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PREFACE TO VERSION 2.1 

 

Version 2.1, started in spring of 2011, is a refinement of version 2. It contains the 

following major new features: 

 Dynamic load case weighting to obtain a topology relevant for all design load 

cases 

 A forging thickness geometry definition can be specified. This is similar to a two-

sided casting except that a forging thickness is introduced. 

Some minor features are: 

 Castings can have interior holes. 

 Pentahedral elements are supported. 

 The memory footprint is reduced more than a factor of 2 and an option is 

provided which can be set to reduce memory use by a further factor of 2. 

 *MAT_ELASTIC is supported for the design part. 

 The elements below a specific design variable value can be kept instead of 

deleting. 

 The SIMP algorithm can be switched on and off. 

 Coordinate systems are no longer limited to only DIR=X. 

 Restarting was improved not to redo all LS-TaSC computations. 

 

Many thanks are due to David Björkevik for the GUI design and implementation. 

Valuable feedback from customers and co-workers is also acknowledged. 

 

Willem Roux 

Livermore CA, 

November 2011 
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PREFACE TO VERSION 2 

 

Version 2 was started in spring of 2010 in response to industrial feedback regarding 

version 1. Version 2 is an important step forward containing the following major new 

features: 

 Shell structure support 

 Global constraints 

 Multiple parts 

 Symmetry definitions 

 Casting direction definitions 

Some minor features are: 

 Tetrahedral solid element and triangular shell element support 

 The speed of some algorithms was improved 

 Improved integration with LS-DYNA 

 

Many thanks are due to David Björkevik for the GUI design and implementation, Tushar 

Goel for the initial global constraints implementation, and Trent Eggleston for assistance 

with distributed computing. Valuable feedback from customers and co-workers is also 

acknowledged. 

 

Willem Roux 

Livermore CA, 

January 2011 
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PREFACE TO VERSION 1 

 

The development of the topology code started in the fall of 2007 in response to a request 

from a vehicle company research group. The alpha version was released in the spring of 

2009 to allow the vehicle company research groups to give feedback from an industrial 

perspective, while the beta version was released in November 2009.  

 

Most of the methodology developments in version 1.0 are due to Tushar Goel who 

worked on the engine implementation and algorithm design. Additionally, he also wrote 

the manual together with Willem Roux. 

 

The project architecture was the responsibilities of Willem Roux and David Björkevik. 

David had the lead role with regard to the graphical user interface aspects, while Willem 

had the senior role looking after the overall project and the project management. 

 

Thanks are also due to Nielen Stander from LSTC who helped to coordinate the efforts in 

the LS-OPT group and sourced the initial version of the technology, John Renaud and 

Neal Patel for discussion regarding topology optimization, Kishore Pydimarry and Ofir 

Shor for evaluating the alpha version, and Fabio Mantovani and Stefano Mazzalai for 

their help with LS-DYNA simulations. 

 

Willem Roux 

Livermore CA, 

January 2010 



 6 

TABLE OF CONTENTS 

 

Preface to Version 2.1 ......................................................................................................... 3 
Preface to Version 2 ............................................................................................................ 4 

Preface to Version 1 ............................................................................................................ 5 
Table of Contents ................................................................................................................ 6 
1. Introduction ............................................................................................................... 10 

1.1. Classification of Structural Optimization Techniques ...................................... 10 
1.1.1. Topology Optimization ............................................................................. 10 

1.1.2. Topometry Optimization ........................................................................... 10 
1.1.3. Size Optimization...................................................................................... 10 

1.1.4. Shape Optimization ................................................................................... 10 
1.2. Brief Overview.................................................................................................. 10 

1.3. Topology Optimization Method in LS-TaSC ................................................... 11 
1.4. References ......................................................................................................... 12 

2. User’s Manual ........................................................................................................... 13 
2.1. Running the Program ........................................................................................ 13 
2.2. Design Goal ...................................................................................................... 13 

2.3. Problem Definition............................................................................................ 13 
2.4. The Design Parts ............................................................................................... 13 

2.4.1. Elementwise Material Density and Element Deletion for Solids ............. 14 
2.4.2. Design of Shells ........................................................................................ 14 

2.4.3. Element types ............................................................................................ 14 
2.4.4. Material data ............................................................................................. 14 

2.5. Geometry and manufacturing definitions ......................................................... 15 
2.6. Design Variables ............................................................................................... 16 

2.6.1. Mapping Elements to the Design Variables.............................................. 16 

2.6.2. Filtering of Results .................................................................................... 16 
2.6.3. Initialization of the Design Variables ....................................................... 17 

2.7. LS-DYNA
® 

Specifics ........................................................................................ 17 
2.7.1. The Contact Definition ............................................................................. 17 

2.7.2. Part Definition ........................................................................................... 18 
2.7.3. Part Set Definition..................................................................................... 18 
2.7.4. Disallowed Keywords ............................................................................... 18 
2.7.5. LS-DYNA

®
 Simulation ............................................................................ 18 

2.8. Global Constraints ............................................................................................ 18 
2.9. Dynamic Load Cases Weighing........................................................................ 19 
2.10. Setting up the Problem ...................................................................................... 19 

2.10.1. The Information Panel .............................................................................. 19 
2.10.2. The Cases Panel ........................................................................................ 20 

2.10.3. The Constraints Panel ............................................................................... 21 
2.10.4. The Parts Panel ......................................................................................... 23 

2.10.5. Part Geometry ........................................................................................... 25 
2.10.6. The Completion Panel............................................................................... 26 



 7 

2.10.7. The Run Panel ........................................................................................... 27 
2.10.8. Setting advanced options .......................................................................... 27 

2.11. Viewing Results ................................................................................................ 29 
2.12. Databases and Files ........................................................................................... 31 

2.13. Opening and Saving Projects ............................................................................ 31 
2.14. Restart ............................................................................................................... 31 
2.15. Script Commands .............................................................................................. 32 

3. Example Problems .................................................................................................... 33 
3.1. Fixed Beam with Central Load ......................................................................... 33 

3.1.1. Problem Description ................................................................................. 33 
3.1.2. Input .......................................................................................................... 33 

3.1.3. Output ....................................................................................................... 34 
a) Convergence History .................................................................................... 34 
b) Density Contours .......................................................................................... 34 

3.2. Beam using geometry definitions ..................................................................... 35 

3.2.1. Input .......................................................................................................... 36 
3.2.2. Output ....................................................................................................... 36 

a) Extrusion and Casting ................................................................................... 36 
b) Extrusion and two-sided casting ................................................................... 36 

3.3. Force-Displacement Constraints ....................................................................... 37 

3.3.1. Problem Definition.................................................................................... 37 
3.3.2. Input .......................................................................................................... 37 

3.3.3. Output ....................................................................................................... 38 
a) Convergence History .................................................................................... 38 

b) Density Contours .......................................................................................... 39 
3.4. Linear Static Loading ........................................................................................ 39 

3.4.1. Problem Definition.................................................................................... 39 
3.4.2. Input .......................................................................................................... 40 
3.4.3. Output ....................................................................................................... 40 

a) Convergence History .................................................................................... 40 
b) Density Contours .......................................................................................... 40 

3.5. Shell Example ................................................................................................... 41 
3.5.1. Problem Definition.................................................................................... 42 

3.5.2. Input .......................................................................................................... 42 
3.5.3. Output ....................................................................................................... 42 

a) Convergence History .................................................................................... 42 
b) Final Shell Thicknesses................................................................................. 43 

3.6. Multiple Load Cases ......................................................................................... 43 
3.6.1. Problem Definition.................................................................................... 43 
3.6.2. Input .......................................................................................................... 44 

3.6.3. Results with constant weights ................................................................... 44 
3.6.4. Results with dynamic weighing ................................................................ 45 

4. Troubleshooting ........................................................................................................ 48 
4.1. Executable failing or no output ......................................................................... 48 

4.2. Design Part ........................................................................................................ 48 
4.3. Extrusion Set ..................................................................................................... 48 



 8 

4.4. Negative Volumes ............................................................................................. 48 
4.5. The LS-DYNA analysis fails if a smaller mass fraction is requested............... 48 
4.6. Convergence ..................................................................................................... 49 
4.7. LS-PREPOST ................................................................................................... 49 

4.8. Casting definitions ............................................................................................ 49 
4.9. Mysterious Error when/after calling LS-DYNA and/or Errors involving the 

LSOPT Environment Variable ...................................................................................... 49 
5. Appendix A: Scripting .............................................................................................. 50 

5.1. The scripting language ...................................................................................... 50 

5.2. Code Execution ................................................................................................. 50 
5.3. Data-structures .................................................................................................. 50 

5.3.1. lst_Root ..................................................................................................... 50 
5.3.2. lst_Method ................................................................................................ 51 
5.3.3. lst_Problem ............................................................................................... 51 
5.3.4. lst_Part ...................................................................................................... 52 

5.3.5. lst_Geometry ............................................................................................. 53 
5.3.6. lst_Case ..................................................................................................... 53 

5.3.7. lst_Constraint ............................................................................................ 54 
5.3.8. lst_DynWeight .......................................................................................... 55 
5.3.9. lst_JobInfo................................................................................................. 55 

5.4. Interactions with the Data Structures ................................................................ 56 
5.4.1. Definition .................................................................................................. 56 

5.4.2. Initialization .............................................................................................. 56 
a) Adding Case Data ......................................................................................... 56 

b) Accessing a Specific Case Structure ............................................................. 56 
c) Adding Constraints ....................................................................................... 57 

d) Adding dynamic weighing of the load cases ................................................ 57 
e) Adding Part Data........................................................................................... 58 
f) Accessing a Part ............................................................................................ 58 

g) Adding Geometry Data ................................................................................. 58 
h) Adding Job Distribution Data ....................................................................... 59 

i) Specifying Optimization Method Parameters ............................................... 60 
5.4.3. Execution Functions.................................................................................. 60 

a) Saving the Project Data ................................................................................. 60 
b) Reading the Project Data .............................................................................. 60 

c) Create Topology............................................................................................ 60 
d) Cleaning the directory ................................................................................... 60 

5.5. Accessing Results ............................................................................................. 61 
5.6. Example Script .................................................................................................. 62 

5.6.1. Retrieving a value from the project database ............................................ 62 

5.6.2. Restart for an additional iteration ............................................................. 62 
5.6.3. Creating a topology database .................................................................... 62 
5.6.4. Printing the content of the project database .............................................. 63 
5.6.5. Printing the content of the results database............................................... 65 

6. Appendix B: Theory ................................................................................................. 66 
6.1. Background ....................................................................................................... 66 



 9 

6.2. Implementation ................................................................................................. 66 
6.2.1. Definition .................................................................................................. 66 
6.2.2. Creating the variables ............................................................................... 67 
6.2.3. Filtering of results ..................................................................................... 67 

6.2.4. Material Parameterization ......................................................................... 67 
6.2.5. Design Objectives and Constraints ........................................................... 68 
6.2.6. Design Variable Initialization ................................................................... 68 
6.2.7. Simulation to Obtain Field Variables ....................................................... 68 
6.2.8. Constraint Handling .................................................................................. 69 

6.2.9. Dynamic Load Case Weighing ................................................................. 69 
6.2.10. State Update Rules .................................................................................... 69 

6.2.11. Stopping Criteria ....................................................................................... 70 
6.3. References ......................................................................................................... 71 

7. Appendix C: Using a queuing system ....................................................................... 72 
7.1. Relationship with the LS-OPT queuing system ................................................ 72 

7.2. Experience may be required.............................................................................. 72 
7.3. Introduction ....................................................................................................... 72 

7.4. Installation......................................................................................................... 72 
a) Installation for all remote machines running LS-DYNA .............................. 73 
b) Installation on the local machine .................................................................. 73 

7.5. Example ............................................................................................................ 73 
7.6. Mechanics of the queuing process .................................................................... 75 

7.7. Environment variables ...................................................................................... 76 
7.8. Troubleshooting ................................................................................................ 76 

7.9. User-defined queuing systems .......................................................................... 77 
7.10. Blackbox queueing system ............................................................................... 78 

7.11. Honda queuing system ...................................................................................... 80 
7.12. Microsoft Windows Compute Cluster server ................................................... 82 
7.13. Passing environment variables .......................................................................... 82 

7.13.1. Adding a new environment variable definition ........................................ 83 
7.13.2. Editing an existing environment variable definition ................................. 83 

7.13.3. Set by browsing......................................................................................... 83 
7.13.4. Edit browse list ......................................................................................... 85 

7.13.5. How the browse list is used by LS-TaSC ................................................. 86 
7.14. Enabling LSTCVM job proxy support ............................................................. 86 

7.14.1. LSTCVM options...................................................................................... 86 
7.14.2. LSTCVM server installation ..................................................................... 87 
7.14.3. Environment Variables ............................................................................. 87 

7.14.4. Configuring the  lstcvm_run client ..................................................... 87 

 

 



 10 

1. INTRODUCTION 

 

1.1. Classification of Structural Optimization Techniques 

Engineering optimization finds new designs that satisfy the system specifications at a 

minimal cost. Different types of structural optimization are: 

 

1.1.1. Topology Optimization  

This is a first-principle based approach to develop optimal designs. In this method, the 

user needs to provide the design domain, load and boundary conditions only. The optimal 

shape including the shape, size, and location of gaps in the domain is derived by the 

optimizer. While the most flexible method, topology optimization is indeed the most 

complex optimization method due to a multitude of reasons, like, large number of design 

variables, ill-posed nature of the problem, etc. Nevertheless, the benefits of using 

topology optimization include the possibility of finding new concept designs that have 

become feasible due to recent advances in technology, e.g., new materials. The LS-TaSC 

program can be used to this design work. 

 

1.1.2. Topometry Optimization 

Topometry optimization, a methodology closely related to topology optimization, 

changes the element properties on an element by element basis. With the LS-TaSC 

program, the shell thicknesses can be designed.  

 

1.1.3. Size Optimization 

In this mode, the designer has already finalized the configuration of the system but 

improvements are sought by changing the thickness of members of the structure on a part 

basis instead of an element by element basis as done for topometry optimization. There is 

usually no need to re-mesh the geometry. This class of optimization problems is the most 

amenable to meta-model based optimization. The LS-OPT® program should be used for 

this instead of this program. 

 

1.1.4. Shape Optimization 

Shape optimization further expands the scope of design domain by allowing changes in 

the geometry of the structure, for example the radius of a hole. While there is more 

freedom to explore the design space, the cost of optimization increases due to the 

possible need to mesh different candidate optimum designs.  Use the LS-OPT® program 

together with a preprocessor such as LS-PREPOST® instead of this program. 

 

1.2. Brief Overview 

Topology optimization in structures has been studied since the 1970s resulting in many 

books and numerous papers. The books by Rozvany [1] and Bendsøe and Sigmund [2] 

provide a very comprehensive and contemporary survey of optimization techniques used 
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in topology optimization. Most previous studies [3, 4] in topology optimization have 

focused on designing structures with static loading conditions but there is relatively little 

work on handling problems involving dynamic loads, like those observed in 

crashworthiness optimization [5]. The topology optimization in the context of 

crashworthiness is a very complex problem due to non-linear interactions among material 

non-linearities, geometry, and transient nature of boundary conditions.  

 

The most efficient topology optimization methods use sensitivity information (optimality 

criterion based methods, Rozvany [1], Bendsøe and Kikuchi [6]) to drive the search for 

an optimum. Sensitivity calculations are computationally inexpensive for linear-static 

problems but not for the problems that involve non-linearities. To use the same set of 

topology optimization methods, one needs to explicitly calculate sensitivities which is 

practically infeasible due to very high computational cost involved with simulations. 

