used.

Histograms of the variables, dependents, responses, composites, constraints and objectives are available.
Three types of histograms are available — frequency (Frequency), relative frequency (Probability) and
relative frequency per unit class width (PDF). Table 15-12 describes the available options. The histogram

panel is shown in Figure 15-22.
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Figure 15-22: Histogram constructed from simulation results. Feasibility information is shown using
different background colors (green for feasible and red for infeasible).
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Table 15-12: Histogram options

Selection Description

Y-axis scaling Frequency  Number of samples

Probability Relative frequency ((Number of samples)/(total
number of samples))

PDF Relative frequency per unit class interval width
((Number of samples)/(total number of
samples)/(class width))

Number of Bars The number of histogram bars may be specified by the user.
Mean value The mean value is displayed as a thick line.

Standard deviation The standard deviation is displayed using two lines (mean = std).
Median The median is displayed as a thick line.

Kernel density estimation Only Y-axis scaling PDF. An estimation of the probability density
function of the plotted entity is displayed.

Constraints Feasibility Color the background of the plot by
feasibility
Value Display constraint bounds as lines

Upper Bound  Define upper bound for entity

Lower Bound  Define lower bound for entity

Box plot Show box plot below histogram, left and right end of the box are first
and third quartile. A tooltip or clicking on the plot visualizes the median
and first and third quartile values. Several whisker types are available:

min/max Minimum and maximum of all data

Interquartile range  the lowest datum still within 1.5 IQR of
the lower quartile, and the highest datum
still within 1.5 IQR of the upper quartile

Standard deviation Mean + standard deviation

9%/91% 9th percentile and 91st percentile
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Statistics Summary

Here, the standard deviation and the mean value for the selected variable, dependent, response or composite

are visualized with bars. The 95% confidence intervals are shown in red (Figure 15-23).
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Figure 15-23: Standard deviation and mean value of selected response constructed from simulation

results

Probability of constraint violation

The user may specify lower and upper bounds, respectively, for the selected variable, dependent, response
or composite in the Options tab. The probabilities that the entity violates the bounds are visualized using

grey bars. The 95% confidence intervals are shown in red (Figure 15-24).
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Figure 15-24: Probability of TOP_DISP < -230 (i.e. probability of violating the lower bound of -230) with
95% confidence interval shown in red, constructed from simulation results

By selecting the Multi button, values for lower and upper bounds can be specified directly in the entity
selection list and multiple entities can be selected. The plot displays the probability of violating a lower
bound and an upper bound, respectively, for all selected entities.

Correlation Bars

The coefficients of correlation of the responses and composites with respect to the design variables can be
displayed, along with their confidence limits (Figure 15-25). Either the simulated points or the metamodels,
together with the statistical distribution of the variables, can be used. If a metamodel is used then a Monte
Carlo simulation using a Latin Hypercube experimental design and the statistical distributions of the
variables will be conducted on the metamodel to obtain the desired results. The plot can be used to estimate
the stochastic contribution of an analysis without a metamodel.
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Figure 15-25: Coefficient of Correlation plot with 95% confidence interval in red

Covariance

The covariance of the responses and composites with respect to the design variables can be displayed

(Figure 15-26). The plot is very similar to the correlation plot, and can be used to estimate the stochastic
contribution of an analysis without a metamodel.
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Figure 15-26: Covariance plot
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15.3. Visualization of Metamodel Results

Metamodel

@ Surface
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— .~ 2D Interpolator
popn P
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Figure 15-27: Metamodel options

15.3.1. Surface Plot

Two- or three-dimensional cross-sections of the metamodel surfaces and simulation points can be plotted
and viewed from arbitrary angles. The image rotation is performed by holding down the Ctrl key while
moving the mouse (same as LS-PREPOST). The XY, XZ and YZ buttons at the bottom of the panel rotate
the plot to the respective coordinate plane.

The following options are available:

Setup

The selection of one or two variables and the response or composite function is done here. The sliders allow
changing the variable values for unselected variables (variables not plotted). The slider for the active
variables can be activated by selecting the “Predicted Value” option.
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Table 15-13: Surface Plot Setup options

Selection Description

Gridlines Gridlines are displayed on the surface, Figure 15-28
Isolines Isolines are displayed on the surface, Figure 15-29
Constraints Constraints are displayed on the surface, Figure 15-31.

Feasible regions are in green, the shade of red shows the
degree of infeasibility (number of violated constraints), the
colored lines in 3D and the + marks in 2D, respectively show
the location where the constraints are exactly met.

Predicted value The predicted value for the selected variable values is
displayed on the surface, the variable and response values are
displayed in the top left corner, Figure 15-28

Variable values Values of fixed variables and all variables, if Predicted value
is selected, respectively, are displayed in the plot.

Center variable sliders on Optimum  Variable sliders are set to optimal values of selected iteration
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Point plotting options

Table 15-14: Surface Plot point plotting options

Selection Description
Feasible Show feasible runs only
Infeasible Show infeasible runs only

Predicted Optimum

Show predicted optimum

Computed Optimum

Show computed optimum

Pareto Optimal Solutions

Show Pareto optimal solutions

Use reduced set of points

Only active for Pareto optimal solutions, plots 100 uniformly
distributed points selected from the Pareto optimal solutions

Failed runs on surface

Failed runs such as error terminations are projected to the surface in
grey

Points only

Show only points without surface

Only in GSA subregion

Plot points that satisfy other selected point options and are within
the selected GSA subregion in the Ranges tab. Only available if
subregions for GSA are defined (Section 4.10.1)

Project points to surface

The points are projected on the surface to improve visibility. Future
versions will have a transparency option.

Show Residuals

Point status

Shows a black vertical line connecting the computed and predicted
values.

The points are colored according to the selected Status (colors) menu option, Table 15-15.
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Table 15-15: Surface Plot point status options

Selection Description

Feasibility Feasible points are shown in green, infeasible points in red

Previous b/w The points for the current iteration are shown in green (feasible) or
red (infeasible). Previous points as light grey (feasible) or dark grey
(infeasible)

Iterations The iteration sequence is shown using a color progression from blue

through red. See Figure 15-29.

Optimum runs Optimal points are shown in green/red and all other points in white.

of Gridlines || Constraints  Centor varable shiders on
(] Isalings o) Pradicted valus| Optimum |

o [ e [ v

Figure 15-28: Metamodel plot showing feasible (green) and infeasible (red) points. The predicted point is
shown in violet (t_hood = 4, t_bumper = 4) with the values displayed at the top left.
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Figure 15-30: Surface plot representing only the region of interest of the fourth iteration.
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Figure 15-31: Plot showing isolines on the objective function as well as constraint contours and
feasibility. Feasible regions are in green. Shade of red shows degree of infeasibility (number of violated
constraints). Note the legend describing constraints at the top right.
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Figure 15-32: Plot showing isolines and points opposite the “Points” tab.
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Fringe plot options for neural nets

The options are function value or standard deviation of the Neural Net committee values. See Figure 15-33.
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Figure 15-33: Metamodel plot showing standard deviation of the Neural Net committee values.

Comparison metamodels

If comparison metamodels have been defined, they can be selected at the top of the surface display control
panel. See Figure 15-34. The main metamodel selection is always available at the top of the list.
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Figure 15-34: Metamodel plot showing two selected comparison metamodels based on the same
simulation results. The individual metamodels are selected in the uppermost dialog of the Setup tab.

15.3.2. 2D Interpolator Plot

The Interpolator plot is a tool to display multiple two-dimensional surface plots. All selected responses and
composites are plotted against all selected variables. The default is to display each response against all

variables in a row.
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Options

Table 15-16: 2D Interpolator Plot options

Selection Description

Constraints Constraints are displayed on the surface.

Feasible regions are in green, the shade of red shows the
degree of infeasibility (number of violated constraints), the
colored + marks in 2D show the location where the constraints
are exactly met.

Predicted value The predicted value for the selected variable values is
displayed on the surface (purple line), the variable and
response values are displayed in the panel

Transpose Allows to display each response against all variables in a
column.
Link ranges col/row The same y range is used for all plots in a column and in a

row, respectively, if Transpose is selected. This is the default.

Link all ranges The same y range is used for all plots.
Center on Opt. Variable sliders are set to optimal values of selected iteration
Automatically apply By default, any new selection automatically regenerates the

plot. Since this can take time, this can be switched off.
Multiple option changes can be done in the panel, and the plot
is only regenerated if the Apply button is pressed.

For a description of the Points options, see Table 15-14 and Table 15-15.
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Figure 15-35: Interpolator Plot with constraints (Feasible regions are in green, shade of red shows
degree of infeasibility (number of violated constraints)) and predicted value (purple line)

15.3.3. Accuracy Plot

The accuracy of the metamodel fit for the selected response or composite is illustrated in a Predicted vs.
Computed plot, Figure 15-36. The results for the metamodel of each iteration are displayed separately using
the slider bar. All points used to approximate the metamodel are displayed, i.e., for linear metamodels, the
points of the current iteration are displayed, whereas for all other metamodels, the points of all previous
iterations are also visualized, Figure 15-36. The error measures are displayed in the heading.

Options

Table 15-17: Accuracy Plot options

Selection Description

Feasible Plot feasible runs

Infeasible Plot infeasible runs

PRESS statistics PRESS residuals are plotted against computed values
Status (colors) Coloring options for points, see 15.2.2
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Figure 15-36: Computed vs. Predicted plot. The points are color-coded to represent the feasibility. The
largest points represent the most recent iteration.

Comparison metamodels

If comparison metamodels have been defined, they can be selected at the top of the accuracy display control

panel, see Figure 15-37. The main metamodel selection is always available at the top of the list.
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Figure 15-37: Computed vs. Predicted plot for Comparison Metamodel FFNN.

15.3.4. Sensitivities

The Sensitivities Plot provides visualization of the results of ANOVA and global sensitivity analysis (GSA)
using Sobol’s variance-based sensitivity indices.

Linear ANOVA

The Analysis of VVariance (ANOVA) (refer to Section 21.4) of the approximation to the experimental design
is automatically performed if a polynomial response surface method is selected. In the case of other
approximation types, a linear approximation is also constructed to generate ANOVA information. The
ANOVA information can be used to screen variables (remove insignificant variables) at the start of or
during the optimization process. The ANOVA method, a more sophisticated version of what is sometimes
termed “Sensitivities’ or *‘DOE’, determines the significance of main and interaction effects through a partial
F-test (equivalent to Student’s t-test) [1]. This screening is especially useful to reduce the number of design
variables for different disciplines (see Sections 24.2 (theory) and 18.5 (example)).

If a probabilistic or an RBDO analysis is being done, then the Stochastic Contribution plots (see Section
15.6.2) are recommended.

The ANOVA results are viewed in bar/tornado chart format, Figure 15-38. The Sort option sorts the
ANOVA values by relevance, the sorting doesn’t consider the 95% confidence interval.

Using the Export plot data (.csv) option, the ANOVA results of the selected response can be stored in a .csv
file.

Clicking on the chart displays the respective derivative values (scaled with variable range) and confidence
interval bounds in the plot.
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Figure 15-38: Linear ANOVA plot, sorted

GSA/Sobol

A global sensitivity analysis is only performed if Global Sensitivities is selected in the Task dialog or
selected from the Add menu of the main GUI window, see Section 4.10.

Figure 15-39 displays an example of a global sensitivities plot. Each bar represents the contribution of a
variable to the variance of the respective response (total sensitivity index). The values are normalized such
that the sum of all displayed values is 100%. The values are displayed in the labels. For sorted plots, the
cumulative sensitivity indices of all values in descending order are also displayed in the label.

Clicking on the chart displays the respective sensitivity values and variances in the plot.
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Options

Table 15-18: GSA/Sobol Plot options

Selection Description

Sort Sorts data by relevance

Transpose Sensitivity values are grouped by response/composite

Main contribution Main contribution is displayed in addition to total contribution
Multi Allows selection of multiple responses/composites

Advanced Weighted sums of the GSA values are displayed. A weight for each

entity can be selected by using the slider right of the entity or by
entering a value in the textfiled (switch to textfield using the icon at the
top of the entity list).

GSA Subregion Sensitivities calculated in the selected subregion are displayed, Section
4.10.1. The range of each variable is displayed in the label.
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Figure 15-39: Sorted global sensitivities of all responses and composites
15.3.5. History Plot
If the Approximate History option is set in the Sampling dialog Features tab of LS-OPTui, a database that

approximates the histories for any design point using metamodels is provided, see Section 9.5.1. If
Predicted Histories is selected in the Options tab, the history evaluated on the metamodel for the selected
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design point is visualized, Figure 15-41. Error measures can be plotted to judge the quality of the
metamodels using the Value to plot selection at the bottom of the Setup tab. If the predicted histories are
colored by variable, multiple curves are plotted for equidistant values in the range of the selected variable.
This visualizes the influence of the selected parameter on the history curve, Figure 15-20. A variable may
also be selected as y entity to get a 3D history plot.

The Center on ... options right of the Variables set the variable sliders to specific values that can be
selected from the list that appears by clicking on the button, Table 15-19.

Table 15-19: History Plot Center on ... - options for variable values

Selection — Center on ... Description
Optimum Set variable sliders to optimum of current iteration
Nearest history Set variable sliders to variable values of nearest history, this is the

computed history with design point closest to selected design point for
predicted history

Selected point Set variable sliders to a selected point, e.g. a Pareto optimal solution
Only active if there is only one selected point
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Figure 15-40: Predicted Histories colored by variable

LS-OPT Version 5.2 279



CHAPTER 15: Viewing Results

Options

Table 15-20: Predicted History options

Selection

Description

Nearest

Show computed history with design point closest to selected design
point

Number of predicted curves

Number of plotted curves if histories are colored by variable

Variable values

Values of fixed variables are displayed in the plot.
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Figure 15-41: Predicted History with nearest history and maximal residual
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Table 15-21: History Plot options — Statistics of residuals

Selection Description

Mean Mean values of residual values
Standard deviation Standard deviation of residual values
Max Maximal values of residual values
Min Minimal values of residual values

Table 15-22: History Plot Options - Advanced Statistics

Selection Description

Range Range of the residual values (maximum values minus
the minimum values)

Sample index of Min ID of the simulation job where the maximum residual
occurred. This can be used to identify the jobs likely to
contain a different bifurcation.

Sample index of Max ID of the simulation job where the minimum residual
occurred. This can be used to identify the jobs likely to
contain a different bifurcation.

15.4. Visualization of Optimization Results

15.4.1. Optimization History

The optimization history of a variable, dependent, response, constraint, objective, multi-objective or the
approximation error parameters of pure responses (not composites or expressions) shows the changes of the
respective values of the optimum over the iterations. For the variables, the upper and lower bounds
(subregion) are also displayed, Figure 15-42. For all the dependents, responses, objectives, constraints and
maximum violation, a black solid line indicates the predicted values. The red squares represent the
computed values at the starting point of each iteration (Figure 15-43). For constraints, the lower and upper
bound are displayed with a blue and red line, respectively. For the error parameters, only one solid red line
of the optimization history is plotted. RMS, Maximum and R? error indicators are available.

Additional options are explained in Table 15-23.
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Table 15-23: Options for Optimization History plot

Option

Description

Multi

Plot optimization histories of all selected entities
in the same plot.

Omit computed values

Only plot predicted values.

Omit predicted values

Only plot computed values.

Omit variable bounds

Don’t plot variable bounds for variables.

Omit constraint bounds

Don’t plot constraint bounds for constraints.

Scale variable values

Scale variable values to [0,1].

Core Solver Progress

Plot core solver progress.

Optimizabian Histary
for “thumper*

3514

Ipumper

Core Sohar Pregress

Husmber of terations

Figure 15-42: Optimization History plot of a variable — variable values (red) and subregions (blue)
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Figure 15-43: Optimization History of a response — computed (red points) and predicted (black) values

15.4.2. Variables Plot

The variables plot visualizes variable values and confidence intervals for *.1 run of the selected iteration in
a range scaled to [0,1], Figure 15-44. Clicking on the charts displays the actual value and the bounds on the
plot.
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Figure 15-44: Variable Plot

15.5. Visualization of Pareto Optimal Solutions

15.5.1. Tradeoff Plot

The Tradeoff plot (Section 23.13.1) functions similar to the Scatter plot, Section 15.2.2, but the default
setting is here to plot Pareto optimal solution data instead of Analysis Result data.

LS-OPT Version 5.2 284



CHAPTER 15: Viewing Results

B L2500 pickup truck. RBDO, . LS OPT Viewer

e Rle e ME 8B & IE ] Tkl
VRN . L Tradeoff Flat
| Setup | Poinis | Ranges . Objective "Disp® vs, Objective "Accel” vs. Objective "Scaled_Mass
o S S—— (Resuls of Reration 1)
Entity XiY|zie| a2
Mo entity 24 modo) o |
| Mariables 2
| * Responses
| » Composites
| * Constraints 2
2
* Mullisbjecive 19
| Max Consdr, Vislation
= Color enlitios | i
Faasability o)
{with previous bn biw) 2
Itaration 17
Heutral
17
=
A8 %
| =
18
I £ Z
| =i} 14 g
§ 2
A4
EI
B
13 1§
12
n
a
1
o8
.og
g
o7

Figure 15-45: Tradeoff plot
15.5.2. Parallel Coordinate Plot
The Parallel Coordinate Plot (Section 23.13.3) in the Pareto optimal solutions category functions similar to

the Parallel Coordinate Plot described in Section 15.2.3, but here, the default setting is to visualize Pareto
data.
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Figure 15-46: Parallel Coordinate Plot for Pareto optimal solutions with selected point (purple line)

15.5.3. Hyper-Radial Visualization

The hyper-radial visualization reduces multi-dimensional data to a two-dimensional graph by grouping the
objectives and calculating a weighted sum for each group. These values are displayed in two dimensions.
The designer may incorporate his preferences by selecting the weights. The best point with respect to the
selected weights is colored purple in the plot (Figure 15-47). The theory of hyper-radial visualization is
explained in Section 23.13.2.

Grouping

The objectives may be grouped using the 3-state buttons in the Axis column.
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Table 15-24: Hyper-Radial Visualization Grouping options

Selection Description

x Add objective to the group displayed on the x axis

Add objective to the group displayed on the y axis

Ignore objective

Selection of Weights

The weights may be selected using the sliders or the text fields in the Weights column. The selected values
represent the ratio of the weights and are scaled internally such that the sum of the weights is 1.

Options

Table 15-25: Hyper-Radial Visualization options

Selection Description

Use reduced set of points Plot only reduced set of Pareto optimal solutions

Scale weights Scale weights by range of objectives

Color Entity Color entity for HRV points
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Figure 15-47: Hyper-radial visualization, equal weights, points colored by variable
15.5.4. Self-Organizing Maps

The theory of Self-Organizing Maps (SOM) is explained in Section 23.13.4 The default
Pareto optimal solutions.

is to visualize

Component Selection
By default, component maps of all objectives are displayed. To modify the plot, select the position in the

dynamic grid, Figure 15-48, and the respective slot content. Refer to Section 23.13.4 for an explanation of
the map types.

() Analysis Result

Position @ Pareto Optimal solutions
for new Nﬁ)bj Obj  Obj

Figure 15-48: Selection of position for SOM
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Figure 15-49: Self-Organizing Map, component plots of objectives

Parameter Panel

The advanced user may want to modify some parameters for the training of the SOM. These options are
available in the Parameters panel. Modifications in the Parameter Panel effect retraining of the SOM.

Table 15-26: Self-Organizing Maps parameters

Selection Description

Training lterations Number of iterations performed for training of SOM, default depends on
honeycomb dimensions and number of data points

Initial Radius Initial radius used for training of SOM, default depends on honeycomb
dimensions
Honeycomb dimensions Honeycomb dimensions, default 12x9

15.6. Stochastic Analysis

Two types of plots are available under stochastic analysis — Statistical Tools and Stochastic Contribution.
These results are calculated based on metamodel approximations and variable distributions.
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15.6.1. Statistical Tools

These plots are similar to simulation results-based plots (Section 15.2.6) except that metamodels are used
for calculating the statistics. An LHS design of experiments is generated to perform metamodel-based
Monte Carlo analysis for statistics calculation. The user can modify the number of Monte Carlo samples and
can also use a large number, as the metamodel-based calculations are inexpensive. The available plot types
under Statistical Tools are Histogram, Statistics Summary, Probability of Constraint Violation, Correlation
and Covariance. It is possible to add effect of residuals while calculating statistics using metamodels.
Figures for the various plot types are shown in the following sections. It is interesting to compare them to
the respective plots in Section 15.2.6.

Histogram

Project: metamodel correct.lsopt

‘Tube Crush Metamodel-based Monte Earlo)

LS-OPT Viewer

EEE

ELQ‘E‘I|E|® e @

Setup | Options Axes

Plot type

@ Histegram

() Statistics Summary

) Probability of constraint violation
) Correlation

) Covariance

~ Variable
Tl
SIGY

P Response

¥ Constraint

Use Metamodels and Distributions

Metamodel Points | 10000

[T Add Residuals
[[] Use Opt. Iter. Start Design

Number of Samples

% BE & IE'] @3‘, m% Ql@l Iteration

2.5E+03

Constraint: TOP_DISP

10000 samples: Mean = -228 Standard Deviation = 7.26

2E+03

1.5E+03

1E+03

500

-250

-240 -230

Figure 15-50: Histogram constructed using metamodel together with the statistical distribution of the
variables. The background represents the feasibility status.

LS-OPT Version 5.2

290



CHAPTER 15: Viewing Results

Summary
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Figure 15-51: Mean value and standard deviation constructed using metamodel together with the

statistical distribution of the variables

Probability of violating constraint bounds
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Figure 15-52: Probability of Response TOP_DISP < -230 with 95% confidence interval in red

constructed using metamodel together with the statistical distribution of the variables
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Correlation
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Figure 15-53: Correlation Bars evaluated on metamodel

Covariance
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Figure 15-54: Covariance evaluated using metamodel
15.6.2. Stochastic Contribution

The stochastic contribution of the variables to the variance of the responses and composites (see Section
25.7) can be displayed as a bar chart.

Optionally, the user can elect to display the influence of the residuals from the metamodel fit and the effect
of all the variables summed together. Contrasting these two values indicates how well the cause-effect
relationship for the specific response is resolved. If both the residuals and the sum of the contributions are
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requested, then a total is displayed that is the sum of the contributions of all the variables as well as the
residuals.

The computations are done using the metamodels and stored in databases for visualization. Higher order
effects, if any, are included in the results plotted. In the Sobol terminology, the total effect as opposed to the
main effect is therefore plotted. See Section 25.7 for the details.

For optimization, the stochastic contribution is computed using the optimal design. The stochastic
contribution panel is shown in Figure 15-55.

a Project: metamodel.correct.lsopt’ ‘Tube'crush' Metamodel'based Monte carlol LS=OPT Viewer SEEE

rEke e HE OB RIE 2 [schcomm| reaton
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Stochastic Contribution of Variables

~ Response
¥ SOLVER_1
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SIGY
All Vars
Residuals
Sumn Variables Contrib Residuals

Total

2 3 4 5 5 7

Response Standard Deviation due to Variable

Figure 15-55: Stochastic Contribution plot
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16. LS-DYNA Results Statistics

The statistics of the LS-DYNA results can be displayed on the FE model using DynaStats. The statistics of
the LS-DYNA d3plot (or d3eigv) results and LS-OPT history data are computed by LS-OPT for viewing in
LS-PREPOST. These statistics shows:

0 The variation of the LS-DYNA results due to the variation of the design parameters.
0 The variation of the LS-DYNA results due to bifurcations and other stochastic process events.

The d3plot results are computed and displayed for every node or element for every state in the d3plot
database, while the history results are likewise computed and displayed for every time state in the history (in
history.x file).

A more complete list of the statistics that can be computed and visualized is:

1. Statistics of the Monte Carlo data from the LS-DYNA jobs. These are the data from the
experimental designs used. If the experimental design was for a Monte Carlo analysis then the
experimental design reflects the variation of the design variables, but if the experimental design was
for creating a metamodel then the experimental design does not reflect the statistical variation of the
design variables.

2. Statistics of the results considering the variation of the design variables using the approximations
(metamodels) created from the LS-DYNA jobs. It should be noted that these approximations differ
from the ones defined for the responses under “Metamodeling” dialog of LS-OPT. In order to
display statistics over the entire LS-DYNA model, several metamodels need to be fitted (for every
element/node). Therefore, only linear and quadratic metamodeling options are available under
DynaStats to make the computation fast. The distributions of the design variables and the
metamodels are used to compute the variation of the responses. If distributions were not assigned to
the design variables, the resulting variation will be zero. The metamodels allow the computations of
the following:

0 The deterministic or parametric variation of the responses caused by the variation of the design
variables.

o Statistics of the residuals from the metamodels created from the LS-DYNA jobs. These residuals
are used to find bifurcations in the structural behavior — the outliers comprise the displacement
changes not associated with a design variable change. See Section 25.6 regarding the
computation of outliers. This is the process variation is associated with structural effects such as
bifurcations and not with changes in the design variable values.

0 The stochastic contribution of a variable can be investigated.
0 A probabilistic safety margin with respect to a bound on the LS-DYNA response can be plotted.

LS-OPT Version 5.2 294



CHAPTER 16: LS-DYNA Results Statistics

3.

0 The LS-OPT histories of all the LS-DYNA runs as well as history statistics can be plotted.

The correlation of d3plot results or histories with an LS-OPT response can be displayed. This can be
used, for example, to identify the changes in displacements associated with noise in an LS-OPT
response.

16.1. Working with the plots

Select the DynaStats option from the Tools menu of the control bar of the main GUI. The dialog shown in
Figure 16-1 opens up to work with the plots. Utilize the following actions:

(0}

O O O O

Create This creates a new plot. Note that this only creates the definition of the plot. The data for the
plot must be generated before it can be displayed. The options are described in Section 16.2.

Generate The data for a plot is generated. This is done only once per plot. More than one plot can be
selected to be generated — there is no need to generate plots one-by-one.

Display Plot previously created and generated can be displayed.

Edit A plot can be edited or copied. This may require that the data be re-generated.
Bifurcation A study can be investigated for bifurcations, and the bifurcation can be plotted.
Delete A plot can be deleted.

The plot definitions are stored in a file which allows re-use of a methodology in different studies (see
Section 16.11).

16.2. Creation of a plot

A plot is created in four steps.

16.2.1. Step 1 — Fringe plot or History plot

In the first step, the user has to select whether to create a fringe plot or a history plot, Figure 16-2. Select the
respective image to go to the next step.
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DYNAstats (2]

plastic_strain (not ready to dispiay)

Fringe plot of plastic_strain correlated with tip_x on SOLVER_1 using D3Plot data. Plot on job 1.1, overlaying maximum job
caculated from whole model

history (not ready to display)
Histery plot of NHist_Y statistics

Create Generate Display Edit Bifurcation Delete

Figure 16-1: Visualization of LS-DYNA results statistics. After plot creation using the wizard, the plot

data must be generated. The plot can then be displayed in LS-PREPOST. Existing plots can be edited,
deleted or investigated for a bifurcation.

Cl

Step 1 of 4

£

Fringe plot - display computed statistics based on
D3Plot data upon the actual elements of the model.

The D3Plot data can also be correlated with a

response or have it's dependency on variables analyzed.

History plot - display history plots from the different
runs in the same plot, er consolidate them using
statistical calculations. Correlation and variable
contribution analysis are available in this mode as well.

