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1. SCRIPTING 

 

The scripting capability is provided to allow advanced users to customize the application.  

Normal interaction with the topology optimization code is with the graphical user 

interface, which issues the scripting commands driving the optimization process. 

 

A script is provided to the program in a file. The commands in a script can perform one 

of two functions: 

 Define the problem and methodology data 

 Call the topology design functions 

 

1.1. The scripting language 

The script commands use the C programming language syntax to manipulate data. 

Detailed knowledge of the language is not required to use this manual; the example 

scripts in this manual give enough information. A complete syntax reference is given in 

the LS-PREPOST customization manual titled “SCRIPTO A new tool to talk with LS-

PREPOST” available at http://www2.lstc.com/lspp/index.shtml. 

 

1.2. Script Execution 

A script can be invoked from the GUI or the command line. 

 

From the GUI use the Script->Play script pull-down to invoke a script. A script 

submitted from the GUI can use the database that is already open in the GUI. Example 

1.6.3 at the end of this chapter demonstrates. Note that the GUI actually issues scripting 

commands for all actions affecting the database which can be viewed using the Script-

>Console pull-down. 

 

A script can be invoked from the command prompt by running the executable 

lstasc_script. The input command file (script) can be supplied as:  With the execution 

command and a script file name $ lstasc_script lst_script.lss. 

 

1.3. Data-structures 

1.3.1. lst_Root  

All input data is encapsulated in a top-level data structure lst_Root. The input data is 

classified in two sub-categories: the problem definition that does not depend on the 

optimization method, and the optimization method parameters.  
struct lst_Root { 

      struct lst_Problem *Problem; 

      struct lst_Method  *Method; 

} 

 

http://www2.lstc.com/lspp/index.shtml
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1.3.2. lst_Method 

The parameters used for optimization method are specified in this data-structure.  
struct lst_Method { 

  Int   NumIter; 

  Float ConvTol;  

  Int   NumDiscreteLevels; 

  Int   DumpGeomDef; 

  Int   StoreFieldHist; 

  Int   DeleteShells; 

 

} 

 

NumIter: The maximum number of iterations allowed is specified.  

 

ConvTol: The convergence tolerance is the termination criterion used to stop the 

search when the topology has evolved sufficiently. If ConvTol  0.0, then this input 

would be ignored, and the default will be used. 

 

NumDiscreteLevels: Resolution or the number of steps in the gradation of the 

material of the part being design. The default value should suffice for almost all 

problems. 

 

DumpGeomDef: Set this to a non-zero value to obtain debugging information for 

casting constraints. Files will be created which can be viewed in LS-PREPOST showing 

the master face (free) elements, and the elements chained to the master elements. 

 

StoreFieldHist: Set this to a non-zero value to obtain the IED histories in the View 

panel. 

 

DeleteShells: Set this to a non-zero value (default) to delete shells elements with a 

thickness less than the minimum specified for the part. 

 

 

1.3.3. lst_Problem 

The details of the problem is given in this data structure. The definition is as follows: 
struct lst_Problem { 

  struct lst_Case *CaseList; 

  struct lst_Part * PartList; 

  Char * Description; 

  Int CaseWeighing; 

} 

 

CaseList: The user provides the details of the simulation in this data structure. As the 

name suggests, the CaseList is the list of all load cases. For multiple load cases, the 
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user would specify one case per load case. A complete description is given in a following 

section. 

 

PartList: The user provides the details of the parts in this data structure. As the name 

suggests, the PartList is the list of all parts. A complete description is given in the 

next section. 

 

Description: This optional string is used to describe the problem. 
 

CaseWeighing: Set to 1 for using the static weighing (the default), or set to 2 to use 

dynamic weighing. 

 

1.3.4. lst_Part 

The details of a part are: 
struct lst_Part { Int ID; 

                  Int Continuum; 

                  Float MassFraction; 

                  Float ProxTol; 

                  Float MinVarValue; 

                  struct lst_Geometry * GeometryList; 

                  struct lst_Part * Next; } 

 

ID: Each part is identified with a unique id as in the LS-DYNA input deck. 