Thus the theory used to solve the linear-static load cases, though quite mature, is not 

practical for the crashworthiness problems and alternate methods need to be explored. 

Previously different approaches have been adopted by authors to solve topology 

optimization with nonlinearities. Pedersen used the Method of Moving Asymptotes for 

crashworthiness optimization of two-dimension structures [7]. They used a quasi-static 

nonlinear FEA to account for geometric nonlinearities to handle large deformation and 

rotation of plastic beam elements. However, the method ignored the contact between 

elements arising due to nonlinear behavior of the structures. Soto [8, 9] presented a 

heuristics based method using a prescribed plastic strain or stress criterion to vary the 

density to achieve the desired stress or strains with a constraint on mass. However, this 

method could not be generalized to solid structures. Pedersen [10] used beam elements to 

handle topology in crashworthiness optimization. Forsberg and Nilsson [11] proposed 

two algorithms to get a uniform distribution of the internal energy density in the 

structure. In the first method, they deleted inefficient elements and in the second method 

they updated the thicknesses of the shell elements. This method also was limited to a 

small set of optimization problems. Shin et al. [12] proposed an equivalent static load 

method where they calculated an equivalent static load for the dynamic problem and then 

used the linear-static topology optimization techniques to find the optimal topology. The 

main difficulty in this method is the requirement to accurately compute the equivalent 

loads. 

 

1.3. Topology Optimization Method in LS-TaSC 

A heuristic topology optimization method developed at the University of Notre Dame, 

known as hybrid cellular automata [13], showed potential in handling topology 

optimization problem for crashworthiness problems. This method updates the density of 

elements based on the information from its neighbors. No gradient information was 

required. The simplicity and effectiveness of this method for both two- and three-

dimensional problems made it an attractive choice for our initial implementation. The 

methodology has however been enhanced using more established approaches as well; 

currently, amongst others, it gives mesh independent results. 
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This manual is divided into parts. The user’s manual describes how to do topology 

optimization using LS-TaSC. A few examples are provided to cover different options in 

the topology optimization program. The scripting section lists the command language 

used to interact with the topology optimization code together with some examples. Some 

common errors and tips on troubleshooting are provided in a separate chapter. In the 

theory section, the method for topology optimization is described. Setting up queuing 

systems is described in an appendix. 

 

1.4. References 

1. GIN Rozvany, Structural Design via Optimality Criteria, Kluwer, London, 1989. 

2. MP Bendsøe, O Sigmund, Topology Optimization: Theory, Methods and 

Applications, Springer-Verlag, Heidelberg, 2003. 

3. HA Eschenaur, N Olhoff, Topology Optimization of Continuum Structures: A 

Review, Applied Mechanics Review, 54(4), 331-390, 2001. 

4. GIN Rozvany, Topology Optimization in Structural Mechanics, Springer-Verlag, 

Vienna, 1997. 

5. CA Soto, Applications of Structural Topology Optimization in the Automotive 

Industry: Past, Present, and Future, in HA Mang, FG Rammerstorfer, J 

Eberhardsteiner (eds), Proceedings of the Fifth World Congress on 

Computational Mechanics, Vienna, 2002. 

6. MP Bendsoe, N Kikuchi, Generating Optimal Topologies in Optimal Design 

using a Homogenization Method, Computer Methods in Applied Mechanics and 

Engineering, 71(2), 197-224, 1988. 

7. CBW Pedersen, Topology Optimization Design of Crushed 2d-Frames for 

Desired Energy Absorption, Structural and Multidisciplinary Optimization, 25, 

368-282, 2003. 

8. CA Soto, Structural topology optimization: from minimizing compliance to 

maximizing energy absorption, International Journal of Vehicle Design, 25(1/2), 

142-163, 2001. 

9. CA Soto, Structural Topology Optimization for Crashworthiness, International 

Journal of Numerical Methods in Engineering, 9(3), 277-283, 2004. 

10. CBW Pedersen, Crashworthiness Design of Transient Frame Structures Using 

Topology Optimization, Computer Methods in Applied Mechanics in 

Engineering, 193, 653-678, 2004. 

11. J Forsberg, L Nilsson, Topology Optimization in Crashworthiness Design, 

Structural and Multidisciplinary Optimization, 33, 1-12, 2007. 

12. MK Shin, KJ Park, GJ Park, Optimization of Structures with Nonlinear Behavior 

Using Equivalent Loads”, Computer Methods in Applied Mechanics and 

Engineering, 196, 1154-1167, 2007. 

13. A Tovar, Bone Remodeling as a Hybrid Cellular Automaton Optimization 

Process, PhD Thesis, University of Notre Dame, 2004. 
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2. USER’S MANUAL 

Topology optimization consists of describing the topology design problem together with 

the solution methodology, the scheduling the automated design, and the evaluation of the 

results. 

 

2.1. Running the Program 

The LS-TaSC GUI is launched from the command prompt by running the executable 

(lstasc). If a project already exists, then the project database name (*.lstasc) can be 

supplied in two ways:  

1. With the execution command  
$ lstasc myProject.lstasc 

2. The file open dialogue, available from the File pulldown menu 

 

2.2. Design Goal 

The goal of topology optimization is to find the shape of a structure with the best use of 

the material. For dynamic problems like crashworthiness simulations, this is achieved by 

designing for a uniform internal energy density in the structure while keeping the mass 

constrained. 

 

2.3. Problem Definition 

The topology design problem is defined by (i) the allowable geometric domain, (ii) how 

the part will be used, and (iii) properties of the part such as manufacturing constraints. 

Additionally, you have to specify methodology requirements such as termination criteria 

and management of the LS-DYNA
®
 evaluations. In the GUI, provide this information 

using the following headings: 

 Cases These store the load case data such as, the LS-DYNA
®
 input deck and 

executable to use. The Cases data therefore contain the information on how to 

simulate the use of the part. 

 Parts The properties of the parts such as the part ID, mass reduction, and 

geometric definitions are given here. 

 Constraints This optional information prescribes the stiffness or compliance of 

the whole structure. 

 Completion These are methodology data such as the convergence criterions. 

 

2.4. The Design Parts 

The design domain is specified by selecting parts – the optimum parts computed will be 

inside the boundaries delimited by these parts. The part must be defined using *PART, 

not *PART_OPTION. The parts may contain holes: a structured mesh is accordingly not 

required. 
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2.4.1. Elementwise Material Density and Element Deletion for Solids 

The shape of a solid part is described by the subset of the initial elements used. The shape 

of a solid element is controlled by changing the amount of material in the element. This is 

achieved by assigning a design variable to the density of each element. The material is 

parameterized using a so-called density approach. In this approach, a design variable is 

directly linked to the individual material element such that each cell has its own material 

model. The design variable x, also known as relative density, varies from 0 to 1 where 0 

indicates void and 1 represents the full material. The material properties corresponding to 

the values of design variables are obtained using an appropriate interpolation model as 

described in the theoretical manual. The upper bound on the design variable is 1, while 

elements with design variable value less than a user-defined minimum value (0.05 for 

dynamic problems, and 0.001 for linear) are deleted to improve numerical stability. 

 

2.4.2. Design of Shells 

For shells the thickness are changed to achieve a uniform internal energy density in the 

part. The upper bound on the design variable is the original shell thickness, while 

elements with design thickness values less than a user-defined minimum value (0.05 for 

dynamic problems, and 0.001 for linear) are deleted to improve numerical stability. 

 

2.4.3. Element types 

Solid elements must be eight-noded solid elements, four-noded tetrahedral elements, or 

six-noded pentahedral elements. Elements shapes close to perfectly cubic are the best for 

the current neighbor selection algorithm. 

 

Shell elements may be four-noded shell elements or three-noded shell elements. The 

triangular elements must be specified as four-noded shell elements by specifying the last 

node twice. Elements shapes close to perfectly square or an equilateral triangle are the 

best for the current neighbor selection algorithm. 

 

Tetrahedral and triangular elements cannot be extruded. 

 

2.4.4. Material data 

The part must be modeled using *MAT_PIECEWISE_LINEAR_PLASTICITY or 

*MAT_ELASTIC. 

 

The load curve option (LCSS) is not supported; use the EPSi/ESi variables. Test the 

material using LS-DYNA before using it in LS-TaSC. For some 

*MAT_PIECEWISE_LINEAR_PLASTICITY material data the topology algorithm 

(SIMP algorithm) will create materials for which the slope of the stress-strain curve is 

higher in plastic regime than in the elastic one; in this case the errors and warnings should 

be consulted for feedback on how to modify the material stress-strain curve in the input 

deck. 
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2.5. Geometry and manufacturing definitions 

For each part several geometry and manufacturing definitions such as being an extrusion 

may be specified. 

 

The geometry definitions, as shown in Figure 2-1, are: 

 Symmetry For these the geometry is duplicated across a symmetry plane. The part 

as supplied by the user must be symmetric: an element must have a matching 

element on the other side of the symmetry plane. 

 Extrusion An element set is extruded in a certain direction. Allowable set 

definitions are *SET_SOLID, *SET_SOLID_LIST, *SET_SHELL, and 

*SET_SHELL_LIST. The part as supplied by the user must be an extrusion with 

every element in the elements set must have the same number of extruded 

elements. Only hexahedrons and quadrilateral elements can be extruded. 

 Casting Material is removed only from a given side of the structure. The structure 

therefore will have no internal holes. The casting constraints can be one sided or 

two-sided. This capability is available only for solids. 

 Forging This is similar to a two-sided casting, except that a minimum thickness of 

material will be preserved. The geometry definition will therefore not create holes 

through the structure. 

 
Figure 2-1: Geometry definitions 

 

Multiple geometry constraints can be specified for each part. Some combinations of 

geometry constraints may however not be possible. A maximum of three geometry 

definitions per part is possible. The symmetry planes must be orthogonal to each other, 

the extrusion direction must be on the symmetry planes, the casting direction must be on 

the symmetry planes, and the extrusion directions must be orthogonal to casting 

directions. Only one casting definition may be defined per part. 
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The symmetry and extrusion definitions are implemented by assigning multiple elements 

to a variable, while the casting definitions are implemented as inequality constraints 

requiring certain variables to be larger than others according to the cast direction. 

 

For a casting definition, the free faces are selected as shown in Figure 2-2. It can be seen 

that that free faces can occur in many places, for example, inside a hole, which cannot be 

created using a casting manufacturing process. In version 2.1 onward the algorithm will 

ignore the internal cavities in the selection of the free surface. This is to allow an analyst 

to have cavities introduced say by drilling into a cast part. All of the material shown can 

be considered to be defined using a single *PART definition, from which it can be noted 

that the object to the right is considered for design even though it is in the ‘shadow’ of the 

object to the left. An analyst can enforce a complex behavior by breaking the part up in 

smaller parts and applying the casting definition only where desired. 

 

 
Figure 2-2: The faces selected for design in a casting definition are all the faces facing the material 

removal direction. The algorithm will not consider the faces shown in blue. 

 

2.6. Design Variables 

2.6.1. Mapping Elements to the Design Variables 

A design variable is assigned to every finite element in the design parts. For geometry 

constraints, the variables are defined only on a subset of elements.  

 

2.6.2. Filtering of Results 

Structured grids are not always possible for industrial applications, and the results should 

be mesh independent. A radius based strategy is therefore used to identify neighbors. In 

this strategy, a virtual sphere (of default or user-defined radius) is placed at the center of 

an element. All elements that are within this sphere are considered the neighbors of the 

corresponding element. The result at an element is computed scaled from its own value 

and of its neighbors. 
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For dynamic problems, it was observed that accounting for the history of evolution 

induces stability by reducing the element deletion rate. Hence, the field variable (internal 

energy density) of i
th

 cell at iteration t is updated by defining a weighted sum on the field 

variable of three previous iterations. 

 

2.6.3. Initialization of the Design Variables 

The design variables are initialized to satisfy the mass fraction. All variables in a part are 

assigned the same initial value. All associated field variables are also initialized to zero.  

 

2.7. LS-DYNA
® 

Specifics 

The portions of the FE model related to the design part are extensively edited by the 

optimization algorithm. In these segments of the FE model only specific versions of 

*PART, *SET, and *CONTACT keywords may be used as described in the relevant 

sections. Portions of the model not edited by the optimization algorithm are not subjected 

to this rule. 

 

The elements in the finite element model are modified by changing the material models, 

adding or deleting elements, at each iteration. The input deck is accordingly re-written for 

each iteration. The relevant field variables for all elements are obtained from the output 

to completely define the state of each cell. For multiple load case conditions, the state 

variable is based on the output from simulations of different load cases. 

 

2.7.1. The Contact Definition 

The contacts involving the design parts should be modeled using either 

*CONTACT_AUTOMATIC_SURFACE_TO_SURFACE[_ID] or 

*CONTACT_AUTOMATIC_SINGLE_SURFACE[_ID]  options. These contact options 

are general enough to accommodate the changes in the geometry of the design parts 

during the optimization to maintain valid contacts. It is also recommended to specify the 

contact options (e.g., friction coefficients) appropriately accounting for the changes in the 

geometry may result in significantly different material properties for some elements near 

the contacts. Too restrictive values may cause instabilities in the LS-DYNA
®
 simulations 

for intermediate geometries. 

 

Other contact types are not recognized by LS-TaSC. They can be used (i) if the contact 

does not involve the design part or (ii) if the contact is defined for a part set containing 

the design part, because LS-TaSC will rewrite part sets to reflect changes to the design 

part. 

 

For the combination of a *CONTACT_AUTOMATIC_SURFACE_TO_SURFACE 

definition, a solid design part, and if optional card A is not specified, the software will set 

the SOFT=2 to improve contact behavior. This can be overridden by specifying the 

optional card A. 
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2.7.2. Part Definition 

The part must be defined using *PART, not *PART_OPTION. 

 

2.7.3. Part Set Definition 

The part sets involving the design parts should be defined using *SET_PART or 

*SET_PART_LIST. Neither the generate nor the column options are supported. 

 

2.7.4. Disallowed Keywords 

The *INCLUDE keyword is not supported in the current version. 

 

2.7.5. LS-DYNA
®
 Simulation 

This modified input deck is analyzed using LS-DYNA
®
. One can take advantage of 

multiple processors using the MPP version of LS-DYNA
®

 by specifying the simulation 

options as part of the command. Queuing system can also be used as described in Section 

2.10.2. 

 

The internal densities of the cells are extracted at the end of the analysis for use in the 

design procedure. 

 

2.8. Global Constraints 

Global responses depend on the design of the whole structure. Two types of global 

responses are: 

 Stiffness. This is specified as displacement constraint. 

 Compliance. This is specified as a reaction force constraint. 

 

Satisfying the global constraints is actually a search for the mass of the structure. If the 

displacements are too large, then mass are added to the structure to increase the stiffness. 

If the reaction forces are too large, then mass is removed from the structure to reduce the 

force. 

 

Multiple global constraints may be specified. If the constraints are in conflict, then a 

trade-off is done, and a design is selected resulting in the minimum violation of any given 

constraint. 

 

Other (user-defined) responses can be defined by specifying a string. The only allowable 

commands are the D3PlotResponse and BinoutResponse commands as defined in the LS-

OPT manual.  Use LS-OPT to create these strings. 

 

Local effects such as stress concentrations are not handled by this algorithm. 
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2.9. Dynamic Load Cases Weighing 

A single load case can dominate the topology of the final design making the structure 

perform badly for the other load cases.  This is solved by assigning different weights to 

the load cases, but it is difficult to know good weighing values in advance. Dynamic 

weighing of the load cases is used to select the load case weights based on the responses 

of the structure. 