Cancel

Figure 16-2: First step of DynaStats plot definition creation; selection of plot type
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16.2.2. Step 2 — D3Plot component or History

Step 2 of 4

Select D3Plot component to plot

Select stage to plot

~ D3Plot Components
~  Ndv
%_displacement
z_displacement
result_displacement
xy_displacement
yz_displacement
zx_displacement
x_velocity
y_velocity
z_velocity
result_velocity

Stress

Strain

Result

Misc

FLD

Eeam

VvV VvV VvV

SOLVER_1

[[] Correlate response: [| Correlate variable:

MNodDispMin
MNodDispMax
tip_x

tip_y

tip_z

tip_r

DispT

Imp

[[] Follow coordinates instead of nodes

Cancel

[ < Previous l [ Next > l

Figure 16-3: Second step of DynaStats plot creation; selection of d3plot

component or history
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Table 16-1: DynaStats Second step options

Option Description Reference

Select D3Plot Statistics are calculated using values of selected component
component to plot

Select history to plot  Statistics are calculated using values of selected history Section 16.7

Select stage to plot Name of stage

Follow coordinates ~ The ID of the part to be mapped has to be specified Section 16.10

instead of nodes

FLC curve FLC curve specification (for FLD components, metal Section 16.10
forming)

Parameteric

FLD curve t and n coefficients

Provided curve

Curve ID in the LS-DYNA file of the FLD curve to be used

Correlate response Correlation between an LS-OPT response and a D3Plot Section 16.4.1
component at all states

Correlate variable Correlation between an LS-OPT variable and a D3Plot Section 16.4.2
component at all states
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16.2.3. Step 3 - Statistics

-

Step3lofd

| Cancel |

Select what to plot
) Statistic of D3Plot data
) Statistic of residuals (errors) in a metamodel of the D3Plot data

Safety Margin
) A single variable's contribution to the D3Flot data
) Which variable contributes the most to the D3Plot data

Select statistic to plot

@ Mean (O StdDev O Max Value O Min Value
) Range O Max Job ID C Min Job ID
Select analysis method

(@ Use actual FEA results (Monte Carlo)

() Build linear metamodel from FEA Results

() Build quadratic metamodel from FEA results

< Previous | | Next =

Figure 16-4: Third step of DynaStats plot definition creation
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Table 16-2: DynaStats Third step options

Option Description Reference

Select what to plot Statistics of D3Plot data
Statistics of residuals (errors) in a metamodel of the D3Plot

data
Safety Margin Section 16.6
A single variable’s contribution to the D3Plot data Section 16.5

Which variable contributes the most to the D3Plot data

Select statistics to plot Section 16.3

Select analysis Use actual FEA results (Monte Carlo) Section 16.3.1

method Build linear metamodel from FEA Results Section 16.3.2
Build quadratic metamodel from FEA results Section 16.3.2

16.2.4. Step 4 — Visualization in LS-PREPOST

The user can select the LS-PREPOST plot details in LS-OPT (Figure 16-5). The GUI options will reflect
whether fringe component response or history data is being investigated.

The Job Index field specifies the FE model used for the display of the results. Additionally, the FE models
containing the maximum and the minimum results can be overlayed in order to spot bifurcations as
described in a later section.

Table 16-3: DynaStats Visualization in LS-PREPOST options

Option Description Reference

Select the iteration to use Iteration number
for the plot

Select the job on which
to plot

Also display model from  Bifurcation investigations Section 16.8

Name for this plot
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- Step 4 of 4. (=)
Select the iteration to use for the plot
1
[}
Current iteration: 1
Select the job on which to plot
Imp YS T1 z_off lodDispMillodDispMa  tip_x tip_y tip_z tip_r DispT
1.1
1.2 0.0017 0 1 0.01 1] 4.1 -6.5 -7.3e-06 31 72 0
1.3 0.0033 0 1 0.01 1] 4.1 -4.6 -7.3e-06 4.1 6.2 0
1.4 -0.00042 0 1 0.01 -4.1 0 -4.7 -6.2e-06 -4.1 6.2 9
1.5 0.0027 0 1 0.01 0 4.1 -5.2 -3.7e-06 4 6.6 0
Also display model from:
] Maximum job
] Minirmum job
Finally, provide a name for this plot for future reference
y-displacement|
Cancel < Previous Finish

Figure 16-5: The statistics viewing options. The statistics will be shown in LS-PREPOST using the FE
model from the LS-DYNA job specified using the Job field. The FE models of the jobs containing the
maximum and minimum values can be overlayed in order to identify bifurcations as described in Section
16.8.

16.3. Monte Carlo and metamodel analysis
This section gives the options required for the computation of the statistics from a Monte Carlo or a
metamodel based set of LS-DYNA results.

Either the LS-DYNA d3plot results or LS-OPT history results can be analyzed. The resulting output can be
viewed in LS-PREPOST. The results will be stored in the stage directory with extensions of .statdb and
istory.

The statistics are computed for a single stage and a single iteration.

16.3.1. Monte Carlo

The statistics of the responses from a Monte Carlo procedure can be computed. The task will calculate:
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1. Statistics of the response

o

O O O O O

(0]

Mean value of the response

Standard deviation of the response

Range of the response (maximum minus the minimum value)
Maximum value of the response

Minimum value of the response

ID of the LS-DYNA job where the maximum value occurred. This can be used to identify the
jobs likely to contain a different bifurcation.

ID of the LS-DYNA job where the minimum value occurred. This can be used to identify the
jobs likely to contain a different bifurcation.

2. The margin of safety (constraint margin) considering (i) a given bound on the response and (ii) the
variation of the response as computed using the Monte Carlo analysis (see also Section 16.6).

16.3.2. Metamodels and residuals

Metamodels (approximations) can be used to predict the statistics of the responses. These metamodels will
be computed for all results for all nodes and elements, respectively, for all time steps.

The metamodels are also useful for separating deterministic variation, caused by the variation of the design
variables, from the process variation. The two types of variation are as shown in Figure 16-6.

Stress

N Stress = Force / Area
Response

b

A
>

>_ _
>

Area Variable

Deterministic Variation Process Variation

Figure 16-6: Different types of variation that can occur in a structure. The deterministic variation,
predicted using the metamodel, is due to changes in the design variable values. The process variation, not
associated with change in the design variable values, shows up in the residuals of the metamodel fit.

Metamodels are able to distinguish the process variation because, as shown in Figure 16-7, a metamodel can
only predict the effect of the design variables. Process variation, not predictable by the design variables,
becomes residuals.
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Figure 16-7: Metamodels can be used to distinguish between changes in the results due to the design
variable changes and changes due to bifurcations.
The metamodel task will calculate:

1. Statistics of the response due to all the variables using the metamodel

0 Mean value of the response

Standard deviation of the response
Range (four standard deviations)
Maximum value (mean plus two standard deviations)

O O O O

Minimum value (mean minus two standard deviations)

2. Statistics of the residuals

Mean value of the residuals (always zero)

Standard deviation of the residuals

Range of the residuals (maximum minus the minimum value)
Maximum value of the residuals

Minimum value of the residuals

0O O 0O O o o

ID of the LS-DYNA job where the maximum residual occurred. This can be used to identify the
jobs likely to contain a different bifurcation.

o0 ID of the LS-DYNA job where the minimum residual occurred. This can be used to identify the
jobs likely to contain a different bifurcation.

3. Stochastic contribution of each individual variable and the variable contributing the most to the
variation of the data, respectively.
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4. The margin of safety (constraint margin) considering (i) a given bound on the response and (ii) the
variation of the response as computed using the metamodel (see also Section 16.6).

5. All the computations as specified for the Monte Carlo procedure. The data required for this
computation is read in for the metamodel computations, so very little time is expended computed
these results as well.

The standard deviation of the variation caused by the design variables are computed using the metamodel as
described in Section 25.7. The maximum, minimum, and range are computed using the mean value
plus/minus two standard deviations. The Max Job ID and Min Job ID are not meaningful for the metamodel
results.

The residuals are computed as the difference between the values computed using FEA and the values
predicted using the metamodel (see Section 25.6 for more details).

A linear or a quadratic response surface can be used. The metamodel processing speed is approximately
10° - 10° finite element nodes a second, where the total nodes to be processed is the number of nodes in the
model times the number of states times the number of jobs. FLD computations, which require the
computation of the principle strains, can be a factor of five slower than computations using the nodal
displacements. The overall speed is dominated by the time required to read the d3plot files from disk;
accessing files over a network will be slow.

16.4. Correlation

16.4.1. Correlation of fringe plots or histories with responses

The correlation of the LS-DYNA results or LS-OPT histories with a response can be computed. This
quantity indicates whether the changes in the responses are associated with the changes in the fringe or
history. Figure 16-8 shows examples of a positive, a negative, and zero correlation. If not enough FE
evaluations were conducted, the resulting fringe plot can be visually noisy. Thirty or more FE evaluations
may be required. Note that the correlation of history is with respect to a response at a single time instance.

Positive Correlation
Data

Negative Correlation No Correlation

Y Y ~ ]

Figure 16-8: Correlation between X, shown in the upper left corner, and different responses Y. Different
responses Y with a positive, a negative, and no correlation are shown.
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16.4.2. Correlation of fringe plots or histories with variables

The correlation of the LS-DYNA results or LS-OPT histories with a variable can also be computed. This
quantity indicates for all the time states whether the changes in a particular variable are associated with the
changes in the D3Plot component or history. The correlation does not necessarily represent uncertainty or
randomness of the variable. For example, even for a deterministic problem, such as a simple parametric or
DOE study without random variables, there can be a non-zero correlation between a variable and a LS-
DYNA response component.

- Step 2 of 4 &

Select D3Plot component to plot Select stage to plot
=~ D3Plot Components =3
=~ Ndv
x_displacement
y_displacement
z_displacement

result_displacement
xy_displacement
yz_displacement
zx_displacement
x_velocity
y_velocity | & Correlate response: [] Correlate variable:

z_velocity NodDispMin
result_velocity NodDispMax
~ 5tress

xx_stress

tip_x

yy_stress ti
ip_z

zz_stress P

tip_r

DispT

xy_stress

yz_stress

zX_stress

pressure

von_mises

1st_prin_dev_stress

2nd_prin_dev_stress
= Strain

L_surf_plastic_strain

U_surf_plastic_strain

L_surf_xx_strain

L_surf_yy_strain I~

[[] Follow coordinates instead of nodes

Cancel < Previous Next =

Figure 16-9: Viewing the correlation between an LS-DYNA response and an LS-OPT response.
Additionally, the correlation between an LS-OPT history and an LS-OPT response or variable can also
be viewed.

16.5. Stochastic contribution of a variable

The stochastic contribution of each design variable to the variation of the nodal response can also be plotted
on the model by selecting A single variable’s contribution to the D3PIlot data and a variable form the list.
These results are computed as described in Section 25.7. It is important to note that stochastic contribution,
though closely related, is not the same as sensitivity or correlation. While sensitivity and correlation can be
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non-zero for both stochastic and deterministic problems, stochastic contribution of a deterministic variable
is always zero. Stochastic contribution provides the variation of a response due to randomness of a variable.
Thus it depends not only on the relation between the response and the variable (also studied using sensitivity
or correlation), but also the degree of uncertainty in the variable. Higher randomness of a variable would
lead to greater stochastic contribution (assuming non-zero sensitivity).

The most important variable based on stochastic contribution, or rather the variable responsible for the most
variation of the response, can be plotted on the model by selecting Which variable contributes the most to
the D3Plot data. Actually, only the index of the variable is displayed on the model. This index is the same
as in the list of variables as shown in the LS-DYNA results statistics GUI. The importance of stochastic
contribution analysis is more significant from the perspective of uncertainty or probabilistic analysis. The
most important variable based on stochastic contribution may not necessarily be the most important based
on sensitivity analysis, as the latter does not consider the actual probabilistic distributions of variables.

- Step 3of 4 )|

Select what to plot

() Statistic of D3Plot data

() Statistic of residuals (errors) in a metamodel of the D3Plot data
() Safety Margin

@ A single variable's contribution to the D3Plot data

) Which wvariable contributes the most to the D3Plot data

Select the variable to analyse
Imp
Y5

aiI=TB

7 _nff

Select analysis method
()

() Build linear metamodel from FEA Results

() Build quadratic metamodel from FEA results

Cancel < Previous

Figure 16-10: Viewing the stochastic contribution of a single variable.

16.6. Safety margin

The safety margin as shown in Figure 16-11 can be displayed in three ways:

LS-OPT Version 5.2 306



CHAPTER 16: LS-DYNA Results Statistics

1. The safety margin — the difference between the bound and mean,
2. The safety margin measured (scaled) in standard deviations (sigmas), and
3. The probability of exceeding the bound (probability of failure).

f(x) Bound

Figure 16-11: The safety margin is the difference, measured in standard deviations, between the mean
response and the constraint bound on the response.

The bound must therefore be specified when the statistics are computed as shown in Figure 16-12.
Obtaining the safety margin for a different bound requires the generation of a new plot.

The probability of exceeding the bound is computed using the FOSM method (see Section 25.4.4) using the
normal distribution together with the safety margin measured in standard deviations (sigmas). The
computation is therefore done in the six-sigma sense — the number of sigmas (standard deviations) is the
unit of measure. If a Monte Carlo computation of the probability of failure is desired, then it must be
computed using a response in the Statistical Tools plot, Section 15.2.6; if this response was not defined
originally then it must be extracted from the binout or d3plot database: first defining a binout or d3plot
response, do a Repair/Extract Results, Section 3.5, and use Statistical Tools plot with Plot type Probability
of constraint violation..
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Step 3'of 4

X

Cancel

Select what to plot

() Statistic of D3Plot data

() Statistic of residuals (errors) in a metamodel of the D3Plot data
@ Safety Margin

() A single variable's contribution to the D3Plot data

() Which variable contributes the most to the D3Plot data

Enter desired safety margin Lower|$ bound: |200e+6

Select value to plot
() Safety Margin
() Safety Margin scaled with response standard deviation

@ Probability of Failure

Select analysis method
@ Use actual FEA results (Mente Carlo)
() Build linear metamodel from FEA Results

() Build quadratic metamodel from FEA results

< Previous

MNext =

Figure 16-12: Plotting a safety margin or the probability of failure requires that the bound must be

specified.

16.7. Viewing LS-OPT histories

The LS-OPT histories for all the LS-DYNA runs can be viewed simultaneously. See Figure 16-15 for an
example. In addition, various statistics of LS-OPT histories at all time states can also be viewed. The safety

margin or probability of failure can also be viewed for all time states.
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(fwi—  stepzofa &

Select what to plot

() Statistics of histories

() Statistics of residuals (errors) in a metamodel of the history data
() Safety Margin

() How much each variable contribute to the history

@ |The given history for all run5|

Select analysis method
@ Use actual FEA results (Monte Carlo)
(O Build linear metamodel from FEA Results

(O Build guadratic metamodel from FEA results

Cancel

< Previous l [ Next =

Figure 16-13: Viewing all the LS-OPT histories.
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10 History MHist_7Z metamodel results
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Figure 16-14: Statistics of an LS-OPT history.

History NHist: All runs

Figure 16-15: The LS-OPT histories of all the LS-DYNA runs can be viewed simultaneously.

16.8. Bifurcation investigations

The residuals plots are useful for finding bifurcations. The standard deviation (or range) of the residuals
indicate regions where the changes in displacements are not explained by changes in the design variable
values — it is therefore a plot of the unexpected displacements or ‘surprise factor’. The plots from a Monte
Carlo analysis can also be used to find bifurcations similarly to the residuals from a metamodel-based
Monte Carlo analysis.
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- Step 4 of 4 )]

Select the iteration to use for the plot

1

Current iteration: 1
Select the job on which to plot
Imp YS T1 z_off lodDispMillodDispMa  tip_x tip_y tip_z tip_r DispT
1.1
1.2 0.0017 0.01 0 4.1 -6.5 -7.3e-06 3.1 7.2
1.3 0.0033 0.01 0 4.1 -4.6 -7.3e-06 4.1 6.2
0.01 -4.1 0 -4.7 -6.2e-06 -4.1 6.2

0.01 0 41 -52 -3.7e-06 4 6.6

H R R e
o w o o

0
0
1.4 -0.00042 0O
1.5 0.0027 0

Also display model from:
Maximum job

Minimum job

Calculate max/min by looking at
) whole model

 [node with 1D:

Finally, provide a name for this plot for future reference

[Bifurcaticn at node 789 l

| Cancel | |<Pre\.ri0u5|| Finish |

Figure 16-16: Bifurcation options. The bifurcation is found by superimposing the FE models containing
the maximum and minimum results. A node ID associated with the bifurcation may need to be specified
if the extreme values in the model are not caused by the bifurcation.

[oPT AN Create bifurcation plot AN

Owerlay dizplay model from:

| Maximum job

EJ Minirmurm jokb

Calculate max/min by looking at

* whole maodel

node with 1D:

Fnally, provide a name for this plot for future reference
BifurcationOfFlot-1

W OK @ cancel

Figure 16-17: Options to create Bifurcation Plot for an existing plot.
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16.8.1. Automatic detection

Automatic detection of the LS-DYNA jobs containing the minimum and maximum outlier can be done as
shown in Figure 16-16 and Figure 16-17. In the GUI the user must select (i) overlay of the FE models
containing the maximum and minimum results and (ii) whether the global minimum or the minimum at
specific node must be used. Viewing the maximum and minimum job simultaneously allows the bifurcation
to be identified. See Figure 16-18 for an example of the resulting LS-PREPOST plot.

16.8.2. Manual detection

The steps for manual detection are:

1.

2.
3.
4.

Plot displacement magnitude outlier Range to identify location in FE model where the bifurcation
occurred.

Identify job in which maximum value occurred using a Max Job 1D plot
Identify job in which minimum value occurred using a Min Job ID plot
View the location in model for the jobs having the minimum and maximum value.

Recommendations:

o
(0}

Engineering knowledge of the structure is important.

Look at the x, y, and z components in addition to the displacement magnitude to understand in which
direction the bifurcation occurred; most bifurcations are actually best identified considering a
displacement component.

The history results may be useful to find the time at which a bifurcation occurred.

The correlation between a response and displacements (or histories) indicates if variation of the
displacement is linked to variation of the response.

Look at all of the states in the d3plot database; the bifurcation may be clearer at an earlier analysis
time.
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Residual statistics: stddew(Ndv x_displacement)

Time = g Fringe Levels
Contours.of 8.931e-01

min=0, at nodex 1
max=0.893056, at node# 11 8.038e-01

y

7.144e-01
Job with statistics fringe plot T
6.251e-01 _

5.358e-01 _
4.465e-01 _
3.572e-01
2.679e-01 _
1.786e-01
8.931e-02

Job with maximum result 0.000e+00 |

Job with minimum result

WV

Figure 16-18: Viewing a bifurcation. Plate structure that can buckle either left or right. Three FE models
are shown, and the two distinctly different solution modes are clearly visible. The creation and display of
the plot containing all three models are automated in LS-OPT.

16.9. Displacement magnitude issues*

Approximation of the displacement magnitudes (resultants) introduces some special cases. The magnitude is
defined as the square root of a sum of squares, which is difficult to approximate around the origin,
especially using linear approximations, Figure 16-19. The X, y, and z displacement components do not
suffer from this problem.
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Figure 16-19: Displacement approximation scenarios. The displacement magnitude, being always larger
than zero, cannot be approximated accurately around the origin if some of the displacement components
can have a negative value.

Unexpected results may occur even if the displacement magnitude is approximated correctly. The
displacement magnitude is always a positive quantity, which, in addition to the fitting problems, can also
cause problems when computing the coefficient of correlation with a response quantity. Figure 16-20
illustrates two buckling modes of a flange evaluated at two locations in space. The displacement magnitude
variance differs for the two locations though the buckling modes are similar. The variance of the
displacement magnitude will therefore be smaller than what would be found considering the components.
Considering a displacement component will cure this problem, but a displacement component aligned with
the required direction may not always exist.

Buckling Mode 1
Buckling Mode 11

1 ! - - .
\ { Displaced configuration A
i .f Small variance of resultant displacement

1 | .

Vo — < /

I'. If - — /. - e f

Vo o S

L/ =T

!il-‘ L _:_:”-"—FF' -
- Displaced configuration B
Large variance of resultant displacement

Initial configuration

Figure 16-20: The displacement magnitude can depend on the aligment of the flange with the axis. The
buckling will be difficult to spot if it is aligned with the position of the axis. For configuration A, the two
vectors have nearly the same length, while for configuration B, they clearly have different lengths.
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Recommendations:
0 Use the x, y, and z displacement components.

16.10. Metalforming options

Metalforming has some special requirements. It is possible to:

1. Map the results for each sample to the mesh of the base design. The results will be computed at a
specific spatial location instead of a node (Eulerian system). This is required in metalforming
because:

o0 The adaptivitity will result in the different iterations having different meshes.

o Itis more natural in metalforming to consider the results at a specific geometric location than at a
specific node.

This is done only for the work piece. This part must therefore be specified in the LS-OPT input.
More detail is shown in Figure 16-21, Figure 16-22 and Figure 16-23.

2. Specify the FLC curve to be used in the computation of the FLD responses. This can be done by
either specifying the ID of a curve defined in the LS-DYNA input deck (option Provided curve) or
using two parameters similar to that being used in LS-PREPOST (option Parametric).
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Figure 16-21: For metal forming specify that the coordinates instead of the nodes must be followed and
specify the part (blank) for which the results must be mapped.
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Figure 16-22: Interpolation of metal forming results.
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- --- Element results on mapped mesh

______ — Nodal results on mapped mesh

—— Nodal results on base mesh

L ® ® o e ® Mapped mesh nodes
® o ® ® ® Base mesh nodes

Figure 16-23: Acuracy of of the mapping operation for element results is shown for two cases. For each
case the results are shown as the element centroid results for the original mapped mesh, the element
results averaged at the nodes for the original mapped mesh, and the results mapped to the nodes of the
base mesh. For the first case it can be seen that the mapping accuracy is good if the mesh is sufficiently
fine to consider smoothly varying results. The second case, which occurs when yielding occurs in a single |
element, indicates a loss of information. But for this second case, the exact numerical value of the
original results is not considered very accurate, so we can consider the mapped results as sufficient as
long as they conserve the prediction of failure. For the second case the numerical values are mesh-
dependent, so the prediction of failure is the quantity that should be mapped to another mesh.

16.11. User-defined statistics*

Although DynaStats provides an interface only for LS-DYNA response components, it also provides a way
to visualize statistics of user-defined results. This requires a script from the user that is run by LS-OPT in
each run directory to calculate the user-defined results for that subdirectory, and eventually the statistics of
all the runs. The steps involved are listed below:

1. Select “Misc, user” as the D3Plot Component in DynaStats Creation Wizard, Section 16.2.2, to
define the required statistic.

2. A script named “dstats_user” needs to be provided by the user. In each subdirectory LS-OPT will
run the program “dstats_user -state n” for n ranging from 1 to the total number of states. The
program “dstats_user” must dump a file called “dstats.Ispp” for the particular state being run.

3. LS-OPT will open the file “dstats.Ispp” for every state. The file must be in the same format as
dumped by LS-PrePost output command. The data must be written in “%10d%Z10f” format as nodal
results. If the results are available as element results, they must first be converted to nodal results
using nodal averaging in LS-PrePost.
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A sample dstats_user python program to dump nodal results from LS-PrePost is given below. In general, the
user can dump results from any program into the file dstats.Ispp.

import sys, os

cmp = 9 # Von Mises

state = 1

print "state”, state

print "argv', sys.argv

if len(sys.argv) > 2 : state = eval( sys.argv[2] )
print "state", state

f = open( "lIspp.cmd™, “w® )

fr.write( "openc d3plot \"d3plot\'\n" )

ff.write( "state %d;\n"%state )

fr.write( "fringe %d\n"%cmp )

fr.write( "pfringe\n" )

fr.write( "output dstats.lIspp %d 1 0 1 0 0 0 0 01 0 0 0 0 O\n"%state )
fr.write( "exit\n" )

ff.close( )

os.system( "lsprepost c=Ispp.cmd" )

If element results are available, they must first be dumped by dstats_user before running additional LS-
PrePost commands to read those results, convert them into nodal outputs, and dump the new results. If the
element results are written to dstats_e.Ispp then the following dstats_user should be modified as follows.

import sys, os

cmp = 9 # von mises

state = 1

print "state”™, state

print *argv', sys.argv

if len(sys.argv) > 2 - state = eval( sys.argv[2] )
print "state", state

f = open( "lIspp.cmd™, “w® )

ff.write( "openc d3plot \"d3plot\'\n" )

ff.write( "state %d;\n"%state )

ff.write( "fringe %d\n"%cmp )

fr.write( "pfringe\n" )

ff.write( "range avgfrng none\n" )

fFf.write( "output dstats e.lspp %d 1 0 1 00001 0 0 0 0 0 O\n"%state )
# read the file with element data

fr.write( "open userfringe dstats_e.lspp 1\n")
fr.write( "fringe 5001\n™)

ff.write( "pfringe\n" )

# write the corresponding file with nodal data
ff.write( "range avgfrng node\n" )

ff.write( "output dstats.Ispp %d 1 0 1 0 0 0 0 01 0 0 0 O O\n"%state )
fr.write( "exit\n" )

ff.close( )

os.system( "lIsprepost c=Ispp.cmd” )
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16.12. Re-use and persistence of an evaluation methodology*

The definitions of the plots are saved in a filed named dynastatplots.xml. Copy this file to the directory
where you want to re-use the definitions. The plots will be available when you restart the LS-OPT GUI. The
plots will have to be re-generated though; note that you can select all of the plots when you generate plots —

there is no need to generate plots one-by-one.

Using the File menu Export and Import features, all defined plots may be exported to an .xml file and
selected plots can be imported.
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17. Applications of Optimization

This chapter provides a brief description of some of the applications of optimization that can be performed
using LS-OPT. It should be read in conjunction with the examples chapters, where the applications are
illustrated with practical examples.

17.1. Parameter ldentification

Parameter identification problems are non-linear inverse problems which can be solved using mathematical
optimization. System parameter identification is a commonly used feature of LS-OPT, especially for the
purpose of calibrating material models.

The procedure consists of minimizing the mismatch between target values and corresponding solver output
values, or between two curves. In the latter case, the two curves typically consist of a two-dimensional
experimental target curve and a computed curve. The computed curve is a variable response, being
dependent on the system parameters, e.g. material constants. It can also be a crossplot, constructed by
combining two time histories such as strain and stress (Section 6.4.2).

The two main essential components of an algorithm designed for system identification are
O optimization algorithm and
O curve matching metric.

17.1.1. Optimization algorithm

The recommended optimization algorithm to be used to solve a parameter identification problem is the
Metamodel-based Optimization with the strategy Sequential with Domain Reduction, Section 4.7.3. Use
linear polynomial metamodels and D-optimal point selection which is the default for the selected task and
strategy, Section 9.3.2.

17.1.2. Matching scalar values

To match scalar values, extract the respective responses from the solver output. Specify a Standard
Composite of type MSE or Sqrt MSE using these responses as components associated with the respective
target value, Section 10.4. Define this composite as an objective function.
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17.1.3. Curve matching metric

To calculate the mismatch between the target and the computed curve, define a Curve Matching composite,
Section 10.5. There are two curve matching metrics available, Mean Square Error and Curve Mapping.
Mean Square Error is an ordinate-based curve matching metric. Hence if the curve has steep parts or if the
ordinate values are not unique, (the curve is a hysteretic curve), Curve Mapping is the metric of choice.

Because Curve Mapping uses the length of the curve to calculate the mismatch, filtering of the component
history curves is recommended.

17.1.4. Sampling constraints

For parameter identification problems, there are often more restrictions on design variables than just a lower
and an upper bound for each parameter, e.g. there may be a requirement to obtain monotonically increasing
solver input curves. Such constraints can be defined as Sampling Constraints in LS-OPT, Section 9.6.

17.1.5. Parameterization of solver input curves

A common way to parameterize a solver input curve is to use a parameterized analytical function that
represents the characteristic of the curve. Use a program or script as a solver of a preprocessor stage to
calculate the solver input curve depending on parameters.

17.1.6. Viewer

This section describes some postprocessing options commonly used for parameter identification problems.
Further options are described in Chapter 15.

Optimization History

The optimization history plot can be used to check the convergence of the variable values as well as the
decrease of the objective over the iterations. The response optimization history displays computed and
predicted values; hence it can be used to check the quality of the predictions. See Section 15.4.1 for further
information on the optimization history plot.
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Figure 17-1: Optimization history for variables and objective
Sensitivities

If there are parameters that do not converge, the sensitivities plot can be used to see if those parameters are
insensitive. See Section 15.3.4.

Global Sensitivities Plot for MSE
Mean = 0.138112, Total variance = 0.0231182, Noise variance = 0

Yield (100.0% - 100.0%)
Y¥Mod (0.0% - 100.0%)
T

0 20 40 60 80 1do
% Influence an Composite

Figure 17-2: Global Sensitivities
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History

The history plot (Section 15.2.4) can be used to display the computed curves and the test curve in the same
plot. There are several coloring options for the computed curves, e.g. the curves could be colored by the
objective values (curve matching metric) to see if the curve matching metric works as expected.

Displaying the curves for all iterations, selecting the option Only optimal and coloring the curves by
iteration visualizes the improvement of the optimal curves over the iterations.

L (R0 CC ME BB BE § [

JE+04

Show

& Feasible

&) infeasible

& ‘Ondy optimal 2 SE+04-+
Only selected
Poante

Predicted Hetories

2E+04

FarceliTestl
Iterations

1.5E+0417

1E+04

S5E+034+

0 02 0.4 06 08 1 12 1.4 16 18 Mg
-Displ/ xTestl |

Figure 17-3: Target and computed curves, only optimal curves are displayed for all iterations

17.2. Sensitivity analysis

Responses can depend on many variables, and the computational effort of an optimization strongly depends
on the number of variables. In most cases, only a few variables are significant.