The design domain for topology optimization is identified as all of the parts given.  

 

ProxTol: All elements within a radius of proximity tolerance would be considered as 

the neighbors of an element.  

 

MinVarValue: Elements with a density of less than this will be deleted.  

 

MassFractionBound: The material constraint for the topology optimization is 

necessary for the optimization. An appropriate value (0.05 < x < 0.95) is supplied here. 

 

Continuum: Whether the part is a solid or a shell. Solids have a value of 1, while 

shells have a value of 2. 

 

GeometryList:  These are the geometry and manufacturing constraint on a part. A 

complete description is given in the next section. 
 

Next:  The next part in this linked list. A value of NULL indicates that this is the final 

part. 
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1.3.5. lst_Surface 

The details of a surface are: 
struct lst_Surface { Int ID; 

                  Int Objective; 

                  Float ProxTol; 

                  Float VarMoveLimit; 

                  Float TargetField; 

                  struct lst_Geometry * GeometryList; 

              Float RemeshRelativeDepth; 

                  struct lst_Part * Next; } 

 

ID: Each surface is identified with a unique id for the *SET_SEGMENT as in the LS-

DYNA input deck.  

 

Objective: The objective for designing the surface. This will be used to select the 

target value of the field of the surface. 1 = match the average, 2 = minimize stress, 3 = 

minimize volume, and 4 = match the target value. The default is to match the average 

value over the surface. 

 

ProxTol: All elements within a radius of proximity tolerance would be considered as 

the neighbors of an element. The default of -1 will prompt the program to compute a 

suitable value. 

 

VarMoveLimit: Maximum change of a nodal location. The default of -1 will prompt 

the program to compute a suitable value. 

 

TargetField: Target value to be used if Objective = 4. 

 

GeometryList:  These are the geometry and manufacturing constraint on a surface. A 

complete description is given in the next section. 

 

RemeshRelativeDepth: The depth of the remeshing in terms of the times the 

average segment side length. The default is 4. 
 

Next:  The next surface in this linked list. A value of NULL indicates that this is the 

final surface. 

 

 

1.3.6. lst_Geometry 

The details of a geometry definition are: 
struct lst_Geometry { Char *Name; 

                      Int Type; 

                      Int CID; 

                      Int Set; 

                      Int ExtructionDir; 
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                      Int MirrorPlane; 

              Float ForgeThick; 

      Float SplineWidth; 

                      struct lst_Geometry * Next; };  

 

Name: Each geometry definition is identified with a unique name. The name is used to 

identify the geometry constraint in the output. 

 

Type: The type of extrusion. 2 is an extrusion, 3 is a symmetry constraint, 4 is a single 

sided casting constraint, 5 is a double sided casting constraint, and 6 is a forging. 

 

Set: To design an extruded part, the user firstly creates a set of all solid elements that 

would be extruded (SET_SOLID). The id of this set is specified in the input deck to 

identify the extrusion set. 

 

ExtrusionDir: X=1 Y=2 Z=3 

 

MirrorPlane: The mirror plane for a symmetry constraint XY=1 YZ =2 ZX = 3. 
 

ForgeThick: The thickness of a forging definition. 

 

SplineWidth: The width of a spline edge interpolation in surface design. 

 

Next:  The next geometry definition in this linked list. A value of NULL indicates that 

this is the final geometry definition. 

 

1.3.7. lst_Case 

The details of the simulation setup are given in this data structure. 
struct lst_Case { 

  Char                *Name; 

  Char                *SolverCommand; 

  Char                *InputFile; 

  Int                 AnalysisType; 

  Float              Weight; 

  struct lst_Constraints *ConstraintList; 

  struct lst_DynWeight   *DynWeight; 

  struct lst_JobInfo     *JobInfo; 

  struct lst_Case        *Next; 

} 

 

Name: Each case is identified with a unique name e.g., TRUCK. The same name would 

be used to create a directory to store all simulation data. 