 

The dynamic weighing is done by first defining a desired relationship between load case 

responses and the algorithm will scale the load case weighing to achieve this relationship. 

Say we have constraint C1 from the first load case and constraint C2 from the second load 

case, then we write our desired behavior as offsetCkoffsetCk  22111  with C the 

constraint value, k a scale factor, and an offset added. 

 

The final weights found are not suitable for restarting.  They can be examined though for 

an indication of good values of the weights, but usually the final weights found using 

dynamic weighing are too large. 

 

2.10. Setting up the Problem 

The GUI consists of a number of panels. Complete the panels from left to right as 

described in the following subsections. 

 

2.10.1. The Information Panel 

The information contains only information such as the software version, the name of the 

current database file, and a description of the problem. 
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Figure 2-3: The information panel. 

 

 

 

2.10.2. The Cases Panel 

The cases panel contains all of the load cases to be analyzed using LS-DYNA
®
. See the 

following table and Figure 2-4 for more details. 

 

Cases data 

Name Each case is identified with a unique name e.g., TRUCK. The same 

name would be used to create a directory to store all simulation 

data. 
Execution 

Command 
The complete solver command or script (e.g., complete path of LS-

DYNA executable) is specified. 
Input File The LS-DYNA input deck path is provided. 
Weight The weight associated with a case is defined here. This enables the 

user to specify non-uniform importance while running multiple 

cases. 
Number of 

jobs 
This parameter indicates the number of processes to be run 

simultaneously. A value of zero indicates all processes would be 

run simultaneously. This parameter only makes sense if multiple 

cases must be evaluated. The program will allow as many processes 

as defined for the current case being evaluated. 
Queue system This parameter is used to indicate the queuing system. The options 

are: lsf, loadleveler, pbs, nqs, user, aqs, slurm, blackbox, msccp, 
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pbspro, Honda. By default, no queuing system would be used. See 

the appendix for a description of setting up the queuing systems. 

The system is the same as used in LS-OPT
®
, so a queuing system 

definition is the same. 

 

 
Figure 2-4: The cases panel. 

 

2.10.3. The Constraints Panel 

The constraint panel contains the global constraints on the structure. See the following 

table and Figure 2-4 for more details. 

 

Cases data 

Name Each constraint is identified with a unique name e.g., 

MAX_DISP.  
Case Each constraint is associated with a load case. 
Constraint Type One of NODOUT (stiffness),  RCFORC (compliance), or 

USERDEFINED (see text). 
Lower and upper 

bound 
The weight associated with a case is defined here. This enables 

the user to specify non-uniform importance while running 

multiple cases. 
ID This is the ID of the node in the FE model at which the results 
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must be collected. 
Select This parameter indicates which value over time must be 

selected. It can be the last value, the maximum value, the 

minimum value, or at a specific time. A time, or a time interval 

can also be specified. 
Filtering If filtering is desired, select the type of filter, frequency, and 

time units. LS-PREPOST can be used to investigate the effects 

of filtering. 

 

 
Figure 2-5: The constraints overview panel. 

 

 

The USERDEFINED responses require a string to be specified. The only allowable 

commands are the D3PlotResponse and BinoutResponse commands as defined in the LS-

OPT manual; for example, “D3PlotResponse -pids 101  -res_type stress  -cmp von_mises 

-select MAX -start_time 0.0000”.  Easiest is to use LS-OPT to create these strings. You 

also need to specify whether an increase of weight of the structure will increase or 

decrease this response. 
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Figure 2-6: The constraints creation panel. 

 

2.10.4. The Parts Panel 

The part definition panel contains information about the parts to be designed, such as the 

geometry and mass fraction. See the following table, Figure 2-7 and Figure 2-8 for more 

details. 

 

Part data 

Design Part ID The user needs to specify the design domain for topology 

optimization. To facilitate the identification of design 

domain, all elements in the design domain are put in a single 

part in the LS-DYNA input deck. The information about the 

design domain is then communicated through the 

corresponding part-id. 

Note: For multiple load cases, the user must ensure that the 

design domain mesh and the part-id remain the same in all 

input decks. 
Mass Fraction This parameter describes the fraction of the mass of the part 

to be retained. The rest will be removed. A part with an initial 

weight of 5, designed using a Mass Fraction of 0.3 will have 

a final weight of 1.5. 
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Neighbor Radius  All elements within a sphere of radius of this value are 

considered the neighbors of an element. The design variable 

at an element is updated using the result at the element 

averaged together with that of its neighbors. Smaller values of 

this parameter yield finer-grained structures. The default 

value depends on the average element size. 
Minimum variable 

fraction 

If the design variable value associated with and elements is 

too small then that element is deleted to preserve the stability 

of the model. An appropriate value (0.05 < x < 0.95) is 

supplied here. The default is 0.05 for non-linear problems and 

0.001 for linear problems. 
  

 

 

 
Figure 2-7: The parts panel. 
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Figure 2-8: The panel to create part and geometry. 

 

 

 

2.10.5. Part Geometry 

The geometric properties can be defined for every part. See the following table and 

Figure 2-9 for more details. 

 

Geometry data 

Name The geometric property can assigned a name or a default 

name can be used. 
Extrusion Set ID To define an extruded part, the user firstly creates a set of all 

solid elements that would be extruded (SET_SOLID). The id 

of this set is specified in the input deck to identify the 

extrusion set. 
Symmetry Plane Specify a symmetry plane to define symmetry. 
Cast direction A cast direction is required for a casting constraint. The 

direction can be negative. This is the direction in which the 

material will be removed. It is the opposite of the direction in 

which a casting die will be removed. 
Coordinate System 

ID 

The geometric property can be defined in a specific 

coordinate system or the default Cartesian system can be 

used. 
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Figure 2-9: Creating a geometry constraint. 

 

 

2.10.6. The Completion Panel 

The completion panel specifies how the optimization problem will be solved. See the 

following table and Figure 2-10 for more details. 

 

Completion data 

Number of design 

iterations 
This is the maximum number of iterations allowed. The 

default value is 30. 
Minimum mass 

redistribution 
The minimum mass redistribution is the termination criterion 

used to stop the search when the topology has evolved 

sufficiently. This value is compared with the 

Mass_Redistribution history variable displayed in the view 

panel. The default value is 0.002. 
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Figure 2-10: The completion panel. 

 

2.10.7. The Run Panel 

The control panel is used to submit the design problem. In addition, the LS-DYNA
® 

jobs 

can also be stopped, and old results deleted. Use this panel and the Viewer panel to 

monitor job execution. See Figure 2-12 for more details. 

 

2.10.8. Setting advanced options 

Advanced options can be set as shown in Figure 2-11. This is accessed through the File 

pulldown menu. 

 

 
Figure 2-11 Options panel 
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The available options are described in the following table. 

 

Option Description 

Delete elements Normally the program delete elements below a certain 

variable value, but the elements can be set to have a value of 

the minimum allowable. 

Invert SIMP use The normal SIMP use can be inverted such that it is not used 

for solids, but used for shells. 

Dump casting faces This advanced options dumps files showing the casting faces 

which can be viewed in LS-PrePost 

Store filters in memory This option can reduce memory use by a factor two, but 

extend the time required to extract results. The option is 

useful can cases where the elements have many neighbors 

such as tetrahedral models. 

Face direction tolerance For casting definitions this is used to decide whether two 

elements face in the same direction. It is the sine of the 

allowable angle. 

Design field This is the criteria used to decide whether an element is 

utilized. One of Internal Energy Density or Von Mises. 

 

 

 

 
Figure 2-12: The run panel. 
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2.11. Viewing Results 

The view can be used to monitor both optimization progress and optimization results. 

Both histories and plots in LS-PREPOST are possible. See Figure 2-13 and Figure 2-14 

for more details. 

 

Histories 

Case/Constraint This is the value of the Constraint of the named Case. 
Case/Weight This is the weighing applied to the named load Case. If 

dynamic load cases weighing is set then this value is 

changed to that effect. 
Mass_Redistribution This convergence criterion is the fraction of the total mass 

of the structure that has been redistributed per iteration. 
P123_ElFrac This is the element fraction for part 123. This value, only 

relevant for solids, is the fraction of elements in use (not 

deleted). At convergence this will be close to the mass 

fraction value (for solids). 
P123_MassFrac This is the mass fraction for part 123. This value is 

constant if no constraint bounds were set. If constraint 

bounds were set, then the part mass fraction will be 

adjusted to satisfy the constraints. 
  

 

For the histories note that: 

 Multiple histories can be plotted simultaneously by holding down the Control key. 

 The plot ranges can be set under the View pulldown menu. 

 The histories can be printed or saved to file using the Plot pulldown menu. 

 The history data can be exported and postprocessed using the scripting interface. 

 

 
Figure 2-13: The view panel with histories. 
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For the LS-PrePost plots you can plot either the design of a single iteration or a matrix 

plot showing the evolution of the design over several iterations. The available field 

variables are: 

Field 

Variable Fraction The value of the design variable for the element. 
Material 

utilization 

The extent to which the material in the element is used in 

the application. These are the values actually used in the 

redesign and consider multiple load cases and geometry 

definitions such symmetry. The value is high for parts of 

the structure heavily used and low for structural elements 

not useful in the application. This information is only 

available after the design has been analyzed using LS-

Dyna. 
Solid density  The material density in a solid element. This is related to 

the Variable Fraction field. 
Solid IED The Internal Energy Density for solid elements. This is 

related to the material utilization. 
Shell IED The Internal Energy Density for shell elements. This is 

related to the material utilization. 
Shell thickness The shell thicknesses.  This is related to the Variable 

Fraction field. 

 

 
Figure 2-14: Viewing the model evolution in LS-PREPOST. 
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2.12. Databases and Files 

The important files and directories are shown in the figure below. Four files are important 

to know about: 

 The project database 

 The project results in the lst.binout binary file 

 The optimal design in the case directory 

 The d3plot files in the run directory inside the case directory 

 

  
 

 

2.13. Opening and Saving Projects 

The standard File pulldown is provides the ability to open and save projects.  The name 

of the database can also be specified on the command line when staring the GUI as lstasc 

lst_project.lstasc. 

 

2.14. Restart 

If a larger number of LS-TaSC iterations are desired, then it can be restarted from the last 

iteration. Simply set the number of iterations higher and run the LS-TaSC job. The 

successfully completed iterations will not be rerun. 

 

If the LS-TaSC job has been interrupted, then it can be restarted using the same 

procedure. Simply rerun the LS-TaSC job in the same directory. 

 

Do not delete any files if a restart is required. Specifically the lst.binout file is required 

for the restart. 

Work Directory 

database (*.lstasc) 

lst_output.txt 

lst_errors.txt 

lst.binout 

CASE 1 

<CASE_1>_OptDesign<n>.k 

1.1 

d3plot 

log<n> 

2.1 

d3plot 

log<n> 

… 

CASE 2 

<CASE_2>_OptDesign<n>.k 



 32 

 

2.15. Script Commands 

The script commands issued to create the database can be viewed from the View 

pulldown menu. Use these commands as a template for scripts.
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3. EXAMPLE PROBLEMS 

 

The application of the topology code is demonstrated with the help of a few test examples 

below. The examples are supplied together with the software executables. 

 

3.1. Fixed Beam with Central Load 

This example demonstrates 

1. how to define a problem, 

2. how to add a case, 

3. how to optimize the topology for a non-extrusion example, and 

4. analysis of output. 

 

3.1.1. Problem Description 

This example simulates a beam that is fixed on both ends. A pole with assigned initial 

velocity of 10m/s hits the beam in the center. The design part is meshed using 5mm
3
 

brick elements. The symmetry of the problem is used to design only half-section of the 

beam. The geometry and loading conditions of the beam are shown in Figure 3-1. The 

material model used in this example is defined previously. 

 

SymmetrySymmetry

 
Figure 3-1: Geometry and loading condition of a single-load case example. 

 

3.1.2. Input 

The problem has a case named BEAM. The name of the DYNA input deck file is 

“Beam.dyn”. Part 101 is the design part. A maximum of 100 iterations are used to find 

the optimal topology. The desired mass fraction is 0.25.  

 

The project input data is saved to the file lst_project.lstasc as provided in the examples 

distribution. Additionally, scripts to recreate the database are also provided. The project 

database can be investigated using the scripts; use the script in example 5.6.4 to print the 

project data. The advanced user can conduct the simulations using the LS-DYNA MPP 

version and hence using a script named “submit_pbs” for the PBS queuing system. 



 34 

 

3.1.3. Output 

The output of the code is written in the file named lst_output.txt. The error and warning 

messages are echoed in lst_error and lst_Warning files respectively. The typical output in 

the lst_output.txt is: 

 
ls-dyna analysis time: 161s 

it   1:   total IED: 9.933e+03   Mf: 0.250 

ls-dyna analysis time: 177s 

it   2:  total IED: 9.495e+03   Mf: 0.250  dX: 0.074627 (target: 0.001) 

ls-dyna analysis time: 183s 

it   3:  total IED: 8.983e+03   Mf: 0.250  dX: 0.077542 (target: 0.001) 

ls-dyna analysis time: 187s 

it   4:  total IED: 9.252e+03   Mf: 0.250  dX: 0.072176 (target: 0.001) 

ls-dyna analysis time: 193s 

it   5:  total IED: 9.156e+03   Mf: 0.250  dX: 0.063345 (target: 0.001) 

ls-dyna analysis time: 193s 

a) Convergence History 

The convergence is quantified using the change in topology, characterized by the 

normalized density redistribution, and the total internal energy density as shown in Figure 

3-2.  

 

 
Figure 3-2: Convergence history of the mass redistribution. 

 

The simulation converged after 57 iterations. It was observed that initially there were 

significant changes in the topology (upto 30 iterations). Afterwards, small changes were 

made in the topology. There was a drop in the total internal energy density during the 

early phase of  the optimization but it increased during the later iterations. The final 

topology is visualized in LS-PREPOST. 

 

b) Density Contours 

The initial and final topologies are shown in Figure 3-3, and the topologies at different 

iterations during the evolution process are shown in Figure 3-4. 
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Figure 3-3: Initial and final density contours. 

 

The final topology evolved in a truss-like structure. Many holes were carved to satisfy the 

mass constraint while reducing the non-uniformity in the distribution of the internal 

energy density. The final structure was also found to have a reasonably homogenous 

distribution of the material as was desired.   

 
Figure 3-4: Evolution of the geometry shown using density contours. 

 

Topologies at different stages of the evolution process show that the main features of the 

structure were evolved by iteration 20 (row 2, column 1). Further iterations were 

necessary to bolster the structure by removing the material from relatively non-

contributing zones and redistributing it to the desirable sections such as a 0-1 type 

topology was evolved. 

 

3.2. Beam using geometry definitions 

This example demonstrates how to setup a problem with geometry definitions. 

 

The same fixed-beam with a central load example is analyzed with an extrusion and two 

casting definitions. The symmetry face is also defined as the extruded face. In the input 

deck file, the elements on the extrusion face were grouped in a solid set (*SET_SOLID).  

Two different casting conditions were applied in two separate design runs: (i) in the first 

run casting definition was applied in the Z direction, and (ii) in the second run a two-

sided casting definition was applied in the Z direction All other parameters were kept the 

same. 
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3.2.1. Input 

The main differences in this example compared to the non-extrusion example are:  

 An extrusion definition is provided. 

 A casting definition in Z direction is provided. 