Sensitivity analysis allows the user to determine the significance of design variables when computing a
selected response. This helps to understand the simulation model and to reduce the design variables used in
an optimization. The least significant ones can be de-selected to reduce the computational effort.

Two sensitivity measures are implemented in LS-OPT: Linear ANOVA and GSA/Saobol.

Both sensitivity measures are global in nature and are evaluated using the metamodel; hence the metamodel
quality is essential to achieve reasonable sensitivity results.
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ANOVA is a linear sensitivity measure, whereas GSA/Sobol is non-linear. Therefore, the results are
comparable for linear metamodels. ANOVA depicts positive or negative influence, whereas GSA/Sobol just
shows the absolute value. An advantage of GSA/Sobol is, that the values are normalized. Hence they can be
summed up to determine the influence of a parameter on multiple responses, on a full load case, or on the
entire optimization problem.

ANOVA is evaluated automatically if metamodels are available, to get GSA/Sobol values, select the Global
Sensitivities option in the Task dialog (Section 4.10) or from the Add menu (Section 3.2).

To perform a sensitivity analysis, a global metamodel approximation should be used. Two approaches are
described in the following sections.

17.2.1. DOE task

A global approximation can be achieved by selecting task DOE, Section 4.3. To get reasonable results,
increase the Number of Simulation Points (per Iteration per Case) to at least 2*(n+1), where n is the number
of variables. The greater the non-linearity of the response functions, the more points are needed to represent
the nonlinearities. Hence the number of points is always a compromise between accuracy and computational
effort.

17.2.2. Sequential

An approach for generating a metamodel to a specified prediction accuracy (using the PRESS metric, see
Section 21.3.5) is to use an iterative method.

Select Metamodel based Optimization for the main task, and the Sequential strategy, Section 4.7.2. Here, the
default Number of Points per lIteration can be used, because points are added sequentially. A nonlinear
metamodel is recommended, e.g. Radial Basis Functions together with the Space Filling point selection
scheme, Section 9.3.4.

An appropriate termination criterion for a sequential approach is Response Accuracy Tolerance, Section 0.
Make sure to use the OR option and set the non-accuracy tolerances to 0. The number of iterations to be
performed is again a compromise between accuracy and computational effort.

17.2.3. Viewer

This section describes some postprocessing options commonly used for a sensitivity analysis. Further
options are described in Chapter 15.

Accuracy

Use the accuracy plot (Section 15.3.3) and the error measures displayed in the title to judge the quality of
the metamodels.
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Metamodeling Accuracy
For Response Function "Acc_max”
Linear: RMS Err = 2.01e+04 (3.05 %), Sqrt PRESS = 4.97e+04 (7.54 %), R-sq = 0.994
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T T T
3E+05 4E+05 SE+05

Figure 17-4: Accuracy plot; computed vs. predicted values; error measures are displayed in the title
Sensitivities

The sensitivity measures calculated by LS-OPT, Linear ANOVA and GSA/Sobol can be visualized in the
Sensitivities plot (Section 15.3.4). By default, the values are sorted by significance, hence the ranking of the
parameters can be directly taken from the order in the plots.
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Sensitivities Plot for Acc_max

with 95% Confidence Interval

trailb
trailf
troof H
thood
thumper }—|4|
-2E'+05 -1E'+05 0 1E+05 2E105 3E+05 4E 105 SE+05 6E+0!
Terms in expansion of Acc_max
Global Sensitivities Plot
mAcc_max
trailb (36.0% - 36.0%) B Mass
mDisp2
troof (28.2% - 64.2%) mDispl
BHIC
thumper (17.6% - 81.8%)
trailf (10.8% - 92.6%)
thood (7.4% - 100.0%)
! 20 25 30 35

% Influence on Responses/Composites

Figure 17-5: ANOVA values for a single response; Sobol values for multiple responses

Interpolator

The Interpolator plot (Section 15.3.2) displays 2D cross-sections of the metamodels in a matrix for selected
responses and variables. Constraints and predicted values for a selected parameter combination can be

visualized on the metamodel.
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Figure 17-6: Interpolator plot: 2D surface plots for variables vs. responses; constraints on the metamodel
and the predicted value for the selected parameter combination are displayed.

17.3. Multidisciplinary Design Optimization (MDO)

MDO is often used because in industry each design group typically has its own simulation tools, design
criteria (constraints) and load cases. A different set of variables, constraints and objectives therefore needs
to be used for each discipline.

The MDO capability in LS-OPT implies that the user has the option of assigning different variables,
sampling types and job specification information to different cases or disciplines. Each case has to be
defined with a unique Sampling (see Section 3.2.1).

Variables can be de-activated Sampling-wise in the Sampling Matrix tab (Setup dialog, Section 8.3). After
each iteration, variables omitted from specific samplings will assume the global value.

It is permissible to eliminate a set of variables across all Samplings, in which event they will remain
constant during the optimization process.

See the examples in Section 18.5 for the command file format.
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17.4. Multi-objective optimization (MOO)

Design objectives are often in conflict. This implies that objectives cannot all be minimized to their single-
objective minima (the so called Utopian solution) at the same time. In the mathematical sense multi-
objective problems therefore have multiple solutions, typically defining a line or a surface in the space
defined by the objectives (i.e. two-dimensional space for two objectives, etc.). In design optimization
terminology such a solution is referred to as a Pareto Optimal Frontier (POF), or trade-off curve or surface.
The POF curve can then be used by designers to choose a unique design which satisfies the needs of all the
disciplines, although it is likely to be a compromise solution.

POF surfaces can be discontinuous.

To activate the POF feature, the option Create Pareto Optimal Front can be selected in the Task or
Optimization dialog, Section 4.9. The option is only available if at least two objectives are defined.

The recommended optimization task and strategy for MOO is Metamodel-based Optimization using the
Single Iteration or Sequential strategies, see Section 4.7.

17.4.1. Direct Genetic Algorithm

To calculate Pareto optimal solutions using the Direct Genetic Algorithm, select Direct simulation
Optimization as main task, Section 4.4.

The advantage of using a direct task is, that it uses only simulation results to find the optimal value, hence
there is no approximation error. The disadvantage is that the number of simulation runs needed to find an
optimal value can be high. Therefore this task can only be used for small models or if sufficient
computational resources are available.

17.4.2. Metamodel-based Genetic Algorithm

To calculate Pareto optimal solutions using a metamodel-based Genetic Algorithm, a global approximation
is recommended. Select Metamodel-based Optimization as the main task, and use the strategy Single
iteration or Sequential together with a nonlinear metamodel, e.g. Radial Basis Functions or FeedForward
Neural Nets.

Because Pareto solutions are often global in nature (spans a significant part of the design space), global
metamodel accuracy is typically required. This may be difficult to achieve with a large number of design
variables. In this case the Direct GA (which will also be expensive) is the only remaining option.

17.4.3. Viewer

Various plot types that are available for the visualization of Pareto optimal solutions described in Section
15.5 can be used to explore those solutions and select the appropriate optimal solution that fits best to the
application.

17.5. Shape Optimization

To implement geometrical parameters in LS-OPT, an interface to a preprocessor has to be used. The
available interfaces, which include a user-defined option, are described in Chapter 5. The process chain to
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be optimized is at least a two-stage process including a preprocessor and a solver, Figure 17-7. Additional
parameters can be defined in the solver input file. The preprocessor output is used as solver input. For LS-
DYNA, the output can be used as an include file, specified in the main input file.

Some preprocessors allow the user to generate multiple output files which can be used in multiple parallel
simulation stages by using a file operation function between the stages (see Section 3.2.2) to copy the
selected preprocessor output files.

The recommended task and strategy for single objective optimization is Metamodel based Optimization and
Sequential with Domain Reduction, Section 4.7.3.
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Figure 17-7: Possible setup for a shape optimization. a_pre interfaces with a preprocessor that generates
the geometry of the model depending on parameters.

17.6. Worst-case design

The default setting in LS-OPT is that all design variables are treated as minimization variables. This means
that the objective function is minimized (or maximized) with respect to all the variables. Maximization
variables are selected in the Setup dialogs Parameter Setup panel (see Figure 17-8) by toggling the
required variables from ‘Minimize’ to ‘Maximize’ in the Saddle Direction menu. This option is only
available if Show advanced options is selected (Section 8.1.9).
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Figure 17-8: Parameter definition for a worst-case design optimization

17.7. Multilevel Optimization

In multilevel optimization, the optimization problem is solved in parts at two (usually) or more levels. Each
sublevel optimizes a subset of the variable set while maintaining constant values for the variables belonging
to preceding levels. Multilevel optimization can be used to group variables into the different levels to make
the problem easier to solve. For example, a gradient based optimizer may be used for some of the variables
while a zero order method is used for the others. Similarly, metamodels may be constructed with some of
the variables while the rest are optimized using a direct method. In LS-OPT, this is performed using the LS-
OPT stage and by specifying some of the inner level variables as Transfer Variables (Section 5.3.9).

The multilevel optimization process in LS-OPT can be briefly summarized as follows. For the sake of
simplicity, the summary is provided for the case consisting of two levels.

1. Input File preparation for LS-OPT stage of outer level setup: The input file for the LS-OPT stage is
an .Isopt file itself. Therefore, preparing this file involves exactly the same steps as any single level
problem setup. While this file is an input file for the outer level, it is also the LS-OPT setup file for
solving the inner level problem. As already mentioned, the inner level optimization is performed
with respect to a subset of the variables while the rest are optimized in the outer level. Therefore,
these other parameters are constants for the inner level. The LS-OPT GUI is used to prepare the
JIsopt file; the inner level free variables are set as Continuous or Discrete Variables, but the rest are
set as Transfer Variables and are treated as constants at this level.

2. Stage setup for outer level: See Section (Section 5.3.9).
3. Response definitions for outer level: See section (Section 5.3.9).
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4. Global Setup for outer level: Once a .Isopt file parameterized with Transfer Variables is specified as
the LS-OPT stage input file in the outer level, the outer level LS-OPT stage automatically detects
these parameters and they are added to the Global Setup as constants. These can then be set as
Continuous or Discrete Variables by the user and thus, they become outer level variables (Figure
Section 5.3.9).

5. Running the optimization: The outer level optimization is started by pressing the run button in the
GUI or from command line, which leads to the creation of a design of experiments for the outer level
variables. A run directory is created for each outer level sample. The LS-OPT stage input file (i.e.
the inner level .Isopt setup) is copied to each of these directories and named as LsoOpt.inp by
default. The Transfer Variable values in a particular run directory are set as the corresponding outer
level sample’s variable values. Once the Transfer Variable values are set, they are treated as
constants within a run directory and the inner optimization is carried out with respect to the free
inner level variables. The optimized inner level entities are then extracted as sample responses at the
outer level, thus providing the response values at each outer level sample. The outer level
optimization is then carried out with respect to the remaining variables.
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18.1. Two-bar truss (3 variables)

This example has the following features:
0 A user-defined solver is used.
Extraction is performed using user-defined scripts.
First- and second-order response surface approximations are compared.

The effect of subregion size is investigated.

o O O O

The design optimization process is automated.

18.1.1. Description of problem

This example problem as shown in Figure 18-1 has one geometric and two element sizing
variables.

I 0 "
Figure 18-1: The two-bar truss example

The problem is statically determinate. The forces on the members depend only on the geometric
variable. Only one load case is considered: F = (Fy,Fy) = (24.8kN, 198.4kN).
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There are three design variables: Areal and AreaR, the cross-sectional areas of the bars, and
Base, half of the distance (m) between the supported nodes. The lower bounds on the variables
are 0.2cm? and 0.1m, respectively. The upper bounds on the variables are 4.0cm? and 1.6m,
respectively. The objective function is the weight of the structure

1
f(x) = > (Areal + AreaR)+/1 + Base?.

The absolute values of the stresses in the members are constrained to be less than 100 MPa,

1
-1< =0.124- |1+ B 2( )Sl,
01(x) J +Base Areal + Base - Areal

1
-1< =0.124- |1+ B 2( — )Sl.
72(x) J +Base AreaR Base - AreaR

The Perl program 2bar printed below simulating the weight response and stress response
respectively is used as solver. Note the output of the string "N o r m a 1" so that the
completion status may be recognized.

2bar:

#1/usr/bin/perl
#
# 2BAR truss
#
# Open output Files (database)
# Each response is placed in its own File
#
open(WEIGHT, ">Weight');
open(STRESSL, "">StressL™);
open(STRESSR, "">StressR™) ;
#
#--Compute the responses
#
$length = sqrt(l + <<Base>>*<<Base>>);
$cos = <<Base>>/$length;
$sin = 1/%length;
$Weight = (<<ArealL>> + <<AreaR>>) * sqrt(l + <<Base>>*<<Base>>) /2;

$StressL ( 24.8/%cos + 198.4/%sin)/<<ArealL>>/200;
$StressR (-24.8/%cos + 198.4/%sin)/<<AreaR>>/200;

#

#--Write results to database

#
print WEIGHT $Weight,'\n";
print STRESSL $StressL,'\n";
print STRESSR $StressR,'\n";

#******************************************

#--Signal normal termination

#******************************************

print "N o r m a I\n";
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Since the parameters are defined in 2bar using the LS-OPT parameter format <<>>, the script
is defined as the solver input file, while the solver command is perl, Figure 18-2. The response

values are written to files that are used to define the user-defined responses in LS-OPT, Figure
18-3.

& Stage 1 g
Setup | Parameters | Histories | Responses | File Operations
General
Package Name| User-Defined ] |
Command[perl ” Browse |

[] Do not add input file argument

Input File [..,Qbar ” Browse |

copies ../2bar to 1/it.run/| UserOpt.inp ]
and substitutes parameters

[[] Extra input files

Execution

Resources

Resource Units per job Global limit Delete
1 1 |2 x

Create new resource

[[] Use Queuing
[[] Use LSTCVM proxy
[] Environment Variables

Figure 18-2: Stage dialog Setup for a user-defined solver. Parameters are specified in the
input file using the LS-OPT parameter format <<>>.
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i

Stage 1 E]

Setup ‘ Parameters I Histories

Response definitions

StressL
USERDEFINED: cat StressL

StressR
USERDEFINED: cat StressR

Responses

Weight
USERDEFINED: cat Weight

File Operations l

Add new

Generic

USERDEFINED

® | | GENEX
EXPRESSION

* | | FUNCTION
INJURY

MATRIX_EXPRESSION

) LS-DYNA _
[ Edit response 3
Name Subcase Multipiler Offset
(weige | b )
] |N-:]I: metamﬂdel-linked|
Definition
[catWeight l
Cancel l[ oK l
LOLEUTT
GLSTAT
NTFORC
MASS
MATSUM
NCFORC [~

oK

Figure 18-3: User-defined response definitions

The problem is solved using metamodel based optimization, Figure 18-4. In Sections 18.1.2 to

18.1.4, a typical semi-automated optimization procedure is illustrated. The last subsection 18.1.5

shows how an automated procedure can be specified for this example problem.

18.1.2. A first approximation using linear response surfaces

To get a first rough approximation of the problem, a single iteration is run, Figure 18-4.
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L Task selection =

Main task
Metamodel-based

@ Optimization

() DOE study

() Monte Carlo analysis

) RBDO/Robust Parameter Design

Direct simulation
() Optimization

() Monte Carlo analysis

Strategy for Metamodel-based Optimization
@ Single lteration

() Sequential

() Sequential with Domain Reduction (SRSM)
1. sampling and optimization are done

in a single iteration.
2. Suitable for global design exploration.

[ Global Sensitivities
Do verification run

Figure 18-4: Task dialog; Selection for a metamodel base optimization using a single
iteration.

The parameter setup is defined in the Setup dialog. The type of each parameter is set to
continuous. A design space defined by minimum and maximum and a starting value is then
specified for each parameter, Figure 18-5. The starting values are used for the initial design.

The Sampling dialog, allows for setting the metamodel and point selection, Figure 18-6. To get a
first rough approximation of the problem, the metamodel type is chosen to be a linear
polynomial. The default number of points is automatically adapted to the number of variables
and the metamodel type.

Lad Problem global'setup) =
Parameter Setup | Stage Matrix = Sampling Matrix | Resources | Features

| Show advanced options

Type Name Starting Minirmum Maximum Delete
[contruous | v] T I B
[Comiuons | v | o3 I
[Comiuone | v | 2 I I
Add

Figure 18-5: Parameter Setup; specification of design space and starting values or all
parameters
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Figure 18-6: Sampling and Metamodel; Select metamodel type Polynomial with order Linear;

(=
|

Sampling' L

Sampling Metamodel Settings | Active Variables ‘ Features | Constraints |

)

Metamodel

@ Polynomial

() Sensitivity

() Feedforward Neural Network
() Radial Basis Function Network
() Kriging

() Support Vector Regression

() User-defined

~Order

@ Linear

() Linear with interaction
() Quadratic

() Elliptic

Point Selection

() Full Factorial

() Linear Koshal

() Quadratic Koshal
() Composite

@ D-Optimal

) Monte Carlo

() Latin Hypercube
() Space Filling

) User-defined

Mumber of Simulation Points (per lteration per Case)

7 (default)

l

Set Advanced D-Optimal Options :s-::-l

use the defaults for Point Selection and number of points

| Objectives ” Constraints

Algorithms

Optimization

[[] Maximize the Objective Function (instead of minimize)

Objective components: Add new
Response/Composite Weight Responses
StressL

Weight 1 (default) StressR

Composites

Figure 18-7: Objectives; select the previously defined response Weight from the list on the

right.
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Open the Optimization dialog to define the optimization problem. To specify the objective
function, select the previously defined Weight response from the list on the right in the
Objectives tab, Figure 18-7. To define constraints, switch to the Constraints tab and select the
previously defined responses StressL and StressR from the list on the right and enter the
respective lower and upper bounds, Figure 18-8.

BT Optimization x|

Objectives || Constraints || Algarithms

[[] Constraint scaling

Optimization constraints: Add new
Response Lower Bound  Strict Upper Bound  Strict Responses
I S Weight
x StressL x| -1l O x| 1 O

Composites

x StressR * | 1| O x | 1| O

Figure 18-8: Constraints; select the respective responses from the list on the right and specify
lower and upper bounds.

Results

The accuracy of the response surfaces can be illustrated by plotting the predicted results vs. the
computed results using the Accuracy plot (Figure 18-9 and Figure 18-10). The error measures
RMS, SPRESS and R2? are displayed in the title of the plot.

The R? values are large. However the prediction accuracy (Sqrt PRESS), especially for the
stresses, seems to be poor, so that either a higher order approximation or a smaller region of
interest will be required.

Nevertheless an improved design is predicted with the constraint values (stress) changing from
severely violated approximate values to active constraint, Table 18-1. Due to inaccuracy, the
actual constraint values of the optimum differ, but also the computed constraints are not violated.
The weight values have improved for both computed and predicted. Feasible and infeasible
regions in the design space as well as the computed and predicted optimum are displayed in
Figure 18-11.
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Metamodeling Accuracy
For Response Function "Weight"
Linear: RMS Err = 0.46 (14.3 %), Sqrt PRESS = 1.3
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w

Predicted Response Value

[¥]
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2 4
Computed Response Value

6

(42.7 %), R-sq =0.95

B Feasible
B nfeasible

Figure 18-9: Accuracy of linear metamodel for response ""Weight'*

Metamodeling Accuracy Metamodeling Accuracy
For Response Function "StressL" For Response Function "Stress

Linear: RMS Err = 1.2 (36.4 %), Sqrt PRESS = 2.49 (75.5 %), R-sq = 0.883 Linear: RMS Err = 1.9

@ Feasible
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&
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(151 %), Sqrt PRESS = 5.04 (400 %), R-sq =0.613
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- ]
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Computed Response Value

Figure 18-10: Accuracy of linear metamodel of responses **StressL™* and **StressR*

Table 18-1: Comparison of baseline run and optimum (single iteration, linear metamodel)

Baseline Baseline 1. Opt 1. Opt

(Computed) (Predicted) (Computed) (Predicted)
Weight 2.56 2.62 1.53 0.85
StressL 0.73 2.85 0.92 0.99
StressR 0.53 1.70 -0.41 1.00
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Weight

—StressL < 1.00e+00
—StressL > -1.00e+00
—StressR < 1.00e+00

E Feasible

Hinfeasible

B Predicted Optimum

B Computed Optimum Feasible
m Computed Optimum Infeasible

Figure 18-11: Surface plot for objective function Weight; constraints are displayed on the

metamodel.

18.1.3. Updating the approximation to second order

To improve the accuracy of the metamodels, a second run is conducted using a quadratic
approximation. Switch the metamodel order in the Sampling dialog to quadratic, Figure 18-12.

The number of points will automatically update.
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w Sampling 1 E)
| Sampling Metamodel Settings e e e ——

Metamodel Point Selection

® Polynomial () Full Factarial

() Sensitivity () Linear Koshal

() Feedforward Neural Network () Quadratic Koshal

() Radial Basis Function Network () Composite

() Kriging @ D-Optimal

() Support Vector Regression ) Monte Carlo

) User-defined () Latin Hypercube

() Space Filling

Cirdgr ) User-defined

() Linear

() Linear with interaction Number of Simulation Points (per Iteration per Case)

@ |Quadratic |16 {default) |

) Elliptic

|Set Advanced D-Optimal Options == |

Figure 18-12: Sampling dialog settings for a quadratic approximation
Results

The approximation results have improved considerably, but the stress approximation is still poor.
The fit is illustrated below in Figure 18-13 and Figure 18-14.

An improved design is predicted with the approximate constraint values (stress) becoming
active, Table 18-2. Due to inaccuracy, the actual StressR value of the optimum is infeasible.
Feasible and infeasible regions in the design space as well as the computed and predicted
optimum are displayed in Figure 18-15.
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Metamodeling Accuracy

For Response Function "Weight"
Quadratic: RMS Err = 0.0336 (1.17 %), Sqrt PRESS = 0.0963 (3.35 %), R-sg=1
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Figure 18-13: Accuracy of quadratic metamodel for response "*Weight'*

Metamodeling Accuracy
For Response Function "StressL"
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Metamodeling Accuracy
For Response Function “StressR"
Quadratic: RMS Err = 0.664 (38.6 %), Sart PRESS = 1.59 (92.2 %), R-sq = 0.951
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Figure 18-14: Accuracy of quadratic metamodel of responses "*StressL™ and "*StressR™

Table 18-2: Comparison of baseline run and optimum (single iteration, quadratic metamodel)

Baseline Baseline 1. Opt 1. Opt

(Computed) (Predicted) (Computed) (Predicted)
Weight 2.56 2.54 1.05 1.09
StressL 0.73 0.69 0.86 1.00
StressR 0.53 0.30 2.12 1.00
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—StressL < 1.00e+00
—StressL > -1.00e+00
—StressR < 1.00e+00
 Feasible

W Infeasible

W Predicted Optimum

B Computed Optimum Feasible
m Computed Optimum Infeasible

Weight

Figure 18-15: Surface plot for objective function weight; constraints are displayed on the
metamodel.

18.1.4. Reducing the region of interest for further refinement

It seems that further accuracy can only be obtained by reducing the size of the subregion. In the
following analysis, the current optimum (0.22, 1.86, 0.2) was used as a starting point while the
region of interest was cut in half. The order of the approximation is quadratic. The required
modifications are illustrated in Figure 18-16.

i Problem global'setup [2]
Parameter Setup | Stage Matrix Sampling Matrix | Resources | Features

vd

Type Name Starting Init. Range  Minimum Maximum  Saddle Dire.. Delete
| 0.22| o8| 0.1 1.6 [minimize | v
@ - | ]| 2| 02| a[vinimize | v |@
(continuous | v [ 02 2| 02| 4] [Minimize | v | @

Add. .

Figure 18-16: Reducing the design space by specifying an initial range; the starting values are
the optimal values found in the previous approach.
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Results

The approximations are significantly improved, Figure 18-17 and Figure 18-18.

Metamodeling Accuracy
For Response Function "Weight"
Quadratic: RMS Err = 0.00872 (0.482 %), Sgrt PRESS = 0.0227 (1.25 %), R-sq=1

BFeasible
H|nfeasible

(o]

[S]

Predicted Response Value

-

2
Computed Response Value

Figure 18-17: Accuracy of quadratic metamodel in reduced design space for response
"Weight™
Metamodeling Accuracy Metamodeling Accuracy

For Response Function "StressL" For Response Function “StressR"
Quadratic: RMS Err = 0.0719 (5.72 %), Sqrt PRESS = 0.196 (15.6 %), R-sq = 0.989 Quadratic: RMS Err = 0.46 (43.1 %), Sqrt PRESS = 1.44 (135 %), R-sq = 0.943

BFeasible g BFeasible
2.5 Hinfeasible Bnfeasible
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N

2 - 5
Computed Response Value Computed Response Value

Figure 18-18: Accuracy of quadratic metamodel in reduced design space of responses
""StressL™ and "'StressR™

The results are displayed in Table 18-3. An improved design is predicted with the approximate
constraint values (stress) becoming active. Due to inaccuracy, the actual constraint values of the
optimum are feasible. This value is now much closer to the value of the simulation result. For the
optimal weight value, computed and predicted is the same.
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Feasible and infeasible regions in the design space as well as the computed and predicted
optimum are displayed in Figure 18-19.

Table 18-3: Comparison of baseline run and optimum (single iteration, quadratic metamodel,
reduced design space)

Baseline Baseline 1. Opt 1. Opt

(Computed) (Predicted) (Computed) (Predicted)
Weight 1.05 1.04 1.12 1.12
StressL 0.86 0.95 0.96 1.00
StressR 2.19 1.55 0.38 1.00

—StressL < 1.00e+00
—StressR < 1.00e+00
—StressR > -1.00e+00
mFeasible

W nfeasible

B Predicted Optimum

B Computed Optimum Feasible
m Computed Optimum Infeasible

Weight

Figure 18-19: Surface plot for objective function weight; constraints are displayed on the
metamodel.
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18.1.5. Automating the design process

This section illustrates the automation of the design process of improving the accuracy of the
metamodels by reducing the design space for both a linear and a quadratic response surface
approximation order by using the strategy: sequential with domain reduction, Figure 18-20. 10
iterations are performed for the linear approximation, Figure 18-21, with only 5 iterations

performed for the more expensive quadratic approximation.

Figure 18-20: Task dialog; select strategy SRSM to automate the process.

Cad Task selection =

Main task
Metamodel-based

@ Optimization

) DOE study

() Monte Carlo analysis

(C) RBDO/Robust Parameter Design

Direct simulation
() Optimization
) Monte Carlo analysis

Strategy for Metamodel-based Optimization
() Single Iteration

() Sequential

@ Sequential with Domain Reduction (SRSM)

1. sampling points are added sequentially
in an adaptive subregion.

2. Metamodel optimization is dene at each iteration
and is limited to the current subregion.

3. Suitable for finding a converged solution
(e.g. system identification).

4. Generally unsuitable for global exploration.

[] Global Sensitivities
Do verification run
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Tolerance Required for Termination
@ |Design AND Objective AND Metamodel Accuracy
() Design OR Objective OR Metamodel Accuracy

Design Change Tolerance

|0.01 (default is 0.01) |

Objective Function Tolerance

|0.01 (default is 0.01) |

Response Accuracy Tolerance

|1 (default is 1.00) |

Maximum number of lterations

10 B

Figure 18-21: Termination criteria; select 10 iterations for linear, 5 for quadratic approach

Results

The final results of the two types of approximations are displayed in Table 18-4. The
optimization histories have been plotted to illustrate convergence in Figure 18-22 and Figure
18-23. Note that the more accurate but more expensive quadratic approximation converges in
about 3 design iterations (48 simulations), while it takes about 7 iterations (49 simulations) for
the objective of the linear case to converge. In general, the lower the order of the approximation,

the more iterations are required to refine the optimum.

Table 18-4: Summary of final computed results (2-bar truss)

Linear Quadratic

Number of iterations 10 5
Number of simulations 71 81

Areal 1.719 1.788
AreaR 0.304 0.200
Base 0.177 0.173
Weight 1.027 1.008
StressL 1.000 0.971
StressR 0.976 1.386
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Optimization History Optimization History
for "Base" for “Base"
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Figure 18-22: Optimization history of design variables; linear (left) and quadratic (right)
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Figure 18-23: Optimization history of responses; linear (left) and quadratic (right)
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18.2. Small car crash (2 variables)

This example has the following features:
0 An LS-DYNA explicit crash simulation is performed.
Extraction is performed using standard LS-DYNA interfaces.
A single iteration optimization using Radial Basis Function networks is performed.
The design optimization process is automated.
A mixed-discrete optimization is performed

O O O O O

An optimization using the direct genetic algorithm is performed.

