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1 Topology Theory 

1.1 Background 

LS-TaSC contains two approaches for the topology optimization: (i) an optimality criterion 

approach called Optimality Criteria for Dynamic Problems and (ii) a mathematical 

programming approach called Projected Sub-gradient Method. Constraints on the 

responses are handled using global variables together with a multi-tensor method is used – 

the multi-tensor method is an extension of the more familiar multi-point approaches 

modified for topology optimization. Geometry definitions are handled using equality 

constraints on the variables together with filtering. 

The traditional approach for solving topology optimization problems is based on 

sensitivity analysis that is inexpensive to obtain for linear-static problems. However, 

deriving analytical sensitivities for dynamic analysis is very difficult due to the complex 

interactions among material nonlinearities, geometry and mesh, and transient nature of load 

and boundary conditions. Numerical computation of sensitivities is also not practical due 

to the high computational expense. Hence, the conventional sensitivity-based approach of 

topology optimization is not practical for crashworthiness problems. To overcome the 

aforementioned difficulties in topology optimization, a different approach was proposed. 

This approach does not require gradients and hence there is no need to compute the 

sensitivities. The optimality criteria used is that of having a uniform internal energy 

density, a condition which (as far as we can ascertain) probably goes back to before 

Prager’s work in the 1960’s. The full method also contains elements of the used fully 

stressed methodology together with SIMP and results filtering (this also forms the basis for 

the perhaps better known optimality criterion method described in Bendsøe and Sigmund 

[1]). The approach of designing for a uniform internal energy density was first applied to 

impact problems in work done at Notre Dame university (see e.g. [2] and [3]), From the 

start our work differed from the Notre Dame project by omitted their signature use of a 

cellular algorithm; instead we reverted to the older and more established knowledge by 

using a more traditionally filtering and adding a solid/void (SIMP) strategy, because the 

established methodologies have all of the benefits while carrying none of the risk. 

Additions such as the multipoint approach for constrained optimization are unique to LSTC 

and our vehicle crash applications.  Academics doing a literature review should therefore 

also consult other standard views of topology optimization and our patent portfolio to 

understand what is currently actually implemented. 

Topology optimization in structures has been studied since the 1970s resulting in many 

books and numerous papers. The books by Rozvany [4] and Bendsøe and Sigmund [1] 

provide a very comprehensive and contemporary survey of optimization techniques used 

in topology optimization. Most previous studies in topology optimization, e.g., [5] and [6], 

have focused on designing structures with static loading conditions but there is relatively 

little work on handling problems involving dynamic loads, like those observed in 
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crashworthiness optimization [7]. In the context of crashworthiness, topology optimization 

is a very complex problem due to non-linear interactions among material and geometry, 

and the transient nature of boundary conditions. 

The most efficient topology optimization methods use sensitivity information e.g., 

mathematical programming methods [8], to drive the search for an optimum for large-scale 

topology optimization problems. Sensitivity calculations are computationally inexpensive 

for linear-static problems but not for the problems that involve non-linearities. To use the 

same set of topology optimization methods, one needs to explicitly calculate sensitivities 

which is practically infeasible due to very high computational cost involved with 

simulations. Thus the theory used to solve the linear static load cases, though quite mature, 

is not practical for the crashworthiness problems and alternative methods need to be 

explored. 

Previously different approaches have been adopted by authors to solve topology 

optimization with non-linearities. Pedersen used the method of moving asymptotes (MMA) 

for crashworthiness optimization of two-dimension structures [1]. There, a quasi-static 

non-linear FEA was used to account for geometric nonlinearities to handle large 

deformation and rotation of plastic beam elements. However, the method ignored the 

contact between elements arising due to non-linear structural behavior. Soto [2] and [3] 

presented a heuristics-based method using a prescribed plastic strain or stress criterion to 

vary the density to achieve the desired stress or strains with a constraint on mass. However, 

this method could not be generalized to solid structures. Pedersen [4] used beam elements 

to handle topology in crashworthiness optimization. Forsberg and Nilsson [5] proposed 

two algorithms to get a uniform distribution of the internal energy density in the structure. 

In the first method, they deleted inefficient elements and in the second method they updated 

the thicknesses of the shell elements. This method also was limited to a small set of 

optimization problems. Shin et al. [6] proposed an equivalent static load method where 

they calculated an equivalent static load for the dynamic problem and then used the linear-

static topology optimization techniques to find the optimal topology. The main difficulty 

in this method is the requirement to accurately compute the equivalent loads. 

1.2 Overview of Topology Algorithm 

The algorithm for structural optimization is shown in Figure 1-1. After defining the 

problem, the topology is evolved using the simple rules defined on the variables. The 

constraints are accommodated during the state update procedure. 
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Figure 1-1: The topology optimization algorithm 

 

1.2.1 Definition 

The input data is used to identify the design domain and design material model. The input 

data comprises of method data e.g., number of iterations, convergence tolerance, and the 

problem data, e.g. load cases and design part. 