 

SolverCommand: The complete solver command or script (e.g., complete path of LS-

DYNA executable) is specified.   
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InputFile: The LS-DYNA input deck path is provided.  

 

AnalysisType: The topology optimization code can be used to solve both static and 

dynamic problems. The user identifies the correct problem type by specifying the correct 

option: 

 

Type Option 

STATIC 1 

DYNAMIC 2 

 

Weight: The weight associated with a case is defined here. This enables the user to 

specify non-uniform importance while running multiple cases.  
 

ConstraintList: This data structure holds the information about different 

constraints associated with this case. See the following section for more details. 
 

JobInfo: The user specifies details of the queuing system and number of simultaneous 

processes in this data structure.   

Next:  The next case in this linked list. A value of NULL indicates that this is the final 

geometry case. 

 

Note that the word case is a reserved word in the C programming language. 

 

1.3.8. lst_Constraint 

The structural constraints for a load case are specified in the following data structure: 

 
struct lst_Constraint { 

    Char * Name; 

    Float UpperBound; 

    Float LowerBound; 

    Char * Command; 

    struct lst_Constraint *Next; 

} 

 

Name: The name of each constraint is a unique character identifier. 

 

UpperBound/LowerBound: The upper and lower bounds on a constraint are 

specified using these variables. If there is no upper bound, a value of 1.0e+30 must be 

specified for UpperBound. Similarly, a value of -1.0e+30 should be used for 

LowerBound when there is no lower bound. 

 

Command: The definition of each constraint provides interface to LS-DYNA
®
 

databases. The data extraction from both binout and d3plot databases are supported.  
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1.3.9. lst_DynWeight 

The dynamic weighing of a load case is specified in the following data structure: 

 
struct lst_DynWeight { 

    Char * ConstraintName; 

    Float Scale; 

    Float Offset; 

} 

 

ConstraintName: The name of the constraint. 

 

Scale: The scaling of the constraint value. 

 

Offset: The offset to be added to the constraint value. 

 

 

1.3.10. lst_JobInfo 

This data structure contains the LS-DYNA
®
 job distribution information. Create and set 

this data structure to change the default of running LS-DYNA
®
 locally as a single 

process. 
struct lst_JobInfo { 

    Int NumProc; 

    Int Queuer; 

    Char ** EnvVarList; 

} 

 

NumProc: This parameter indicates the number of processes to be run simultaneously. 

A value of zero indicates all processes would be run simultaneously. 

 

Queuer: This parameter is used to indicate the queuing system. Different options are 

tabulated below. 

 

Q-system Option Q-system Option Q-system Option 

QUEUE_NIL 0 NQS 4 BLACKBOX 8 
LSF 1 USER 5 MSCCP 9 
LOADLEVELER 2 AQS 6 PBSPRO 10 
PBS 3 SLURM 7 HONDA 11 

 

By default, no queuing system would be used. 

 

EnvVarList: These parameters are passed to the remote machine by the queuing 

system. The lst_JobInfoAddEnvVar command is used to set the values. 
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1.4. Interactions with the Data Structures 

To specify the input data, the user needs to communicate with the program data 

structures. These data structures are accessed by the user via a script that follows the 

syntax of C programming language. So the user needs to first define the data structure 

and then populate the input data.  

1.4.1. Definition  

Each script must include the following command to access necessary data-structures. 
lst_Root *root = lst_RootNew(); 

The root data structure encapsulates both problem and method data and therefore always 

needs to be accessed.  

 

1.4.2. Initialization 

During initialization, the user provides the necessary input data. 

a) Adding Case Data 

The solver information is added to the problem data using the lst_ProblemAddCase 

function, defined as follows: 
lst_ProblemAddCase( lst_Problem, Char *CaseName, Char 

*SolverCmd, Char * InputFileName", Int analysisType, 

Float Weight ); 

The last two arguments analysisType, and weight are optional. If not specified then the 

program will determine whether it is a non-linear analysis and set the weight to 1.0. 