18.2.1. Introduction

This example considers the crashworthiness of a simplified small car model. A simplified vehicle
moving at a constant velocity of 15.64m.s™ (35mph) impacts a rigid pole. See Figure 18-24. The
thickness of the front nose above the bumper is specified as part of the hood. LS-DYNA is used
to perform a simulation of the crash for an event duration of 50ms.

Hood

Bumper

a) deformed (50ms) b) undeformed
Figure 18-24: Small car impacting a pole

18.2.2. Design criteria and design variables

The objective is to minimize the Head Injury Criterion (HIC) over a 15ms interval of a selected
point subject to an intrusion constraint of 550mm of the pole into the vehicle at 50ms. The HIC
is based on the linear head acceleration and is widely used in occupant safety regulations in the
automotive industry as a brain injury criterion. In summary, the criteria of interest are the
following:

0 Head injury criterion (HIC) of a selected point (15ms)
0 Peak acceleration of a chosen point filtered at 60Hz (SAE).

LS-OPT Version 5.2

351



CHAPTER 18: Examples — Optimization

o Component Mass of the structural components (bumper, front, hood and underside)

0 Intrusion computed using the relative motion of two points
0 Units are in mm and sec

The design variables are the shell thickness of the car front (thood ) and the shell thickness of

the bumper (tbumper) (see Figure 18-24).

18.2.3. Design formulation

The design formulation is as follows:

Minimize
HIC (15ms) (18-1)
subject to
Intrusion (50ms) < 550mm
= stage 1 (x]]

Setup | Parameters | Histories | Responses | File Operations

History definitions Add new
Disp2_his = = = &
NODOUT: x_displacement of node 432 = Edit history @
Displ_his Name Subcase
NODOUT: x_displacement of node 167 Acc_his l [

Component Direction

() Displacement @ X Component
O Velocity ) Y Coemponent
@ Acceleration ) Z Compenent
() Rotational Displacement () Resultant

O Rotational Velocity

() Rotational Acceleration
) Deformation

() Distance
IdentifierType ID

| ID = [16?

Filtering

| SAE Filter A

Frequency Time unit

60.0000 | Seconds |

| Cancel |l oK ]

Figure 18-25: Definition of response histories using standard LS-DYNA interfaces.
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The HIC value is defined using the INJURY interface.

The intrusion is measured as the difference between the displacement of nodes 167 and 432. The
displacement curves are extracted using the LS-DYNA NODOUT interface, Figure 18-25. These
curves are evaluated at time t=50ms using response expressions. The intrusion is defined using a
composite expression, Figure 18-27.

The mass is computed using the LS-DYNA MASS interface, Figure 18-26, but not constrained.
This is useful for monitoring the mass changes.

& Stage 1 (x]

Setup | Parameters | Histories | Responses | Fle Operations

Response definitions Add new
HIC x Generic
IN_]URY— Head Injury Coef, maximum of 15ms, for Acceleration of node USERDEFINED
with ID 432
GENEX
Mass
MASS: Mass of parts 2,34 and 5 EXPRESSION
FUNMCTION
Disp2 b
INJURY

EXPRESSION: Disp2_his(0.05)
MATRIX_EXPRESSION

Displ b
EXPRESSION: Displ his(0.05) LS-DYNA
| Edit response *
Name Subcase Multipiler Offset
= | 5 | O | .

[ Not metamodel-linked

Parts to be included Attribute

v All Parts Mass
(@ List of parts:

L

x2, %3, x4, x5, @

concel | [ ox |

NLFURL
NODOUT z‘

Figure 18-26: Definition of responses using standard LS-DYNA interfaces and expressions.
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[opT] Composites E]

Composite definition Add new

Intrusion Composites

EXPRESSION: Displ - Disp2

EXPRESSION

Curve Matching

Standard
Composite

Standard
Deviation

Expression Composite

Name:

[Intrusicn ]

Expression:
[Displ - Disp2 ]

concel | [ ox |

oK

Figure 18-27: Definition of composite expression using previously defined responses.

18.2.4. Modeling

The simulation is performed using LS-DYNA. An extract from the parameterized input deck is
shown below. The parameterization of the model is done using the *PARAMETER keyword.
The cylinder for impact is modeled as a rigid wall.

*KEYWORD

*PARAMETER
rtbumper,3.0,rthood,1.0

-
o

Problem global'setup x

|Parameter SEtUP” Stage Matrix } Sampling Matrix l Resources l Features l

[[J Show advanced options

Type Name Starting Minimum Maximum Delete
[Continucus | ~ “tl)un'.pf:r |[ 3” 1” 5] &
[Continuous | v “th-:od |[ 1” 1” 5] &

Add. .

Figure 18-28: Parameter Setup;

A design space of [1; 5] is used for both design variables, Figure 18-28.
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18.2.5. Single iteration run using Radial Basis Functions

As a first step, a single iteration is run using Radial Basis Function networks (RBF). In this
manner a non-linear approximation is created across the whole design space. The approximation
can then be used for sensitivity analysis or optimization.

L Sampling 1 3
| Sampling Metamodel Settings | Active Variables | Features Constraints

Metamodel Point Selection

) Polynomial ) Full Factorial

() Sensitivity ) Latin Hypercube

() Feedforward Meural Network @ Space Filling

(@ Radial Basis Function Network 1 User-defined

) Kriging

: Number of Simulation Points (per Iteration per Case)
() Support Vector Regression .

O User-defined |:2CI (default is 10} |

Set Advanced RBF Options

Figure 18-29: Sampling dialog; Select metamodel RBF, increase the number of points to 20.

Results

The computed vs. predicted HIC and Disp2 responses are given in Figure 18-30. The
corresponding R? value for HIC is 0.998, while the RMS error is 4.61%. For Disp2, the R? value
is 0.994, while the RMS error is 0.353%.

Metamodeling Accuracy Metamodeling Accuracy
For Response Function "HIC" For Response Function "Disp2"
RBF Net: RMS Err = 13.6 (4.61 %), Sqrt PRESS = 36.8 (12.4 %), R-sq = 0.988 RBF Net: RMS Err = 2.4  (0.353 %), Sqrt PRESS = 4.63 (0.681 %), R-sq = 0.994
BFeasible BFeasible
H|nfeasible -620 H|nfeasible
600 D/U/
-640 5
500 /D/
3 3 660 /
£ 2 | o
m 400 O
0 n
= [ =
2 - 2 -680
g 300 ! g
B 2
] ] -700
5 200 {] E @
a I
-720
100 /
0 -740
-0 200 400 600 -700 -650
Computed Response Value Computed Response Value

Figure 18-30: Computed vs. predicted responses — RBF approximation
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Table 18-5: Comparison of baseline run and optimum (single iteration, RFB metamodel)

Baseline Baseline 1. Opt 1. Opt
(Computed) (Predicted) (Computed) (Predicted)
t hood 1 - 1.60 -
t _bumper 3 - 5 -
HIC 68.03 71.51 130.2 134.08
Intrusion 575.68 573.90 548.67 550
Mass 0.41 0.41 0.67 0.67

Sensitivities Plot for HIC
with 95% Confidence Interval

thood 1
tbumper t

300 200 -100 0 100 200 300 400 500
Terms in expansion of HIC

Global Sensitivities Plot for HIC
Mean = 302.744, Total variance = 15677, Noise variance = 464.301

thood (72.2% - 72.2%)
tbumper (27.8% - 100.0%)
i T

0 10 20 30 40 50 60 70
% Influence on Response

Figure 18-31: Sensitivities plots; ANOVA with 95% confidence interval (top) and GSA
(bottom)
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=Intrusion < 5.50e+02
BFeasible

minteasible

= Predicted Optimum

HIC

Figure 18-32: Surface plot for objective function HIC with predicted and computed optimum,
simulation points and residuals; constraints are displayed on the surface.

A\

thood

1E+06~ /

S5E+05+

Acc_his

0. 005 W3

0.02 0.03

0.01

Figure 18-33: History plot for Acceleration; the curves are color-coded using the value of the

variable thood.
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18.2.6. Automated run using linear metamodels

An automated optimization is performed with a linear approximation. Select the strategy
Sequential with domain reduction, Figure 18-34, and switch to the metamodel type Polynomial
linear, Figure 18-35. Use the default number of points per iteration per case.

In the Termination Criteria dialog, set the maximum number of iterations to 8, Figure 18-36.

BPT Task selection )

Main task
Metamodel-based

(@ Optimization

) DOE study

() Monte Carlo analysis

() RBDO/Robust Parameter Design

Direct simulation
() Optimization

() Monte Carlo analysis

Strategy for Metamodel-based Optimization
() Single Iteration

() Sequential

@ Sequential with Domain Reduction (SRSM)

1. Sampling points are added sequentially
in an adaptive subregion.

2. Metamodel optimization is done at each iteration
and is limited to the current subregion.

3. Suitable for finding a converged solution
{e.g. system identification).

4. Generally unsuitable for global exploration.

Global Sensitivities
Number of Points for Integration:

10000 (default) |

Do verification run

Figure 18-34: Task dialog; select Strategy Sequential with Domain Reduction

LS-OPT Version 5.2

358



CHAPTER 18: Examples — Optimization

ot Sampling 1

&=

@ Polynomial
) Sensitivity

) Feedforward Neural Network

) User-defined

Sampling Metamodel Settings Lagtiveasmriables.| Features | Constraints

Metamodel Point Selection

) Full Factorial

) Linear Koshal
Quadratic Koshal

) Radial Basis Function Network () Composite
) Kriging D-Optimal
() Support Vector Regression () Monte Carlo

) Latin Hypercube

() Space Filling
Orde-r ) User-defined
@ Linear
() Linear with interaction Number of Simulation Points (per Iteration per Case)
) Quadratic 5 (default) ]
() Elliptic

Set Advanced D-Optimal Options == |

Figure 18-35: Sampling Dialog; use the default settings for SRSM for metamodel type and

order, point selection scheme and number of points

ad Termination Criteria (2)

Design Change Tolerance

Tolerance Required for Termination
@ Design AND Objective AND Metamodel Accuracy
(O Design OR Objective OR Metamodel Accuracy

[D.Dl (default)

Objective Function Tolerance

[D.Dl (default)

Response Accuracy Tolerance

[1.00 (default)

Maximurm number of lterations

8

S
£

Figure 18-36: Termination Criteria dialog; select the maximum number of iterations

Results

It can be seen in Figure 18-37 that the objective function (HIC) and intrusion constraint are
approximately optimized at the 7" iteration. It takes about 8 iterations for the approximated
(solid line) and computed (square symbols) HIC to correspond. The approximation improves
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through the contraction of the subregion. As the variable thood never moves to the edge of the
subregion during the optimization process, the heuristic in LS-OPT enforces pure zooming (see
Figure 18-38). For tbumper, panning occurs as well due to the fact that the linear
approximation predicts a variable on the edge of the subregion.

Optimization Histary
tor “HIC"
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565 \
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| [ ]
) 1 . 5 7 8

Number of Iterations

Figure 18-37: Optimization history of HIC and Intrusion
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Figure 18-38: Optimization history of design variables
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18.2.7. Mixed-discrete optimization

Mixed discrete optimization is achieved simply by setting the thood variable to be discrete
with possible values of 1.0, 2.0, 3.0, 4.0, and 5.0. The definition of a discrete variable is
displayed in Figure 18-39.

w Problem global setup &
Parameter Setup | Stage Matrix | Sampling Matrix = Resources | Features

[] Show advanced options

Type Name Starting Minimurm Maximum Sampling Ty... Delete
ot () B —
E |
2 J=
E J=
4 J=
s J=
Add..
OK

Figure 18-39: Parameter Setup dialog; Definition of a discrete variable.

Results

The design variables histories are shown in Figure 18-41, the optimization histories for the
objective HIC and the constraint Intrusion in Figure 18-40.

Optimization History
for *HIC"

2207 ; —
200 1 i -
1801 '
1601
140+

HIC

12011
100~
80—

3 4 s ]

Number of Iterations
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Optimization History
for "Intrusion®

575
570
56517
5601+
5557

Intrusion

550+
545 |
5401+
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3 4

Number of [terations

[- 8 . —

Figure 18-40: Optimization history of HIC and Intrusion for mixed-discrete optimization
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Optimization History
for "tbumper"

tbumper

Number of Iterations

Optimization History
for “thood"

thood

==

-
ra

Number of [terations

Figure 18-41: Mixed-discrete variable histories.

18.2.8. Optimization using Direct GA simulation

The same problem is solved using a direct GA simulation, Figure 18-42. GA specific settings
and advanced options may beselected in the Optimization dialog, Figure 18-43. For illustration,
the population size is taken as 10 and number of generations is limited to 15. The Stochastic
Universal Sampling method is used as selection operator. Two elite members (Number of Elites)
are used in each generation. For real crossover, SBX operator is used (Crossover Type) with a
distribution index of 5 (Crossover Distribution) and crossover probability of 0.99 (Crossover
Probability). The real mutation probability (Mutation Probability) is 1.0.

Pt Task selection

&=

Main task
Metamodel-based

) Optimization
) DOE study

) Monte Carlo analysis

Direct simulation
(@ Optimization

) Monte Carlo analysis

() RBDO/Robust Parameter Design

Figure 18-42: Task dialog; Direct Genetic algorithm
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i (=)
Objectives | Constraints | Algorithms
Optimization Algorithm Constraint Handling Selection Operator Crossover Type Mutation Distribution
| Deb ECH s| | sus ol | sex ¢ | |5 (default is 100)
@ |GA . . . -
= Restart Interval Number of Elites  Crossover Distribution  Mutation Probability
|1 (default) | 2 (defaur | 5 (defauttis 10) | [1 (defauttis 0.5)
Population Size ) ) .
Max Repeat Optimum/Generations Crossover Probability
10 (default is 30) - :
[ ] [2 (default is 0.1) l [0.99 (default is 1.0) l
Number of Generations
|15 (default is 100) ] Reset Defaults |

Figure 18-43: Optimization dialog; Specification of advanced GA options

Results

The outcome of the optimization is shown in Figure 18-44 and Figure 18-45. The discrete
variable was fixed at 2 units. The direct GA does not terminate if the optimal result does not
change from one iteration to the next, since the values may still improve. Note that the
optimization history treats ‘generation’ as ‘iteration’ to display results.
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Figure 18-44: Optimization history of mixed-discrete variable optimization using direct GA
simulation.
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Figure 18-45: Optimization history of HIC and Intrusion
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18.2.9. Multilevel Optimization using both Direct method and Metamodel

This example uses the same finite element model, but the optimization problem is modified to
include two more variables. These variables are the material Young’s modulus YM and the yield
stress SIGY. The optimization problem is given in Equation 16-2. However, the optimization is
solved in two levels — the outer level optimizes SIGY and YM using a single iteration metamodel-
based method (Equation 16-3) and the inner level optimizes the thickness values thood and
tbumper using direct GA (Equation 16-4).

Minimize
thood, tbumper,SIGY,YM

HIC (15ms) (18-2)

subject to
Intrusion (50ms) < 550mm
The outer level optimization problem is:
Minimize
SIGY,YM

H |C0pt_thood_tbumper (15ms) (18-3)

subject to
INtrusionopt_thood_tbumper (50MS) < 550mm

where HICpt_thood_tbumper &N INtrusiongpt tood_toumper @re the HIC and intrusion values obtained as
the results of the inner level optimization problem with respect to variables thood and
tbumper given by Equation 16-4. HICpt thood_thumper @NA INtrusiongpt thood_toumper are obtained
for every outer level sample (SIGY-YM pair) by running an inner level optimization for each
sample. The inner level optimization problem for the ™ outer level sample is:

Minimize

thood,tbumper

HIC (thood, tbumper|YM;,SIGYj) (15ms) (18-4)

subject to
Intrusion (thood, tbumper | YM;, SIGY; ) (50ms) < 550mm

The LS-OPT GUI for outer level problem setup is shown in Figure 18-46. The optimization
problem setup is shown in Figure 18-47; HIC 1 and Intru are optimized responses calculated in
the inner level.
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Metamodel-based optimization B b=

Setup | Sampling 1 4

2 parameters | 2 vars, 25 sp filling designs

OF —
Finish - -
2 pars, 5 resps

P Optimization
Verification p—
| 1 objective |
[

1 design . |
15 1 constrairt ) 0

Composites Build Metamodels
1 definition 5 rbf surfaces

[OFT L Froblem global setup

Parameter Setup | Stage Matrix  Sampling Matrix = Resources = Features

Show advanced options

TWpe : Name - Starting s Minimum ¢ Maximurm : Delete
Continuous v 400 350 450 |5
Continuous w 200000 150000 250000 @

Figure 18-46: Multilevel Optimization outer level setup

Optimization Optimization =
Objectives | Constraints Algorithmsl Constraints | Algorithms
[ Maximize the Objective Function (instead of minimize) [[] Constraint scaling (i-ntemaljl
Objective components: [ S.ho.w Eldvanced Dp?tlons
Response/Compasite Weight Optimization constraints:
Esponse Lower Bound Upper Bound
x HIC 1 1 (defaul
Intru Set lower bound x 550
] | i 3

Figure 18-47: Multilevel Optimization outer level optimization problem

The LS-OPT GUI for inner level problem setup is shown in Figure 18-48. The optimization
problem setup is shown in Figure 18-49. It should be noted that the outer level variables are
Transfer Variables in the inner level and are treated as constants for the optimization.
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EE+/)k

Direct simulation based optimization B2 =

Setup ]
4 parameters | [

| Sampling 1
I 2 wars, 20 designs

T

‘ Optimization

( 1 ohjective )
. 1 constraint ) o

4 pars, 5 resps

- Termination criteria @ —
Finish : L5-DYNA 1
10 generations

1

Composites
«——— |
1 definitien
Problem global setup E

Parameter Setup |Stage [Matrix | Sampling Matrix | Resources I Features I

I™" Show advanced options Edit Input Parameter References |
Type | Marme | Skarting | Mimirmumm | Maximum | Delete |
IContinuous jltbumper | 3| 1 | 5 &
IContinuous jlthood I 1| 1 I EiG)
Transfer Yariable j ISIGY | 400 & A
Caonti
ontinuous Jima | 200000 &) A
Dependent
Discrete
StrinE
Figure 18-48: Multilevel Optimization inner level setup
Optimization & Optimization i X

Objectives |Constraints Algorithms

[ Maximize the Objective Function (instead of minimize)
Objective components:

Response/Composite Weight

x  HIC 1 (default)
£ L F

Objectives | Constraints | Algorithms

[] Constraint scaling (internal)
[] Show advanced options

Optimization constraints:

Response Lower Bound Upper Bound

x  Intrusion Set lower bound x 550 -
] 1 ¢

Figure 18-49: Multilevel Optimization inner level optimization problem

Results

The optimum solution is obtained at SIGY = 412.2, YM = 2.5E5, tbumper = 4.85, thood =
1.57. The corresponding HIC value is 105.2 and there is no constraint violation at the solution. It
should be noted that this solution has a lower HIC value than in Section 18.2.5. This is because
additional variables were introduced, leading to increased design options.

The metamodel for HIC, with respect to outer level variables YM and S1GY, is shown in Figure
18-50. The optimum is also plotted on the figure (purple cube). The inner level optimization
history is depicted in Figure 18-51 for the outer level sample 2.1 (i.e. the sample with optimized

YM and SIGY).
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HIC_1

115

©
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SIGY
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2 4E+005 mFeasible
IE+D05 ZAEA mInfeasible
1 BE+005 1.8E+005% YM W Predicted Optirmurm
m Computed Optimum Feasible
m Computed Optimum Infeasible

Figure 18-50: Multilevel Optimization. Metamodel for objective function (HIC)
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Figure 18-51: Inner level optimization history for the last (optimal) outer level sample.
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18.2.10. Multilevel Optimization using continuous and string variables

Multilevel optimization can be used to optimize different sets of variables using different
methods. For example, direct optimization is often preferred for string or categorical variables
while metamodel-based methods are often used for other variables. In this example, two of the
variables are continuous while two other variables are strings. The continuous variables represent
component thicknesses thood and tbumper and the string variables mat_b and mat_hood
are the names of include files with different material properties. Two string constants m1 and
material3 are also used in the example. Different methods of parameterizing string variables
and constants (native LS-DYNA parameterization and user-defined) are demonstrated through
this example.

The optimization problem is given in Equation 16-5. However, the optimization is solved in two
levels — the outer level optimizes thood and tbumper using a domain reduction
metamodel-based method (Equation 16-6) and the inner level optimizes the thickness values
mat_hood and mat_b using direct GA (Equation 16-7).

Minimize

thood, tbumper,mat_b,mat_hood

Mass (18-5)

subject to

Intrusion (50ms) < 550mm

The outer level optimization problem is:
Minimize

tbumper,thood

M a-Ssopt_mat_b_mat_h ood (18- 6)

subject to
INtrusionopt mat b_mat_hood (50MS) < 550mm

where MasSopt mat_b_mat_hood @Nd INtrusioNgpt_mat b_mat hood are the mass and intrusion values
obtained as the results of the inner level optimization problem (Equation 16-7) with respect to
variables mat_hood and mat_b. MasSep mat b mat hood and INtrusiongpt mat b_mat hood are
obtained for every outer level sample (tbumper-thood pair) by running an inner level
optimization for each sample. The inner level optimization problem for the j™ outer level sample
Is:

Minimize

mat_b,mat_hood
Mass (mat_b,nat_hooh| tbumper;, thood;) (18-7)

subject to

Intrusion (mat_b,nat_hooh|tbumper;j, thood;) (50ms) < 550mm
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The outer level LS-OPT setup consists of an LS-OPT stage parameterized using two transfer
variables. These variables, tbumper and thood, are constinuous variable in the outer level
(Figure 18-52).

Metamodel-based optimization O =

Setup . | Sampling 1
2 parameters ‘ | 2 wars, 5 d-opt designs
( - Domain reduction ) . -
‘ Finish (SRSM) N L
| T T 2 pars, 2 resps
| Verification Termination criteria
1 design 15 tterations
| Optimizaton | .
- Fl) e _— Build Metamodels
=l I\Te | 2 linear surfaces
Problem global setup

Parameter Setup | Stage Matrix =~ Sampling Matrix =~ Resources Features

N Show advanced options

Type : Mame : Starting : Minirmurm s Maximurm : Delete
Continuous v 3 1 5 @
Continuous v 1 1 5

Figure 18-52: Outer level optimization setup

The inner level consists of two string variables and two string constants, in addition to the two
transfer variables whose values are passed down from the outer level. The LS-DYNA input deck
is parameterized as follows. tbumper, thood, ml and mat_b are parameterized using
the *PARAMETER card. The string parameters are indicated using “c” before the variable
names.

*PARAMETER
rtbumper,3.0,rthood,1.0,cm1,matl,cmat_b,mat b o

Two other string parameters are defined using the user-defined format. The parameter thood
appears at two places in the LS-DYNA deck:

*include
<<mat_hood:0>>
*include
<<mat_hood:30>>

<<:0>> indicates that the entire replacement string will be printed without any additional
spaces. <<:30>> indicates that if the length of the replacement string for mat_hood is
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longer than 30 then it will be truncated. Also, if the replacement string for mat_hood is
shorter than 30 then it would be padded with spaces while printing.

The parameter material3 is defined without a colon and has the same meaning as
<<:0>>.

*include
<<material3>>
The inner level LS-OPT GUI setup is shown in (Figure 18-53).

T
hv bv 'I-Y }': }v B Direct simulation based optimization E2 =
Setup - | Sampling 1
& pararmeters | 2 vars, 4 designs
| - Termination criteria @ l —
Finish ; LS-DYNA 1
10 generations
T & pars, 5 resps
Optimization
|’_ 1 ehjective _‘|

|L 1 constraint Jl q
— T — ——

Composites
1 defintion

w N Froblem global setup

Parameter Setup = Stage Matrix =~ Sampling Matrix | Resources | Features

Show advanced options

Type : Name : Starting : Minimurm : Maximum : Delete
Transfer Variable v 3.008164904085 & A
Transfer Variable v 1.044201462547 & A
String v mat_b_o Walues: mat_b_1, mat b_.. | ..
String v mat_hood_orig Malues: mat_hood_1, mat_h... | ...
Constant v mat3
Constant v matl

- T

Figure 18-53: Inner level optimization setup with string and transfer variables
Results

The optimum solution is obtained at tbumper = 3.01, thood = 1.04 mat_b = “mat_b_3”,
mat_hood = “mat_hood_3”. The corresponding Mass value is 0.42 and there is no constraint
violation at the solution. The outer level optimization history for the SRSM method is depicted in
Figure 18-54.
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Figure 18-54: Outer level optimization history.

18.3. Impact of a cylinder (2 variables)

This example has the following features:
0 LS-PREPOST is used to incorporate shape optimization.

0 The LS-DYNA keyword *PERTURBATION is used to incorporate a geometric
imperfection.

0 An LS-DYNA explicit impact simulation is performed.
0 Result extraction is performed using standard LS-DYNA interfaces.
The example in this chapter is modeled on one by Yamazaki [1].

18.3.1. Problem statement

The problem consists of a tube impacting a rigid wall as shown in Figure 18-55. The energy
absorbed is maximized subject to a constraint on the rigid wall impact force. The cylinder has a
constant mass of 0.52 kg with the design variables being the mean radius and thickness. The
length of the cylinder is thus dependent on the design variables because of the mass constraint. A
concentrated mass of 500 times the cylinder weight is attached to the end of the cylinder not
impacting the rigid wall. The deformed shape at 20ms is shown in Figure 18-56 for a typical
design.
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\

Figure 18-55: Impacting cylinder
The optimization problem is stated as

Maximize Eiprernai (X1, X2) |l r=0 02

subject to
max (Fr‘{voﬁgnal (xlx xz)) < 80,

G 2,) = 252
X1 ¥2) = 21PX1 X,
where the design variables x; and x; are the radius and the thickness of the cylinder respectively.

The internal energyEime,na,(X)|t:0_02 is the objective function and constraint functions

max (F,‘{‘{,%’,lnal(xl,xz)) and I(x) are the maximal normal force on the rigid wall and the length of

the cylinder, respectively. The rigid wall force is filtered, frequencies exceeding 300Hz are
excluded.

The problem is simulated using LS-DYNA. LS-PREPOST is used as a preprocessor to
incorporate the geometrical parameters.
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Figure 18-56: Deformed finite element model (time = 20ms)

18.3.2. Solution

The metamodel-based optimization method with linear metamodels, d-optimal point selection
and strategy sequential with domain reduction is used.

The main LS-OPT GUI windows showing the process is displayed in Figure 18-57. LS-
PREPOST is used to generate the finite element model of the cylinder depending on the
parameter values, Figure 18-58. Since the LS-PREPOST output is used as include file in the LS-
DYNA input, the file needs to be copied to the LS-DYNA run directories, Figure 18-59. Another
option to make the file available for LS-DYNA is to run LS-PREPOST in the directories of stage
RUN_DYNA.
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|,ﬂhomeﬂcatharinafLSTC!othA,n'USERS MAMNUAL EXS5/LSPREPOST/cylinder.lsop

Figure 18-57: Main LS-OPT GUI window, LS-PREPOST is used as a preprocessor to

incorporate geometrical parameters.

Setup ‘ Parameters | Histories | Responses | File Operations
General
Package Name[ LS-PREPOST Cl
Command[lspp4 " Browse l
[[] Do not add input file argument
Input File [cylinder.cﬁle| " Browse l
copies cylinder.cfile and 1 include to CREATE_FE/it.run/| LsPrepostOpt.inp ]
and substitutes parameters
[[] Extra input files
Execution
Resources
Resource Units per job Global limit Delete
LSPREPOST 1 IE x
Create new resource
[] Use Queuing
[[] Use LSTCVM proxy
[] Environment Variables
[C] Run Jobs in Directory of Stage
oK

Figure 18-58: Stage dialog interfacing with LS-PREPOST
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Lo File Transfers =
Files to be copied from the run directory of CREATE_FE to RUN_DYNA:
Operation Source File Destination File On Error Delete
[k:opy ‘ ~ Hlsppout Hlsppout Hfail ‘ ~ |=
Add ...
o< |

Figure 18-59: File transfer dialog: the output file of LS-PREPOST is copied to the LS-DYNA

run directories.

To extract the rigid wall force and the internal energy, the LS-DYNA standard interfaces
RCFORC and GLSTAT are used, respectively, Figure 18-60. The length of the cylinder is
defined as a dependent of the radius and the thickness, also parameters concerning the element
size and a value used for *PERTURBATION are defined as dependents, Figure 18-61.