 

The project input data is saved to the file Extr_Cast.lstasc and Extr_Cast2.lstasc  as 

provided in the examples distribution in the directory Beam_extr_cast. Additionally, 

scripts to recreate the database are also provided.  The project database can be 

investigated using the GUI or a script; use the script in example 5.6.4 to print the project 

data. 

 

 

3.2.2. Output 

a) Extrusion and Casting 

  
Figure 3-5: Evolution of the beam using extrusion and single-sided casting constraints  

 

Different phases in the evolution are depicted in Figure 3-5. One can see that a lot of 

material was removed as early. The final geometry evolved by considering the geometry 

definitions was significantly different than the case when no manufacturing constraints 

were considered. The C-section evolved makes intuitively sense. 

 

b) Extrusion and two-sided casting 

Different phases in the evolution are depicted in Figure 3-5. One can see that a lot of 

material was removed as early. The final geometry evolved by considering the geometry 
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definitions was significantly different than the case when no manufacturing constraints 

were considered. The I-section evolved makes intuitively sense. 

 

 
Figure 3-6: Evolution of the beam using extrusion and two-sided casting constraints. 

 

3.3. Force-Displacement Constraints 

The next example demonstrates a simulation with multiple constraints.  

3.3.1. Problem Definition 
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Figure 3-7: The geometry and loading conditions of the multiple constraints example. 

 

The geometry and loading conditions for the example are shown in Figure 3-7. This is a 

fixed-fixed beam with a central load. The design part was meshed with 10mm
3
 elements. 

 

3.3.2. Input 

The center load was assigned at the location of the pole hitting the beam. The desired 

mass fraction for this example was 0.25. A maximum of 100 iterations were allowed. The 

maximum displacement of the indenter was constrained at 34 units and the maximum y-

component of the interface force was limited at 1.45e6 units.  
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The project input data is saved to the file lst_project.lstasc as provided in the examples 

distribution. Additionally, scripts to recreate the database are also provided. The project 

database can be investigated using the scripts; use the script in example 5.6.4 to print the 

project data. The advanced user can conduct the simulations using the LS-DYNA MPP 

version and hence using a script named “submit_pbs” for the PBS queuing system. 

 

3.3.3. Output 

a) Convergence History 

  
 

 
Figure 3-8: Convergence history for the example with multiple constraints. 

 

The convergence history for the multiple-constraints example is shown in Figure 3-8. 

There were minimal changes in the geometry after 25 iterations and the simulation 

converged after 40 iterations. While there was largely monotonic reduction in the density 

redistribution, the constraints and IED were oscillatory in the behavior. The oscillatory 

behavior of the constraints was due to their conflicting nature where an increase in 

displacement required an increase in the mass fraction which resulted in higher forces. At 

optimum, a balance between the two quantities was obtained. It is important to note that 

the mass fraction for this example was not held constant. Instead, it was automatically 
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adjusted to satisfy the force and displacement constraints though the final mass fraction 

was fairly close to the desired value. 

 

b) Density Contours 

The evolution of the topology of the clamped beam with multiple constraints is shown in 

Figure 3-9. The final structure had many cavities and resembled an optimized truss-like 

structure. The main cavities in the structure were formulated by the 15
th

 iteration and the 

structure was fully developed in a largely 0-1 type structure by the 30
th

 iteration. Further 

redistribution of the material refined this structure between the 30
th

 and the 40
th

 iteration. 

It = 1 It = 15

It = 30

It = 38

It = 1 It = 15

It = 30

It = 38

 
Figure 3-9: Evolution of the geometry for multiple-constrained clamped beam. 

 

3.4. Linear Static Loading 

The next example demonstrates the topology optimization of a statically loaded structure.  

 

3.4.1. Problem Definition 
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Figure 3-10: The geometry and loading conditions of a statically loaded structure. 
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The geometry and loading conditions for the example are shown in Figure 3-23. The 

design part was meshed with 1.05mm
3
 elements such that there were approximately 

125,000 elements. 

 

3.4.2. Input 

In this example, a unit load is applied in the center of the structure. The structure was 

fixed on the bottom. The problem has a case named TopLoad. The simulations are carried 

out using the double precision SMP version of LS-DYNA (ls971_double). The name of 

the DYNA input deck file is “LinearStructure.dyn”. Part 102 is the design part. A 

maximum of 100 iterations are used to find the optimal topology and the desired mass 

fraction is 0.30.  

 

The project input data is saved to the file lst_project.lstasc as provided in the examples 

distribution. Additionally, scripts to recreate the database are also provided. The project 

database can be investigated using the scripts; use the script in example 5.6.4 to print the 

project data.  

 

3.4.3. Output 

a) Convergence History 

The convergence history for the statically loaded structure topology optimization 

example is shown in Figure 3-11. The simulation converged after 28 iterations, though 

only minor changes were noted after 20 iterations. As observed before, monotonic 

reduction in the change in topology was observed. The total internal energy of the 

structure also decreased with topology evolution.  

 

 
Figure 3-11: Convergence history for linear-static example. 

 

b) Density Contours 

The initial and final structures are shown in Figure 3-12. The final structure evolved in a 

column-like structure with wider supports on the faces. The shape of the structure also 

resembled the best-stress design.  
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Figure 3-12: Initial and final density contours. 

 

 
Figure 3-13: Evolution of the geometry for statically loaded structure. 

 

The evolution of the topology under the static loading conditions is shown in Figure 3-13. 

While the final form of the structure was largely evolved by 17
th

 iteration (first structure 

in the second row), the material was re-distributed to remove the low-density elements 

that were not contributing sufficiently to support the load and obtain a homogenous 

material distribution such that the simulation converged after 28 iterations.  

3.5. Shell Example 

This example shows how to work with shell structures. 
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3.5.1. Problem Definition 

 
Figure 3-14: The geometry and loading conditions of the shell example. The left side is built-in, while a 

downward load is applied to the right, back corner. 

 

The geometry and loading conditions for the example are shown in Figure 3-14. 

 

3.5.2. Input 

The project input data is saved to the file Shell.lstasc as provided in the examples 

distribution. Additionally, scripts to recreate the database are also provided. The project 

database can be investigated using the scripts; use the script in example 5.6.4 to print the 

project data. 

 

3.5.3. Output 

a) Convergence History 

 

 
Figure 3-15: Convergence history for the shell example. 
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The convergence history for the shell example is shown in Figure 3-15. The simulation 

converged after 14 iterations.  There was largely monotonic reduction in the density 

redistribution. 

 

b) Final Shell Thicknesses 

The final design is shown in Figure 3-16. The final structure had many cavities and 

resembled an optimized truss-like structure.  

 
Figure 3-16: Final geometry and thicknesses for the shell problem. 

 

 

3.6. Multiple Load Cases 

This example demonstrates 

1. multiple load cases, 

2. dynamic weighing of load cases, 

3. constraints, and a 

4. symmetry geometry definition. 

 

 

3.6.1. Problem Definition 
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Figure 3-17: The geometry and loading conditions of the multiple load case example. 
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The geometry and loading conditions for the example are shown in Figure 3-17. This is a 

fixed-fixed beam with three loads. The three load cases were identified according to the 

location of the pole hitting the beam. The design part was meshed with 10mm
3
 elements. 

 

3.6.2. Input 

The problem is symmetric, so symmetry is defined and only two load cases are therefore 

used. The desired mass fraction for this example is 0.3. A maximum of 50 iterations are 

allowed. All simulations are run simultaneously. 

 

The displacements for both load cases are constrained to be less than 90. The locations 

are the center of impact and the maximum value over time was selected. 

 

The problem is analyzed using with and without dynamic scaling of results. For the use 

of the dynamic scaling, the two selected maximum displacements are required to be the 

same. With dynamic scaling, the all load cases are assigned a unit weight. 

 

All of the details can be found in in the examples distribution in the MLC directory. 

 

3.6.3. Results with constant weights 

The results are as shown in Figure 3-18 to Figure 3-20. The resulting structure is much 

stronger in supporting the side loads than the center load with the resulting poor outcome 

for the constraint values as shown in Figure 3-18. 

 
Figure 3-18 Constraint convergence history for multiple-load case example with constant weights. 
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Figure 3-19 Various histories of the load case weight for multiple-load case example using with constant 

weights: mass redistribution, the fraction of elements kept, and the mass fraction. 

 

 

 
Figure 3-20 Evolution of the geometry for multiple-load case structure using constant weights. 

 

 

3.6.4. Results with dynamic weighing 

The convergence history for the multiple-load example is shown in Figure 3-21. The 

simulation converged after 46 iterations. Results are much improved by the dynamic 

weighing. The constraints are reasonably close to the bound as shown in Figure 3-21 due 

to the load case weighing computed also shown. 
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Figure 3-21: Constraint convergence history for multiple-load case example using dynamic weighing is 

shown on the left. Note the improvement with respect to not using dynamic weighing. The corresponding 

weight factors are shown on the right. 

 

 
Figure 3-22 Various histories of the load case weight for multiple-load case example using dynamic 

weighing: mass redistribution, the fraction of elements kept, and the mass fraction. 

 

The evolution of the topology under multiple loading conditions is shown in Figure 3-23. 

The final structure evolved in a tabular structure with the two cross-members as legs. The 

structure had more material in the center section due to the high importance assigned to 

the center weight. There were many cavities in the structure such that the final structure 

could be considered equivalent to a truss-like structure as one would expect.  
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Figure 3-23: Evolution of the geometry for multiple-load case structure using dynamic scaling of the 

weights. The design is improved with respect to not using dynamic weighing by strengthening the portion 

of the structure carrying the center load. 
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4. TROUBLESHOOTING 

 

This chapter lists some of the most common errors and suggested remedies. 

 

4.1. Executable failing or no output 

For the example problems: check that you changed the name of the LS-DYNA 

executable in the example problem to what is used on your computer. 

 

Provide the complete path for the solver command instead of using alias. You may also 

specify necessary DYNA options in the command, e.g., 
/home/Tushar/bin/ls971_single memory=100m 

 

4.2. Design Part 

The design part is not found: check that the DYNA input deck has the same part id for the 

design part as specified in the input file. In the case of the multiple load cases, the design 

domain must remain the same.  

 

4.3. Extrusion Set 

The extrusion set is not found: check that the set of elements on the extruded face are 

grouped under the *SET_SOLID option in the DYNA input deck. The ID of the set is 

same for all load cases as specified in the input file. 

 

Unable to find all the slaved elements: if the node numbering order is different for some 

elements are not the same, then the algorithm may fail. Using a different node number 

will, for example, cause face 1 to be the top face on one element and to be the left face on 

another element; the algorithm depends on this not happening. 

 

4.4. Negative Volumes 

While care has been taken to avoid running into negative volume errors, sometimes the 

simulation terminates due to negative volume errors.  

 

A user can take several actions to correct this error. 

1. Check the CONTACT cards. Note that the failed run probably has elements with soft 

material interface with elements with harder material; hence care must be exercised in 

defining master and slave penalty stiffness factors.  

2. Specify SOFT=2 option on the control card 

3. Increase minimum density fraction (default 0.05 for dynamic problems). 

 

4.5. The LS-DYNA analysis fails if a smaller mass fraction is requested 

Possibly the structure is not strong enough to support the load. 
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Inspect the d3plot results in the failed iteration to understand what happens in the LS-

DYNA analysis. 

 

Fixes are to reduce the load, increasing the mass fraction, changing the FE model to be 

more robust, using a finer mesh, modify your approach keeping in mind that you cannot 

get a solution from that starting mass fraction, or accepting that a design does not exist at 

that mass fraction. 

 

4.6. Convergence 

For some problems, the code does not converge; instead, oscillations set in. The user 

must look at the geometry to understand why oscillations are observed. Mostly, 

oscillations indicate that there is more than one possible optimal solution.  

 

4.7. LS-PREPOST 

You may need to install another version of LS-PREPOST into the LS-TaSC installation 

directory. Please follow the instructions on the LS-PREPOST web site. The name of the 

executable must be lsprepost. Do not use a symbolic link. You may need to investigate 

the latest version of LS-Prepost 2.4 and 3.1. 

 

4.8. Casting definitions 

Using the scripting interface, you can set a debug flag on the lst_Method structure, which 

will dump a definition of the faces to a file for display in LS-PREPOST. 

 

 

4.9. Mysterious Error when/after calling LS-DYNA and/or Errors 

involving the LSOPT Environment Variable 

Make sure the queuing is set correctly. Specifying the use of a queuing system when none 

is available may cause (i) mysterious errors or (ii) the LS-DYNA execution not to return 

after finishing. 

 

Make sure the LSOPT environment variable is not set. 
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5. APPENDIX A: SCRIPTING 

 

The scripting capability is provided to allow advanced users to customize the application.  

Normal interaction with the topology optimization code is with the graphical user 

interface, which issues the scripting commands driving the optimization process. 

 

A script is provided to the program in a file. The commands in a script can perform one 

of two functions: 

 Define the problem and methodology data 

 Call the topology design functions 

 

5.1. The scripting language 

The script commands use the C programming language syntax to manipulate data. 

Detailed knowledge of the language is not required to use this manual; the example 

scripts in this manual give enough information. A complete syntax reference is given in 

the LS-PREPOST customization manual titled “SCRIPTO A new tool to talk with LS-

PREPOST” available at http://www2.lstc.com/lspp/index.shtml. 

 

5.2. Code Execution 

The LS-TaSC code is executed from the command prompt by running the executable 

(lstasc_script). The input command file (script) can be supplied in two manners:  

1. With the execution command and a script file name 
$ lstasc_script lst_script.lss 

2. The code prompts for the input file, if no input was specified with the execution 

command 
$ lstasc_script 

Please input command file name: 

lst_inp 

Additionally, you can use the execution command and a database file name 

$ lstasc_script lst_project.lstasc 

 

5.3. Data-structures 

5.3.1. lst_Root  

All input data is encapsulated in a top-level data structure lst_Root. The input data is 

classified in two sub-categories: the problem definition that does not depend on the 

optimization method, and the optimization method parameters.  
struct lst_Root { 

      struct lst_Problem *Problem; 

      struct lst_Method  *Method; 

http://www2.lstc.com/lspp/index.shtml
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} 

 

5.3.2. lst_Method 

The parameters used for optimization method are specified in this data-structure.  
struct lst_Method { 

  Int   NumIter; 

  Float ConvTol;  

  Int   NumDiscreteLevels; 

  Int   DumpGeomDef; 

  Int   StoreFieldHist; 

  Int   DeleteShells; 

 

} 

 

NumIter: The maximum number of iterations allowed is specified.  

 

ConvTol: The convergence tolerance is the termination criterion used to stop the 

search when the topology has evolved sufficiently. If ConvTol  0.0, then this input 

would be ignored, and the default will be used. 

 

NumDiscreteLevels: Resolution or the number of steps in the gradation of the 

material of the part being design. The default value should suffice for almost all 

problems. 

 

DumpGeomDef: Set this to a non-zero value to obtain debugging information for 

casting constraints. Files will be created which can be viewed in LS-PREPOST showing 

the master face (free) elements, and the elements chained to the master elements. 

 

StoreFieldHist: Set this to a non-zero value to obtain the IED histories in the View 

panel. 

 

DeleteShells: Set this to a non-zero value (default) to delete shells elements with a 

thickness less than the minimum specified for the part. 

 

 

5.3.3. lst_Problem 

The details of the problem is given in this data structure. The definition is as follows: 
struct lst_Problem { 

  struct lst_Case *CaseList; 

  struct lst_Part * PartList; 

  Char * Description; 

  Int CaseWeighing; 

} 
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CaseList: The user provides the details of the simulation in this data structure. As the 

name suggests, the CaseList is the list of all load cases. For multiple load cases, the 

user would specify one case per load case. A complete description is given in a following 

section. 