1.2.2 Creating the Variables 

The finite element model is mapped to design variables. Each design variable is assigned 

to a solid element in the design domain. For extrusion and symmetry constraints, the 

equality constraints are defined between the variables. For casting constraints, inequality 

constraints are established. 

1.2.3 Filtering of Results 

Filtering is a standard operation in topology optimization used to enforce a minimum 

feature size and to prevent an instability named checker boarding. 

A radius based strategy is used to identify neighbors. In this strategy, a virtual sphere 

of user-defined radius is placed at the centroid of an element. All elements that are within 

this sphere are considered the neighbors of the corresponding element, and the results are 

averaged over the elements in the neighborhood 

𝑈𝑖 =
∑ 𝑤𝑗𝑈𝑗

𝑛
𝑗=1

∑ 𝑤𝑗
𝑛
𝑗=1

,      (1-1) 

where the subscripts 𝑖 and 𝑗 are, respectively, the indices of the central element and 

elements around the central element within the sphere. 𝑤𝑗 are the filter weights and 𝑈𝑗 are 

initially the internal energy density values as extracted from the d3plot file. Multiple values 

of the internal energy density are computed for a dynamic analysis; in this case the 

maximum value is used.   

If the user specifies a negative value then the value is assumed to be element specific 

and the radius used for an element is the absolute value of the specified value times twice 

Read input data Identify neighbors Create geometry definitions 

Initialize variable Run simulations 
Evaluate objective 

and constraints 

Update field and 

design variables 
Converged? Stop  

No 

Yes 
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the average distance from the center of the element to the nodes.  If the value is positive 

then the specified value is applied to all elements. The default value is -1.0, which means 

the results from all elements sharing a node with an element are likely to be used. 

1.2.4 Material Parameterization 

The material model is parameterized using the (relative) density approach. In this 

approach, a design variable is directly linked to the individual material element such that 

each variable has its own material model. The material properties corresponding to the 

values of design variables are obtained using an appropriate interpolation model. The solid 

isotropic material with penalization (SIMP) model [7] is the most popular interpolation 

method. This model is a power law approach that drives the intermediate material 

properties towards the boundaries to obtain a 0-1 topology. According to the SIMP model, 

the material properties are defined as,  

𝜌(𝑥) = 𝑥𝜌0,       (1-2) 

𝐸(𝑥) = 𝑥𝑝𝐸0,                      (1-3) 

𝜎(𝑥) = 𝑥𝑞𝜎0,      (1-4) 

𝐸ℎ(𝑥) = 𝑥𝑞𝐸ℎ0,      (1-5) 

where 𝜌 denotes the density of the material, 𝐸 represents the Young’s modulus, 𝜎 is the 

yield stress, and 𝐸ℎ  is the strain hardening modulus. The last two material properties 

represent material non-linearity and are required for dynamic problems like crash that 

involve material yielding. The subscript 0 refers to the base material properties. The design 

variable x, with 0 ≤ 𝑥 ≤ 1 is also known as relative density, varies from 0 to 1 where 0 

indicates void and 1 represents full material. A more detailed description of the material 

model parameterization, one should refer to Bendsøe and Sigmund [8] and Patel [9]. 

Elements with design variable value smaller than a user-defined minimum value are 

deleted to improve numerical stability. To enable the use of very large FE models, this 

approached was implemented using a discrete material model approach [10]. 

For eigenvalue problems the method of setting the element mass to zero in sub-regions 

with low material density is used to prevent the localized eigenmodes. Thus, the 

interpolation formula for densities is parameterized as 

𝜌(𝑥) = {
𝑥𝜌0        𝑖𝑓  �̂� < 𝑥

𝑥𝑟𝜌0      𝑖𝑓  𝑥 ≤  �̂�
,      (1-6) 

with �̂� = 0.1,and 𝑟 = 6. Note that Equation (1-6) is discontinuous at the low value 𝑥 =

0.1 of the material density. This is not a serious problem because the discontinuity only 

occurs at a single point. 
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1.2.5 Solid/Void Behavior 

Solid/void options force the elements to be either fully used or not used, instead of partially 

used. Forcing elements to be either fully used or not used will result in a target field that is 

less uniform over the part, because the intermediate variable values are required to obtain 

a uniform field.  

LS-TaSC has three methods: the SIMP method, the true mechanics method, and the 

SIMP with continuation. In this theory manual, the SIMP and true mechanics methods are 

introduced. The true mechanics method only works with the internal energy density 

approach, while the SIMP method works well with both the internal energy density (IED) 

and design sensitivity analysis (DSA) approaches. The true mechanics scheme is the 

default in LS-TaSC, because it has proved to work well in extensive industrial testing. 