-

Name

Subcase

Internal_Energy_20 ]

Component

@ Internal Energy
) Kinetic Energy
) Total Energy

|

) Sprint and Damper Energy
O sliding Interface Energy
) External Work

) Energy Ratio

) Global X-Welocity

() stonewall Energy () Global Y-\Velocity

(0 Hourglass Energy () Global Z-Velocity
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| Value at a Specific Time % | 20.0000

Filtering

| None = |
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Narme Subcase Multip
max_Rigid_Wall_Force [ 1
] Ne¢
Interface ID
2
Component
@ X master force ) X slave force
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) Z master force ) Z slave force
() Resultant master force () Resultant slave force
Select From time  To time
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Filtering
| sAE Filter N
Frequency Time unit
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| Can

Figure 18-60: Result extraction using LS-DYNA interfaces GLSTAT and RCFORC
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Parameter Setup | Stage Matrix = Sampling Matrix | Resources = Features

v

Type Name Starting Init. Range  Minimum Maximum  Saddle Dire... Delete
| Definition: |(2*pi*radius)/4.0 HMinimize | v B
[Constant | v |[pi |[3.1415926535 A x
| [ 75| 50| | 20| IOOHMinimize | v @
| [ s.0| 2[ 2.0 6.0”Minimize | v @
| Definition: |0.52/(2*pi*0.00000282+radius *thick) HMinimize | v @
| Definition: [c_lengthm.o [Minimize | v |

Minimize | v |

| Definition: [Epi*S?.Bﬂpi"Eradius *radius*thick*thick/( 12#(1-0.33

Add...

Figure 18-61: Parameter Setup: the length of the cylinder depending on the radius and the
thickness is defined as a dependent to satisfy the mass constraint.

18.3.3. Results

Figure 18-62 displays the deployment of the optimal values over the iterations for the variables,
the constraint and the objective function, respectively. The initial design below shows that the
constraint is severely exceeded. The optimization process steadily reduces the infeasibility. The
final internal energy is significantly lower than the initial value to satisfy the constraint, but
improved with respect to the value of iteration 4, where feasibility is reached the first time.
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Figure 18-62: Optimization history of parameters, the constraint and objective function.
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Figure 18-63: Cylinder: Constrained rigid wall force: F(t) < 80 (SAE 300Hz filtered); optimal
curves of all iterations. The red curve is the final design.
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18.4. Sheet-metal forming (3 variables)

A sheet-metal forming example in which the design involves thinning and FLD criteria is
demonstrated in this chapter. The example has the following features:

(0}

o
(0}
o

The example utilizes LS-PREPOST as preprocessor.

*DEFINE_CURVE_TRIM is used to define the radius of the work piece.

Adaptive meshing is used in the finite element analysis.

The example employs the sheet metal forming interface utilities for result extraction.

18.4.1. Problem statement

The design variables are the radii of the work tool and the radius of the work piece as indicated
in Figure 18-64. The design problem is formulated to minimize both tool radii while also
specifying FLD constraints and a maximum thickness reduction of 25%. Hence the radii are
variables and objectives at the same time. Adaptive meshing is chosen as an analysis feature for
the simulation. The FE model is shown in Figure 18-65.

v

A

Figure 18-64: Parameterization of cross-section

Figure 18-65: Quarter segment of FE model: tools and blank
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18.4.2. Solution

LS-PREPOST is used as a preprocessor to incorporate the geometrical parameters, Figure 18-66.
In a second stage, a trimming simulation is preformed using LS-DYNA. The thickness reduction
and the FLD constraints are extracted from the forming simulation results using the FLD and
THICK response interfaces, Figure 18-67. For each radius, a composite function is generated to
be used as an objective function, Figure 18-68 and Figure 18-69.

The definition of the FLD and thickness reduction constraints is displayed in Figure 18-70.

(g +formability.lsopt - LS-OPT 5.0 mIEEe)
J?

H E + /" | 3 M Metamodel-based optimization oD 3

-

Setup | Sampling Samplingl
19 parameters | 3 vars, 7 d-opt designs
' Einish ' ' Domain reduction | s prEPOST CREATE FE '
[SRSM) | 18 pars
|
. Verification " Termination criteria Lﬁ\ v -
1 design 11 iteratians ’ TRIMMING
: 1 par
|
- Optimization ) v
|' 2 objectives -'| LSDNA  SIMULATION )
I 3 constraints J|Q
\ T | 1 par, 4 resps
Composites Build Metamodels
2 definitions 4 linear surfaces

|a'h0me;‘katharina;'LSTC;'optOA.I'USERSMAN UAL EXS/FORMABILITY formability.lsopt

Figure 18-66: Main LS-OPT GUI window
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[orT} Stage FORMING

(x]

Setup ‘ Parameters @ Histories | Responses | File Operations

Response definitions

FLD_upper_surface
FLD: FLD Upper surface for part 1 curve 90

FLD_lower_surface
FLD: FLD Lower surface for part 1 curve 90

THICKNESS
THICK: Maximum of Percentage thickness reduction

Name Subcase

] Edit response

Add new

GCEOUT
GLSTAT

NTFORC
MASS

MATSUM

Multiplier Offset

FREQUENCY

|>

)

FLD upper_surface l l

[~ J o

[] Mot metamodel-linked

Parts to be included Sampling location

O Al Partz

@ List of parts:

Load curve ID

e

Figure 18-67: Interface for FLD response extraction

OPT. Composites
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radius_upper
Standard Composite: Weighted composite with components rl

radius_lower
Standard Composite: Weighted composite with components r2

=
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Figure 18-68: Definition of composite functions
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Optimization >

Objectives | Constraints | Algorithms

O |Maximize the Objective Function (instead of minimize]|

[[] Create Pareto Optimal Front (Multi-Objective Mode)

Objective components: Add new

Response/Composite Weight Responses

FLD_upper_surface
x radius_upper 1 (default) FLD lower surface
THICKMESS
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Figure 18-69: Definition of objective functions

Optimization FE

Objectives | Constraints | Algorithms |

Constraint scaling

Optimization constraints: Add new

Response Lower Bound Strict Divisor Upper Bound  Strict Divisor Responses

FLD_center_surface

=x  THICKNESS Set lower bound x [} 25 (default) Composites
: radius_upper
x FLD_lower_surface x O [0.15 {default -0.05] O 0.05 (default

radius_lower
x FLD_upper_surface x O [0.15 {default -0.05] O 0.05 (default

Figure 18-70: Definition of constraint functions
18.4.3. Results

The optimization history for the objectives and constraints is shown in Figure 18-71 and Figure
18-72. A comparison between the starting and the final values is tabulated below, Table 18-6.
The FLD diagrams (Figure 18-73) for the baseline design and the optimum illustrate the
improvement of the FLD feasibility. A typical deformed state is depicted in Figure 18-74.
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Figure 18-71: Optimization history of FLD constraints and thickness reduction
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Optimization History
for “radius_upper"

! I
i / AN
= 1.8
& 16 / \ n s
> . / L] N—" n & — B —— .
£ 1.4
3 /
= 1.2
ik
-0 2 1 8 10
Number of Iterations
Optimization History
for "radius_lower"
3.5 // ]
g o / I \ L= :
2
I
E] 2.5
: /
=
2
1.5
-0 2 1 8 10

Number of Iterations

Figure 18-72: Optimization History of objectives radius_upper and radius_lower

Table 18-6: Comparison of results (Sheet-metal forming)

Variable Start (Computed)  Optimal (Predicted) Optimal (Computed)
THICKNESS 32.20 22.17 22.04
FLD_upper_surface 0.047 -0.051 -0.051

FLD_ lower surface 0.205 -0.050 0.050

radius_upper 1 1.49 -

radius_lower 15 3.08 -
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Figure 18-73: FLD diagrams of baseline (left) and 10" iteration (right)
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Figure 18-74: Deformed state (optimal run), Fringe component plastic strain
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18.5. Large vehicle crash and vibration (MDO/MOO) (7 variables)

This example has the following features:
0 LS-DYNA is used for both explicit full frontal crash and implicit NVH simulations.

o Multidisciplinary design optimization (MDO) and Multi-objective optimization (MOOQO)
are illustrated with a realistic full vehicle example.

o0 Extraction is performed using standard LS-DYNA interfaces.
o0 Complex mathematical response expressions are used.

This example illustrates a realistic application of Multidisciplinary Design Optimization (MDO)
and concerns the coupling of the crash performance of a large vehicle with one of its Noise
Vibration and Harshness (NVH) criteria, namely the torsional mode frequency [2].

18.5.1. FE Modeling

The crashworthiness simulation considers a model containing approximately 30,000 elements of
a National Highway Transportation and Safety Association (NHTSA) vehicle [3] undergoing a
full frontal impact. A modal analysis is performed on a so-called ‘body-in-white’ model
containing approximately 18,000 elements. The crash model for the full vehicle is shown in
Figure 18-75 for the undeformed and deformed (time = 78ms) states, and with only the structural
components affected by the design variables, both in the undeformed and deformed
(time = 72ms) states, in Figure 18-76. The NVH model is depicted in Figure 18-77 in the first
torsion vibrational mode. Only body parts that are crucial to the vibrational mode shapes are
retained in this model. The design variables are all thicknesses or gages of structural components
in the engine compartment of the vehicle (Figure 18-76), parameterized directly in the LS-
DYNA input file. Twelve parts are affected, comprising aprons, rails, shotguns, cradle rails and
the cradle cross member (Figure 18-76). LS-DYNA v.971 is used for both the crash and NVH
simulations, in explicit and implicit modes respectively.

(a) (b)

Figure 18-75: Crash model of vehicle showing road and wall a) Undeformed b) Deformed
(78ms)
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Shotgun outer

eft and right and |nne‘ry
cradleyrails

Inner an : '
outer rail Front cradle upper and
lower cross members

(b)

(@)

Figure 18-76: Structural components affected by design variables — a) Undeformed and (b)
deformed (time = 72ms)

Figure 18-77: Body-in-white model of vehicle in torsional vibration mode (38.7Hz)

18.5.2. Design formulation

The formulation is as follows:

Minimize Mass
Minimize Maximum intrusion
subject to

Stage 1 pulse(Xcrash) > 14.51g
Stage 2 pulse(Xcrash) > 17.59¢

Stage 3 pulse(Xcrash) > 20.75¢
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41.38Hz < Torsional mode frequency(Xnvn) < 42.38Hz

The three stage pulses are calculated from the SAE filtered (60Hz) acceleration and displacement
of a left rear sill node in the following fashion:

d,
Iadx;
27 M1 4,

Stage i pulse =

k=2.0fori=1, 1.0 otherwise;

with the limits [dy;d;] = [0;184]; [184;334]; [334;Max(displacement)] for i = 1,2,3 respectively,
all displacement units in mm and the minus sign to convert acceleration to deceleration. The
Stage 1 pulse is represented by a triangle with the peak value being the value used.

18.5.3. Multi-objective optimization using metamodel-based optimization

The MDO and MOO features are specified as follows:
0 MDO. The two disciplines (crash and NVH) are treated separately.

o MOQO. Two design objectives (Intrusion and mass) are stated. The GA must be selected
(in the Algorithms panel of the Optimization dialog or in the Task dialog) as metamodel
optimizer to obtain the Pareto optimal front.

Figure 18-78 shows the LS-OPT main GUI window for a multi-disciplinary optimization using
metamodels.

For the main task, select a metamodel-based optimization, Figure 18-79. Since Pareto Optimal
solutions are generated, make sure to use a global strategy. To get a good approximation of the
whole design space, choose a non-linear metamodel type, e.g. Radial Basis Functions, Figure
18-80. Since we use the sequential strategy, the default number of points per iteration per case is
appropriate.

The displacements and the acceleration for the crash load case may be evaluated using the
standard LS-DYNA interfaces, whereas more complex expressions are needed to calculate the
stage pulses. The Lookup function may be used to get the value of t for a specified value of the
selected history function, Figure 18-81. Then the stage pulses may be calculated using the
Integral function, Figure 18-82.

For the NVH load case, the FREQUENCY interface may be used to extract the frequency and
related responses, Figure 18-83. Make sure that mode tracking is used.
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Figure 18-78: Main LS-OPT GUI; Metamodel based optimization; two disciplines.

B

oPT) Task selection

Main task
Metamodel-based

(@ Optimization

() DOE study

() Monte Carlo analysis

() RBDO/Robust Parameter Design

Direct simulation
() Optimization
(O Monte Carlo analysis

Create Pareto Optimal Front
Strategy for Metamodel-based Optimization
() Single Ilteration

@ Sequential

1. Sampling points are added sequentially
in the full design space.
2. Suitable for global design exploration.

[ Global Sensitivities
Do verification run

Figure 18-79: Task dialog; Calculating Pareto Optimal solutions using a metamodel-base
method using sequential strategy.
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T -
|
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Sampling Metamodel Settings | Active Variables = Features | Constraints
-Metamodel ! -Pointselection
) Polynomial 1 Full Factorial
() Sensitivity () Latin Hypercube
() Feedforward Meural Network @ Space Filling
@ Radial Basis Function Network (_) Space Filling of Pareto Frontier
() Kriging ) User-defined
() Support Vector Regression ) _ ) ) )
O User-defined Number of Simulation Points (per Iteration per Case)

First iteration Linear D-Optimal

Include pts of Previous Iterations

13 (default)

Set Advanced RBF Options l

Figure 18-80: Sampling dialog; use Radial Basis Functions to get a global approximation.
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Figure 18-81: Lookup function; evaluate the value of t for a specified value of the history

XDISP
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|'-- Edit response i)

Mame Subcase Multipiler Offset

|Integral_0_184 | [ y | [n/a | [/ |

] |Nc-l: metamudel-link&d|

Expression

[IntegralE"KACCELEt}I".D.time_tn_184.")(DISF’Et}I"}I ]

cancel | [ ok |

Figure 18-82: Response Expression; The stage pulses are calculated using the Integral
function.

|'-- Edit response 3]
Name Subcase Multipiler Offset
[Frequency l [ o | [1 l [D l

[] Mot metamodel-linked

Baseline Mode NMumber

2

Modal Output Option

@ Frequency of Mode
() New Mode Number
() Modal Assurance Criterion

Mode Tracking Status

@ On
) Off

concel | [ oc |

Figure 18-83: Frequency extraction with Mode Tracking

Define the objective and constraint functions in the Optimization dialog. For the objectives,
make sure that the multi-objective mode is selected, Figure 18-84.
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Ber Optimization @

Objectives | Constraints | Algorithms

[[] Maximize the Objective Function (instead of minimize)

Create Pareto Optimal Front (Multi-Objective Mode)

Objective components Add new
Response/Composite Responses £
Disp
x Mass_scaled time to 184
time_to_334

x Disp_scaled time_to_max

Integral_0_184
Integral_184_334
Integral_334_max

(]

Figure 18-84: Objectives panel; Select Multi-Objective Mode to create Pareto Optimal Front

The constraints are scaled using the target values to balance the violations of the different
constraints, Figure 18-85. This scaling is activated using a single check box and is only
important in cases where multiple constraints are violated as in the current problem. However, it
is a good idea to apply scaling of constraints as a rule.

OPT| Optimization @
Objectives | Constraints | Algorithms

Constraint scaling

Optimization constraints: Add new
Response Lower Bound Strict Divisor Upper Bound  Strict Divisor Responses

x stagelPulse = | 1a512408| [0 | 14.5124 (default)| Set upperbound time to 184
I - time_to_334

x stage2Pulse x| 17586303) [0 [ 17.58635 (defauit)| Set upper bound fime to max
— — Integral_0_184

x Stage3Pulse x | 20745213| [ | 20.7452 (default)| Set upper bound
—_— e Integral_184_334
] 1 i 1 P T Integral 334_max

x Frequency x | 41384601 0 | 413847 (default)| = | 42381509 [J | 42.3815 (default)

Disp_scaled

<]

Figure 18-85: Constraints panel; Constraints are scaled using the target values. This is the
default.

Since the Pareto Optimal solutions are calculated on the metamodel, 100 verification runs are
executed after the last iteration to check the quality of the results, Figure 18-86.
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o Verification Run =)

NMurmber of Verification Buns

|:1DD (default is 1) |

Figure 18-86: Verification Run; 100 verification runs are performed using results of the
Pareto Optimal Front

Results

The LS-OPT viewer provides several tools to visualize Pareto Optimal solutions. Since this
example has two objective functions, the Pareto optimal front obtained for the two cases can be
displayed using the tradeoff plot, Figure 18-87. On the left, the Pareto Optimal solutions
obtained from the metamodel are displayed while the plot on the right visualizes the verification
runs. Some of the verification runs are infeasible due to the approximation error of the
metamodel. Figure 18-88 shows the verification runs color-coded by the maximal constraint
violation. For most of the simulations, the violation is almost 0, the highest constraint violation is
0.03, which is fairly small.

Figure 18-89 show the Self-Organizing maps plot (predicted) for the objective functions, the
constraints and the variables. The conflict of the objectives is clearly visible (a blue cell in
‘Mass_scaled” corresponds to a red cell in “Disp_scaled” and vice versa). The corresponding
ranges and influences of the variables can also be examined.

Figure 18-90 displays the Parallel Coordinate Plot of the predicted Pareto optimal solutions and
the verification runs. This plot is useful to select a run from the various Pareto optimal solutions
that best fits the requirements of the application. Using sliders located at the top and bottom of
each vertical axis, the bounds of the constraints and the ranges of all entities can be interactively
modified to narrow down the set of suitable solutions.
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Scatter Plot

Objective "Mass_scaled" vs. Objective "Disp_scaled"
(Results of Iteration 30)

Scatter Plot

Objective "Mass_scaled” vs. Objective "Disp_scaled"
(Results of Iteration 31)
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Figure 18-87: Pareto optimal front. Comparison of predicted results (left) and verification

runs (right)
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(Results of Iteration 31)
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Figure 18-88: Verification runs color-coded by maximal constraint violation.
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Figure 18-90: Parallel Coordinate Plot; Predicted Pareto Optimal solutions (top) and
verification runs (bottom)

18.5.4. Multi-objective optimization using Direct GA simulation

Next, the problem is solved using direct GA simulations, Figure 18-91. The GA options used are
displayed in Figure 18-92. The NSGA-II algorithm (MOEA) was used. Tournament selection
operator (Selection Operator), with a tournament size of four (Tournament Size), was used to
remove individuals with low fitness values. The simulated binary crossover (Crossover Type)
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and mutation operators were used to create child populations. The trade-off files were generated
at each generation (Restart Interval).

(PR e e e iR )

Main task
Metamodel-based

() Optimization

() DOE study

() Monte Carlo analysis

() RBDO/Robust Parameter Design

Direct simulation
@ Optimization

() Monte Carlo analysis

Create Pareto Optimal Front

Figure 18-91: Task dialog; Direct genetic algorithm

Objectives | Constraints | Algorithms |

-Optimization Algorithm
O LFOF
@ GAl

Population Size

[160 (default is 30)

Number of Generations

75 (default is 100)

“Termination Criterion

() Maximum Functions/Generations
() Fixed Consolidation Ratio

() Consolidation Ratio Change

® Hypervolume Change

Normalized Hypervolume Change Threshold

[0.0001 (default)

|

Generation Gap

[10 (default)

|

Show GA Settings

Algorithm Subtype Selection Operator Crossover Type

Mutation Distribution

[ NSGA Il Cl [Tournament Cl [ SBX

cl 100 (default)

Constraint Handling Tournament Size

Crossover Distribution

Mutation Probability

[ Deb ECH cl [4 (default is 2) l [10 (default)

| 0142857 (default)

Restart Interval Number of Elites Crossover Probability

(1 (default) ] |2 (defaul) | 1.0 (defaur)

|

Max Repeat Optimum/Generations

[0.153333 (default is 0.1) |

Reset Defaults

Figure 18-92: Options for Genetic Algorithm
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Results

The optimization results are displayed in the following figures.

Since this example has two objective functions, the Pareto optimal front obtained for the two
cases can be displayed using the tradeoff plot, Figure 18-93.

Figure 18-94 shows the Self-Organizing maps plot for the objective functions, the constraints
and the variables. As in the metamodel-based optimization, the conflict of the objectives is again
clearly visible while the ranges and influences of the variables can be examined.

Figure 18-95 displays the Parallel Coordinate Plot of the Pareto optimal solutions. This plot is
useful to select a run out of the various Pareto optimal solutions that best fits the requirements of
the application. As in the metamodel-based optimization, sliders located at the top and bottom of
each vertical axis can be interactively adjusted to modify the bounds of the constraints and the
ranges of all entities. This allows the user to narrow down the set of suitable solutions.

Tradeoff Plot

Objective "Mass _scaled" vs. Objective "Disp_scaled"
(Results of Iteration 75)

0.98

0.94

0.92
%a,

AL

I3
»

Disp_scaled

0.84 B

0.9 11 1.2 13 14 15
Mass_scaled

Figure 18-93: Tradeoffs between scaled mass and intrusion (displacement).

Trade-off between the two objectives shows that intrusion can be reduced by increasing the
mass. The trade-off curve clearly illustrates that reduction in intrusion (from 0.81 to 0.988) will
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require a corresponding increase in mass (from 0.861 to 1.506). The ranges of the optimal design
variables corresponding to the candidate Pareto optimal front are given in Table 18-7.

Frequenc

aprons

crrl cr csm sq in sq ot rl in rl ot aprons Frequency scaled StagelPulse scaled Stage2Pulse scaled Stage3Pulse scaled Mass scaled Disp scaled

Figure 18-95: Parallel coordinate plot of Pareto optimal solutions; results of last generation

Table 18-7: Ranges of design variables in the final optimal solution set.

Variable Lower Upper
Rail inner 2.27 3.01
Rail outer 0.97 3.04
Aprons 0.97 2.32
Shotgun inner 0.97 247
Shotgun outer 1.44 2.40
Cradle cross member 1.00 1.09
Cradle rails 0.96 3.04

LS-OPT Version 5.2

398



CHAPTER 18: Examples — Optimization

18.6. Knee impact with variable screening (11 variables)

(Example by courtesy of Visteon and Ford Motor Company)
This example has the following features:
o ANSAM s used as independent parametric preprocessor for shape parameterization

0 A sensitivity analysis is performed to obtain a reduced set of variables for the
optimization

0 The minimum of two maxima is obtained in the objective (multi-criteria or multi-
objective problem).

18.6.1. FE modeling

Figure 18-96 shows the finite element model of a typical automotive instrument panel (IP) [4].
For model simplification and reduced per-iteration computational times, only the driver's side of
the IP is used in the analysis, and consists of around 25,000 shell elements. Symmetry boundary
conditions are assumed at the centerline, and to simulate a bench component "Bendix" test, body
attachments are assumed fixed in all 6 directions. Also shown in Figure 18-96 are simplified
knee forms which move in a direction as determined from prior physical tests. As shown in the
figure, this system is composed of a knee bolster (steel, plastic or both) that also serves as a
steering column cover with a styled surface, and two energy absorption (EA) brackets (usually
steel) attached to the cross vehicle IP structure. The brackets absorb a significant portion of the
lower torso energy of the occupant by deforming appropriately. Sometimes, a steering column
isolator (also known as a yoke) may be used as part of the knee bolster system to delay the wrap-
around of the knees around the steering column. The last three components are non-visible and
hence their shape can be optimized. The 11 design variables are shown in Figure 18-97.

The simulation is carried out for a 40 ms duration by which time the knees have been brought to
rest. It may be mentioned here that the Bendix component test is used mainly for knee bolster
system development; for certification purposes, a different physical test representative of the full
vehicle is performed. Since the simulation used herein is at a subsystem level, the results
reported here may be used mainly for illustration purposes.

1 BETA CAE Systems S.A.

LS-OPT Version 5.2

399



CHAPTER 18: Examples — Optimization

Non-visible,
optimizable
structural part

Simplified / - non-optimizable

knee forms

Figure 18-96: Typical instrument panel prepared for a *"Bendix’* component test
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Figure 18-97: Typical major components of a knee bolster system and definition of design
variables.
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18.6.2. Design formulation

The optimization problem is defined as follows:
Minimize ( max (Knee_Force_Left, Knee_Force_Right) )
Subject to

Left Knee intrusion < 115mm
Right Knee intrusion < 115mm
Yoke displacement < 85mm
Kinetic Energy < 1.54e5

The knee forces have been filtered, SAE 60 Hz, to improve the approximation accuracy.

18.6.3. Solution

ANSA is used to parameterize the geometry, Figure 18-98 and Figure 18-99. Since the ANSA
output file is used as in include file in the LS-DYNA input, a file transfer has to be defined to
copy the file to the respective LS-DYNA run directory, Figure 18-100. Alternatively, the option
“Run jobs in directory of stage” could be used. The maximal knee force to be used as objective
function is defined as a composite expression, Figure 18-101. The definition of the constraints is
displayed in Figure 18-102.

doe.lsopt - LS-OPT 5.0 HEE
J?

DOE study oD =

‘. Setup I Sampllng Sampllng

18 parameters | 11 vars, 24 d- opt designs

ANEA

Mcrphmg
_ _ _ _ | 12 pars

[ Finish ] | Constraints
‘ Inis | |[ 4 canstraints J @

LI S|mu|at|cm
3 pars, 6 hists, 6 resps

Global Sensitivities | Composites Build Metamcdels
10000 points 1 definition & linear surfaces

|.u'h ome/katharina/L5TC/optQA/USERSMANUAL EXS/KNEE IMPACT/doe. lsopl

Figure 18-98: Main LS-OPT GUI window. ANSA is used as a preprocessor in LS-OPT to
incorporate shape optimization
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Stage Morphing

Setup | Parameters I Histories I Responses I File Operations

General

Package Name[ ANSA & l

Command [an5364 -lm_retry 60 H Browse l

[] Do not add input file argument

DV File [para.txt H Browse l

copies para.txt (0 includes) to Morphjngﬁt.mrv[ANSAOpt.:’np ]
and substitutes parameters

[[] Extra input files

Model Database[!;{LSPROJHOME}ﬂ!-‘Icrphing.ansa ” Browse

Execution

Resources

Resource Units per job Global limit Delete

ANSA 1 ][1 x

Create new resource

[[] Use Queuing

[] Use LSTCVM proxy

[] Environment Variables

[] Run Jobs in Directory of Stage

oK

Figure 18-99: ANSA interface; definition of ANSA command, design variables file and ANSA
database.

Ber File" Transfers =

Files to be copied from the run directory of Morphing to Simulation:

Operation Source File Destination File Cn Error Delete
“Ccpy ~ ”ansauut.key Hansacut.key Hfail o x
Add ..

Figure 18-100: File transfer; the ANSA output is used as include file in the LS-DYNA input
file.
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[opT] Composites E]

Composite definition Add new

MAXFORCE Composites
EXPRESSION: max(Knee_Force_Left, Knee_Force_Right) EXPRESSION

Curve Matching

Standard
Composite

Expression Composite
Name:

[ MAXFORCE ]

Expression:

[max(Knee_Fcrce_Leﬂ:, Knee_ Force_Right) ]

concel | [ o]

Figure 18-101: Definition of maximal knee force as composite expression.
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5}
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Figure 18-102: Constraints for the knee bolster design problem.
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18.6.4. Variable screening

First a DOE is done with a linear approximation to find the most sensitive parameters. The
ANOVA and Sobol’s global sensitivity analysis charts may be used to evaluate the results,
Figure 18-103 and Figure 18-104. Note the large confidence intervals (low confidence levels) on
some of the responses, especially the Kin_Energy, the Knee_Force_Left and Yoke_Disp.
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Figure 18-103: ANOVA plots for objectives and constraints of knee-bolster design problem.
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Figure 18-104: Global sensitivity analysis of objectives and constraints.

The six most sensitive variables chosen from the charts are:
x=[ Yoke_Cross_Scetion_Radiu, THICK k, THICK_r, THICK I, Left EA Width,

Right_Hole_Radius_

17"

Those variables are used to perform an optimization.
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mKin_Energy
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18.6.5. Optimization

After reducing the set of parameters considering the results of the previously performed DOE, a
metamodel-based optimization is performed using the strategy sequential with domain reduction
and linear metamodels. The reader is also referred to [5] for a discussion of the accuracy and
purpose of the various sequential sampling strategies available in LS-OPT.

The plots below (Figure 18-105) show the optimization histories, i.e. the deployment of the
optimal values over the iterations, of the objectives and the maximal constraint violation. While
the baseline design resulted in a maximum force of 16551.7 and a maximal constraint violation
of 41.7, the optimum design resulted in a maximum force of only 6720.7. Though intermediate
computed results were infeasible because of the approximation error of the metamodels, the final
design was feasible.
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Figure 18-105: Optimization history of objectives and maximum constraint violations.
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18.7. Shape optimization of a front rail using ANSA'* and pETAY

This example has the following features:
Optimization of a 3-stage process chain using ANSA, LS-DYNA and uETA
Shape optimization using the ANSA morphing tool

o

o Discrete variables
0 Result extraction using META

18.7.1. Problem Statement
The problem is of a front rail crash simulation. Embosses are to be used to
Minimize acceleration
subject to
mass < 1.8
intrusion < 300.

