
 

 

 

 

 

 

 

 

 

 

The LS-TaSC™ Software 

TOPOLOGY AND SHAPE COMPUTATIONS USING 

THE  

LS-DYNA
® 

SOFTWARE 

 

 

 

THEORY MANUAL 

 

 

 

 

 
 

 

 

 

January 2014 
Version 3.0 

 

 
 

Copyright © 2009-2014 

LIVERMORE SOFTWARE  

TECHNOLOGY CORPORATION 



 2 

All Rights Reserved 
 

 
Corporate Address 

Livermore Software Technology Corporation 

P. O. Box 712 

Livermore, California 94551-0712 

Support Addresses 

Livermore Software Technology Corporation 

7374 Las Positas Road 

Livermore, California 94551 

Tel:  925-449-2500  ♦  Fax:  925-449-2507 

Email:  sales@lstc.com 

Website:  www.lstc.com 

Livermore Software Technology Corporation 

1740 West Big Beaver Road 

Suite 100 

Troy, Michigan  48084 

Tel:  248-649-4728  ♦  Fax:  248-649-6328 

Disclaimer 

Copyright © 2009-2014 Livermore Software Technology Corporation.  All Rights 

Reserved. 

LS-DYNA®, LS-OPT® and LS-PrePost® are registered trademarks of Livermore Software 

Technology Corporation in the United States. All other trademarks, product names and 

brand names belong to their respective owners. 

LSTC reserves the right to modify the material contained within this manual without 

prior notice. 

The information and examples included herein are for illustrative purposes only and are 

not intended to be exhaustive or all-inclusive. LSTC assumes no liability or responsibility 

whatsoever for any direct of indirect damages or inaccuracies of any type or nature that 

could be deemed to have resulted from the use of this manual. 

Any reproduction, in whole or in part, of this manual is prohibited without the prior 

written approval of LSTC. All requests to reproduce the contents hereof should be sent to 

sales@lstc.com. 

 

22-Jan-14 

 

mailto:sales@lstc.com


 3 

 

 

 

 

 
I must say it looks a bit like science fiction to many people – Ofir Shor, June 2009, while 

evaluating the alpha version. 
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1. TOPOLOGY THEORY 

 

1.1. Background 

The traditional approach for solving topology optimization problems is based on 

sensitivity analysis that is inexpensive to obtain for linear-static problems. However, 

deriving analytical sensitivities for dynamic analysis is very difficult due to the complex 

interactions among material nonlinearities, geometry and mesh, and transient nature of 

load and boundary conditions. Numerical computation of sensitivities is also not practical 

due to the high computational expense. Hence the conventional sensitivity based 

approach of topology optimization is not practical for crashworthiness problems. To 

overcome the aforementioned difficulties in topology optimization, a different approach 

was proposed. This approach does not require gradients and hence there is no need to 

compute the sensitivities.  In version 1, the approach was refer to as Hybrid Cellular 

Algorithm [1,2], but academics doing a literature review should also consult other 

standard views of topology optimization and our patent portfolio to understand what is 

currently actually implemented. With there being no cellular algorithm in the current 

version, the methodology is best referred to as LS-TaSC 3.0. 

 

1.2. Implementation 

The algorithm for structural optimization is shown pictorially in Figure 1-1. After 

defining the problem, the topology is evolved using the simple rules defined on the 

variables. The constraints are accommodated during the state update procedure. 

 
Figure 1-1: The topology optimization algorithm 
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1.2.1. Definition 

The input data is used to identify the design domain and design material model. The input 

data comprises of method data e.g., number of iterations, convergence tolerance, and the 

problem data, e.g. load cases, design part, etc. 

 

1.2.2. Creating the variables 

The finite element model is mapped to design variables. Each design variables is assigned 

to a solid element in the design domain. For extrusion and symmetry constraints, the 

equality constraints are defined between the variables. For casting constraints, inequality 

constraints are established. 

 

1.2.3. Filtering of results 

Past work were based on the structured grid arrangement of cells. This assumption would 

breakdown for industrial applications where structured grids are not always possible. 

Hence, a radius based strategy is used to identify neighbors. In this strategy, a virtual 

sphere of user-defined radius is placed at the centroids of an element. All elements that 

are within this sphere are considered the neighbors of the corresponding element, and the 

results are averaged over the elements in the neighborhood  
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1.2.4. Material Parameterization 

The material model is parameterized using a so-called density approach. In this approach, 

a design variable is directly linked to the individual material element such that each 

variable has its own material model. The material properties corresponding to the values 

of design variables are obtained using an appropriate interpolation model. The solid 

isotropic material with penalization (SIMP) model [6] is the most popular interpolation 

method. This model is power law approach that drives the intermediate material 

properties towards the boundaries to obtain a 0-1 topology. According to SIMP model, 

the material properties are defined as,  

                                          ,)( 0 xx                                                              (3) 

                                          ,)( 0ExxE p                                                           (4) 