1.2.5.1 Element Volume vs Material Volume 

The issue is that there are two measures on energy density. The question is whether the 

density result is reported relative to the volume of the element, or relative to the amount of 

material in the element. The value reported in the d3plot file for solids is relative to the 

volume of the element. This must be scaled with the design variable (the volume of material 

in the element) to obtain the actual IED for the material in that element. For example, 

consider an element with E=3, volume=5, and x=0.1. The EID_e (per element volume) = 

3/5 = 0.6. The EID_m (per material volume) = 3 / (5*.1) = 6. 

For shell elements this issue does not arise, because the thickness is the design 

variable. The element volume and material volume are therefore the same. 

This applies only to energy density computations. The energies as reported in the glstat 

are always correct.  

1.2.5.2 The SIMP Solid/Void Scheme 

Solid Isotropic Material with Penalization (SIMP) forces material to 0/1 using the 

following equations: 

𝜌(𝑥) = 𝑥𝜌0,      (1-7) 

𝐸(𝑥) = 𝑥𝑝𝐸0,       (1-8) 

𝜎(𝑥) = 𝑥𝑞𝜎0,        (1-9) 

𝐸ℎ(𝑥) = 𝑥𝑞𝐸ℎ0,       (1-10) 

To use SIMP, take p=3 and q=2.666 in the above equations using element material based 

fields. 

The use of SIMP have resulted in many problems when applied to industrial problems. 

For some non-linear material models the material model may not be valid for the values of 

p and q. An additional problem is elements being driven to a very low stiffness using 

through the 𝑥𝑝 term; these elements are likely to be inverted during nonlinear calculations. 

Also, for NVH computations, the speed of sound may be lowered so much that it interferes 
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with the physics under consideration. The displacements and energies of the models will 

also be very high during initial iterations because the scaling of the stiffness with the 

𝐸(𝑥) = 𝑥𝑝𝐸0 term. For a mass fraction of 0.3, this may result in a factor 10 difference; for 

a mass fraction of 0.01, the potential difference grows to an astonishing 10000. 

Because of the above, the SIMP scheme is not recommended for industrial problems, 

specifically problems involving highly nonlinear mechanics and constraints.  

1.2.5.3 True Mechanics Solid/Void Scheme 

The standard academic research on the topic, specifically the ubiquitous SIMP scheme, is 

not derived to allow the robust computation of highly nonlinear behavior. The structural 

mechanics cannot be disregarded, because this will yield the various instabilities described 

in the previous section. The true mechanics scheme for solid/void scheme borrows from 

the mathematical field of dynamical systems [11] to both respect the structural mechanics 

of the problem and to force elements with small variable values to exit the equations.  

𝜌(𝑥) = 𝑥𝜌0,       (1-11) 

𝑑𝐹/𝑑𝑥 = 𝑥𝑝𝑑𝐹0(𝑥)/𝑑𝑥,         (1-12) 

𝐸(𝑥) = 𝑥𝐸0,        (1-13) 

𝜎(𝑥) = 𝑥𝑞𝜎0,        (1-14) 

𝐸ℎ(𝑥) = 𝑥𝑞𝐸ℎ0,       (1-15) 

This gives the desired solid/void behavior if p is taken to be 1. This scheme is the default 

in LS-TaSC, because it has proved to work well in extensive industrial testing. 

1.2.5.4 Gradual Solid/Void Scheme 

The gradual true mechanics solid/void scheme is formulated based on the power law 

method except that the parameter 𝑝 is computed by following the below continuation, 

𝑝 = 𝑝 + (𝑝 − 𝑝)(1 − 𝑒−
𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛

30 ),                                               (1-16) 

where the penalty parameter 𝑝 is increased gradually from the lower bound 𝑝 to the upper 

bound 𝑝 in increments at each iteration. “𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛” means the iteration number and the 

penalty parameter 𝑝 equals to 1.0 at the first iteration. With Equation (1-16), the structural 

mechanic responses described in Equation (1-12) are progressively penalized by increasing 

𝑝 iteratively. Thus, the intermediate densities are driven to solid or void more effectively 

while giving a certain volume of material for the whole structure. This scheme helps to 

prevent the optimization from converging at a local optimum too early with a less desirable 

structure. However, the global optimum cannot be guaranteed with the above scheme.  

The gradual SIMP solid/void scheme is formulated by the continuation method in the 

similar way as that for the gradual true mechanics scheme, but different lower and upper 
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bounds of the penalty parameter are used and the penalty parameter is changed gradually 

in a manner of decreasing from the upper bound to the lower bound.  