 

PartList: The user provides the details of the parts in this data structure. As the name 

suggests, the PartList is the list of all parts. A complete description is given in the 

next section. 

 

Description: This optional string is used to describe the problem. 
 

CaseWeighing: Set to 1 for using the static weighing (the default), or set to 2 to use 

dynamic weighing. 

 

5.3.4. lst_Part 

The details of a part are: 
struct lst_Part { Int ID; 

                  Int Continuum; 

                  Float MassFraction; 

                  Float ProxTol; 

                  Float MinVarValue; 

                  struct lst_Geometry * GeometryList; 

                  struct lst_Part * Next; } 

 

ID: Each part is identified with a unique id as in the LS-DYNA input deck. 

The design domain for topology optimization is identified as all of the parts given.  

 

ProxTol: All elements within a radius of proximity tolerance would be considered as 

the neighbors of an element.  

 

MinVarValue: Elements with a density of less than this will be deleted.  

 

MassFractionBound: The material constraint for the topology optimization is 

necessary for the optimization. An appropriate value (0.05 < x < 0.95) is supplied here. 

 

Continuum: Whether the part is a solid or a shell. Solids have a value of 1, while 

shells have a value of 2. 

 

GeometryList:  These are the geometry and manufacturing constraint on a part. A 

complete description is given in the next section. 
 

Next:  The next part in this linked list. A value of NULL indicates that this is the final 

part. 
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5.3.5. lst_Geometry 

The details of a geometry definition are: 
struct lst_Geometry { Char *Name; 

                      Int Type; 

                      Int CID; 

                      Int Set; 

                      Int ExtructionDir; 

                      Int MirrorPlane; 

              Float ForgeThick; 

                      struct lst_Geometry * Next; };  

 

Name: Each geometry definition is identified with a unique name. The name is used to 

identify the geometry constraint in the output. 

 

Type: The type of extrusion. 2 is an extrusion, 3 is a symmetry constraint, 4 is a single 

sided casting constraint, 5 is a double sided casting constraint, and 6 is a forging. 

 

Set: To design an extruded part, the user firstly creates a set of all solid elements that 

would be extruded (SET_SOLID). The id of this set is specified in the input deck to 

identify the extrusion set. 

 

ExtrusionDir: X=1 Y=2 Z=3 

 

MirrorPlane: The mirror plane for a symmetry constraint XY=1 YZ =2 ZX = 3. 
 

ForgeThick: The thickness of a forging definition. 

 

Next:  The next geometry definition in this linked list. A value of NULL indicates that 

this is the final geometry definition. 

 

5.3.6. lst_Case 

The details of the simulation setup are given in this data structure. 
struct lst_Case { 

  Char                *Name; 

  Char                *SolverCommand; 

  Char                *InputFile; 

  Int                 AnalysisType; 

  Float              Weight; 

  struct lst_Constraints *ConstraintList; 

  struct lst_DynWeight   *DynWeight; 

  struct lst_JobInfo     *JobInfo; 

  struct lst_Case        *Next; 

} 
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Name: Each case is identified with a unique name e.g., TRUCK. The same name would 

be used to create a directory to store all simulation data. 

 

SolverCommand: The complete solver command or script (e.g., complete path of LS-

DYNA executable) is specified.   

 

InputFile: The LS-DYNA input deck path is provided.  

 

AnalysisType: The topology optimization code can be used to solve both static and 

dynamic problems. The user identifies the correct problem type by specifying the correct 

option: 

 

Type Option 

STATIC 1 

DYNAMIC 2 

 

Weight: The weight associated with a case is defined here. This enables the user to 

specify non-uniform importance while running multiple cases.  
 

ConstraintList: This data structure holds the information about different 

constraints associated with this case. See the following section for more details. 
 

JobInfo: The user specifies details of the queuing system and number of simultaneous 

processes in this data structure.   

Next:  The next case in this linked list. A value of NULL indicates that this is the final 

geometry case. 

 

Note that the word case is a reserved word in the C programming language. 

 

5.3.7. lst_Constraint 

The structural constraints for a load case are specified in the following data structure: 

 
struct lst_Constraint { 

    Char * Name; 

    Float UpperBound; 

    Float LowerBound; 

    Char * Command; 

    struct lst_Constraint *Next; 

} 

 

Name: The name of each constraint is a unique character identifier. 

 

UpperBound/LowerBound: The upper and lower bounds on a constraint are 

specified using these variables. If there is no upper bound, a value of 1.0e+30 must be 
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specified for UpperBound. Similarly, a value of -1.0e+30 should be used for 

LowerBound when there is no lower bound. 

 

Command: The definition of each constraint provides interface to LS-DYNA
®
 

databases. The data extraction from both binout and d3plot databases are supported.  

 

 

5.3.8. lst_DynWeight 

The dynamic weighing of a load case is specified in the following data structure: 

 
struct lst_DynWeight { 

    Char * ConstraintName; 

    Float Scale; 

    Float Offset; 

} 

 

ConstraintName: The name of the constraint. 

 

Scale: The scaling of the constraint value. 

 

Offset: The offset to be added to the constraint value. 

 

 

5.3.9. lst_JobInfo 

This data structure contains the LS-DYNA
®
 job distribution information. Create and set 

this data structure to change the default of running LS-DYNA
®
 locally as a single 

process. 
struct lst_JobInfo { 

    Int NumProc; 

    Int Queuer; 

    Char ** EnvVarList; 

} 

 

NumProc: This parameter indicates the number of processes to be run simultaneously. 

A value of zero indicates all processes would be run simultaneously. 

 

Queuer: This parameter is used to indicate the queuing system. Different options are 

tabulated below. 

 

Q-system Option Q-system Option Q-system Option 

QUEUE_NIL 0 NQS 4 BLACKBOX 8 
LSF 1 USER 5 MSCCP 9 
LOADLEVELER 2 AQS 6 PBSPRO 10 
PBS 3 SLURM 7 HONDA 11 
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By default, no queuing system would be used. 

 

EnvVarList: These parameters are passed to the remote machine by the queuing 

system. The lst_JobInfoAddEnvVar command is used to set the values. 

 

5.4. Interactions with the Data Structures 

To specify the input data, the user needs to communicate with the program data 

structures. These data structures are accessed by the user via a script that follows the 

syntax of C programming language. So the user needs to first define the data structure 

and then populate the input data.  

5.4.1. Definition  

Each script must include the following command to access necessary data-structures. 
lst_Root *root = lst_RootGet(); 

The root data structure encapsulates both problem and method data and therefore always 

needs to be accessed.  

 

5.4.2. Initialization 

During initialization, the user provides the necessary input data. 

a) Adding Case Data 

The solver information is added to the problem data using the lst_ProblemAddCase 

function, defined as follows: 
lst_ProblemAddCase( lst_Problem, Char *CaseName, Char 

*SolverCmd, Char * InputFileName", Int analysisType, 

Float Weight ); 

The last two arguments analysisType, and weight are optional. If not specified then the 

program will determine whether it is a non-linear analysis and set the weight to 1.0. 

 

 
 

 

b) Accessing a Specific Case Structure 

The cases are stored in a linked list in the lst_Problem structure. Also a pointer to the 

lst_Case structure is returned when it is created. Note that the word case is a 

reserved word in the C programming language. 

Example: Add two load cases 

1. This load case uses a queuing system for a nonlinear structural problem 
lst_ProblemAddCase( root->Problem, “LEFT_LOAD”, 

"submit_pbs", "MyInputL.k", 2, 0.5); 

 

2. Second load case uses a standalone DYNA program for a linear structural problem 
lst_ProblemAddCase( root->Problem, 

“RIGHT_LOAD”,"ls971_single", "MyInputR.k", 1, 0.9); 
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lst_Case * cse1 = root->Problem->CaseList; 

lst_Case * cse2 = root->Problem->CaseList->Next; 

lst_Case * cse4 = cse1->Next->Next->Next; 

lst_Case * cse  = lst_ProblemAddCase( root->Problem, 

“RIGHT_LOAD”,"ls971_single", "MyInputR.k", 2, 1); 

 

c) Adding Constraints 

A user can add constraints to each case using the following command:  
lst_CaseAddConstraint ( struct lst_Case* cse, Char * 

constraintName, Float UpperBound, Float LowerBound, 

Char *constraintCommand ); 

 

 
 

 

It is recommended to obtain the command definition using the GUI. The LS-OPT manual 

can also be consulted on how to create the string. 
 

d) Adding dynamic weighing of the load cases 

A user can add constraints to each case using the following command:  
struct * lst_DynWeight lst_CaseAddDynWeight ( struct 

lst_Case* cse, Char * constraintName, Float Scale, 

Float Offset ); 

 

Example: Adding two constraints to a case 

 

1. Adding a displacement constraint:  

    Maximum resultant displacement of part defined by id=101 should be less than 7.25 

units 
lst_CaseAddConstraint (root->Problem->CaseList, “gDisp”, 

7.25, -1.0e+30, “D3PlotResponse –pids 101 -res_type ndv –

cmp result_displacement –select MAX –start_time 0.00”); 

 

2. Adding a force constraint:  

    Maximum y-force on the master side of the interface defined by id=9 should be 

smaller than 2.0e5 units. 
lst_CaseAddConstraint (root->Problem->CaseList, “rForce”, 

2.0e5, -1.0e+30, “BinoutResponse –res_type RCForc –cmp 

y_force –id 9 –side MASTER –select MAX –start_time 

0.00”); 
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e) Adding Part Data 

A user can add parts to the problem using the following command:  
struct lst_Part * lst_ProblemAddPart( struct 

lst_Problem *prob, Int partId, Float massFracB, Double 

minx, Double proxTol ); 

with the items in the command as explained for the part structure. The last two arguments 

(the minimum variable value and the neighbor radius) are optional. 

 

 
 

f) Accessing a Part 

The parts are stored in a linked list in the lst_Problem structure. In addition, a pointer 

to the lst_Part structure is returned when it is created. 

 
lst_Part * part1 = root->Problem->PartList; 

lst_Part * part2 = root->Problem->PartList->Next; 

lst_Part * part4 = part1->Next->Next->Next; 

lst_Part * prt  = lst_ProblemAddPart( root->Problem, 

101, 0.3 ); 

 

g) Adding Geometry Data 

A user can add geometry constraints to the problem using the following commands:  
struct lst_Geometry * lst_PartAddGeometryExtrusion( 

struct lst_Part *, const char * name, long set, long 

CID, long dir ); 

struct lst_Geometry * 

lst_PartAddGeometryExtrusionConn( struct lst_Part *, 

const char * name, long set ); 

struct lst_Geometry * lst_PartAddGeometrySymmetryXY( 

struct lst_Part *, const char * name, long CID ); 

Example: Adding a part     
struct lst_Part * prt = lst_ProblemAddPart( root-

>Problem, 102, 0.3 ); 

Example: Adding dynamic weighing to a case 

 
root->Problem->CaseWeighing = 2; 

 

lst_CaseAddDynWeight ( aCase, “gDisp”, 1.0, 0.0 ); 
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struct lst_Geometry * lst_PartAddGeometrySymmetryYZ( 

struct lst_Part *, const char * name, long CID ); 

struct lst_Geometry * lst_PartAddGeometrySymmetryZX( 

struct lst_Part *, const char * name, long CID ); 

struct lst_Geometry * lst_PartAddGeometry1SideCasting( 

struct lst_Part *, const char * name, long dir, long 

CID ); 

struct lst_Geometry * lst_PartAddGeometry2SideCasting( 

struct lst_Part *, const char * name, long dir, long 

CID ); 

 

h) Adding Job Distribution Data 

Details about running the simulation job for each case can be added by creating a 

JobInfo structure and using lst_CaseSetJobInfo function. The syntax is as 

follows. 
lst_JobInfo * ji = lst_JobInfoNew(); 

ji->NumProc = 1; 

ji->Queuer = 3; 

lst_CaseSetJobInfo( aCase, ji ); 

 

For jobs submitted using a queuing system, the values of the environment variables can 

be set on the remote system, if required, using the lst_JobInfoAddEnvVar 

command. The command has the following syntax: 
lst_JobInfoAddEnvVar( struct JobInfo* ji, char * 

variableName, char * value ); 

lst_JobInfoDeleteEnvVar( struct JobInfo* ji, char * 

variableName ); 

 

 

Example: Adding simulation information to the two cases 

 

1. Adding JobInfo to the case LEFT_LOAD that uses PBS queuing system, 
lst_JobInfo * ji = lst_JobInfoNew(); 

ji->NumProc = 0; 

ji->Queuer = 3; 

lst_JobInfoAddEnvVar( ji, “LS_NUM_ABC”, “5”); 

     lst_CaseSetJobInfo( left_load_case, ji ); 

 

2. Adding JobInfo to the case RIGHT_LOAD that does not use any queuing system,  
lst_JobInfo * ji = lst_JobInfoNew(); 

ji->NumProc = 1; 

ji->Queuer = 0; 

     lst_CaseSetJobInfo( right_load_case, ji ); 
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i) Specifying Optimization Method Parameters 

Once the root data structure is obtained, the data in Method data structure can be directly 

manipulated. 

1. Specify the maximum number of iterations 

root->Method->NumIter  = Int; 

2. Provide convergence tolerance 

root->Method->ConvTol  = Float; 

3. To specify proximity tolerance use 

root->Method->ProxTol  = Float; 

 
 

5.4.3. Execution Functions 

a) Saving the Project Data 

The program save the project input data in form of a XML database. 
lst_RootWriteDb( root ); 

 

A default filename of “lst_project.lstasc” is used, but you may specify the filename. 
lst_RootWriteDb(root, "filename.xml" ); 

 

b) Reading the Project Data 

The project input data can be read from disk as: 
lst_Root *root = lst_RootReadDb(); 

 

A default filename of “lst_project.lstasc” is used, but you may also specify the filename. 
lst_Root *root = lst_RootReadDb( “filename.xml” ); 

 

c) Create Topology 

Following command computes the topology:  
lst_CreateTopology(root); 

 

The status of each simulation can optionally be reported every “Interval” seconds as 

shown in the following command:  
lst_CreateTopology(root, Interval); 

 

d) Cleaning the directory 

The files created in the directory can be removed: 
lst_CleanDir(“databaseFileName.lstasc”); 

 

The filename was specified in this case; if omitted, the default of “lst_project.lstasc” will 

be used. All of the files created for the analysis, except the database, will be removed. 
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5.5. Accessing Results 

These commands access the LS-TaSC database and the LS-DYNA® binout database 

using the LSDA (LSTC Data Archival) interface. Read this section together with the 

LSDA documentation available from the LSTC ftp site. 

 

 

Open a database 

Command Int handle lsda_open(Char *filename) 

Example Int fout = lsda_open( “lstasc.lsda” ); 

handle An Int used to indentify this file in further actions. 

filename A string giving the filename or path to the database.  

 

Close a database 

Command Int success lsda_close(Int handle) 

Example Int flag = lsda_close( fout ); 

Success An Int specify whether the command succeeded (>0).  

handle An Int identifying the lsda database. 

 

 

Change to a database directory 

Command Int success lsda_cd(Int handle, Char * dirName) 

Example Int flag = lsda_cd( fout, “Design#4” ); 

Success An Int specify whether the command succeeded (>0).  

handle An Int identifying the lsda database. 

dirName A String specifying the database directory. 