The design variables are the depth and width of the embosses, the distance between the
embosses, and the thickness of the rail, Figure 18-106. Thickness and width are defined as
discrete parameters.

distance

ls—|

thickness

Figure 18-106: Rail with embosses.

18.7.2. Solution

The morphing tool of the preprocessor ANSA is used to incorporate the geometrical parameters.
The thickness parameter is also defined in ANSA. The ANSA database including morphing

2 BETA CAE Systems S.A.
* BETA CAE Systems S.A.
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boxes, morphing parameters, and the optimization task is provided in rail_task.ansa. See
[7] for the setup of the morphing boxes and the optimization task. Make sure that the
Optimization task issetto Execution mode in ANSA before running the optimization.

A metamodel based optimization with strategy sequential with domain reduction is used. Figure
18-107 displays the main LS-OPT GUI window visualizing the optimization process and the
ANSA - LS-DYNA — pETA process chain.

oFT *rail.Isopt - LS-OPT 5.0 =) (=] (z=)
“ E + /’ } M Metamodel-based optimization O : ?

‘ Setup \ . sampling ANSA

4 parameters | L] ..| 4 wvars, 8 d-opt designs

-

"

niTA

‘ META

2 resps
|

— . +"

‘ Optimization B B

_ — — Build Metamodels
[ 1 objective | 30 F
| |o inear surfaces

2 constraints

AMSA +

ANSA

o — = . — 4 pars
Finish Domain ' |

| reduction
! |~ -
s =] LS DYMNA B

1 resp
Verification Termination criteria |
1 design 10 iterations +

Front rail crash
fhome/katharina/LSTC/optQA/USERSMANLUAL EXS/ANSAfrail Isopt

Figure 18-107: Main LS-OPT GUI window; Metamodel based design optimization, Strategy
SRSM; Optimization of a process chain with 3 stages.

Figure 18-108 shows the Setup of the ANSA stage. This stage has no responses or histories.

All parameters defined in rail_DV.txt are imported to LS-OPT, including type, values and
ranges, Figure 18-109.

Since the ANSA output is used for the LS-DYNA run, the specification of a file transfer is
needed to copy the output to the respective LS-DYNA run directory, Figure 18-110. Another
possibility to make output files available for other stages is to run the jobs in the respective stage
directory. This is done here for the META stage, Figure 18-111.
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Stage ANSA =

28
3

Setup | Parameters I Histories I Responses I File Operations l

General

Package Name[ ANSA & l

Command [ansaﬁ4 -lm_retry 60 H Browse l

[] Do not add input file argument

DV File [raiI_DV.txt H Browse l

copies rail DV txt (0 includes) to ANSA/it.run/| ANSAOpt.inp ]
and substitutes parameters

[[] Extra input files

Model Database[!S{LSPROJHOME},frail_task.ansa ” Browse

Execution

Resources

Resource Units per job Glebal limit Delete

ANSA 1 ][1 x

Create new resource

[[] Use Queuing
[] Use LSTCVM proxy
[] Environment Variables

[] Run Jobs in Directory of Stage

Figure 18-108: Stage dialog interfacing with ANSA

NG T biemlg o bailse i

|PBFBH’IEtEF Setup|| Stage Matrix } Sampling Matrix l Resources l Features l

[ show advanced options

Type Name Starting Minimurm Maximum  Sampling Ty.. Delete
| continuous | v J[Emboss_pepth I o 6| 0| &

| continuous | v J[Embo I o B 10| &
|Discrete | v J[Emboss_width I o|values: |-2,-1,0, 1, 2 E] Continuot| v |
|Discrete | v |[Thickness I 1.2|Values: (08,09, 1, 1.1, ... E][Continum| v |6
Add...

Figure 18-109: Parameter Setup; variables, values and ranges are imported from the ANSA
DV file
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Files to be copied from the run directory of ANSA to LS _DYNA:

|_5'Pr' Eile Transfers 3]

Operation Source File Destination File On Error Delete
[Cupy ~ ”rail.l-:ey Hrail.key ][fail W x
Add ...

Figure 18-110: File Transfer dialog; the ANSA output file rail.key is copied to the respective

LS-DYNA run directory.

e Stage META

Setup | Parameters I Histories I Responses I File Operations I

=

General

Package Name[ METAPost

<]

Command [metapcst -lm_retry 60

[ orowse |

Session File [response.ses

[ oromse |

Output File [respanses.ses.results

[ oromse |

Database File[.j

[ oromse |

Execution

Resources

Resource Units per job

Global lirmit Delete

METAPOST 1

1E .

Create new resource

[] Use Queuing

[] Use LSTCVM proxy

[ Environment Variables

Run Jobs in Directory of Stage

LS_DYNA &

Figure 18-111: Stage dialog interfacing with WETApost. LETApost is run in the respective LS-
DYNA run directory, since the results are extracted from the LS-DYNA output.
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18.7.3. Results

Figure 18-112 and Figure 18-113 display the optimization history of the variables and the
responses, respectively. There is no convergence for the variable Emboss_Width, but as the
Sensitivies Plot in Figure 18-114 shows, this variable is not sensitive. Due to metamodel
inaccuracy, the final design is infeasible displayed in Figure 18-115, but e.g. the optimal value of
iteration 9 is feasible, and the acceleration value is similar.

Optimization History
for "Emboss_Depth"

Emboss_Depth

—

-0 2 4 6 8 10
Number of Iterations

[- SR VTR =Y

Optimization History
for "Emboss_Dist"

Emboss_Dist
(=]

-0 2 4 6 8 10
Number of Iterations

Optimization Histary
for "Emboss_Width"

£ 1
e
= 0
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o
g i \/
[im| -2
-0 2 4 6 8 10
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Optimization History
for "Thickness"

1.6
@a 1.4
[}
c 1.2
Ev4
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= 1
=

0.8

-0 2 3 6 8 10

Number of Iterations

Figure 18-112: Optimization History of variables.
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acceleration

mass

intrusion

Optimization History
for "acceleration”

-0.1
-0.2
- I\I—l’.\r—-wl
-0.4 /
[ | /
-0.5 /
-0.6
-0 4 6 10
Number of Iterations
Optimization History
for "mass"
18
1.7
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1.5
|l-"/_.—\
1.4 _/ \r
-0 4 6 10
Number of Iterations
Optimization History
for "intrusion"
-290 o =
-300 \ /=
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" \ /
-320 \
-330 X
-340
-0 4 6 10
Number of Iterations
Figure 18-113: Optimization History of objective and constraints.
Global Sensitivities Plot
W mass
Thickness (88.7% - 88.7%) Bacceleration
Bintrusion

Emboss_Depth (9.4% - 98.1%)
Emboss_Width (1.2% - 99.2%)
Emboss_Dist (0.8% - 100.0%)

Figure 18-114: Global Sensitivities.
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Figure 18-115: Final design. Optimum of iteration 10.
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18.8. Optimization with analytical design sensitivities

This example has the following features:
0 Using analytical design sensitivities for optimization

o Defining a user-defined solver

18.8.1. Problem Statement
The optimization problem to be solved is
max(x? + 4(x, — 0.5)?)
subject to
X1 +x, <1
—2x1+x, <2

xZZO.

Figure 18-116 displays the objective and constraint functions.

Elliptic
function

Figure 18-116: Objective and constraint functions.

This example demonstrates how analytical gradients (Section 9.1.2) provided by a solver can be
used for optimization using the SLP algorithm and the domain reduction scheme [5] (Section
23.6). The solver, a Perl program, is shown below. It calculates the analytical functions as well
as the gradients at the respective simulation points.
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In this example the input variables are read from the file: XPoint placed in the run directory
by LS-OPT. The input variables can also be read by defining this file as an input file and using
the <<variable_name>> format to label the variable locations for substitution. Note that each
response requires a unique Gradient file.

Solver program:

# Open output files for response results
#
open(FOUT,">fsol™);
open(G10UT, "">glsol™);
open(G20UT, ""*>g2sol™);
#
# Output files for gradients
#
open(DF,">Gradf'");
open(DG1,"">Gradgl'™);
open(DG2,"">Gradg2'™);
#
# Open the input file "XPoint" (automatically
# placed by LS-OPT in the run directory)
#
open(X,"'<XPoint');
#
# Compute results and write to the fTiles
# (i.e. conduct the simulation)
#
while (<X>) {
($x1,$x2) = split;
by

#
print FOUT ($x1*$x1) + (4*($x2-0.5)*($x2-0.5)),"\n";
# Derivative of f(x1,x2)

H
print DF @*$x1)," "; # df/dx1
print DF  (8*($x2-0.5)),"\n"; # df/dx2
#

print G10UT $x1 + $x2,'\n";
# Derivative of gl(x1,x2)

print DG1 1," ";

print DG1 1,'\n";

#

print G20UT (-2*$x1) + $x2,"\n";
# Derivative of g2(x1,x2)

print DG2 -2," ';

print DG2 1,'\n";

#

# Signal normal termination
print "N o r m a I\n";
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18.8.2. Solution

Figure 18-117 shows the stage dialog defining the user-defined solver.

Figure 18-118 displays the response definitions. The gradient files generated by the Perl program
need to be copied to a file called Gradient, the calculated response values need to be output to

standard output.

Use the metamodel type Sensitivity to use analytical gradients for optimization, Figure 18-119.

oPT. Stage 1

)

Setup | Parameters | Histories = Responses | File Operations

General

Package Name| User-Defined

A
-

Command[perl

” Browse |

[] Do not add input file argument

Input File [ex3

” Browse |

copies ex3 to 1/it.run/| UserOpt.inp

l

and substitutes parameters

[] Extra input files

Execution

Resources

Resource Units per job Global limit

Delete

1 1 “1

Create new resource

[] Use Queuing
[] Use LSTCWM proxy

[] Environment Variables

Figure 18-117: Defining a user-defined solver
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[opT] Stage 1

%]

Setup I Parameters Histories | Responses | Fle Operations

Response definitions Add new

f
USERDEFINED: cp Gradf Gradient; cat fsol

gl *
USERDEFINED: cp Gradgl Gradient; cat glsol

g2 *
USERDEFINED: cp Gradg2 Gradient; cat g2sol

Generic

USERDEFINED

GENEX

EXPRESSION
FUNCTION

INJURY
MATRIX_EXPRESSION

i-

= Edit response
Name Subcase Multipiler Offset
[ /| L | [o )
(| INat metamodel —Iinked‘
Definition

[cp Gradf Gradient; cat fsol

[ concel | [ ox ]

Figure 18-118: User-defined results extraction.

Sampling/'L

ﬂ Sampling Metamodel Settings B

Metamodel

) Polynomial

@ Sensitivity

) Feedforward Neural Network
() Radial Basis Function Network
) Kriging

() Support Vector Regression

) User-defined

~Sensitivity Type

) Nurnerical

@ Analytical

GCEOUT

GLSTAT

Figure 18-119: Sampling definition for optimization using analytical sensitivities

Typical ""Gradient" file (e.g. for f):
1.8000000000 —3.20000000000
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18.8.3. Results

The optimization results are shown in the plots below. An iteration represents a single
simulation. The red dots represent the computed results while the solid line represents a linear
approximation constructed from the gradient information of the previous point.

Optimization History Optimization History
for "x1" for "x2"
3 2
1.75
7
1.5
1
// o \
0 I
— ™~
* = “-'—‘“-__,_“‘
0.75
-1
0.5
-2
0.25
B -0
-0 2 3 4 -0 2 3 4
Number of Iterations Number of Iterations

Figure 18-120: Optimization history for variables

Optimization History
for "f"

\ 1/

B,
oA/

2
Number of Iterations
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Figure 18-121: Optimization history for objective

LS-OPT Version 5.2

416



CHAPTER 18: Examples — Optimization

Optimization History Optimization History
for "gl" for "g2"

g NERRN
- . 2 — .

Number of Iterations Number of Iterations

Figure 18-122: Optimization history for constraints

18.9. Small car crashworthiness example using GenEx to extract
histories/responses from data files

18.9.1. Problem Description

o0 This example demonstrates the use of GenEx for extracting histories and responses from
LS-DYNA data files.

0 The small car crash design optimization example (see Section 17.2) has been modified by
defining LS-DYNA histories and responses using GenEx. Even though GenEx is not
required for this example, it has been used only to demonstrate its use.

0 This example is a minimization problem with total mass of four parts (part no.2, 3, 4 and
5) as the objective and the intrusion distance calculated as the difference between
displacements of two nodes (432 and 167) as the design constraint.

0 The steps to define the task type and design parameters are similar to other simple LS-
OPT examples. In this example, internal energy, nodal acceleration and rigid wall force
are defined as histories with part masses and nodal displacements defined as responses
using various GenEx features.

The following files are used in this example:

main.k Main (root) file with LS-OPT design parameters
car5.k Include file specified in main.k

rigid2 Include file specified in main.k

sample_nodout Input data file for nodout histories/responses
sample_glstat Input data file for glstat histories
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sample_rwforc
sample_d3hsp
genex_nodout.g6
genex_glstat.g6
genex_rwforc .g6
genex_d3hsp.g6

Input data file for rwforc histories
Input data file for d3hsp responses
GenEx input file for nodout
GenEx input file for glstat

GenEx input file for rwforc
GenEx input file for d3hsp

18.9.2. Defining Responses in GenEx

1. Open the file genex.

start. Isopt using the LS-OPT GUI.

2. The task, parameters, sampling and solver settings have already been defined in the

project file.

3. The next step is to define responses using GenEx so that these responses can later be
assigned as optimization objectives or constraints.

4. Instead of choosing LS-DYNA responses, the responses are defined using GenEX i.e.
using the ‘GENEX’ option available under generic list of options within the *Histories’
and ‘Responses’ tabs of the Setup dialog box. Defining histories/responses using GenEx
requires an input data file and a .g6 GenEx file as shown in Figure 18-123..

Stage Stage1

Setup | Parameters | Histories Responses | File Operations

‘ Response definitions

Add new

Name
GENEX1

Entities

Input GenEx file

Input data file

Reread entities

Generic
USERDEFINED

GENEE)

EXPRESSION

Subcase Multiplier Offset

v

[[] Not metamodel-linked

Browse Create/Edit

OK Cancel MATSUM

Figure 18-123: GenEX respo

NCFORC
NODOUT

nse dialog box

oK

5. To define the sum of part masses as an objective, the mass of each part should be defined
separately as a response. Since the values of the part masses are extracted from the same
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data file (d3hsp), they can have the same GenEx input file (.g6 file). The GenEx input file
stores the locations of response values to be extracted from the data file.

6. To define the mass of part 2 as a response, click on GENEX within the Responses tab.
Assign a name to the response and click on Create/Edit to open the GenEx window for
creating a .g6 file (GenEx input file).

7. The mass is extracted from the d3hsp file of LS-DYNA, therefore open sample_d3hsp
file in GenEx (File = Select input file). These sample files are output files of the baseline
analysis.

8. The mass of part 2 in d3hsp file is identified using anchors and entities. Anchors facilitate
searching for a field from the data file and an Entity is the actual value field to be
extracted.

9. The part mass information is printed in d3hsp under ‘summary of mass’ section. To
define an anchor, click on New Anchor, assign a name (e.g. mass_of _parts) and enter
“summary of mass” in ‘Text to search for’ field and hit enter. This creates an anchor at
the start of the first occurrence of text “summary of mass” throughout d3hsp file as
shown in Figure 18-124.

File Edit
&0
= .7 Start of File total number of massless nodes = 4 A | Anchor name:
mass_of parts
End of File L
NOTE : For 2D axisymmetric problems the following Origin:
masses are reported per radian. y
v
For 2D plain strain/stress problems the Start of File
masses are reported per unit thickness. Type:
ar&' of mass Plain search v
part id = 1 mass= 0.40334858E+01
part id = 2 mass= 0.18290550E+00 Text to search for:
part id = 3 mass= 0.85404763E-01
part id = 4 mass= 0.42890836E-01 summary of mass
part id = 5 mass= 0.99110410E-01 Directi
part id = & mass= 0.35396043E-01 rigid body irection
total mass = 0.44791942E+01 (® Forward () Backward
x-coordinate of mass center = 0.23318479E+04
y-coordinate of mass center = 0.69819831E+03
z-coordinate of mass center = 0.55329536E+03 Match
'Q‘Anywhere

() Start of line only

(_) End of line only
slave surface of interface 1
4 =

ep 2.495E-05 Skip over 0 | matches
controlling slave node ID 17
part ID of slave node 2
current minimum time step

Relative location:

2.495E-05 .
0 ~ lines,

slave surface of imterface = a
. _ \ Y| |0 - characters
< >

Figure 18-124: Creating Anchors in GenEx

10. Now an entity can be defined under this anchor using the New Entry option. Since
responses are scalar values, the ‘Type of Entity’ is selected as ‘Scalar’. The relative
location of this entity is adjusted to obtain the value of mass of Part 2. For example, in the
sample_d3hsp file, the relative location of mass of Part 2 with respect to the defined
anchor is specified as line 2, column 5. The final value to be extracted will be highlighted
on the data file as shown in Figure 18-125.
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File Edit

&

£+ L Start of File
! = 7. mass_of_parts

E

~.I. End of File

For 2D plain strain/stress problems the
masses are reported per unit thickness.

Burmary of mass

part id = 1 mass= 0.40334859E+01
part id = 2 mass=
part id = 3 mass= 0.85404769E-01
part id = 4 mass= 0.42850836E-01
part id = 5 mass= 0.99110410E-01
part id = & mass= 0.35396043E-01 rigid bedy

total mass = 0.44791942E+01
x-coordinate of mass center = 0.23318479E+04
y-coordinate of mass center = 0.69819891E+03
z-coordinate of mass center = 0.55329596E+03

| Entity name:
|part2 |

Origin:

|mass_ouaarts V|

Type of entity

(®) Scalar
O Column vector

O Repeated anchor vector

Number format

slave surface of interface 1

type = 4
surface timestep = 2.495E-05
controlling slave mode ID = 17
part ID of slave node = 2
current minimum time step = 2.495E-05
slave surface of interface = 2
type = 4
surface timestep = 2.383E-05
controlling slave node ID = 157
part ID of slave node = 1
current minimum time step = 2.363E-05
Tha TS_NVIA time stan sisa shanld mar avnes. - 2 2g2_nc

Decimal separator(s): _
Exponent character(s): _
Thousands separators:

1, [J. []Space

Relative location:

T

| 5 ‘E ‘cclumns v

Column separators

[[1Tab [ ]Space  [v]Whitespace
v O Lk Lh

[T b

Figure 18-125: Entity selection in GenEx

11. Similarly, more entities can be created for other parts under the same anchor with the

only difference being their respective relative locations, Figure 18-126.

File Edit

E&O

=1 Start of File
=R mass_of_parts
[ part2
[x part3
[x part4

-1 End of File

masses are reported per radian.
For 2D plain strain/stress problems the
masses are reported per unit thickness.

Bummary of mass

part id = 1 mass= 0.40334859E+01
parc id = 2 mass= 0.18290550E+00
parc id = 3 mass= 0.85404769E-01
part id = 4 mass= 0.42890836E-01
parc 1 = 5 mass—
part id = & mass= 0.35396043E-01 rigid body

total mass = 0.44791942E+01
x-coordinate of mass cente: .23318479E+04
y-coordinate of mass cente .69819891E+03
z-coordinate of mass center = 0.55329596E+03

Entity name:
‘panS |

Origin:

‘massﬁotparts v|

Type of entity

(®) Scalar
O Column vector

O Repeated anchor vector

MNumber format

slave surface of interface 1

type = 4
surface tirestep = 2.495E-05
controlling slave nede ID = 17
part ID of slave node = 2
current minimum time step = 2.495E-05
slave surface of interface = 2
type = 4
surface timestep = 2.363E-05
controlling slave node ID = 157
part ID of slave node = 1
current minimum time step = 2.363E-05

Decimal separator(s): _
Exponent character(s):
Thousands separators:

[, OJ. [space

Relative location:
5

‘ 5 | ‘cnlumns -
Column separators

[JTab [ ]Space [v]Whitespace
VL. L L

1 v

Figure 18-126: Multiple entities of an anchor in GenEx

12.Once all the entities are defined, save the extraction setup to create a .g6 file
(sample_d3hsp.g6). Now the LS-OPT responses can be defined using this .g6 file and

corresponding data file. In the New Response dialog box, select this .g6 file as the GenEx
input file. Once this file is selected, LS-OPT lists all the entities defined in the file. Select
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the entity (part_2) to define it as an LS-OPT response with d3hsp being the input data
file, as shown in Figure 18-127. Repeat this process to define the LS-OPT mass responses
of all the parts specified.

MName Subcase Multiplier Offset

mass_2 v| nfa n/a
[] Not metamodel-linked
Input GenEx file

CA\Users\imtiaz\Desktop\genex_example\genex_d3hsp.gb Create/Edit

Input data file
d3hsp

Entities

Reread entities

Figure 18-127: Defining GenEx response in LS-OPT

13. To create GenEx responses for extracting nodal displacements, similar steps can be
followed with nodout being the input data file. The sample nodout file (sample_nodout)
provided with the example can be used to create the required GenEx input file. An anchor
can be created to search for text “x-disp’. By default, this anchor is created under Start of
file anchor with forward search direction and hence the search results in locating the first
occurrence of “x-disp” within the nodout data file. Since the last reported displacement
values are required, the anchor origin can be changed to ‘End of file’ with a backward
search direction as shown in Figure 18-128. Entities for the x-displacement of both nodes
(432 and 167) can be defined under this anchor.
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File Edit
EEO
-1, Start of File nedal primt out for time step 6973 | Anchor name:
=1 End of File nodal point x-rot y-rot 2-rot x-rot vel y-rot vel z-rot vel intrusion
= 167 4.5242E-01 -2.0156E+00 -4.7858E-01 7.343BE+00 2.2576E+400 -3.5887E+00 L.
" 432 2.5011E-03 -5.2254E-02 4.4283E-04 -3.6445E-01 3.9865E-01 4.0914E-04 - Origin:
[z x-disp_432 -
- v
[x x-disp_167 End of File
nodal princt out for time step 6983 Type:
Plain search v
nodal point x-disp y-disp z-disp x-vel y-vel z-vel
167 -1.5991E+02 -1.4906E+01 -3.4052E+01 -1.0647TE+03 -2.0868E+02 -1.0425E+03 Text to search for:
432 -7.3565E+02 1.1428E+00 7.0091E+00 -1.404BE+04 2.4601E+01 3.5214E+02 disp
Direction
nodal print ocut for time step 6983 _
(_)Forward (@) Backward
nodal point x-rot y-rot z-rot x-rot vel y-rot vel z-rot vel

167  4.531SE-01 -2.0153E+00 -4.7893E-01 7.0883E+00 3.8879E+00 -3.2538E+00 -

432 2.4545E-03 -5.2211E-02 4.4268E-04 -5.1446E-01 4.3796E-01 -2.4614E-03 - Match
(®) Anywhere
nodal print out for tTime step 6993 () Start of line only
nodal point |—x|»disp y-disp z-disp x-vel y-vel z—vel () End of line only
167 -1.6001E+02 -1.4921E+01 -3.4153E+01 -1.0520E+03 -9.3853E+01 -9.7063E+02 -
432 =7.3706E+02 1.1441E+00 7.0445E+00 -1.4026E+04¢ 4.9516E+00 3.4306E+02 . -
Skip over 0 - matches
Relative location:
nodal print out for time step 993 -
0 - lines,
nodal point x-rot y-rot z-rot x-rot vel y-rot vel z-rot wvel © 0 -
167  £.5384E-01 -2.0148E+00 -4.7925E-01 &.7981E+00 4.9463E+00 -3.2770E+00 - ~ characters
< >

Calimn canaratare

Figure 18-128: Changing anchor origin and search direction for backward search in GenEx

14. Once all the required entities are defined, the process is saved as genex_nodout.g6 and
Step 12 can be repeated to define the LS-OPT responses using this GenEx file with
nodout being the input data file.

15. As with any other LS-OPT responses, these GenEx responses can be assigned as
optimization objectives/constraints.

18.9.3. Defining Histories in GenEx

1. Even though histories are not utilized in this example problem, internal energy, nodal
acceleration and rigid wall force histories have been defined to demonstrate the use of
GenEx for extracting histories from an input data file.

2. Similar to responses, GenEx histories require an input data file and its corresponding .g6
GenEXx file, as shown in Figure 18-129.

LS-OPT Version 5.2 422



CHAPTER 18: Examples — Optimization

Stage 2

Setup |Parameters Histories Responses | File Operations

History definitions Add new

Generic for
DEFINED

Name Subcase
GENER] mil INJURY
Derived
Input GenEx file Crossplot
Browse Create/Edit LS-DYNA
Input data file ABSTAT
BNDOUT
X/time vector Y/value vector D3PLOT
DBBEMAC
DBFSI
DEFORC
ELOUT
Reread entities GCEOUT
oK Cancel GLSTAT
JNTFORC

File Histories

oK

Figure 18-129: GenEXx history dialog box

3.

To create internal energy history, click on GENEX and assign a name to the history. The
LS-DYNA ASCII file glstat is used as input data file, i.e. internal energy history is
extracted from glstat. To create a .g6 file (genex input file), click on Create/Edit to open
the GenEx window and select sample_glstat as the input file from the GenEx window
(File = Select input file).

Now Anchors and Entities should be defined to locate internal energy values at each time
interval.

To define an anchor, click on New Anchor, assign a name (e.g. cycle) and enter “dt of
cycle” in the “Text to search for’ field and hit enter. This creates an anchor at the start of
the first occurrence of text “dt of cycle”.

Now create entities for time (x-vector) and internal energy values (y-vector) using this
anchor. Click on ‘New Entry” and find the relative location of internal energy values with
the defined anchor. The relative location can be determined using lines, characters and
columns options. In this example, the entity IE_value is located at line 5, column 2
relative to the anchor and the entity time is located at line 2, column 1 (with whitespace
as the column separator).

Since this is a history, the entities time and IE_value at each cycle should be extracted.
This can be done by selecting Repeated Anchor Vector as entity type. Selecting Repeated
Anchor Vector as anchor type highlights all the entity fields with locations relative to text
“dt of cycle” throughout the data file (shown in Figure 18-130). Once all the anchors and
entities are defined, save the GenEx file and close the GenEx window.
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File Edit
E & o
=% Startof File G of cycle 1 is controlled by shell 60 of part 2 AR
kL cycle BT ettt et e e e e e e iaean 0.00000E400 ‘IE_vaIue ‘
-[E time time step.... . 3.01641E-05 —
= kinetic energ . 5.43498E+08 Origin:
k internal energy. el g
. End of File stonewall energy....... . 0.00000E+00 wall@ 1 &l
apring and damper energ: . 1.00000E-20 ;
aystem damping energy.. . 0.00000E+00 lypelofentiy
sliding interface energ; . 0.00000E+00
external Work.......... . 0.00000E+00 (O Scalar
eroded kinetic energy.. . 0.00000E+00
eroded internal energy. . 0.00000E+00 () Column vector

eroded hourglass energy . 0.00000E+00
total ENErgY........... . 5.43493E+08 (®) Repeated anchor vector
total enmergy / i . 1.00000E+00
energy ratio w/o . 1.00000E+00
global x wvelocirt; . =1.55164E+04¢ Number format

gleobal y velocity... ve..  0.00000E400 v : . _
global 2 VElOCitHeseseenneanenn 0.00000E+00 Decimal separator(s):
Tine per none syele. frasmees) - b N

Thousands separatars:
4t of cycle 4 is controlled by shell §0 of part 2 [, [J. [ISpace

L2 9.04923E-05 Relative location:

time step, 3.01641E-05
kinetic energy.. 5 E lines,

internal energy. ;

stonewall energy....... 0.00000E+00 walls 1 ‘ 2 ‘E ‘Cg|umn5 v
spring and damper energ 1.00000E-20

system damping energy...... . 0.00000E+00 Column separators

sliding interface energ . 0.00000E+00

external WOrk.......... . 0.00000E+00 [[JTab [ ]Space [¥]Whitespace
eroded kinetic ensrgy.. . 0.00000E+00 O 0O O

eroded internal energy......... 0.00000E+00 . ‘

eroded hourglass enerqy........  0.00000E+00 il

Figure 18-130: History definition using Repeated Anchor Vector as entity type

8. Now select the GenEx file created in the previous steps as the ‘input GenEx file’ of
history and glstat as “input data file’. Once the GenEXx file is selected, the entities defined
are listed under X/time vector and Y/value vector. Select the time entity as X vector and
IE_value as Y vector and click OK, Figure 18-131. The internal energy history using
GenEx has now been defined. When LS-OPT is executed, the defined entity fields are
extracted as histories from glstat ASCII files generated as a result of the LS-DYNA
analysis in each run directory.