                                          ,)( 0 qxx                                                             (5) 

                                         ,)( 0h

q

h ExxE                                                           (6) 

 

where  denotes the density of the material, E represents the Young’s modulus,   is the 

yield stress, and hE  is the strain hardening modulus. The last two material properties 

represent material non-linearities and are required for dynamic problems like crash that 

involve material yielding. The subscript ‘0’ refers to the base material properties. The 

design variable x, also known as relative density, varies from 0 to 1 where ‘0’ indicates 

void and ‘1’ represents full material. A more detailed description of the material model 
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parameterization, one should refer to Bendsøe and Sigmund [7], and Patel [8]. The 

elements with design variable value less than a user-defined minimum value are deleted 

to improve numerical stability. To enable the use of very large FE models, this 

approached was implemented using a discrete material model approach [9]. 

 

1.2.5. Design Objectives and Constraints 

The typical goal of topology optimization is to obtain a structure with the best use of the 

material. Compliance and the strain energy density are the most commonly used 

objectives for linear-static problems. For dynamic problems like crashworthiness 

simulations, the structure needs to absorb maximum energy while maintaining the 

structural integrity and keeping the peak loads transmitted to the occupants low.  

 

Following the formulation proposed by Patel [8], the goal of obtaining uniform internal 

energy density in the structure is defined as the objective for optimization. This concept 

is similar to the fully-stressed design and uniform strain energy density approaches 

(Haftka and Gurdal [10], Patnaik and Hopkins [11]) that are well established in literature 

for linear-static problems.  The use of the internal energy density in optimization, its 

relationship with the design sensitivity information for crash problems, and its usefulness 

for ranking variables has been extensively studied by Öman [12,13]. 

 

The optimization problem is formulated as, 
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where U represents the internal energy density of the i
th

 element, Vi is the volume of i
th

 

element, U
*
 represents internal energy density set point, and Cj is the j

th
 constraint. There 

are L load cases with a total of J constraints. The superscripts ‘l’ and ‘u’ represent lower 

and upper bounds on the constraints, respectively. 

 

1.2.6. Design Variable Initialization 

The design variables are initialized to satisfy the material constraint. All elements are 

assigned the same design variable values. All associated field variables are also 

initialized to zero.  

 

1.2.7. Simulation to Obtain Field Variables 

The elements in the finite element model are modified by changing the material models, 

adding or deleting elements, at each iteration. So the input deck is re-written at each 

iteration. This modified input deck is analyzed using LS-DYNA® [11]. One can take 

advantage of multiple processors using the MPP version of LS-DYNA. The relevant field 
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variables for all elements are obtained from the output to completely define the state of 

each variable. For multiple load case conditions, the state variable is based on the output 

from simulations of different load cases.  

 

For dynamic problems, it was observed that accounting for the history of evolution 

induces stability by reducing the element deletion rate. Hence, the field variable (internal 

energy density) of i
th

 variable at iteration t is updated by defining a weighted sum on the 

field variable of three previous iterations as follows, 
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where xi is the design variable associated with the i
th

 variable at iteration t. If the load 

cases are a mixture of dynamic and static problems, then this weighing is followed for all 

the load cases. 

 

1.2.8. Global Constraint Handling 

In presence of constraints other than the mass constraints, the target mass constraint is 

adjusted to satisfy the structural constraints. The mass target (M
*
) is increased in 

proportion to the constraint violation for all constraints except force constraints for which 

the mass target is reduced.  
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where J is the total number of constraints, c

jK  is the coefficient used to scale the 

constraint violation of the j
th

 constraint, and εj is the violation of the j
th

 constraint. The 

total change in mass target (ΔM) is bounded to allow gradual changes in the structure. 

 

1.2.9. Dynamic Load Case Weighing 

The desired behavior is offsetCkoffsetCk  22111  with C the constraint value, k a scale 

factor, and an offset added as shown.  The weight iw of load case i is adjusted to change 

constraint iC . The target value is computed as 
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maximum bound is place on w  to ensure convergence in a reasonable number of 

iterations. 
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1.2.10.  State Update Rules 

This is the heart of topology optimization method. In this step, the state of a variable is 

updated based on the state of its neighbors. The state update is carried out in two steps: 

1. Field variable update: The field variable (internal energy density) of a variable is 

updated as accounting for the field variable values of its n neighbors as, 
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2. Variable/Material Update: Once the field-variable state of each variable is 

defined, the design variable is updated to reflect the changes. While numerous 

rules are proposed in literature [6] to update design variables, a control based rule 

used by Patel [8] is implemented here (Figure 1-2).  

 

The change in the design variable of i
th

 variable (Δxi) is computed as, 
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where K is a scaling factor and *U denotes the internal energy density set point. The 

design variable is updated as, 
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The change in the variable is constrained by the bounds on the value of the design 

variable i.e.,  

I. if ,1 LBxt

i  then ,1 LBxt

i    

II. if ,1 UBxt

i  then ,1 UBxt
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and only certain discrete values are allowed.  
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Stop
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Figure 1-2: Design variable update. 