 

 
 

 

b) Accessing a Specific Case Structure 

The cases are stored in a linked list in the lst_Problem structure. Also a pointer to the 

lst_Case structure is returned when it is created. Note that the word case is a 

reserved word in the C programming language. 

 
lst_Case * cse1 = root->Problem->CaseList; 

lst_Case * cse2 = root->Problem->CaseList->Next; 

lst_Case * cse4 = cse1->Next->Next->Next; 

lst_Case * cse  = lst_ProblemAddCase( root->Problem, 

“RIGHT_LOAD”,"ls971_single", "MyInputR.k", 2, 1); 

Example: Add two load cases 

1. This load case uses a queuing system for a nonlinear structural problem 
lst_ProblemAddCase( root->Problem, “LEFT_LOAD”, 

"submit_pbs", "MyInputL.k", 2, 0.5); 

 

2. Second load case uses a standalone DYNA program for a linear structural problem 
lst_ProblemAddCase( root->Problem, 

“RIGHT_LOAD”,"ls971_single", "MyInputR.k", 1, 0.9); 
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c) Adding Constraints 

A user can add constraints to each case using the following command:  
lst_CaseAddConstraint ( struct lst_Case* cse, Char * 

constraintName, Float UpperBound, Float LowerBound, 

Char *constraintCommand ); 

 

 
 

 

It is recommended to obtain the command definition using the GUI. The LS-OPT manual 

can also be consulted on how to create the string. 
 

d) Adding dynamic weighing of the load cases 

A user can add constraints to each case using the following command:  
struct * lst_DynWeight lst_CaseAddDynWeight ( struct 

lst_Case* cse, Char * constraintName, Float Scale, 

Float Offset ); 

 

 
 

 

Example: Adding two constraints to a case 

 

1. Adding a displacement constraint:  

    Maximum resultant displacement of part defined by id=101 should be less than 7.25 

units 
lst_CaseAddConstraint (root->Problem->CaseList, “gDisp”, 

7.25, -1.0e+30, “D3PlotResponse –pids 101 -res_type ndv –

cmp result_displacement –select MAX –start_time 0.00”); 

 

2. Adding a force constraint:  

    Maximum y-force on the master side of the interface defined by id=9 should be 

smaller than 2.0e5 units. 
lst_CaseAddConstraint (root->Problem->CaseList, “rForce”, 

2.0e5, -1.0e+30, “BinoutResponse –res_type RCForc –cmp 

y_force –id 9 –side MASTER –select MAX –start_time 

0.00”); 

 

Example: Adding dynamic weighing to a case 

 
root->Problem->CaseWeighing = 2; 

 

lst_CaseAddDynWeight ( aCase, “gDisp”, 1.0, 0.0 ); 
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e) Adding Part Data 

A user can add parts to the problem using the following command:  
struct lst_Part * lst_ProblemAddPart( struct 

lst_Problem *prob, Int partId, Float massFracB, Double 

minx, Double proxTol ); 

with the items in the command as explained for the part structure. The last two arguments 

(the minimum variable value and the neighbor radius) are optional. 

 

 
 

f) Accessing a Part 

The parts are stored in a linked list in the lst_Problem structure. In addition, a pointer 

to the lst_Part structure is returned when it is created. 

 
lst_Part * part1 = root->Problem->PartList; 

lst_Part * part2 = root->Problem->PartList->Next; 

lst_Part * part4 = part1->Next->Next->Next; 

lst_Part * prt  = lst_ProblemAddPart( root->Problem, 

101, 0.3 ); 

 

 

g) Adding Surface Data 

A user can add surfaces to the problem using the following command:  
struct lst_Surface * lst_ProblemAddSurface ( struct 

lst_Problem *prob, Int segmentId, Int objective, Float 

varMoveMax, Double proxTol, Double targetField, Double 

relativeMeshDepth ); 

with the items in the command as explained for the Surface structure. The last four 

arguments (the minimum variable value, the neighbor radius, the target value, and 

meshing depth) are optional. 