Name Subcase

‘ internal_energy ‘ | v |

Input GenEx file

‘C:\Users\imtiaz\Deslctop\genex_example\genex _glstat.gb || Browse H Create/Edit |

Input data file

‘glstat |

X/time vector Y/value vector

Auto increment time

time |E_value

IE_value

Reread entities

Figure 18-131: Defining GenEXx history in LS-OPT
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9. Similarly, the nodal acceleration history can be formulated using Repeated Anchor
Vector for the nodout input data file. To create the .g6 file, the same input GenEx file
(genex_nodout) used for nodal displacement responses can be modified to include history
entities.

10. The rigid wall force history can be extracted from rwforc data file. In this example, since
only one rigid wall has been defined, the rwforc history (time vs. force) values are printed
as a list. Therefore, after defining the anchor, the type of entity can be selected as Column
Vector instead of using Repeated Anchor Vector. When Column Vector is selected all the
components below the selected entity until the end of the file are highlighted (see Figure
18-132).

File Edit
F&T
(-1 Start of File ~ | Entity name:
[ 1s-dyna smp.79055 s date 01/10/2013
(=1 rwforce x-force
[¥ time o
time wall§ normal-force x-force y-force z-force rigin:
e force 0.00000E+00 1 0.000000E+00 [.000000E+08 0.000000E+00  0.000000E+00 rwforce v

-1 End of File 3.01641E-05 1 0.000000E+00 0.000000E+06;  0.000000E400  0.000000E+00
6.03282E-05 1 0.000000E+00 - 000000E+00: 0.000000E+00 0.000000E+00 N
9.04923E-05 1 0.000000E+00 10.000000E+00i  0.000000E400  0.000000E+00 izpelalentty
1.20656E-04 1 0.000000E+00 0.000000E+06;  0.000000E400  0.000000E+00 _
1.50820E-04 1 0.000000E+00 -000000E+00;  0.000000E+00  0.000000E+00 () Scalar
1.80985E-04 1 0.000000E+00 10.000000E+00i  0.000000E400  0.000000E+00 —
2.11149E-04 1 0.000000E+00 0.000000E+06;  0.000000E400  0.000000E+00 (®) Column vector
2.41313E-04 1 0.000000E+00 - 000000E+00: 0.000000E+00 0.000000E+00 —
2.71477E-04 1 0.000000E+00 10.000000E+00i  0.000000E400  0.000000E+00 () Repeated anchor vector
3.01641E-04 1 0.000000E+00  0.000000E+06;  0.000000E400  0.000000E+00
3.31805E-04 1 0.000000E+00 - 000000E+00: 0.000000E+00 0.000000E+00
3.61968E-04 1 0.000000E+00 1.000000E+00i 0.000000E400  0.000000E+00 umbergomar
3.92133E-04 1 0.000000E+00 10.000000E+00i  0.000000E+00  0.000000E+00 5

v HEN

4.22297E-04 1 0.000000E+00 - 000000E+00: 0.000000E+00 0.000000E+00 Decimal SEPB[BTDT(S).
4.52461E-04 1 0.000000E+00 1.000000E+00i 0.000000E400  0.000000E+00 Exponent character(s): |Ee
4.82625E-04 1 0.000000E+00 10.000000E+00i  0.000000E+00  0.000000E+00
5.12789%E-04 1 0.000000E+00 - 000000E+00: 0.000000E+00 0.000000E+00 Thousands separators:
5.42954E-04 1 0.000000E+00 1.000000E+00i 0.000000E400  0.000000E+00 [1, . [ISpace
5.73118E-04 1 0.000000E+00 10.000000E+00i  0.000000E+00  0.000000E+00 !
6.03282E-04 1 0.000000E+00 - 000000E+00: 0.000000E+00 0.000000E+00 Relative location:
6.33046E-04 1 0.000000E+00 1.000000E+00i 0.000000E400  0.000000E+00 -
£.63610E-04 1 0.000000E+00 10.000000E+00i  0.000000E+00  0.000000E+00 1 1 lines,
6.93774E-04 1 0.000000E+00 - 000000E+00: 0.000000E+00 0.000000E+00
7.23938E-04 1 0.000000E+00 1.000000E+00i 0.000000E400  0.000000E+00 3 | columns v
7.54102E-04 1 0.000000E+00 10.000000E+00i  0.000000E+00  0.000000E+00
7.84266E-04 1 0.000000E+00 _000000E+00;  0.000000E400  0.000000E+00 Column separators
8.14430E-04 1 0.000000E+00 -000000E+00; 0.000000E+00 0.000000E+00
8.44594E-04 1 0.000000E+00 10.000000E+00i 0.000000E+00  0.000000E+00 [JTab []Space Whitespace
B.T74758E-04 1 0.000000E+00 - 000000E+00; 0.000000E+00 0.000000E+00 D D . D
9.04923E-04 1 0.000000E+00 -000000E+00; 0.000000E+00 0.000000E+00 B B I
9.35087E-04 1 0.000000E+00 10.000000E+00i 0.000000E+00  0.000000E+00 [ Other:
9.65251E-04 1 0.000000E+00 - 000000E+00; 0.000000E+00 0.000000E+00 e
9.95415E-04 1 0.000000E+00 -000000E+00; 0.000000E+00 0.000000E+00 . .
1.02556E-03 1 0.000000E+00 10.0000GOE+0G:  0.000000E+00  0.000000E+00 [ Maximum horizontal length
1.05574E-03 1 0.000000E+00 - 000000E+00; 0.000000E+00 0.000000E+00 v 0 = character(s)

Figure 18-132: History definition using Column Vector as entity type
11. If a user requires a limited number of components of the column, the Maximum Number
of Components check box can be used to define the required number.

12. Once the GenEx file is created, the LS-OPT histories can be defined using this file as
explained in Step 8.

18.9.4. Optimization Results
0 The optimization problem was solved using metamodel-based sequential optimization
with domain reduction technique.
The process took seven iterations (with five design points in each iteration) to converge.

At the optimum design, the total mass of selected parts was 0.465kg and the computed
intrusion distance was 549.29mm vs. 550mm predicted by the metamodel.
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19. Examples — Parameter
Ildentification

19.1. Material identification (elastoplastic material) (2 variables)

A methodology for deriving system or material parameters from experimental results, known as system or
parameter identification, is applied here using optimization. The example has the following features:

The Mean Square Error composite is used as curve matching metric.

The Crossplot history is used.

The Min-Max formulation is demonstrated.

Multiple test cases are employed.

O O O O O

The confidence intervals of the optimal parameters are reported.

19.1.1. Problem statement

Figure 19-1: Sample of elastoplastic material subjected to a controlled vertical displacement

The material parameters of a foam material must be determined from experimental results, namely the
resultant reaction force vs. displacement history of a cubic sample on a rigid base (see Figure 19-1). The
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problem is solved by minimizing the mean squared residual force (rcforc binary database) with the
material parameters Young's modulus E and Yield stress Y as the unknown optimization variables.

The “experimental” resultant forces vs. displacements are shown below. The results were generated from an
LS-DYNA run with the parameters (E =10°, Y =10°%). Samples are taken at times 2, 4, 6 and 8 ms for the
first load case, the test points for the second load case are taken within the linear range of force vs.
deformation:

Testl.txt

0.36168 10162
0.72562 12964
1.0903 14840
1.4538 17672

Test2.txt

0.02272 2047
0.03671 6997
0.04653 12215
0.05779 17010

The finite element models for the two cases are represented in the keyword files foaml.k and foam2.k
respectively.

19.1.2. Ordinate-based Curve Matching

The LS-OPT main GUI window is displayed in Figure 19-2.

The displacement and force histories are extracted from the simulation output using the NODOUT and
RCFORC interfaces, respectively. Those histories are used to construct a force vs. displacement
Crossplot for the two cases, Figure 19-3. The experimental curves used as target curves are read into
LS-OPT as File Histories, Figure 19-4. The mean squared residual error (MSE) between each
Crossplot and the corresponding test data is then computed. The two MSE values are simply added to
find the objective value. Although only four test points are given for each case, 10 points at constant
intervals are interpolated for use in the Mean Square Error composite, Figure 19-5 (Section 10.5.1):

2 2
B fp(x)—Gp _l p ep(x)
P p21 P S

1P
D p
P p=1 D D

where P = 10, s, = 17672 (Case 1), 17010 (Case 2) and W, = 1,p = 1,...,10. By default, s, assumes
the maximum absolute value of each curve respectively.
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Setup

2 parameters

Domain
reduction

i , i

Verification Termination criteria
1 design 5 iterations

f

Optimization
r 2 objectives |

L 0 constraints _]’

Finish

Composites

( Sampling Sampling J

L 2 vars, 5 d-opt designs
___F,/’ \,____

' S

Casel LS-IRA Case2
‘ 2 pars, 3 hists

2 pars, 3 hists

LE-DYNA

N
1
1]

Build Metamodels

3 definitions

Global Sensitivities
10000 points

0 linear surfaces

Parameter ldentification

fhome/katharina/LSTCloptQA/USERSMANUAL EXS/PARAMETER/MeanSqErmproject.|sopl

Figure 19-2: LS-OPT main GUI window

fm T Edithistory. R

Mame

Subcase

[Fnrce_us_Displ

| -

General expressions are allowed.

A crossplot will create the history F(z), given F(t) and z(t).

z(t)
[-Displ ~ ]
Flt)
[Furcel 3 ]

Mumber of points (blank for default)

L]

cancel | [ o |

Figure 19-3: Crossplot definition of force vs. displacement
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File Histories

Defined file histories
[Testl ]
Test2 x
Filename
Add new
[Testl.txt H Browse ]
Preview
-~
1.6E+04
x
1.4E+04
»
1.2E+04
0.5 1
oK

Figure 19-4: File History definition. This dialog is accessible from the Histories tab of the Stage dialog
or the Curve Matching composite dialog.

Curve Matching Composite

~Algorithm
@ Mean Square Error (difference in curve Y values) ‘

() Curwve Mapping (size of area between curves)

Target curve:

lTestl | VJ add new file history

Computed curve:

l Force_ws_Displ | v]

-Regression Points
() From target curve ‘

@ Fixed number (equidistant, interpolated) :

You can convert this composite to an expression for further fine-tuning.

Cancel l l QK

Figure 19-5: Definition of Mean Square Error composite
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19.1.3. Targeted composite formulation

In this formulation, the force history is evaluated at specific times. The deviations from the respective target
values calculated using the targeted composite formulation, so that the optimization problem for parameter
identification becomes:

Minimize ¥7_,[f;(x) — F],

where f ; are the force values evaluated from the simulation runs and F; the respective target values.

As a method of second choice, this method presently requires a more laborious input preparation than the
MSE approach. The force is evaluated using the RCFORC interface. This history is evaluated at the points
where target values are available using the EXPRESSION interface, Figure 19-6. The definition of the
targeted composite is displayed in Figure 19-7.

[oPT] Stage Casel E]
Setup | Parameters Histories | Responses | File Operations

Response definitions Add new

x Generic B

USERDEFINED

Fz_1 * | | GENEX
EXPRESSION: Forcel(D.004)

EXPRESSION
F3_1 * | | FUNCTION 3
EXPRESSION: Forcel(0.006)

INJURY
F4_l1 * | | MATRIX_EXPRESSION
EXPRESSION: Forcel(D.008)

LS-DYNA
u Edit response &= —
Name Subcase Multipiler Offset
F1.1 | [

] |Not metamodel-linked

Expression

[ForceltO.DDE) l

Figure 19-6: Evaluation of simulation curves at target t values
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Name for composite Composite function type
MSE || mse 2
Composite components Add new
Entity Multiplier Divisor Target Responses
, . 7 . 7 [| | Variables
xF1_1 | 1(default)|| 1 (default)|| 10000 | Mod
r | P | P ' Yield
xF2_1 | 1(default)|| 1 (default)|| 13000/ |
xF3_1 | 1defaulb|| 1 (default)|| 15000
xF4_1 | 1(defauln)|[ 1 (default)|| 17000/
xFl 2 | 1 tdefault)] | 1 tdefault)] | CI|
(]
| 1 | E|
| Cancel | [ oK l

Figure 19-7: Definition of equality constraints using the Standard Composite type MSE.

19.1.4. Results

The results for both methods are compared below.

19.1.5. Mean Squared Error (MSE) formulation

Figure 19-8 visualizes the optimal parameter values (red line) and the respective subregion (blue lines) over
the iterations. Figure 19-9 displays the final optimal parameter values with respect to a normalized design
space with 95% confidence interval. The larger confidence interval as well as the slower convergence of
YMod can be explained by the insignificance of that parameter on the objective function, Figure 19-10.

Figure 19-11 displays the computed (red square) and predicted (black line) objective values over the
iterations. Both objectives decrease, the quality of the predictions improves and we get convergence for both
objectives.

Figure 19-12 visualizes the optimal force vs. displacement curves together with the target curves. The
simulation curves are colored by iteration. There is already a good fit after the second iteration.
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Optimization History
for "YMod"

2E+06

1.8E+06

1.6E+06

1.4E+06

1.2E+06

YMod

1E+06

8E+05

6E+05

Number of Iterations

Optimization History
for "Yield"

2E+03

1.8E+03

1.6E+03

1.4E+03

1.2E+03

Yield

1E+03

600

Number of Iterations

Figure 19-8: Optimization History for YMod and Yield

Variable Plot
Optimum Iteration 5
with 95% Confidence Interval in red

YMod 1
Yield i

0 02 04 0'6 o'
Design space scaled to [0,1]

Figure 19-9: Parameter values of optimal point in normalized design space with 95% confidence interval.

Global Sensitivities Plot

BMSEL

BMSE2

Yield (83.5% - 83.5%)

YMod (16.5% - 100.0%)

10 20 30 40 50 60 70 80

% Influence on Responses/Composites

Figure 19-10: Global Sensitivities for MSE1 and MSE2
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Optimization History
for "MSE1"

MSE1
o
[=)
(s3]

3 \ : ! p 3

Number of Iterations

Optimization History
for "MSE2"

0.04

0.035

0.03

0.025

0.02

MSE2

0.015

0.0

0.005

h -0 2 § ﬁ ?

Number of Iterations

Figure 19-11: Optimization history of MSE 1 and MSEZ2. Both objectives decrease, and the accuracy of
the metamodel improves over the iterations.
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Figure 19-12: Comparison of optimal force-displacement curves and test data. The simulation curves are
colored by iteration
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19.1.6. Targeted composite formulation

Figure 19-13 visualizes the optimal parameter values (red line) and the respective subregion (blue lines)
over the iterations. Figure 19-14 displays the final optimal parameter values with respect to a normalized
design space with 95% confidence interval. The larger confidence interval as well as the slower
convergence of YMod can be explained by the insignificance of that parameter on the objective function,
Figure 19-15.

Note that the optimum Young’s modulus differs slightly from the results obtained with the Mean Square
Error approach due to its relative insignificance in the optimization as depicted in the Global Sensitivities
Plot (Figure 19-15).

Figure 19-16 displays the computed (red square) and predicted (black line) objective values over the
iterations. The objective decreases, the quality of the predictions improves and the objective value
converges.
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Figure 19-13: Optimization History for YMod and Yield
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Figure 19-14: Parameter values of optimal point in normalized design space with 95% confidence
interval.
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Global Sensitivities Plot
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Figure 19-15: Global Sensitivities for all forces and MSE

Optimization History
for "MSE"

2E+08
1.75E+08 \
1.5E+08 \
1.25E+08
@ 1E+08 \
s \
7.5E+0F

SE+07 \\
2.5E+07

-0

Number of Iterations

Figure 19-16: Optimization history of MSE. The objectives decrease, and the accuracy of the metamodel
improves over the iterations.

19.2. System identification with hysteretic curves

19.2.1. Problem statement

The Bauschinger effect is significant for automotive sheet steels. The phenomenon is observed under cyclic
loading which results in a hysteretic stress-strain curve. The nature of the hysteretic curve complicates the
curve matching required to identify the material parameters and therefore an approach which is more
sophisticated than the ordinate-based matching is required. For this purpose, a Curve Mapping algorithm is
used.
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The following example consists of five load cases, each representing a different cyclic loading range as
illustrated in the stress-strain diagram in the figure below. The material is defined by 9 parameters.

19.2.2. Solution using Curve Mapping

- -

OFT Stage pct2

x]
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Figure 19-17: History definitions. Extract stress and strain using the LS-DYNA d3plot interface. Use the
Crossplot interface to generate the stress vs. strain curve
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Figure 19-18: Define a curve matching composite for each load case.
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Figure 19-19: Definition of the five objective components.

19.2.3. Results
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Figure 19-20: Optimization History of objective components for each of the five load cases as well as the

multi-objective
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Figure 19-20 displays the optimization history plots of all objective components, i.e. the curve mapping
composite of each load case, as well as the optimization history of the multi-objective. For all entities, the
values decrease rapidly, as the optimal values of the first iteration are alrady quite small.

Figure 19-21 displays the Global Sensitivities plot for the whole problem. The variable CB is by far the
most sensitive.
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Figure 19-21: Global Sensitivities plot of all objective components
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Figure 19-22: Comparison of optimal simulation curves of all iterations and target curves for all load
cases; simulation curves are colored by iteration (e.g. baseline in blue. The black crosses represent the
target values. The plot at bottom right shows the comparison of the final optimal simulation curves and
target curves for all load cases.

Figure 19-22 visualizes the optimal simulation curves for all iterations colored by the iteration together with
the target curves for all load cases. Already the optimal curves of the first iteration (turquoise) indicate a
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good fit. The plot at the bottom on the right shows all target curves (black crosses) and the final optimal
simulation curves for all load cases.
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20. Examples — Probabilistic
Analysis

20.1. Probabilistic Analysis
20.1.1. Overview

This example has the following features:
0 Probabilistic analysis
0 Monte Carlo analysis
0 Monte Carlo analysis using a metamodel
o Bifurcations analysis

20.1.2. Problem description

Figure 20-1: Tube impact

A symmetric short crush tube impacted by a moving wall as shown in the figure is considered. The design
criterion is the intrusion of the wall into the space initially occupied by the tube (alternatively, how much
the structure is shortened by the impact with the wall).
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Both the shell thickness and the yield strength of the structure are probabilistic. The shell thickness is
normally distributed around a value of 1.0 with a standard deviation of 5% while the yield strength is
normally distributed around a value scaled to 1.0 with 10% standard deviation.

The nominal design has an intrusion of 144.4 units. The intrusion is calculated based on the minimum z
displacement at node 486 (NodDisp response), which lies at the end of the tube. The probability of the
intrusion being greater than 150 units is computed. The best-known results are obtained using a Monte
Carlo analysis of 1500 runs. The problem is analyzed using a Monte-Carlo evaluation of 60 runs and a
quadratic response surface built using a 3 experimental design. The results from the different methods are
similar as can be seen in the following table.

Table 20-1: Comparison of results

Response Monte Carlo Monte Carlo Response Surface
1500 runs 60 runs 9 runs

Average Intrusion 141.3 141.8 141.4

Intrusion Standard Deviation 15.8 15.2 15.0

Probability of Intrusion > 150 0.32 0.33 0.29

Using the response surface, the derivatives of the intrusions with respect to the design variables are
computed as given in the following table.

Table 20-2: Derivatives of Intrusion from response surface

Variable Intrusion derivative
Shell Thickness 208
Yield Strength 107

The quadratic response surface also allows the investigation of the dependence of the response variation on
each design variable variation. The values of the intrusion standard deviation given in the following table
are computed considering the variable as the only source of variation in the structure (the variation of the
other design variables are set to zero).

Table 20-3: Standard Deviation of Intrusion

Source of variation Intrusion Standard Deviation
Shell Thickness 104
Yield Strength 10.7

The details of the analyses are given the following subsections.
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20.1.3. Direct Monte Carlo evaluation

The probabilistic variation is described by specifying statistical distributions, Figure 20-3, and assigning the
statistical distributions to noise variables, Figure 20-2. Monte Carlo samples generated based on the
distributions are evaluated through the solver to calculate response statistics such as the probability of

failure, standard deviation of the responses etc.

Cad Problem| global setup (=)

Parameter Setup | Stage Matrix | Sampling Matrix = Resources | Features

[[] Show advanced options

[Tl Enforce Variable Bounds

Type Name Starting Minimum Maximum Distribution Delete
[Noise | v | t |V|®
[Noise | > | |(none}

y Edit Delete

Add new distribution

Add...

Figure 20-2: Assigning statistical distributions to noise variables
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Preview Mean = 1; Std Dev = 0.05
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| Cancel |l [o]:4 l

Figure 20-3: Definition of statistical distributions. This dialog is accessible from the Setup dialog’s
Parameter Setup tab.
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Results

The results of the Monte Carlo analysis can be visualized using the Statistical Tools plot. The distributions
of the variables and responses can be displayed by selecting the plot type Histogram, Figure 20-4. The
mean value and the standard deviation of the selected entity are displayed in the plot title. The probability of
exceeding a bound of a constraint with 95% confidence interval can be displayed by selecting the plot type
Bounds, Figure 20-5. The bounds can be modified interactively in the viewer.
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60 samples: Mean = 1 Standard Deviation = 0.0489 60 samples: Mean = 1 Standard Deviation = 0.0981

10

Number of Samples
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Figure 20-4: Histogram plots of variables and responses. Mean values and standard deviations are
displayed in the titles.
Response: NodDisp

60 samples: Mean = -142 Standard Deviation = 15.3
95% confidence interval in red

P[x>-150]
P[x<-150]

0.2 04 0’6 08
Pix<-150] = 0.333 P[x>-150] = 0.667

Figure 20-5: Probability of NodDisp < -150 with 95% confidence intervals
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20.1.4. Monte Carlo using metamodel

The sampling scheme for metamodel-based Monte Carlo analysis differs from the direct MC method. In the
metamodel-based method, the sampling is not completely defined by the variable distributions; specific
variable bounds are required to construct the metamodels. If a variable’s type is defined as Noise, its bounds
are set to be two standard deviations away from the mean (default), Figure 20-6. This multiple can however
be changed by the user. In this particular example, noise variables are not used in order to have more control
over the variable bounds. If needed we can change the standard deviation of some variables without
affecting the variable bounds (the metamodel is computed scaled with respect to the upper and lower bounds
on the variables). If noise variables are used instead, then we would only define the design space size in
terms of number of standard deviations (default 2), which is same for all noise variables.

Ll Problem global setup =
Parameter Setup || Stage Matrix = Sampling Matrix | Resources = Features

] show advanced options

MNoise Variable Subregion Size (in Standard Deviations) | 2.0 (default)

[] Enforce Variable Bounds

Type Name Starting Minimum Maximum Distribution Delete
|Continuous o | 1” 09” 1'1] t V@
|C0ntinu0us A | 1” 08” 1'2] ¥ V@

Add...

Figure 20-6: Assigning statistical distributions to control variables

Results

Since the statistical results are evaluated on the metamodel, the accuracy of the response surface is of
interest. This can be displayed using the Accuracy plot, Figure 20-7. The error measures RMS, SPRESS
and R2 are displayed in the title.

The probabilistic evaluation results can be visualized using the Statistical Tools plot as described in Section
20.1.3, but now, 10000 points evaluated on the metamodel are used to calculate the statistics, Figure 20-8

and Figure 20-9.
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Metamodeling Accuracy
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Figure 20-7: Accuracy plot. Computed vs. predicted values; error measures are displayed in the title
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Figure 20-8: Histogram plots of variables and responses. Mean values and standard deviations are
displayed in the titles. All values are evaluated on the metamodel using 10000 points.
Response: NodDisp

10000 samples: Mean = -141 Standard Deviation = 15
95% confidence interval in red
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Plx<-150]

0.2 0.4 06 08
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Figure 20-9: Probability of NodDisp < -150 with 95% confidence intervals evaluated on the metamodel
using 10000 points.

20.1.5. Bifurcation analysis

A bifurcation analysis of the tube is conducted using the methods described in more detail in Section 25.6,
Section 16.8, and Section 20.2. The resulting buckling modes found from the analysis are as shown in
Figure 20-10. An extra half wave is formed for one of the designs.
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Figure 20-10 Tube Buckling

20.2. Bifurcation/Outlier Analysis
20.2.1. Overview

This example has the following features:
0 Monte Carlo analysis
o Identification of different buckling modes in the structure

20.2.2. Problem description

The plate as shown in Figure 20-11 has two buckling modes. Buckling in the positive z-direction occurs
with a probability of 80% while buckling in the negative z-direction occurs with a probability of 20%. The
statistical distribution of the tip nodes imperfection controls the probability of buckling in a particular mode.
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Buckling Mode I (80% probability)
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Buckling Mode II (20% probability)

Figure 20-11: Plate Buckling Example
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Figure 20-12: Definition of noise variable and distribution

A Latin hypercube experimental design is used for the Monte Carlo analysis, Figure 20-13. We analyze only
five points. Given that the probability of 20% of buckling in the negative z-direction and a Latin hypercube
experimental design, one run will buckle in the negative z-direction. The difference between the two modes
lies in the z-displacement. Therefore, z-displacement of the tip node is defined as a response, Figure 20-14.
The next section will demonstrate how to find out which run contains the different buckling mode.
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Figure 20-13: Definition of Latin Hypercube sampling with 5 points.
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Figure 20-14: Response Definition for bifurcation identification

20.2.4. Automatic identification of buckling modes

Different buckling modes can be identified automatically and displayed in LS-PREPOST using DynaStats
accessible from the main GUI control bar. To identify bifurcations, we display the FE jobs having the
extreme values for a selected d3plot component. For this structure, either the global extreme z-displacement
or the tip z-displacement can be considered in order to identify the bifurcation. Automated identification of
the bifurcation is done in the DynaStats GUI as shown in Figure 20-15 with the bifurcation as displayed
using LS-PREPOST as shown in Figure 20-16. Some background on bifurcation identification can be found
in Section 16.8. A more user-intensive procedure is described in the next section.
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Figure 20-15: Selecting the automated identification of a bifurcation. The user must (i) select to overlay
the FE models associated with the maximum and minimum residual and (ii) chose whether the residual
is the global residual or a residual at a specific node.
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Figure 20-16: LS-OPT identified and displayed this bifurcation automatically using the GUI setting
shown in the previous figure.

20.2.5. Manual identification of buckling modes

The different buckling modes are identified using DynaStats accessible from the main GUI control bar.

Next, LS-PREPOST can be launched to investigate the range (or standard deviation) of all the displacement
components. From the displacement resultant plot, amongst others, it is clear that the bifurcation is at the
tip. Looking at the other component plots, we find the z-displacement has a range of 5.3 and the x-
displacement a range of 4.5. The displacement magnitude computed using the maximum vector has a range
of 6.9.
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Figure 20-17: Range of z-component displacement
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Either the z-displacement or the maximum vector displacement magnitude can therefore be used to identify

the buckling modes. Fringe plots of the run index of the maximum and minimum displacement identifies the
runs as 2 and 4.
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Figure 20-18: Index of run with maximum z-component displacement
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Figure 20-19: Index of run with minimum z-component displacement

LS-OPT allows you to specify the job number to use for the LS-PREPOST plot. Plotting the results of run 2
and 4 we find the second buckling mode as:
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Figure 20-20: Second buckling mode

20.3. RBDO (Reliability-based design optimization) using FOSM (First
Order Second Moment Method)

This section presents an example of RBDO using the same vehicle problem defined in Section 18.2. The
constraint is modified by introducing a target failure probability. The reliability calculations within the
optimization loop are done using FOSM. The optimization problem is:

min  HIC(15ms)

(20-1)

s.t.  Probability[Intrusion >550mm]<10°°
This formulation implies that the design of the car is made safer such that it has a probability of failure less
than 10°®. In Section 18.2 the constraint was deterministic and the intrusion was required to be less than 550
mm. If the same constraint was used on the mean value of intrusion in the presence of uncertainties, that
could potentially lead to a large probability of failure. This is avoided by having a probabilistic constraint
with a small target probability of failure.

In this example the two variables (t_hood, t_bumbere [L1,5]) are assigned identical uniform distributions

with lower bound of -0.05 and upper bound of 0.05. The SRSM strategy is used to find the optimum. The
variable setup and constraint definition are shown in Figure 20-21.
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Figure 20-21: Probabilistic variable and constraint definition for RBDO

The results are t_hood =1.7, t bumper=5, a HIC value of 139, and an intrusion of 545 with standard
deviation 1.01.