 

 

Get the current directory in a database 

Command Char *dirName lsda_getpwd(Int handle) 

Example Char *currDir = lsda_getpwd( fout ); 

dirName A String with the name of the current directory in the database. Do not free this 

string. 

handle An Int identifying the lsda database. 

 

 

Print the content of the current directory 

Command Int numItems lsda_ls(Int handle) 

Example Int n = lsda_ls( fout ); 

numItems An Int specifying the number of items (directories and data vectors) in this 

directory. 

handle An Int identifying the lsda database. 

 

 

Get Integer data 

Command Int * data lsda_getI4data(Int handle, Char * variableName, Int * numValues ) 

Example Int * results = lsda_getI4data( fout, “elementLabels”, &numV ); 

data A pointer to Int containing the data. You must free this pointer after using. 

handle An Int identifying the lsda database. 

variableName The name of the results. 
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numValues The length of the data vector (the number of items). 

 

 

Get Float data 

Command Float * data lsda_getR4data(Int handle, Char * variableName, Int * numValues ) 

Example Float * results = lsda_getR4data( fout, “xx-stress”, &numV ); 

data A pointer to Float containing the data. You must free this pointer after using. 

handle An Int identifying the lsda database. 

variableName The name of the results. 

numValues The length of the data vector (the number of items). 

 

 

5.6. Example Script 

5.6.1. Retrieving a value from the project database 

Retrieving a value from the database is simple: opened the project database and the value 

is available. 

 
lst_Root *root = lst_RootReadDb();  

print( "Existing number of iterations: ", root->Method->NumIter ); 

 

5.6.2. Restart for an additional iteration 

Requiring four lines of code, this is slightly more complex than the previous example. 

 
lst_Root *root = lst_RootReadDb();  

root->Method->NumIter = root->Method->NumIter + 1; 

lst_RootWriteDb( root ); 

lst_CreateTopology(root); 

 

5.6.3. Creating a topology database 

An example script is shown here. The example performs topology optimization of a 

single load case problem using extrusion mode. 
 

lst_Root *root = lst_RootGet(); 

 

lst_Case *cse = lst_ProblemAddCase( root->Problem, "TOPLOAD", 

"/data1/tushar/submit_pbs", "small_example.k", 2, 1 ); 

 

lst_JobInfo *ji = lst_JobInfoNew(); 

ji->NumProc = 0; 

ji->Queuer = 3; 

lst_CaseSetJobInfo( cse, ji ); 

 

lst_Part *prt = lst_ProblemAddPart( root->Problem, 103, 0.3 ); 

lst_PartAddGeometryExtrusionConn( prt, "Extr", 1 ); 

 

lst_RootWriteDb( root ); 
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5.6.4. Printing the content of the project database  

The following script prints the content of a project XML database. 

 
define: 

int Print_JobInfo( lst_JobInfo *jInfo, char * whitespace ) 

{ 

int i; 

 

 print( whitespace, "*** JobInfo ***\n" ); 

 print( whitespace, "\tNumProc\t\t", jInfo->NumProc, "\n" ); 

 print( whitespace, "\tQueuer\t\t", jInfo->Queuer, "\n" ); 

 if( jInfo->EnvVarList ) { 

     i = 0; 

     while( jInfo->EnvVarList[i] ) {  

         print( whitespace, "\tEnvVar\t\t", jInfo->EnvVarList[i], "\n" 

); 

         i = i+1; 

     } 

 } 

} 

 

define: 

int Print_Case( lst_Case *cse, char * whitespace ) 

{ 

struct lst_JobInfo *jInf; 

    print( whitespace, "*** Case ***\n" ); 

    print( whitespace, "\tName\t\t\"", cse->Name, "\"\n" ); 

    print( whitespace, "\tSolverCommand\t\"", cse->SolverCommand, 

"\"\n" ); 

    print( whitespace, "\tInputFile\t\"", cse->InputFile, "\"\n" ); 

    print( whitespace, "\tWeight\t\t", cse->Weight, "\n" ); 

    print( whitespace, "\tAnalysisType\t", cse->AnalysisType, "\n" ); 

 

    jInf = cse->JobInfo; 

    Print_JobInfo( jInf, "\t\t" ); 

} 

 

define: 

int Print_Geom( lst_Geometry *geom, char * whitespace ) 

{ 

    print( whitespace, "*** Geometry ***\n" ); 

    print( whitespace, "\tName \t\t", geom->Name, "\n" ); 

    print( whitespace, "\tType \t\t", geom->Type, "\n" ); 

    print( whitespace, "\tCID \t\t", geom->CID, "\n" ); 

    print( whitespace, "\tExtructionDir\t\t", geom->ExtructionDir, "\n" 

); 

    print( whitespace, "\tMirrorPlane\t\t", geom->MirrorPlane, "\n" ); 

} 

 

define: 

int Print_Part( lst_Part *prt, char * whitespace ) 

{ 

struct lst_Geometry *geom; 

 

    print( whitespace, "*** Part ***\n" ); 

    print( whitespace, "\tID \t\t", prt->ID, "\n" ); 
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    print( whitespace, "\tMassFraction\t", prt->MassFraction, "\n" ); 

    print( whitespace, "\tMinVarValue\t", prt->MinVarValue, "\n" ); 

    print( whitespace, "\tProxTol\t\t", prt->ProxTol, "\n" ); 

 

    geom = prt->GeometryList; 

    while( geom ) { 

        Print_Geom( geom, "\t\t" ); 

        geom = geom->Next; 

    } 

} 

 

define: 

int Print_Problem( lst_Problem *prob, char * whitespace ) 

{ 

struct lst_Case *cse; 

struct lst_Part *prt; 

 

    print( whitespace, "*** Problem ***\n" ); 

    print( whitespace, "\tDescription\t\t", prob->Description, "\n" ); 

    print( whitespace, "\tNumCase\t\t\t", prob->NumCase, "\n" ); 

    print( whitespace, "\tNumPart\t\t\t", prob->NumPart, "\n" ); 

 

    cse = prob->CaseList; 

    while( cse ) { 

        Print_Case( cse, "\t" ); 

        cse = cse->Next; 

    } 

 

    prt = prob->PartList; 

    while( prt ) { 

        Print_Part( prt, "\t" ); 

        prt = prt->Next; 

    } 

} 

 

define: 

int Print_Method( lst_Method *meth, char * whitespace ) 

{ 

    print( whitespace, "*** Method ***\n" ); 

    print( whitespace, "\tNumIter\t\t\t", meth->NumIter, "\n" ); 

    print( whitespace, "\tConvTol\t\t\t", meth->ConvTol, "\n" ); 

    print( whitespace, "\tNumDiscreteLevels\t", meth-

>NumDiscreteLevels, "\n" ); 

    print( whitespace, "\tDebugGeomDef\t\t", meth->DebugGeomDef, "\n" 

); 

} 

 

/*********************** PROGRAM TO PRINT LST DATABASE 

**********************/ 

 

struct lst_Root *root; 

struct lst_Problem *prob; 

struct lst_Method *meth; 

 

root = lst_RootReadDb( ); 

 

prob = root->Problem; 
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Print_Problem( prob, "" ); 

 

meth = root->Method; 

Print_Method( meth, "" ); 

 

 

5.6.5. Printing the content of the results database 

Int flag, numV, iter = 1; 

Char dirName[1024]; 

Float *data, *aveChng; 

 

print( "\"ItNum\",\"Mass_Redistribution\"\n" ); 

Int handle = lsda_open( "lst.binout" ); 

lsda_cd( handle, "/" ); 

sprintf( dirName, "/design#%d", iter ); 

while ( lsda_cd( handle, dirName ) == 1 ) { 

  aveChng = lsda_getR8data( handle, "Mass_Redistribution", &numV ); 

   

  print( iter, ", ",  aveChng[0], "\n"); 

   

  iter = iter+1; 

  sprintf( dirName, "/design#%d", iter ); 

 

  free( aveChng ); 

} 

 

lsda_close( handle ); 
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6. APPENDIX B: THEORY 

I must say it looks a bit like science fiction to many people. – Ofir Shor, June 2009, while 

evaluating the alpha version. 

 

6.1. Background 

The traditional approach for solving topology optimization problems is based on 

sensitivity analysis that is inexpensive to obtain for linear-static problems. However, 

deriving analytical sensitivities for dynamic analysis is very difficult due to the complex 

interactions among material nonlinearities, geometry and mesh, and transient nature of 

load and boundary conditions. Numerical computation of sensitivities is also not practical 

due to the high computational expense. Hence the conventional sensitivity based 

approach of topology optimization is not practical for crashworthiness problems. To 

overcome the aforementioned difficulties in topology optimization, an optimality criteria 

approach was proposed. This approach does not require gradients and hence there is no 

need to compute the sensitivities.  In previous versions, the approach was refer to as 

Hybrid Cellular Algorithm [1,2], but we found older views of the technology to be more 

representative of what is currently actually implemented. 

 

6.2. Implementation 

The algorithm for structural optimization is shown pictorially in Figure 6-1. After 

defining the problem, the topology is evolved using the simple rules defined on the 

variables. The constraints are accommodated during the state update procedure. 

 
Figure 6-1: The topology optimization algorithm 

 

 

6.2.1. Definition 

The input data is used to identify the design domain and design material model. The input 

data comprises of method data e.g., number of iterations, convergence tolerance, and the 

problem data, e.g. load cases, design part, etc. 
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6.2.2. Creating the variables 

The finite element model is mapped to design variables. Each design variables is assigned 

to a solid element in the design domain. For extrusion and symmetry constraints, the 

equality constraints are defined between the variables. For casting constraints, inequality 

constraints are established. 

 

6.2.3. Filtering of results 

Past work were based on the structured grid arrangement of cells. This assumption would 

breakdown for industrial applications where structured grids are not always possible. 

Hence, a radius based strategy is used to identify neighbors. In this strategy, a virtual 

sphere of user-defined radius is placed at the centroids of an element. All elements that 

are within this sphere are considered the neighbors of the corresponding element, and the 

results are averaged over the elements in the neighborhood  
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6.2.4. Material Parameterization 

The material model is parameterized using a so-called density approach. In this approach, 

a design variable is directly linked to the individual material element such that each 

variable has its own material model. The material properties corresponding to the values 

of design variables are obtained using an appropriate interpolation model. The solid 

isotropic material with penalization (SIMP) model [6] is the most popular interpolation 

method. This model is power law approach that drives the intermediate material 

properties towards the boundaries to obtain a 0-1 topology. According to SIMP model, 

the material properties are defined as,  
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where  denotes the density of the material, E represents the Young’s modulus,   is the 

yield stress, and hE  is the strain hardening modulus. The last two material properties 

represent material non-linearities and are required for dynamic problems like crash that 

involve material yielding. The subscript ‘0’ refers to the base material properties. The 

design variable x, also known as relative density, varies from 0 to 1 where ‘0’ indicates 

void and ‘1’ represents full material. A more detailed description of the material model 

parameterization, one should refer to Bendsøe and Sigmund [7], and Patel [8]. The 

elements with design variable value less than a user-defined minimum value are deleted 

to improve numerical stability. 

 



 68 

6.2.5. Design Objectives and Constraints 

The typical goal of topology optimization is to obtain maximum utility of the material. 

Compliance and the strain energy density are the most commonly used objectives for 

linear-static problems. For dynamic problems like crashworthiness simulations, the 

structure needs to absorb maximum energy while maintaining the structural integrity and 

keeping the peak loads transmitted to the occupants low. Following the formulation 

proposed by Patel [8], the goal of obtaining uniform internal energy density in the 

structure is defined as the objective for optimization. This concept is similar to the fully-

stressed design and uniform strain energy density approaches (Haftka and Gurdal [9], 

Patnaik and Hopkins [10]) that are well established in literature for linear-static problems.  

 

The optimization problem is formulated as, 
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where U represents the internal energy density of the i
th

 element, Vi is the volume of i
th

 

element, U
*
 represents internal energy density set point, and Cj is the j

th
 constraint. There 

are L load cases with a total of J constraints. The superscripts ‘l’ and ‘u’ represent lower 

and upper bounds on the constraints, respectively. 

 

6.2.6. Design Variable Initialization 

The design variables are initialized to satisfy the material constraint. All elements are 

assigned the same design variable values. All associated field variables are also 

initialized to zero.  

 

6.2.7. Simulation to Obtain Field Variables 

The elements in the finite element model are modified by changing the material models, 

adding or deleting elements, at each iteration. So the input deck is re-written at each 

iteration. This modified input deck is analyzed using LS-DYNA® [11]. One can take 

advantage of multiple processors using the MPP version of LS-DYNA. The relevant field 

variables for all elements are obtained from the output to completely define the state of 

each variable. For multiple load case conditions, the state variable is based on the output 

from simulations of different load cases.  

 

For dynamic problems, it was observed that accounting for the history of evolution 

induces stability by reducing the element deletion rate. Hence, the field variable (internal 

energy density) of i
th

 variable at iteration t is updated by defining a weighted sum on the 

field variable of three previous iterations as follows, 
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where xi is the design variable associated with the i
th

 variable at iteration t. 

 

6.2.8. Constraint Handling 

In presence of constraints other than the mass constraints, the target mass constraint is 

adjusted to satisfy the structural constraints. The mass target (M
*
) is increased in 

proportion to the constraint violation for all constraints except force constraints for which 

the mass target is reduced.  
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where J is the total number of constraints, c

jK  is the coefficient used to scale the 

constraint violation of the j
th

 constraint, and εj is the violation of the j
th

 constraint. The 

total change in mass target (ΔM) is bounded to allow gradual changes in the structure. 

 

6.2.9. Dynamic Load Case Weighing 

The desired behavior is offsetCkoffsetCk  22111  with C the constraint value, k a scale 

factor, and an offset added as shown.  The weight iw of load case i is adjusted to change 

constraint iC . The target value is computed as 
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iiiiietti wCoffsetCkCw  //)( arg  with the derivative approximated as ±1 and a 

maximum bound is place on w  to ensure convergence in a reasonable number of 

iterations. 

 

 

6.2.10.  State Update Rules 

This is the heart of topology optimization method. In this step, the state of a variable is 

updated based on the state of its neighbors. The state update is carried out in two steps: 

1. Field variable update: The field variable (internal energy density) of a variable is 

updated as accounting for the field variable values of its n neighbors as, 
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2. Variable/Material Update: Once the field-variable state of each variable is 

defined, the design variable is updated to reflect the changes. While numerous 
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rules are proposed in literature [6] to update design variables, a control based rule 

used by Patel [8] is implemented here (Figure 6-2).  

 

The change in the design variable of i
th

 variable (Δxi) is computed as, 
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where K is a scaling factor and *U denotes the internal energy density set point. The 

design variable is updated as, 
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The change in the variable is constrained by the bounds on the value of the design 

variable i.e.,  
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and only certain discrete values are allowed.  
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Figure 6-2: Design variable update. 

 

The mass of each element is then calculated by using the appropriate material model 

associated with the design variables. If the total mass of the structure meets the 

constraint, the total change in design variables in this iteration is calculated, and the 

design variable update is considered completed. If the mass constraint is not satisfied, the 

IED set point is updated iteratively to accommodate the material constraint as, 
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where M is the mass of the structure. 

  

6.2.11.  Stopping Criteria 

Two termination conditions are used to stop the optimization process. 