 

 
 

Example: Adding a part     
struct lst_Part * prt = lst_ProblemAddPart( root-

>Problem, 102, 0.3 ); 

Example: Adding a shape     
struct lst_Surface * srf = lst_ProblemAddSurface ( root-

>Problem, 102, 4, 10., 0.3, 200e6 ); 
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h) Accessing a Surface 

The surfaces are stored in a linked list in the lst_Problem structure. In addition, a 

pointer to the lst_Surface structure is returned when it is created. 

 
lst_Surface * surface1 = root->Problem->SurfaceList; 

lst_Surface * surface2 = root->Problem->SurfaceList-

>Next; 

lst_Surface * surface4 = surface1->Next->Next->Next; 

lst_Surface * prt  = lst_ProblemAddSurface( root-

>Problem, 101, 1 ); 

 

 

i) Adding Geometry Data 

Add geometry constraints to the part using the following commands:  
struct lst_Geometry *  

lst_PartAddGeometryExtrusionDir( struct lst_Part *,  

Char * name, Int dir, Int CID ); 

struct lst_Geometry * 

lst_PartAddGeometryExtrusionSetDir( struct lst_Part *,  

Char * name, Int set, Int dir, Int CID ); 

struct lst_Geometry * 

lst_PartAddGeometryExtrusionConn( struct lst_Part *, 

Char * name, Int set ); 

struct lst_Geometry * lst_PartAddGeometrySymmetryXY( 

struct lst_Part *, Char * name, Int CID ); 

struct lst_Geometry * lst_PartAddGeometrySymmetryYZ( 

struct lst_Part *, Char * name, Int CID ); 

struct lst_Geometry * lst_PartAddGeometrySymmetryZX( 

struct lst_Part *, Char * name, Int CID ); 

struct lst_Geometry * lst_PartAddGeometry1SideCasting( 

struct lst_Part *, Char * name, Int dir, Int CID ); 

struct lst_Geometry * lst_PartAddGeometry2SideCasting( 

struct lst_Part *, Char * name, Int dir, Int CID ); 

 

Add geometry constraints to the surface using the following commands:  
struct lst_Geometry *  

lst_SurfaceAddGeometryExtrusionDir( struct lst_Surface 

*,  Char * name, Int dir, Int CID ); 

struct lst_Geometry * 

lst_SurfaceAddGeometrySymmetryXY( struct lst_Surface 

*, Char * name, Int CID ); 

struct lst_Geometry * 

lst_SurfaceAddGeometrySymmetryYZ( struct lst_Surface 

*, Char * name, Int CID ); 
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struct lst_Geometry * 

lst_SurfaceAddGeometrySymmetryZX( struct lst_Surface 

*, Char * name, Int CID ); 

struct lst_Geometry * 

lst_SurfaceAddGeometryNewEdgeAuto( struct lst_Surface 

*, Char * name, Float width ); 

struct lst_Geometry * 

lst_SurfaceAddGeometryNewEdge( struct lst_Surface *, 

Char * name, Int nodeSetID, Float width ); 

 

 

 

 

j) Adding Job Distribution Data 

Details about running the simulation job for each case can be added by creating a 

JobInfo structure and using lst_CaseSetJobInfo function. The syntax is as 

follows. 
lst_JobInfo * ji = lst_JobInfoNew(); 

ji->NumProc = 1; 

ji->Queuer = 3; 

lst_CaseSetJobInfo( aCase, ji ); 

 

For jobs submitted using a queuing system, the values of the environment variables can 

be set on the remote system, if required, using the lst_JobInfoAddEnvVar 

command. The command has the following syntax: 
lst_JobInfoAddEnvVar( struct JobInfo* ji, char * 

variableName, char * value ); 

lst_JobInfoDeleteEnvVar( struct JobInfo* ji, char * 

variableName ); 
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k) Specifying Optimization Method Parameters 

Once the root data structure is obtained, the data in Method data structure can be directly 

manipulated. 