20.4. Robust Parameter Design

This example has the following features:
0 Reliability based design optimization
o Standard deviation composite

Consider the two-bar truss problem as shown in Figure 20-22. Variable x1, the area, is a noise variable
described using a normal distribution with a mean of 2.0 and a standard deviation of 0.1. The half distance
between the legs, x2, is a control variable which will be adjusted to control the variance of the stress
response, Figure 20-24. The standard deviation of stress response is considered as the objective for the
robust design process, Figure 20-25.
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F

Figure 20-22: The two-bar truss problem. The problem has two variables: the thickness of the bars and
the leg widths as shown. The bar thicknesses are noise variables while the leg widths are adjusted
(control variables) to minimize the effect of the variation of the bar thicknesses. The maximum stress in
the structure is monitored.

The task metamodel-based RBDO/Robust Parameter Design is used, Figure 20-23. A response surface
considering the effect of variables and the interaction between variables is used to approximate the stress
response.
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Figure 20-23: Task Reliability based design optimization/Robust Parameter Design
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2. Metamodel optimization is done at each iteration
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Figure 20-25: Definition of Standard deviation composite

The actual stress response is shown in Figure 20-26. From the figure it can be seen that the *base’ variable
must be set to values of larger than 0.4 to obtain a minimum variation of the stress considering that the
design will then be in the flattest region of the response. A value of 0.5 is obtained in the optimization
results as shown in Figure 20-27. Also shown in the optimization results is the design history of the stress
standard deviation. Note that the standard deviation response stayed fairly insensitive to changes in the
control variable after iteration 4 and that the initial subregion size for the ‘base’ variable was too large,
resulting in initial increase in “base’ variable due to an inaccurate initial response surface.

LS-OPT Version 5.2

462



CHAPTER 20: Examples — Probabilistic Analysis

Figure 20-26: Contours of stress response. The flattest part of the response is when variable *base’ equals

0.5.
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Figure 20-27: Optimization histories. Design variable ‘base’ is shown on the left and the standard
deviation of the stress response is shown on the right.
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20.5. Tolerance optimization

20.5.1. Overview

This example has the following features:

0 Probabilistic analysis
Monte Carlo analysis using imported metamodels
Parametrization of probabilistic distribution parameters
Extraction of probabilistic analysis results as responses
Multilevel optimization
Multi-objective optimization

O O O O O O

Tolerance optimization
20.5.2. Problem description

A simplified vehicle model is subjected to impact in this example. The model is the same as defined in
Section 18.2. The goal is to optimize two thickness parameters for the parts hood and bumper, as well as
their associated tolerance values to attain a balance between the design objectives and the robustness of the
optimum.

The underlying deterministic optimization problem without considering the tolerances or the effect of
uncertainties is:

min  f, = Mass(x)

s.t.
g,(x) = Intrusion(x) —550 mm < 0 mm (20-2)
g,(x) =HIC(x)-250<0
1<x<5

where X is a vector of design variables, which are the thicknesses thood and tbumper of the selected parts.

The solution of the above optimization may not be robust, as very often the optimum design lies at the
constraint boundaries. Therefore, this issue is addressed by introducing tolerances into the problem. The
nominal design variables are controlled so that the associated tolerance can be increased, thus making the
design more robust with negligible probability/possibility of failure within the tolerance intervals.

This enhanced robustness may often come at the cost of other design objectives. Thus, the optimization
formulation may consist of multiple competing objectives. In this example, the optimization is performed
using two objectives. The nominal values of the mass are minimized while the relative tolerance is
maximized. The final solution is a Pareto optimal front with a trade-off between the nominal mass and the
relative tolerance.

For simplicity, both the thicknesses are assumed to have the same relative tolerance & or rel_tol. It
should be noted the optimization variables are the nominal values for the thickness, referred to as
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nominal _th and nominal _tb. Overall, the problem consists of three optimization variables -
nominal_th, nominal_tb ands . The tolerance-based optimization problem is:
max {5,—f1}
S.t.

Probability[Intrusion >500] <10®  forall x € [X(1-d),X(1+6)]
Probability[HIC > 250] <10 forall x e [X(1- ), X(1+ 5)]

(20-3)

In the above equation, & is the relative tolerance, f; represents the nominal mass of the design parts
(negative sign indicates minimization), and X is the nominal design. The constraints on intrusion and HIC
must be satisfied at all possible designs within the tolerance interval (i.e. Vv x € [X(1—5),X(1+6)]).

An important feature to note is that the probabilistic constraint functions require the calculation of
conditional probabilities with fixed nominal variable values x and §. This can be achieved using a simple
Monte Carlo analysis at that fixed nominal design, as fixing the tolerance § also fixes the distribution
bounds. This is demonstrated in Section 20.5.3.

Calculation of failure probability using Monte Carlo analysis is a subproblem of the tolerance optimization
problem in Equation 20-3. In Section 20.5.4, the tolerance optimization using a two-level setup is
demonstrated. Here the Monte Carlo analysis forms the inner level and is performed iteratively for different
combinations of nominal design and tolerance.

In both Section 20.5.3 and 20.5.4, Monte Carlo analysis is performed using pre-constructed global
metamodels to reduce the computational cost associated with the calculation of conditional probabilities.

20.5.3. Imported metamodel-based Monte Carlo analysis with a fixed tolerance

In this section the goal is to determine the feasibility of a particular design configuration, with nominal
values nominal_th = 1.9, nominal_tb = 3, within a 2% tolerance interval ( rel_tol =
0.02). The design has uncertainties associated with it and therefore is considered as feasible only if there
IS not even a single failure among all the possible configurations within the tolerance interval around the
nominal design. It is assumed that accurate global metamodels, previously constructed using LS-OPT, are
already available for the required responses and there is no need for additional finite element simulations.
The metamodel database is available as an XML file which, for the purpose of this example, is named
DesignFunctionsGlobal_PoleCrash. Additionally, both the thickness parameters are assumed to have
uniform distributions. Thus, the distributions of the two random variables thood and tbumper are as shown
in Figure 20-28.

1 i
inominal_th 1.9 imominal _tb 3

PDF

1.9(1-0.02) 1.9(1+0.02) 3(1-0.02) 3(1+0.02)
=1.862 =1.938 =294 =3.06

Figure 20-28: Distribution of thood and tbumper based on fixed nominal values and tolerance.
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The steps to set up a Monte Carlo analysis problem using an imported metamodel are:

1. Start a new LS-OPT project with metamodel-based Monte Carlo analysis as the task type.

2. Specify the file DesignFunctionsGlobal_PoleCrash containing the pre-constructed metamodels

using the Import Metamodel feature available in the Build Metamodels box. Once the file is parsed,
the design parameters, responses and the metamodel type are automatically identified in LS-OPT
(Figure 20-29).

Setup [ sampiing ImpMMmCrasn
9 paramaten | 2vam, 10 s filling designs

MetamodelEvaluator
4 resps
L Monte Cario Build Metamodels
{ Finsn H 4t mtacs
Sampling ImpMMCrash
[Samping Metamodel Stings| Actve Varbis| Fstres | Consans | Comparson <
Import:
[C] Analysis Results
[ Metamodel
xmi-file with jel informati
[DesignFunctionsGlobal PoleCrash | Browse
Verify:
[ Verfy Metamodel using Checkpoi
Restart:
[C] Do not augment sampling before iterati

Figure 20-29: Monte Carlo analysis using imported metamodels

3. The part thickness design variables (tbumper and thood) parsed through the imported metamodel

are defined as noise variables with uniform distributions (Figure 20-30 bottom). As the tolerance and
nominal values are fixed, the distributions are also fixed as shown in Figure 20-28.

However, if one has say 10 different design alternatives (combinations of nominal_tb,
nominal_th and rel_tol), there will be 10 different distributions for each noise variable.
Thus, for each of the 10 combinations of nominal _tb, nominal _th and rel tol, the user
will need to calculate the lower and upper bounds to define the distribution. This manual work can
be avoided by parametrizing the distribution so that the upper and lower bound are automatically
calculated in LS-OPT for any given set of the values of the nominal thickness parameters and the
relative tolerance. This is achieved using the “&” operator (Figure 20-31). The parameterization is
done with respect to dependents tb_1I, tb_u, th_1I and th_u, which are defined as functions of
manually added constants nominal_th, nominal_tb and rel_tol () with suitable values
(1.9, 3 and 0.02 respectively).
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Parametrization of the distributions is optional for a single Monte Carlo analysis, but it is essential
while performing an automated iterative tolerance optimization, as explained in Section 20.5.4 and

Section 25.10.

ParamauSetup[SugeM[ MWK] le

] 5how advanced options
Noise Variable Subregion Size (in Standard Deviations) 2.0 (default)
[CJEnforce Variable Bounds
Type Name Starting
Continuous ~ | tbumper

5/| (none)

Continuous v | thood

5| (none)

<|[<]

[ Parameter Setup | stage Miatri | Matrx | [ Features|

[]5how advanced options

[JEnforce Variable Bounds
Type MName Starting
Noise v | tbumper

Noise v | thood

Noise Variable Subregion Size (in Standard Deviations) 2.0 (default)

dist_tbumper

o
wt x
0
b 18

dist_thood

|«
=]

Variable definitions in the
metamodel import file

Modified variables and
their distributions based

on nominal th=109,
nominal tb =3 and relative
tolerance & = 0.02 (2%)

Figure 20-30: Fixed variable distributions based on constant mean and tolerance
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Figure 20-31: Parameterized variable distributions. As the distributions are parametrized, changing the
values of the constants automatically updates the distributions.

4. This example consists of two upper bound constraints on the intrusion and the HIC (Equation 20-2).
The intrusion needs to be defined as a composite Displ-Disp2, defined in terms of two
displacement responses Displ and Disp2 that are directly obtained from the metamodel import
file. The constraints for the Monte Carlo analysis are then defined (Figure 20-32). The number of
Monte Carlo samples used for calculations based on the imported metamodel are defined under
Algorithms (Figure 20-32).
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Figure 20-32: Monte Carlo analysis setup. The number of Monte Carlo samples used for calculations
based on the imported metamodel are defined as the Reliability Resolution.

5. The next step is to select the checkbox option Import Metamodel in the Task selection menu,
followed by a Normal Run to perform the Monte Carlo analysis (Figure 20-33). The analysis in this
example is done by calculating the responses at 10° Monte Carlo samples based on the imported

metamodels.
— | Normal Run | : v
L1 | Task selection J
Setup e Sampllng ImpMMCrash
] Zv-l.ﬂiinlilllnadulqm Main task
Metamodel-based
(O Optimization
Monle Carlo ? MetamodelE: O DOE study
‘ Finish H J . valuato( (®) Monte Carlo analysis
e (O RBDO/Robust Parameter Design
Direct simulation
— (O Optimization
Compusﬂes Build Metamodels O Monte Carlo analysis
1 definition 4 rbf surfaces

["] Global Sensitivities
[#] Import metamodel

Batch Mode Options
[[] Baseline Run Only

Figure 20-33: Monte Carlo analysis run with imported metamodel.

The frequency histograms for the two constraint functions are plotted in Figure 20-34, which shows that
with mean values nominal_tb = 3 and nominal_th = 1.9 there is no failure within the 2%

tolerance interval.

Remark:

An alternate way to perform the 5" step, instead of selecting the task selection checkbox option Import
Metamodel, is to import the metamodels in the DesignFunctionsGlobal_PoleCrash file through a repair
operation (Repair — Import Metamodels) before running the metamodel-based Monte Carlo analysis task
using a Normal Run. However, such an approach is a two-step process that requires manual intervention to
perform the Normal Run after importing the metamodels. This approach is therefore not feasible when the
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Monte Carlo analysis is a subproblem within a tolerance optimization, during which several Monte Carlo
analyses at different design configurations are performed (Section 20.5.4).

Constraint: Intrusion
1000000 samples: Mean = 542 Standard Deviation = 0.862

P[x>550]1=0
a ==Mean
E- 1E+005+ —Constraint UB
©
2 5E+004-
@
0
g 545 550
prad
Constraint: HIC
1000000 samples: Mean = 213 Standard Deviation = 4.64
P[x>250]=0
1.2E+005 - \loan
° —Constraint UB
o
o
£
©
W
‘s
]
L
£
3J
=

240

Figure 20-34: Frequency histogram of HIC and Intrusion with feasibility information. The green
background shows that the designs are feasible within the tolerance interval.

20.5.4. Tolerance optimization setup and results

In Section 20.5.3 the calculation of probability of failure using a fixed mean design and tolerance value,
under the assumption of uniform distribution, was presented. Having fixed the mean variable values and the
tolerance, the probability calculated was essentially a conditional probability for those particular values.
Going back to Equation 20-3, the same conditional probabilities are part of the constraint definition in the
tolerance optimization problem. Thus, the example presented in Section 20.5.3 is a subproblem of the
tolerance optimization formulation defined in Equation 20-3. In LS-OPT, such problems can be addressed
using a multilevel framework (Section 17.7). The setup and results for the tolerance optimization problem in
Equation 20-3 are presented in this section. The LS-OPT setup for tolerance optimization consists of two
levels. The basic two level tolerance optimization method is presented in Figure 20-35.
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OUTER LEVEL (Tolerance and Thickness Optimization):
Variables: Nominal design variables, Tolerance (x,8)

Maximize {Tolerance,-Mass}
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st. P, =0
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Figure 20-35: Two-level tolerance optimization methodology.

To reduce the cost of the two-level optimization, the inner level Monte Carlo analysis is performed using
imported pre-constructed global metamodels as shown in Section 20.5.3. For that purpose a database of
global metamodels needs to be created first. Thus, in summary, the complete solution method consists of
two steps:

o Step 1: Single iteration metamodel-based optimization to construct the global metamodels and to
obtain the deterministic optimum solution for Equation 20-2.

0 Step 2: Two-level tolerance optimization using imported metamodels. In terms of the LS-OPT
setup, the outer level is an optimization (direct optimization in this example) with the nominal
thickness values and the associated relative tolerance(s) as the optimization variables and the inner
level is an imported metamodel-based Monte Carlo analysis, which is carried out for each outer level
sample (x, §).

The detailed process with the setup steps of both the steps is explained below.
Step 1: Deterministic optimization

The first step consists of a deterministic single iteration metamodel-based optimization. The optimization
formulation is given in Equation 20-2. The mass of the selected design parts is minimized subject to
constraints on the intrusion and the HIC. The optimization variables are the thicknesses thood and
tbumper of selected parts. It is also possible to perform a DOE task instead of optimization, as the main
purpose of this step is to construct high fidelity metamodels of the design responses. These metamodels can
be later utilized in lieu of numerous finite element analyses required in step 2.

The design problem is set up in LS-OPT using the single iteration metamodel-based optimization task type.
Radial Basis Function networks is selected as the metamodel type with Space Filling as the sampling
technique. A high number of design samples (200) were defined so that the resulting global metamodels
have sufficient accuracy. The metamodel database DesignFunctions.1 generated by LS-OPT is saved as
DesignFunctionsGlobal_PoleCrash.
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Figure 20-36: LS-OPT setup for Step 1 (global approximation and deterministic optimization)

The metamodel surface plot for the objective function Mass is shown in Figure 20-37 along with the
feasible and infeasible domains. Two things are apparent from the plot, which re-emphasize why the effect
of uncertainties should be considered during design (such as in the form of tolerance):

0 The optimum tbumper=1, thood=1.734 with mass 0.4554 lies at the boundary of the
feasible domain. As a result, a slight perturbation may lead to failure.

0 There is a tiny feasible island in the space, which may simply be due to noise or a local
metamodeling inaccuracy. If the optimum were to lie in that island, such a design would not be
robust at all. Again, a slight perturbation may lead to failure.

—Intrusion < 5.50e+02
—HIC < 2.50e+02

tbumper = 1
thood = 1.734
Mass = 0.4554

Mass

thood
tbumper

51

Figure 20-37: Surface plot of Mass. The green region is feasible. The magenta cross represents the
optimum.
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Step 2: Optimization of thickness and relative tolerance using multilevel setup

While the goal of step 1 was mainly to provide the global approximation to reduce the cost of the overall
design process, Step 2 describes the actual tolerance optimization. In summary, the full setup has two levels:

6. Outer level:

Task type: Direct optimization (Equation 20-3) with population size 100 (direct optimization is used,
but metamodels can also be used) and 50 generations.

Control Variables: nominal_th, nominal_tb, rel tol (5)
Responses: Probability of failure, nominal values (LS-OPT type responses)
Objectives: Maximize rel_tol, Minimize nominal_mass

Constraints: Probabilities of failure = 0 (upper bound lower than the reliability resolution of inner
level)

Probability[Intrusion >500]<10®  forallx  [X(1—0),X(1+ )]
Probability[HIC > 250] <10°® forallx e [X(1- ), X(1+ 5)]

7. Inner level:

Task type: Metamodel-based Monte Carlo at each outer level sample using imported metamodels
from step 1 (Section 20.5.3).

Noise Variables: thood, tbumper (distributions of thood and tbumber defined as functions
of outer level variables)

Responses: HIC, displacements, mass etc. (Imported metamodel responses)
Constraints: HIC < 250, Intrusion < 550 mm

A detailed step by step procedure of setting up the two level problem in LS-OPT is demonstrated in the
following sections. First the inner level is set up, followed by the outer level. The inner level setup is an
input file for an LS-OPT type stage in the outer level (Figure 20-38).

8. Inner Level Setup (Monte Carlo Analysis):

Follow the same steps as in Section 20.5.3. The constraint definition needs to be modified however
in order to conform to the outer level problem in Equation 20-3.

o Follow the exact same steps as 1 and 2 in Section 20.5.3 to import the existing metamodels from
DesignFunctionsGlobal_PoleCrash.

0 In step3, make sure to parametrize the distributions as in Figure 20-31. However, the constants
nominal_tb, nominal_th and rel_tol (5) need to be changed to Transfer Variables.
They can be assigned any numeric value without any effect, as these values are eventually
overwritten by the outer level samples. This is explained further in Section 20.5.5.
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Parameter Setup | Stage Matrix | Sampling Matrix | Resources | Features |

[[J Show advanced options Edit Input Parameter References
Noise Variable gion Size (in Standard Deviati .'.2'0

[JEnforce Variable Bounds .

Type Name Starting

Noise v | thumper
Noise w | thood

Transfer Variable v | nominal_tb 3

Transfer Variable w | nominal_th 1.9

Transfer Variable v|rel_tol [ 0.02
Dependent v tbl Dd’lnilicn:|nomiml_tb‘(l-rd_tvﬂ
Dependent v/t |efinit inalto*(1ereltod
Dependent vl[tht Definition: [nominal th(1-relto) /'
 Dependent v|[thu Definition: [nominal_th*(1=rel_tol) /

R— Y

Type Uniform v

Lower aith |

Upper &itb_u

PrevieMean = 3; Std Dev = 0.03464

54— 104
0 0
oK Concel [ ok || Comca

Figure 20-39: Variable distributions parameterized using Transfer Variables. These variables are treated
as constants in the inner level Monte Carlo analysis, but may be optimization variable in an outer level
(Section 17.7). The values of the Transfer Variables are set as the outer level samples variable values.
Thus, for a specific outer level sample the Transfer Variables and their dependents (nominal variables
and variable distribution ranges) are fixed, and the failure probabilities calculated in the inner level
using these fixed distributions corresponds to that specific outer level sample.

0 Follow the same step 4 as in Section 20.5.3 to define the constraints..

Lo Optimization

Objectives | Constraints | Algorithms |

[] Constraint scaling (internal)

[ Show advanced options

Optimization constraints:

Response Lower Bound Upper Bound
* Intrusion Set lower bound * 350 .
x HIC Setlowerbound  x 20|

Figure 20-40: Inner level constraints for Monte Carlo Analysis.

o0 Follow the same step 5 as in Section 20.5.3 to select the checkbox option Import Metamodel in
the Task selection menu. However, instead of performing a Normal Run, simply save the inner
level setup by any name, say inner.Isopt.

9. Outer Level Setup (Optimization):
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o0 Startanew LS-OPT project with direct optimization as the task type.

0 Select LS-OPT as the solver package in the Stage box. Click on ‘use default command’ check
box, this will change the command to the full path of the LS-OPT executable. Using the browse
option, select the inner level LS-OPT project file inner.lsopt as the input file of the solver. Since
the file DesignFunctionsGlobal_PoleCrash is needed in the inner level for metamodel import,
this file should be transferred to the outer level run directories using the ‘Extra input files” option
with parsing checked off.

& *outer.lsopt - LS-OPT 5.2.0

Seve [Faamts et Rpore| i O]

General

Package Name¢[LS-OPT

e AUs pe_5_2_0_r101117_BETA x64_win\LSOPT_EXE\lsopt.exe
¥ Use default command
[JDo not add input file argument

Inp\nﬁelimehopt
copies ihner.kopt (0 inchides) to PROB_FALL/.runy| L500pt.np
and substitutes parameters
[ Extra input files
Filename Parse
| DesignFunctionsGlobal_PoleCrash I Browse |D
jadd

Figure 20-41: Outer level stage setup.

0 Once the inner level LS-OPT input file is parsed, the transfer variables of the inner level
nominal_tb, nominal_thand rel_tol are displayed in the parameter Setup box of the
outer level. Define these parameters as continuous variables and specify the upper and lower
bounds for each variable.

[ Parameter Setup | Stage Matrix | Sampling Matrix | R [ Festures|
[J Show advanced options
Type | Hame Starting Detected from InnerMC Isopt
‘Constant w | nominal_tb | 3|
‘Constant v‘- nominal_th | 1.9|
‘Constant v rel_tol | 0.02|
Parameter Setup StageMnrixl 5 i Ma!rl!] Resources l Features
[[] Show advanced options
T N Starti Mini Maxi Del. . . "
ype ame rting inimurn aximum ete Modified ble definition
Continuous w | nominal_tb 31 1 s|@&
Continuous v | nominal_th [ 1.9[ 1] s|@
Continuous v | rel_tol [ 0.021 0.0001 ﬂ

Figure 20-42: Outer level global variable setup.

0 The next step is to define the outer level responses. The statistics from the inner level Monte
Carlo analysis can be extracted using LS-OPT Statistics response definition. In this example, the
probability of failure of constraints of the inner level Monte Carlo analysis and the response
values of the nominal designs are extracted. Therefore, the probability of exceeding the upper
bounds and nominal values of intrusion and HIC are defined as outer level responses. It is
important to note that each outer level sample corresponds to the nominal design of the inner
level. The following figure shows the selection of the probability of failure of intrusion and
other outer level response definitions.
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or7]

Stage PROB_FAIL x

Setup l Parameters l Histaries | Responses | File Operations

Response definitions

C 5. P[Resp=UE] for constraint Intrusion

Pf_u_hic
LSOPT_STATISTICS: P[Resp=UB] for constraint HIC

Add new

Stage specific
LSOPT
LSOPT_STATISTICS

nominal_mass Editresponse
LSOPT_STATISTI] Name Subcase Multiplier ——
nominal_hic Pf_u_intru [ | = | |_n.-'-3 | |_n.-'a

LSOPT_STATISTI(

nominal_intrusion

LSOPT_STATISTIQ Component

[ Notmetamodel-linked [ Dump formula file

lteration

Global
b Variables
b Dependents
b Responses
4 Composite responses
Objectives
¥ Constraints

HIC

Figure 20-43: Outer level response definitions

(® Lastiteration
O lteration: |"I :|

~Statistical entity———————————————

() Number of samples

) Mean

() Standard deviation

() P[Resp=<LB]

(@) P[Resp=UB]

() Number of samples < LB

() Number of samples = LB

' Nominal value

0 These probabilistic responses are later selected as outer level design constraints with an upper
bound close to zero (less than the reliability resolution of the inner level Monte Carlo analysis),
as shown in the figure below. Maximizing the tolerance and minimizing the nominal mass are
the outer level design objectives. As the tolerance is maximized, the negative of tolerance
variable can be defined as a composite response (obj_tol) using the Expression composite. The
objective functions to be minimized are obj_tol and nominal_mass. The ‘Create Pareto Optimal

Front” option is selected.

Objectives | Constraints | Algorithms l

[ Constraint scaling (internal)

Show advanced options

Lower Bound Strict Upper Bound Strict

= 0.00000001

Set lower bound

Objectives | Constraints | Algorithms |
[[] Maximize the Objective Function (instead of minimize)
Create Pareto Optimal Front (Multi- Objective Mode)
Objective components:
Response/Composite Optimization constraints:
Response
x obj_tol
* Pf_u_intru
x nominal_mass
* Pf_u_hic

Set lower bound

* 0.00000001

Figure 20-44: Outer level design objectives and constraints.

o0 The final step is to specify the required population size and termination criteria for the GA based
multiobjective optimization. The overall setup of the outer level is shown in the figure below.
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E. Elv -I-. /“. ’v 1"_’ Cirect simulation based optimization &2 s

Setup | | sampling DIRECT
3 parameters J | 3 vars, 100 designs
. Termination criteria ;
Filkn 50 generations PROB—F'NL
T 3 pars, 5 resps
s =y
Optimization
[ 2objectives |
L 2consains i@
-
Composites
1 definition

Figure 20-45: LS-OPT setup for outer level multiobjective optimization.

Results

The optimization problem discussed above was solved with a population size of 100 samples for 50
generations. The multiobjective optimization resulted in a set of Pareto optimal designs with mass of the
design parts varying from 0.456 to 0.472 units with a maximum tolerance of 0.037. Therefore, a robust
design with 3.7% tolerance was obtained with a mass increase of approximately 0.016 units or 3.5%. Since
the Pareto optimal designs were based on metamodels, these points were subjected to LS-DYNA analysis to
obtain the simulation-based results. The Pareto front of the final generation based on both metamodels and
LS-DYNA analysis is shown in Figure 20-46. It is important to note that all the simulation-based optimal
designs are feasible, indicating good accuracy of the metamodel obtained in stepl.

Tradeoff Plot Scatter Plot
Objective "obj_tol" vs. Objective "nominal_mass" Composite "obj_tol” vs. Composite "neminal_mass"
(Results of Iteration 50) (Results of lteration 1)
x @ Feasible
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Figure 20-46: Metamodel-based (left) and simulation-based (right) tradeoff.

Figure 20-47 shows the tradeoff between the two objectives and the evolution of the Pareto front over 50
generations.
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Tradeoff Plot
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Figure 20-47: Tradeoff between mass and tolerance objectives for all iterations.

Table 20-4: Summary of the values of design variables, objectives and constraints for baseline,
deterministic optimum and tolerance-based optimum (at maximum tolerance).

Design point tbumper thood rel tol Mass HIC Intrusion Max
Constraint
Violation
Baseline 3 1 - 041 68.02 575.7 25.7
Deterministic optimum 1 1.75 - 0.456 222.6 549.4 0
Tolerance-based 2.63 195 0.1 0.6 229.8 541.6 0
optimum with

maximum tolerance

Remark:

Sometimes it may desirable to constrain the objective function (mass in this example) also in Equation 20-3.
This is however not always necessary. For details one may refer to [7].
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20.5.5. Comparison of RBDO and Tolerance Optimization

Tolerance optimization is similar to RBDO in several ways — both involve the minimization of one or more
objective functions subject to probabilistic constraints. The variable distributions in tolerance optimization
are truncated, and thus, tolerance optimization is similar to RBDO with truncated variable distributions. The
main difference lies in the fact that the tolerance value associated with a variable is also optimized here. As
a result, the range of the truncated distribution changes during tolerance optimization. This is in contrast to
RBDO, in which the range of the variable distribution is known a priori, and only the mean value changes
during optimization (also see Section 25.10).

As the variable distribution is fixed a priori in RBDO, calculation of the failure probability at any sample is
done using distributions having the same range around the sample. On the other hand, during tolerance
optimization the tolerance value is also a variable for the samples (outer level optimization variable), and
therefore, the range of variable distribution is different for each sample. For a particular outer level sample,
however, the tolerance value and the associated variable distribution range are fixed. Therefore, the failure
probability for that sample is calculated using Monte Carlo analysis in the inner level using that fixed
distribution.

The link between the outer and the inner level is established using Transfer Variables. Each outer level
sample defines the value of the nominal design parameters and the tolerances. The same variables are
defined as Transfer Variables in the inner level and treated as constants there. Thus, a specific outer level
sample replaces the Transfer Variable values in the inner level. The distributions in the inner level are
parametrized using the Transfer Variables, which have constant values in this level. Thus the distributions in
the inner level are also fixed for a specific outer level sample, which enables the calculation of the failure
probability for the outer level sample.

For a fixed value of tolerance (i.e. if the tolerance values are not optimized and instead feasibility within a
pre-determined interval is enforced), the tolerance optimization problem reduces to RBDO with truncated
variable distribution.

20.6. Using Stochastic Fields

This example demonstrates:
0 Using a stochastic field in a Monte Carlo analysis
0 Using a variable and a stochastic field in a Monte Carlo analysis
0 Replicating experiments using stochastic fields
0 Using fixed stochastic fields

The structure as shown in the Figure 20-48 is considered. This is the co