1. The number of iterations has exceeded the maximum number of iterations, or 

2. The change in the topology is smaller than the tolerance, i.e.,  
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The numerical oscillations in convergence are limited by averaging the total change in 

topology over two iterations. 
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7.  APPENDIX C: USING A QUEUING SYSTEM 

7.1. Relationship with the LS-OPT queuing system 

This queuing system is the same as used in LS-OPT. If your queue setup works for LS-

OPT then it should work for LS-TaSC as well. This appendix mostly repeats the 

information for people not using LS-OPT. 

 

In the LS-TaSC GUI the queuing is defined in the Scheduling tab of the Case definition. 

LS-OPT, on the other hand, define the queuing system in the run panel. 

 

Also, you do not need to reinstall the wrapper program if it is already installed for LS-

OPT. 

 

7.2. Experience may be required 

Experience with the queuing system and help from the system administer may be 

required. The queuing systems are not provided by LSTC. Getting the queue system to 

work may therefore require work and insight from the customer. 

 

7.3. Introduction 

The LS-TaSC Queuing Interface interfaces with load sharing facilities (e.g. LSF
1

 or 

LoadLeveler
2
) to enable running simulation jobs across a network. LS-TaSC will 

automatically copy the simulation input files to each remote node, extract the results on 

the remote directory and transfer the extracted results to the local directory. The interface 

allows the progress of each simulation run to be monitored via the GUI. The 

README.queue file should be consulted for the most up to date information about the 

queuing interface. 

 

7.4. Installation 

To run LS-TaSC with a queuing (load-sharing) facility the following binary files are 

provided in the LSOPT_EXE directory which un-tars (or unzips) from the distribution 

during installation of LS-OPT: 

 
 LSOPTOPO_EXE/wrapper 

 LSOPTOPO_EXE/runqueuer 

 

The runqueuer executes the command line for the purpose of queuing and must remain in 

the LS-TaSC environment (the same directory as the lsopt executable). 

 

The following instructions should then be followed: 

 

                                                 
1 Registered Trademark of Platform Computing Inc. 
2 Registered Trademark of International Business Machines Corporation 
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a) Installation for all remote machines running LS-DYNA 

1. Create a directory on the remote machine for keeping all the executables 

including lsdyna. Copy the appropriate executable wrapper program to the 

new directory. e.g. if you are running lsdyna on a Linux machine, place the 

wrapper appropriate for the architecture and operating system on this machine. 

You do not need to reinstall the wrapper program if it is already installed for LS-

OPT. 

    

b)  Installation on the local machine 

2. Select the queuer option in the GUI for the Case definition. 

To pass all the jobs to the queuing system at once, select zero concurrent jobs in the 

GUI or command file.   

 

In this example, the arguments to the rundyna.hp script are optional and can be hard-

coded in the script. 

 

3. Change the script you use to run the solver via the queuing facility by prepending 

"wrapper" to the solver execution command. Use full path names for both the 

wrapper and executable or make sure the path on the remote machine includes the 

directory where the executables are kept.0. 

The argument for the input deck specified in the script must always be the LS-OPT 

reserved name for the chosen solver, e.g. for LS-DYNA use DynaOpt.inp. 

7.5. Example 

Example: The LS-TaSC command relating to the queue is 

"/nec00a/mike/project/submit_pbs". The "submit_pbs" file is: 
 

#!/bin/csh -f 

# 

# Run jobs on a remote processor, remote disk 

set newdir=`pwd | sed -n 's/.*\/\(.*\)\/\(.*\)/\1\/\2/p'` 

# Run jobs on a remote processor, local disk (no transmission) 

# set newdir=`pwd` 

echo $newdir 

cat > dynscr << EOF 

#!/bin/csh -f 

# 

#PBS -l nodes=1:ncpus=1 

# 

setenv LSOPT /nec00a/mike/codes/LSOPT_EXE 

setenv LSOPT_HOST $LSOPT_HOST 

setenv LSOPT_PORT $LSOPT_PORT 

# Run jobs on a remote processor, remote disk 

mkdir -p lsopt/$newdir 
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cd lsopt/$newdir 

# The input file name is required for LS-TaSC 

/nec00a/mike/codes/wrapper /nec00a/mike/codes/ls980.single 

i=DynaOpt.inp 

EOF 

qsub dynscr 

 

It is also possible to specify the queuer command directly on the command line. 

Environment variables can be specified on the solver command line (e.g. for the PBS 

queuing system) as well as LS-TaSC input data.  

 

Example: 

This example shows how the required environment variables LSOPT_PORT and 

LSOPT_HOST set by the runqueuer program are specified on the solver command line 

whereas the two user variables LSDYNA971_MPP and LSOPT_WRAPPER are defined 

and stored as special input entities (see Section 7.13). These can also be set on the 

command line using the Linux "setenv" command. qsub is a PBS queue submit 

command and the –v directive defined the names of environment variables to be exported 

to the job. The qsub manual pages should also be consulted for more details. Say we 

submit to qsub using the command "qsub -v LSOPT_PORT,LSOPT_HOST 

../../dynscr2". The dynscr2 file in this case is: 

 

 
# This is the dynscr2 file 

#========================== 

#!/bin/csh -f 

# 

#$ -cwd -pe mpi 2 

# 

setenv NP 2 

setenv ROUNDROBIN 0 

# 

# Define LSDYNA971_MPP environment variables in lsopt input 

# or shell command ("setenv"). 

# $1 represents i=DynaOpt.inp and is automatically 

# tagged on as the last argument of the lsopt "solver command". 

# 

setenv EXE "$LSDYNA971_MPP $1" 

# 

rm -f mpd.hostfile mpp.appfile 

filter_hostfile < $PE_HOSTFILE > mpd.hostfile 

# 

# This python script builds an HPMPI specific "appfile" telling it 

# exactly what to run on each node. 

# 

gen_appfile.hpmpi mpd.hostfile $SGE_O_WORKDIR $NP $ROUNDROBIN $EXE > 

mpp.appfile 

# 

# This actually executes the job 

# 

$LSOPT_WRAPPER /opt/hpmpi/bin/mpirun -f mpp.appfile 

# 
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The solver command data and environment variable input are displayed below: 

 

 
 

7.6. Mechanics of the queuing process 

Understanding the mechanics of the queuing process should help to debug the 

installation: 

 

1. LS-TaSC automatically prepends runqueuer to the solver command and 

executes runqueuer which runs the submit_pbs script.  

o The runqueuer sets the variables LSOPT_HOST and LSOPT_PORT 

locally. 

o In the first example, the submit_pbs script spawns the dynscr script. 

2. In Example 1 the queuing system then submits dynscr (see qsub command at  

the end of the submit_pbs script above) on the remote node which now has fixed 

values substituted for LSOPT_HOST and LSOPT_PORT.  

3. In Example 2 the LS-TaSC schedules the qsub command directly with 

LSOPT_HOST and LSOPT_PORT as arguments and i=DynaOpt.inp 

appended at the end of the command. It therefore serves as an argument to 
dynscr2. 

4. The wrapper executes on the same machine as LS-DYNA, opens a socket and 

connects back to the local host using the host/port information.  The standard 

output is then relayed to the local machine. This output is also written to the 

logxxxx file (where xxxx is the process number) on the local host. To look at 

the log of any particular run, the user can select a button on the Run page under 

the View Log heading. The progress dialog is shown below, followed by the 

popup log.  
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An example of an error message resulting from a mistype of “wrapper” in the 

submit script is given in another example log file as follows: 

          STARTING command /home/jim/bin/runqueuer 

          PORT=56984 

          JOB=LoadLeveler 

          llsubmit: The job "1/1.1" has been submitted. 

          /home/jim/LSOPT_EXE/Xrapper: Command not found. 

          Finished with directory 

          

/home/jim/LSOPT/4.1/optQA/QUEUE/EX4a_remote/remote/1/1.1 

5. The wrapper will also extract the data immediately upon completion on the 

remote node. A log of the database extraction is provided in the logxxxx file.0. 

7.7. Environment variables   

These variables are set on the local side by the runqueuer program and their values 

must be carried to the remote side by the queuing software. The examples above illustrate 

two methods by which this can be accomplished. 

LSOPT_HOST : the machine where LS-TaSC (and therefore the runqueuer) is 

running.  

LSOPT_PORT : TCP/IP port runqueuer listens on for remote connections 

7.8. Troubleshooting 

1. Diagnostics for a failed run usually appear in the logxxxx file in the run directory. 

If there is almost no information in this file, the wrapper path may be wrong or 

the submission script may have the wrong path or permission. For any job, this 

file can be viewed from the progress dialog on the Run page. 

Please attach the log file (lsopt_output) when emailing support@lstc.com. 

2. Make sure that the permissions are set for the executables and submission script. 

3. Check all paths to executables e.g. "wrapper", etc. No diagnostic can detect this 

problem. 

4. Make sure that the result database is produced in the same directory as where the 

wrapper is started, otherwise the data cannot be extracted. (E.g. the front end 

program such as mpirun may have a specification to change the working directory 

(-wd dir)). 

5. Running on a remote disk. Make sure that the file "HostDirectory" is not 

copied by a user script to the remote disk if the simulation run is done on a remote 

disk. The "HostDirectory" file is a marker file which is present only on the 

local disk. Its purpose is to inform the wrapper that it is running on the local disk 

and, if found on a remote disk, will prevent the wrapper from automatically 

transferring extracted results back to the local disk. In general the user is not 

required to do any file copying since input files (including LS-DYNA include 

mailto:support@lstc.com
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files) are copied to the remote disk automatically. The response.* and history.* 

files are recovered from the remote disk automatically.  

6. Termination of user-defined programs: LS-DYNA always displays a  'N o r m 

a l' at the end of its output. When running a user-defined program which does 

not have this command displayed for a normal termination, the program has to be 

executed from a script followed by a command to write  'N o r m a l'  to 

standard output. The example file runscript shown below first runs the user-

defined solver and then signals a normal termination. 0. 

 

        mpiexec –n 2 /home/john/bin/myprogram –i UserOpt.inp 

        # print normal termination signal to screen 

        echo 'N o r m a l' 

 

which is submitted by the wrapper command in submit_pbs as: 

         /home/john/bin/wrapper /home/john/bin/runscript 

 

Note: Adding "echo N o r m a l" at the end of the wrapper command (after a 

semicolon) does not work which is why it should be part of the script run by the 

wrapper. 

7.9. User-defined queuing systems 

To ensure that the LS-TaSC job scheduler can terminate queued jobs, two requirements 

must be satisfied: 

1. The queuer must echo a string 

      Job ”Stringa Stringb Stringc …” has been submitted 

             or 
      Job Stringa has been submitted 

              e.g. 
      Job ”Opteron Aqs4832” has been submitted 

      Job aqs4832 has been submitted 

The string will be parsed as separate arguments in the former example or as a single 

argument in the latter example. The string length is limited to 1024 characters. The 

syntax of the phrases “Job ” and “ has been submitted” must be exactly as 

specified. If more than one argument is specified without the double quotes, the string 

will not be recognized and the termination feature will fail. 

2. A termination script (or program) LsoptJobDel must be placed either in the 

main working directory (first default location) or in the directory containing the 

LS-TaSC binaries (second default). This script will be run with the arguments 

stringA, stringB, etc. and must contain the command for terminating the queue. 

An example of a Unix C shell termination script that uses two arguments is:0. 

#!/bin/csh -f 

aadmin –c $1 –j $2 stop 
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7.10. Blackbox queueing system 

The Blackbox queueing system is another flavor of the User-defined queueing system. It 

can be used when the computers running the jobs are separated from the computer 

running LS-TaSC by means of a firewall. The key differences between User-defined and 

Blackbox are: 

1. It is the responsibility of the queueing system or the user provided scripts to 

transfer input and output files for the solver between the queueing system and the 

workstation running LS-TaSC. LS-TaSC will not attempt to open any 

communications channel between the compute node and the LS-TaSC 

workstation. 

2. Extraction of responses and histories takes place on the local workstation instead 

of on the computer running the job. 

3. LS-TaSC will not run local placeholder processes (i.e. extractor/runqueuer) for 

every submitted job. This makes Blackbox use less system resources, especially 

when many jobs are run in each iteration.0. 

When using the Blackbox queueing system, a LsoptJobDel script is required, just as 

in the User-defined case. Furthermore, another script named LsoptJobCheck must 

also be provided. This script takes one parameter, the job ID, as returned by the 

submission script. The script should return the status of the given job as a string to 

standard output.  

 

The Blackbox queuer option requires the user to specify a command that will queue the 

job. The Blackbox option can also be specified in the Scheduling panel when defining a 

Case. The command to queue the job must return a job identifier that has one of the 

following two forms: 

 
Job "Any Quoted String" has been submitted 

Job AnyUnquotedStringWithoutSpaces has been submitted 

 

The Word "Job" must be the first non-white space on the line, and must appear exactly 

as shown.  Any amount of white space may appear between "Job" and the job identifier, 

as well as after the job identifier and before "has been submitted". 

 

The Blackbox queuer requires the presence of two executable scripts LsoptJobCheck 

and LsoptJobDel.  These scripts must be located in either in the current LS-TaSC 

project directory or in the directory where the running LS-TaSC program is located. (For 

Windows, the scripts must have an added extension .exe, .vbs, .cmd or .bat).  If 

the Blackbox queuer option is invoked for some solver, then LS-TaSC checks for the 

existence of executable scripts in one of these locations, and refuses to run if the 

LsoptJobCheck and/or LsoptJobDel scripts cannot be found or are not executable. 

The project directory is searched first. 
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LsoptJobCheck script 

The user-supplied LsoptJobCheck script is run each time LS-TaSC tries to update the 

current status of a job. The LsoptJobCheck script is run with a single commandline 

argument: 

 
LsoptJobCheck job_identifier 

 

The working directory of the LsoptJobCheck script is set to the job directory 

associated with job_identifier. 

 

The script is expected to print a status statement that LS-TaSC can use to update its status 

information.  The only valid status statements are: 

 

String Description 

WAITING The job has been submitted and is waiting to start 

RUNNING The job is running.  
RUNNING N/M After RUNNING, the script may also report the progress as a 

fraction. RUNNING 75/100 means that the job has ¼ to go. The 

progress information will be relayed to the user, but not used in 

any other way by LS-TaSC. 

FAILED The job failed. This is only to be used when the underlying 

queueing system reports some kind of problem. Hence, a solver 

that has terminated in error does not have to be deteceted by the 

LsoptJobCheck script. 

FINISHED The job has completed and any output files needed for extraction 

has been copied back to the run directory. 

 

 

Any amount of white space may appear at the beginning of a status statement, and 

anything may appear after these statements.  The optional N/M argument for RUNNING is 

interpreted as an estimate of the progress; in this case N and M are integers and N/M is 

the fractional progress.  N must be not be larger than M. 

 

If LsoptJobCheck terminates without printing a valid status statement, then it is 

assumed that LsoptJobCheck does not function properly, and LS-TaSC terminates the 

job using the LsoptJobDel script.  All output from the LsoptJobCheck script is 

logged to the job log file (logxxxx) in the run directory for debugging purposes. 

 

Note: The LsoptJobCheck script may print more than one status statement, but only 

the first one will be used to update the status. 
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LsoptJobDel script 

The user-supplied LsoptJobDel script is run whenever the user chooses to terminate a 

job, or whenever LS-TaSC determines that a job should be killed (for example, if 

LsoptJobCheck fails). The LsoptJobDel script is run with a single commandline 

argument: 

 
LsoptJobDel job_identifier . 

 

The working directory of the LsoptJobDel script is set to the job directory associated 

with job_identifier. 

7.11. Honda queuing system 

The Honda queuing system interface is based on the Blackbox queuing system, but is 

dedicated to the particular needs of this system. 