1. Specify the maximum number of iterations 

root->Method->NumIter  = Int; 

2. Provide convergence tolerance 

root->Method->ConvTol  = Float; 

3. To specify proximity tolerance use 

root->Method->ProxTol  = Float; 

 
 

1.4.3. Execution Functions 

a) Saving the Project Data 

The program save the project input data in form of a XML database. 
lst_RootWriteDb( root ); 

 

A default filename of “lst_project.lstasc” is used, but you may specify the filename. 
lst_RootWriteDb(root, "filename.xml" ); 

 

b) Reading the Project Data 

The project input data can be read from disk as: 
lst_Root *root = lst_RootReadDb(); 

 

A default filename of “lst_project.lstasc” is used, but you may also specify the filename. 
lst_Root *root = lst_RootReadDb( “filename.xml” ); 

 

Example: Adding simulation information to the two cases 

 

1. Adding JobInfo to the case LEFT_LOAD that uses PBS queuing system, 
lst_JobInfo * ji = lst_JobInfoNew(); 

ji->NumProc = 0; 

ji->Queuer = 3; 

lst_JobInfoAddEnvVar( ji, “LS_NUM_ABC”, “5”); 

     lst_CaseSetJobInfo( left_load_case, ji ); 

 

2. Adding JobInfo to the case RIGHT_LOAD that does not use any queuing system,  
lst_JobInfo * ji = lst_JobInfoNew(); 

ji->NumProc = 1; 

ji->Queuer = 0; 

     lst_CaseSetJobInfo( right_load_case, ji ); 
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c) Create Topology 

Following command computes the topology:  
lst_CreateTopology(root); 

 

The status of each simulation can optionally be reported every “Interval” seconds as 

shown in the following command:  
lst_CreateTopology(root, Interval); 

 

d) Cleaning the directory 

The files created in the directory can be removed: 
lst_CleanDir(“databaseFileName.lstasc”); 

 

The filename was specified in this case; if omitted, the default of “lst_project.lstasc” will 

be used. All of the files created for the analysis, except the database, will be removed. 

 

1.5. Accessing Results 

These commands access the LS-TaSC database and the LS-DYNA® binout database 

using the LSDA (LSTC Data Archival) interface. Read this section together with the 

LSDA documentation available from the LSTC ftp site. 

 

 

Open a database 

Command Int handle lsda_open(Char *filename) 

Example Int fout = lsda_open( “lstasc.lsda” ); 

handle An Int used to indentify this file in further actions. 

filename A string giving the filename or path to the database.  

 

Close a database 

Command Int success lsda_close(Int handle) 

Example Int flag = lsda_close( fout ); 

Success An Int specify whether the command succeeded (>0).  

handle An Int identifying the lsda database. 

 

 

Change to a database directory 

Command Int success lsda_cd(Int handle, Char * dirName) 

Example Int flag = lsda_cd( fout, “Design#4” ); 

Success An Int specify whether the command succeeded (>0).  

handle An Int identifying the lsda database. 

dirName A String specifying the database directory. 

 

 

Get the current directory in a database 

Command Char *dirName lsda_getpwd(Int handle) 

Example Char *currDir = lsda_getpwd( fout ); 



 17 

dirName A String with the name of the current directory in the database. Do not free this 

string. 

handle An Int identifying the lsda database. 

 

 

Print the content of the current directory 

Command Int numItems lsda_ls(Int handle) 

Example Int n = lsda_ls( fout ); 

numItems An Int specifying the number of items (directories and data vectors) in this 

directory. 

handle An Int identifying the lsda database. 

 

 

Get Integer data 

Command Int * data lsda_getI4data(Int handle, Char * variableName, Int * numValues ) 

Example Int * results = lsda_getI4data( fout, “elementLabels”, &numV ); 

data A pointer to Int containing the data. You must free this pointer after using. 

handle An Int identifying the lsda database. 

variableName The name of the results. 

numValues The length of the data vector (the number of items). 