 

The mass of each element is then calculated by using the appropriate material model 

associated with the design variables. If the total mass of the structure meets the 

constraint, the total change in design variables in this iteration is calculated, and the 

design variable update is considered completed. If the mass constraint is not satisfied, the 

IED set point is updated iteratively to accommodate the material constraint as, 

                                             ./ **** MMUUU                                              (13) 
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where M is the mass of the structure. 

  

1.2.11.  Stopping Criteria 

Two termination conditions are used to stop the optimization process. 

1. The number of iterations has exceeded the maximum number of iterations, or 

2. The change in the topology is smaller than the tolerance, i.e.,  
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The numerical oscillations in convergence are limited by averaging the total change in 

topology over two iterations. 
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2. SURFACE DESIGN THEORY 

 

2.1. Background 

The traditional approach for solving shape design problems is based on sensitivity 

analysis that is inexpensive to obtain for linear-static problems. However, deriving 

analytical sensitivities for dynamic analysis is very difficult due to the complex 

interactions among material nonlinearities, geometry and mesh, and transient nature of 

load and boundary conditions. Numerical computation of sensitivities is also not practical 

due to the high computational expense. Hence this approach is not practical for 

crashworthiness problems. To overcome the aforementioned difficulties, a different 

approach was proposed. This approach does not require gradients and hence there is no 

need to compute the sensitivities. The methodology is best referred to as LS-TaSC 3.0. 

 

 

2.2. Implementation 

The algorithm is shown pictorially in Figure 1-1. After defining the problem, the surface 

shape is evolved using the simple rules defined on the variables. 

 
Figure 2-1: The surface design algorithm 

 

 

2.2.1. Definition 

The input data is used to identify the design problem. The input data comprises of method 

data e.g., number of iterations, convergence tolerance, and the problem data, e.g. load 

cases, design surface, etc. 

 

2.2.2. Creating the variables 

The discrete surface is mapped to design variables. The normal displacement to each 

node in the design surface assigned to a design variable. For extrusion and symmetry 

constraints, the equality constraints are defined between the variables. 
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2.2.3. Filtering of results 

A radius based strategy is used to identify neighbors. In this strategy, a virtual sphere of 

user-defined radius is placed at the centroids of an element. All elements that are within 

this sphere are considered the neighbors of the corresponding element, and the results are 

averaged over the elements in the neighborhood  
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2.2.4. Design Objective 

The goal of shape design is to obtain surface with a uniform stress.  

 

The optimization problem is formulated as, 
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where U represents the design field (typically the von Mises stress) at the node associated 

with design variable ix , and ettU arg  represents the target value of the design field. 

 

 

2.2.5. Target Stress 

The goal of shape design is to obtain surface with a uniform stress. In order to complete 

this task we need to define a target stress. There are the following possibilities of 

selecting a target stress: 

 Average over the surface 

 The maximum value on the surface 

 The minimum value on the surface 

 A user-defined value 

Using the above target stresses it should be noted that the goal becomes more subtle than 

obtaining the a surface with a uniform stress: if selecting the maximum is as the target 

stress, then the weight of the structure will be reduced; while if the minimum is selected, 

then the average stress is reduced. 

 

2.2.6. Design Variable Initialization 

All design variables are also initialized to zero.  

 

2.2.7. Simulation to Obtain Field Variables 

The elements in the finite element model are modified the nodal locations for all 

iterations. So the input deck is re-written for all iterations. The relevant field variables for 

all nodes are obtained from the output to completely define the state of each variable. For 
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multiple load case conditions, the state variable is based on the output from simulations 

of different load cases.  

 

For dynamic problems, it was observed that accounting for the history of evolution 

induces stability by reducing the element deletion rate. Hence, the field variable (internal 

energy density) of i
th

 variable at iteration t is updated by defining a weighted sum on the 

field variable of three previous iterations as follows, 
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where xi is the design variable associated with the i
th

 variable at iteration t. If the load 

cases are a mixture of dynamic and static problems, then this weighing is followed for all 

the load cases. 

 

2.2.8.  Variable Update 

This is the heart of shape design method. In this step, the state of a variable is updated 

based on the state of its neighbors. The state update is carried out in two steps: 

1. Field variable update: The field variable (internal energy density) of a variable is 

updated as accounting for the field variable values of its n neighbors as, 
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2. Variable update: Once the field-variable state of each variable is defined, the 

design variable is updated to reflect the changes..  

 

The change in field value required is ettii UU arg . Now compute 
x

U
x ii




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ix  the required movement of node i normal to the surface. 

 

 

2.2.9.  Stopping Criteria 

Two termination conditions are used to stop the optimization process. 

1. The number of iterations has exceeded the maximum number of iterations, or 

2. The change in the topology is smaller than the tolerance, i.e.,  
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