Mechanics of the Honda queuing process 

The queuing system generates a status file for which an environment variable has been 

defined in LS-TaSC as: 

 
$HONDA_STATUSFILE 

 

The status file is the output of the PBS queue check command.  During the initialization 

phase, LS-TaSC checks whether this variable setting points to a valid file.  If it does not, 

LS-TaSC terminates before starting the scheduler, and prints a standard LSOPT-style 

error message. 

 

The line which marks the fields in the status file is used to determine how to parse the 

file; this line has the form "-----  -----------  -  ----- ---- ....". Fields are extracted based on 

this line which consists solely of space and dash characters.  The following fields are 

used: 

 

4 name 

6 status: 'R' for running or 'Q' for queued 

10 total wall clock time allowed 

11 total wall clock time consumed. 

 

Fields 10 and 11 are used to set the progress indicator.  If the indicator ever reaches 

100%, then it will terminate due to total wall clock time restrictions. 

 

If a job cannot be found in the status file, then it is assumed to be dead.  The job status 

entry is not looked for until a minimum of 3 seconds after the job has been started. A 

status file is searched for a particular job status entry only if the status file has a 

modification time that is later than the start time of the job. 
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Since there is no way to determine the exit status of a job by looking only at this status 

file, the determination of the final exit status depends on whether or not the job is an LS-

DYNA job. If the job is an LS-DYNA job, then the messag file is parsed for the status 

statements "N o r m a l" and "E r r o r" termination. If no messag file is found 10 seconds 

after the job is no longer listed in the status file, then we assume an error termination. 

     

If the job is a non-LS-DYNA job, then LsoptJobCheck (see Section 7.10) is executed just 

once after the job no longer appears in the status file. LsoptJobCheck should print either 

(a) FINISHED or (b) ERROR in order to communicate the final exit status.  If 

LsoptJobCheck cannot be found or cannot be executed, then ERROR is assumed. The job 

log file will contain a message indicating any problem that may exist which prevents 

LsoptJobCheck from being run. 

 

The HONDA queued jobs do not use LsoptJobDel as defined in the Blackbox queuing 

selection. Jobs are deleted using the standard PBSPro qdel command. 

 

Various statements concerning how status information is gathered are logged to the job 

log files. These are: 

 

1. Job status for LSDYNA jobs found in 'messag' file: 

     [HONDA] Termination status found in 'messag' file 

     [HONDA] exact termination statement 

2. The job status line for the current job found in $HONDA_STATUSFILE is saved: 

     [HONDA] status line 

3. The job is assumed finished if there is no status line found: 

     [HONDA] Job 23551 not found in STATUS file - assuming job is 

finished. 

4. Indication that LsoptJobCheck is run at the end of a non-LS-DYNA job: 

     [HONDA] Non LS-DYNA job. Running LsoptJobCheck to determine 

exit status. 

5. Status returned from LsoptJobCheck. 

     [HONDA] Job finished - LsoptJobCheck reports normal 

termination 

  [HONDA] Job finished - LsoptJobCheck reports error termination 

Any errors while gathering status information are logged to the job log files such as 

log12345. 

6. Missing messag file after LSDYNA terminates: 

   [HONDA] Failed to find 'messag' file while FINISHING. 

   [HONDA] Assuming ERROR termination for LSDYNA job. 

7. Found no termination status statement in messag file 

   [HONDA] Found no termination status in 'messag' file 
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   [HONDA] Assuming ERROR termination for LSDYNA job. 

8. HONDA_STATUSFILE variable not set 

   [HONDA] *** Error $HONDA_STATUSFILE not set. 

9. Could not open $HONDA_STATUSFILE 

   [HONDA] *** Error Failed to open $HONDA_STATUSFILE=pbsq_status 

10. LsoptJobCheck script not found for non-LSDYNA job 

   [HONDA] *** Error LsoptJobCheck cannot be found. 

   [HONDA]     Assuming error termination for non-LSDYNA job. 

11. LsoptJobCheck script did not print either (a) FINISHED or (b) FAILED.0. 

   [HONDA] *** Error LsoptJobCheck did not return a valid status. 

   [HONDA]          Assuming error termination for non-LSDYNA 

job. 

If  $HONDA_STATUSFILE is not updated in a timely fashion, then the scheduler can 

hang forever, never moving forward.  A message is passed to lsopt through the 

communication socket if this happens: 
 *** Warning HONDA_STATUSFILE out of date by more than 5 minutes 

 *** Job progress monitoring suspended until next update 

 

Even though the status file is checked before starting the scheduler, it is still possible for 

file errors to occur. These are also sent directly to LS-TaSC. 
 *** Error $HONDA_STATUSFILE not set 

 *** Error Failed to open $HONDA_STATUSFILE=pbsq_status 

7.12. Microsoft Windows Compute Cluster server 

LS-TaSC supports submission of jobs to the Microsoft Compute Cluster Pack Scheduler. 

Two scripts called submit.cmd and submit.vbs, that work together, are available 

to interface LS-TaSC with CCP. The script can be downloaded from 

ftp://ftp.lstc.com/ls-opt/QUEUING/MSCCS. Before using the scripts the 

variables in the beginning of the file submit.cmd needs to be changed to fit your local 

environment. Most users do not need to change the submit.vbs file. 

The example shows how the queue-related parts of an LS-TaSC command file look when 

using the CCP scripts, when they are placed in the same directory as the command file: 

 

7.13. Passing environment variables 

LSOPT provides a way to define environment variables that will be set before executing 

a solver command. The desired environment variable settings can be specified directly in 

the com file with solver commands: 

 

They can be specified within the Scheduling tab when defining a Case. 
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7.13.1. Adding a new environment variable definition 

Select the New button. After selecting this option, an empty, editable environment 

variable definition will appear. 

 

We do not allow the names of variables to contain anything other than upper- or lower-

case letters, numbers, and underscore ( _ ) characters. Variable values are not so limited. 

 

 

 

7.13.2. Editing an existing environment variable definition 

To edit an environment variable, double-click on the environment variable in the 

Environment variables list. The display mode of the variables will change to make it 

editable. 

7.13.3. Set by browsing 

Select the Select by Browsing button. In order for this option to work, user-supplied 

executables must be present in the directory 

$HOME/LSOPT_SCRIPTS 

The directory LSOPT_SCRIPTS must exist as a subdirectory of the user's home 

directory, and it must contain executables. If the directory LSOPT_SCRIPTS does not 

exist, or if there are no executables in this directory, an error box will appear. Setting the 

LSOPT_SCRIPT Unix/Linux/Windows system environment variable may specify an 

alternative script directory. 

After selecting the Set by browsing option, a dialog of buttons will appear, one for each 

executable in this directory. For example, suppose this is the directory listing for 

$HOME/LSOPT_SCRIPTS: 

 

-rwxr-xr-x 1 joe staff 13597 2009-12-01 18:09 lsdyna_submit.autounion* 



 84 

-rw-r--r-- 1 joe staff 13597 2009-12-01 17:46 stdin.save 

-rwxr-xr-x 1 joe staff     9 2009-08-10 14:23 test* 

-rwxr-xr-x 1 nielen staff     9 2009-08-10 14:26 testb* 

 

Then, when you select the Set by browsing option, the following dialog appears: 

 

 
 

A valid browse command must print environment variable definitions to standard output 

in the form name='value'; the single quotes are optional if value does not contain spaces. 

A valid sample output is shown below (the line is wrapped because of its length). 

 
exe=/home/trent/LSTC/PERL/lsdyna-caec01_pbs_sub.pl menu=batch 

time=1:00 host=abcdefgh07 procs=1 jobname=’My Job’ project=isd 

email=No delay=No preemptable=No version=’LS-DYNA 970 MPP SP 

6763’ ioloc=/home/trent inpfile=DynaOpt.inp mem1=auto mem2=auto 

pfile=Generic dumpbdb=No dynamore=No clean=No tail=No copycont=No 

optimization=LsOpt 

 

All of the name='value' strings are directly imported into the Env Vars tab in bulk. In 

addition to these Browse List variables, a special browse variable is created that should 

not be edited. This variable records the program name used to create the Browse List. 

 

NOTE: All variables must be printed on one line, which must be the last line of output 

from the program. Lines before the last line are ignored. 

 

WARNING: The user-supplied browse program should never define the browse variable 

in its output. The name browse should be treated as a reserved name. 

 

A simple Linux browse command could be a shell script: 
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#!/bin/bash 

echo This line is ignored. Only the last line survives 

echo A=B C=D 

 

Running the browse command shown above will import two variables, A and C, into the 

browse list. 

 

NOTE: Strings in the Env Vars List appearing above the browse= line are all part of the 

Browse List. Strings in the Env Vars tab that appear below browse= are never part of the 

Browse List. User-defined environment variables will always follow after the browse 

variable definition (e.g., last=first in the figure above was not defined by the browse 

command.)  

7.13.4. Edit browse list 

Select the Edit Browse list button. Choosing this option does nothing unless a Browse 

List has been previously created. If a valid Browse List is present in the Env Vars tab, 

then selecting this option will run the original program that created the Browse List, 

together with all of the current Browse List options passed as command line arguments, 

one per existing environment variable. Each command-line argument has the form 

name=value. However ‘value’ is not single-quoted because each name=value argument is 

a separate command-line argument. The customer-supplied browse command should 

offer the user an opportunity to edit the existing variables, and the browse command 

should return the newly edited list on one line, in the same format as described above.  

This would normally be done through some sort of graphical user interface. The returned 

list will be used to replace all of the previous Browse List. 

The next example script returns an initial Browse List consisting of two variables, A and 

C.  Invoking the editing feature appends a new variable (tN=N) to the list. 

 
#!/bin/bash 

echo This line will be ignored. Only the last line survives. 

if [ “$1” == “” ]; then 

  echo A=B C=D; 

else 

  echo $* “t”$$”=”$$; 
fi 

 

When this script is invoked using the “Create by Browse” feature, there are no command-

line arguments, and the script prints “A=B C=D” to standard output. However, when the 

script is invoked using the edit feature for the first time, two command-line arguments 

“A=B” and “C=D” are passed to the script. This time the return line consists of the 

original command-line arguments (printed using $*) and tN=N, where N is the PID of the 

shell process. If the editing feature is invoked a second time, then three command-line 

arguments are passed to the script (“A=B”, “C=D”, and “tN=N”). Another new variable 

tN is appended, where N is the newest PID of the script process. This sample script has 

little practical value, except to illustrate how existing variable settings are passed by 

command-line to the previous browse command, and to illustrate how one can use the 

editing feature to modify or add new variables.  
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Note: The browse command can ABORT the replacement operation by printing a blank 

line to the standard output and immediately terminating. Otherwise the current Browse 

List may be deleted. If the browse command abnormally terminates, then an error box 

will appear with a title bar indicating that the command failed. 

7.13.5. How the browse list is used by LS-TaSC 

The Browse List (indeed, the complete Env Vars List) is used to set environment 

variables before running the solver command specified by LS-TaSC. However, if the first 

variable returned by the browse command is exe, then a pre-processing command is run 

before running the actual solver command. The pre-processing command is the value of 

the exe variable. The pre-processing command has a command line  
$exe var1=$var1, var2=$var2, ... varN=$varN 

That is, the command executed is the value of the exe variable; additional command line 

arguments consist of all Browse List strings with a comma delimiter appended to each 

intermediate one. (The final argument is not followed by a comma.) 

Note: Such a pre-processing command is always run from within the current LS-TaSC 

Job Directory. Therefore, any file that the pre-processing command references must be 

specified by a fully-qualified path or must be interpreted relative to the current LS-TaSC 

Job Directory. So, the LS-TaSC Case Directory will be ".." and the LS-TaSC Project 

Directory will be "../..”. 

 

7.14. Enabling LSTCVM job proxy support 

7.14.1. LSTCVM options 

There are two ways that LS-TaSC can work with the LSTCVM job proxy. 

1. LSTCVM and LS-TaSC share a common file system. If LSTCVM and LS-TaSC 

share a common file system, then you may run LS-TaSC jobs from within the 

shared file system by using the solver command 

            lstcvm_run remote_solver_command 

 For example 

         solver command "lstcvm_run ls971_single" 

 would be the appropriate solver command in LS-TaSC if you want to run the 

"ls971_single"  command on the remote LSTCVM server. 

2. LSTCVM and LS-TaSC do not share a common file system. In this case, you may 

still execute remote commands on the LSTCVM server, but you must select the 

following option in the Advanced GUI tab for the Solver: Use LSTCVM proxy. 

LS-TaSC will take care of prepending the lstcvm_run command. So, in this 

case, if you want to execute "ls971_single" on the remote LSTCVM server, 

then your solver command should simply be 

         solver command "ls971_single"  

 All necessary input files will be transferred to the remote LSTCVM server using 

LS-TaSC  runqueuer/wrapper commands. Extraction results are automatically 

brought back to the local  side once the job has finished.  
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 Note: In order for this option to work, you must install the LS-TaSC "wrapper" 

on the LSTCVM  proxy server, and you must add the following entry to the 

executable map file  "lstcvm.exemap" 

         wrapper -> full_path_to_wrapper 

 The "wrapper" command is architecture specific. So be sure to obtain the correct 

program for the  LSTCVM architecture. 

 

 REMOTE FILES: We do not currently delete files on the LSTCVM server after 

the job has  completed. This must be done by the LSTCVM proxy server 

administrator. 0. 

7.14.2. LSTCVM server installation 

The LSTCVM server is distributed separately from LS-TaSC and, in addition to the 

executables, contains detailed information and installation instructions. This server 

installation is usually handled by a systems administrator. 

7.14.3. Environment Variables 

All solver environment variables defined in the LS-TaSC EnvVar tab of the Solver are 

automatically passed to the remote job on the LSTCVM server. (PATH is not passed for 

security reasons). This provides a convenient way to define licensing variables for LS-

DYNA. For example, you can pass the following variables to the remote proxy server 

job: 

            LSTC_LICENSE=network 

     LSTC_LICENSE_SERVER=license_server_name 

7.14.4. Configuring the  lstcvm_run client 

The lstcvm_run client should be supplied with the LS-TaSC distribution. If you do 

not have such a command in the LS-TaSC installation directory, then your version of LS-

TaSC is probably not LSTCVM ready. We suggest obtaining a later version of LS-TaSC 

in that case. 

In order to configure the "lstcvm_run" client, you should execute 

        lstcvm_run -s lstcvm_server_name 

The information will be saved so that this step never needs to be repeated. If you are 

running on a Microsoft Windows platform, then you should execute this command from 

within a command prompt; the server information will be saved in the Windows registry. 

If you are running on a Linux/UNIX platform, then the server information is stored in 

$HOME/.lstcvm . If, for some reason, a port other than the default is used, then you must 

specify the port number N with the command 

        lstcvm_run -s N@lstcvm_server_name 

After setting the server name, then you can test for connectivity using 

        lstcvm_run -info 

You should see information about the current configuration of the LSTCVM server. 

To test the installation, 'cd' to a directory where you are allowed to run the 

lstcvm_run client, and issue the command 

        lstcvm_run ls -al 
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It is possible that this command will fail if the LSTCVM administrator does not allow the 

"ls" command to be run. If that is the case, then check with the administrator about 

which commands are available. 

Once you know that the lstcvm_run command is properly configured and able to 

execute commands remotely, then you are ready to use lstcvm_run with LS-TaSC. 

Only commands which are allowed and enabled by the LSTCVM administrator will 

function properly. For example, ls971_single is not available unless the remote 

administrator has enabled this command. 

 

 

 