 

 

Get Float data 

Command Float * data lsda_getR4data(Int handle, Char * variableName, Int * numValues ) 

Example Float * results = lsda_getR4data( fout, “xx-stress”, &numV ); 

data A pointer to Float containing the data. You must free this pointer after using. 

handle An Int identifying the lsda database. 

variableName The name of the results. 

numValues The length of the data vector (the number of items). 

 

 

1.6. Example Script 

1.6.1. Retrieving a value from the project database 

Retrieving a value from the database is simple: opened the project database and the value 

is available. 

 
lst_Root *root = lst_RootReadDb();  

print( "Existing number of iterations: ", root->Method->NumIter ); 

 

1.6.2. Restart for an additional iteration 

Requiring four lines of code, this is slightly more complex than the previous example. 

 
lst_Root *root = lst_RootReadDb();  

root->Method->NumIter = root->Method->NumIter + 1; 

lst_RootWriteDb( root ); 

lst_CreateTopology(root); 
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1.6.3. Adding a geometry definition using a script from the GUI 

This example adds a specialized extrusion definition to a database opened in the GUI. 

The script is submitted from the GUI and the script therefore uses the database that is 

already open. The extrusion definition is added to the first design part in the database. 
 

lst_Root *root = _guiroot1; 

lst_Part *part = root->Problem->PartList; 

// part = part->Next; // if needed follow linked list to correct part 

if( part ) { 

    printf( "Adding geom def to part %d\n", part->ID ); 

    lst_PartAddGeometryExtrusionSetDir( part, "Extrusion with dir 

specified", 1, 1, 0 );  

} else { 

    printf( "Part not found\n" ); 

} 

 

 

 

1.6.4. Creating a topology database 

The example performs topology optimization of a single load case problem using 

extrusion mode. 
 

lst_Root *root = lst_RootNew(); 

 

lst_Case *cse = lst_ProblemAddCase( root->Problem, "TOPLOAD", 

"/data1/tushar/submit_pbs", "small_example.k", 2, 1 ); 

 

lst_JobInfo *ji = lst_JobInfoNew(); 

ji->NumProc = 0; 

ji->Queuer = 3; 

lst_CaseSetJobInfo( cse, ji ); 

 

lst_Part *prt = lst_ProblemAddPart( root->Problem, 103, 0.3 ); 

lst_PartAddGeometryExtrusionConn( prt, "Extr", 1 ); 

 

lst_RootWriteDb( root ); 

 

1.6.5. Printing the content of the project database  

The following script prints the content of a project XML database. 

 
define: 

int Print_JobInfo( lst_JobInfo *jInfo, char * whitespace ) 

{ 

int i; 

 

 print( whitespace, "*** JobInfo ***\n" ); 

 print( whitespace, "\tNumProc\t\t", jInfo->NumProc, "\n" ); 

 print( whitespace, "\tQueuer\t\t", jInfo->Queuer, "\n" ); 

 if( jInfo->EnvVarList ) { 

     i = 0; 

     while( jInfo->EnvVarList[i] ) {  

         print( whitespace, "\tEnvVar\t\t", jInfo->EnvVarList[i], "\n" 

); 
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         i = i+1; 

     } 

 } 

} 

 

define: 

int Print_Case( lst_Case *cse, char * whitespace ) 

{ 

struct lst_JobInfo *jInf; 

    print( whitespace, "*** Case ***\n" ); 

    print( whitespace, "\tName\t\t\"", cse->Name, "\"\n" ); 

    print( whitespace, "\tSolverCommand\t\"", cse->SolverCommand, 

"\"\n" ); 

    print( whitespace, "\tInputFile\t\"", cse->InputFile, "\"\n" ); 

    print( whitespace, "\tWeight\t\t", cse->Weight, "\n" ); 

    print( whitespace, "\tAnalysisType\t", cse->AnalysisType, "\n" ); 

 

    jInf = cse->JobInfo; 

    Print_JobInfo( jInf, "\t\t" ); 

} 

 

define: 

int Print_Geom( lst_Geometry *geom, char * whitespace ) 

{ 

    print( whitespace, "*** Geometry ***\n" ); 

    print( whitespace, "\tName \t\t", geom->Name, "\n" ); 

    print( whitespace, "\tType \t\t", geom->Type, "\n" ); 

    print( whitespace, "\tCID \t\t", geom->CID, "\n" ); 

    print( whitespace, "\tExtructionDir\t\t", geom->ExtructionDir, "\n" 

); 

    print( whitespace, "\tMirrorPlane\t\t", geom->MirrorPlane, "\n" ); 

} 

 

define: 

int Print_Part( lst_Part *prt, char * whitespace ) 

{ 

struct lst_Geometry *geom; 

 

    print( whitespace, "*** Part ***\n" ); 

    print( whitespace, "\tID \t\t", prt->ID, "\n" ); 

    print( whitespace, "\tMassFraction\t", prt->MassFraction, "\n" ); 

    print( whitespace, "\tMinVarValue\t", prt->MinVarValue, "\n" ); 

    print( whitespace, "\tProxTol\t\t", prt->ProxTol, "\n" ); 

 

    geom = prt->GeometryList; 

    while( geom ) { 

        Print_Geom( geom, "\t\t" ); 

        geom = geom->Next; 

    } 

} 

 

define: 

int Print_Problem( lst_Problem *prob, char * whitespace ) 

{ 

struct lst_Case *cse; 

struct lst_Part *prt; 
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    print( whitespace, "*** Problem ***\n" ); 

    print( whitespace, "\tDescription\t\t", prob->Description, "\n" ); 

    print( whitespace, "\tNumCase\t\t\t", prob->NumCase, "\n" ); 

    print( whitespace, "\tNumPart\t\t\t", prob->NumPart, "\n" ); 

 

    cse = prob->CaseList; 

    while( cse ) { 

        Print_Case( cse, "\t" ); 

        cse = cse->Next; 

    } 

 

    prt = prob->PartList; 

    while( prt ) { 

        Print_Part( prt, "\t" ); 

        prt = prt->Next; 

    } 

} 

 

define: 

int Print_Method( lst_Method *meth, char * whitespace ) 

{ 

    print( whitespace, "*** Method ***\n" ); 

    print( whitespace, "\tNumIter\t\t\t", meth->NumIter, "\n" ); 

    print( whitespace, "\tConvTol\t\t\t", meth->ConvTol, "\n" ); 

    print( whitespace, "\tNumDiscreteLevels\t", meth-

>NumDiscreteLevels, "\n" ); 

    print( whitespace, "\tDebugGeomDef\t\t", meth->DebugGeomDef, "\n" 

); 

} 

 

/*********************** PROGRAM TO PRINT LST DATABASE 

**********************/ 

 

struct lst_Root *root; 

struct lst_Problem *prob; 

struct lst_Method *meth; 

 

root = lst_RootReadDb( ); 

 

prob = root->Problem; 

Print_Problem( prob, "" ); 

 

meth = root->Method; 

Print_Method( meth, "" ); 

 

 

1.6.6. Printing the content of the results database 

Int flag, numV, iter = 1; 

Char dirName[1024]; 

Float *data, *aveChng; 

 

print( "\"ItNum\",\"Mass_Redistribution\"\n" ); 

Int handle = lsda_open( "lst.binout" ); 

lsda_cd( handle, "/" ); 

sprintf( dirName, "/design#%d", iter ); 

while ( lsda_cd( handle, dirName ) == 1 ) { 
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  aveChng = lsda_getR8data( handle, "Mass_Redistribution", &numV ); 

   

  print( iter, ", ",  aveChng[0], "\n"); 

   

  iter = iter+1; 

  sprintf( dirName, "/design#%d", iter ); 

 

  free( aveChng ); 

} 

 

lsda_close( handle ); 
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