1.2.6 Design Objectives and Constraints 

The typical goal of topology optimization is to obtain the layout of a structure; the structure 

supporting a load with a better structure needing less material to do so. Compliance is the 

most commonly used objectives for linear static problems. For dynamic problems, like 

crashworthiness simulations, the structure needs to absorb the energy while maintaining 

the structural integrity and keeping the peak loads transmitted to the occupants low. 

In LS-TaSC the layout of the structures is designed such as to maximize the stiffness, 

while other objectives and constraints such as the amount of energy absorbed and the 

amount of deflection is controlled by global variables such as the part mass fractions and 

load case weights. In theory any kind of response can be designed for, but in practice 

sophisticated responses requires sophisticated use of the global variables such as 

subdivided the part into a number of parts. 

1.2.7 Design Variable Initialization 

The design variables are initialized to satisfy the material constraint. All elements are 

assigned the same design variable values. All associated field variables are also initialized 

to zero. 

1.2.8 Simulation to Obtain Field Variables 

The elements in the finite element model are modified by changing the material models, 

i.e. adding or deleting elements in each iteration. To his end, the input deck is re-written at 

each iteration. This modified input deck is analyzed using LS-DYNA® [12]. One can take 

advantage of multiple processors using the MPP version of LS-DYNA. The relevant field 

variables for all elements are obtained from the output to completely define the state of 

each variable. For multiple load case conditions, the state variable is based on the output 

from simulations of different load cases. 

For dynamic problems, it was observed that accounting for the history of evolution 

induces stability by reducing the element deletion rate. Hence, the internal energy density 

field variable of ith element at iteration t is updated by defining a weighted sum on the field 

variables of the current and three previous iterations as follows, 

                                  𝑈𝑖
𝑡 = ∑ (𝑥𝑖)

𝑘+1𝑈𝑖
𝑡−𝑘3

𝑘=0 ∑ (𝑥𝑖)
𝑘+13

𝑘=0⁄  ,     (1-17)  

where xi is the design variable associated with the ith variable at iteration t. If the load cases 

are a mixture of dynamic and static problems, then this weighing is followed for all the 

load cases. 

1.3 Global Constraint Handling using Control Theory 

In presence of constraints other than the mass constraints, the target mass constraint is 

adjusted to satisfy the structural constraints. The mass target (M*) is increased in proportion 
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to the constraint violation for all constraints except force constraints for which the mass 

target is reduced.  

 

* * ,

/ ,c

j j

j

M M M

M K J

= + 

 
 =  

 


      (1-18) 

where J is the total number of constraints, 𝐾𝑗
𝑐 is the coefficient used to scale the constraint 

violation of the jth constraint, and εj is the violation of the jth constraint. The total change in 

mass target (ΔM) is bounded to allow gradual changes in the structure. 

1.4 Dynamic Load Case Weighing 

The desired behavior is 𝑘1𝐶1 + 𝑜𝑓𝑓𝑠𝑒𝑡1 = 𝑘2𝐶2 + 𝑜𝑓𝑓𝑠𝑒𝑡2 with C the constraint value, 

k a scale factor, and an offset added as shown. The weight lw of load case l is adjusted to 

change constraint 𝐶𝑙. The target value is computed as 

                                             𝐶𝑡𝑎𝑟𝑔𝑒𝑡 =
∑ (𝑘𝑙𝐶𝑙+𝑜𝑓𝑓𝑠𝑒𝑡𝑙)𝐿

𝑙=1

𝐿
,      (1-19) 

from which we compute 

 𝛥𝑤𝑖 = (𝐶𝑡 𝑎𝑟𝑔 𝑒𝑡 − 𝑘𝑖𝐶𝑖 − 𝑜𝑓𝑓𝑠𝑒𝑡𝑖)/(0.1𝐶𝑡 𝑎𝑟𝑔 𝑒𝑡).    (1-20) 

and a maximum bound of 0.05𝑤𝑙 is placed on  ∆𝑤𝑙 to ensure convergence in a reasonable 

number of iterations. 

1.5 Optimality Criteria for Dynamic Problems 

1.5.1 Design Objectives 

The objective is that obtaining the stiffest structure for a given mass. These requirements 

yields the optimality criteria of designing for a uniform internal energy density. This 

approach to design dates back to at least work by Venkayya et al. [33] and is adopted by 

many others. The history of these developments can be found in the book by Rozvany [13]. 

This concept is similar to the fully-stressed design and uniform strain energy density 

approaches, see e.g. Haftka and Gürdal [14] or Patnaik and Hopkins [15], which are well 

established in literature for linear-static problems.  

The optimization problem is formulated as 

                          𝑚𝑖𝑛
𝑥

∑ ∑ (𝑤𝑙𝑈𝑙(𝑥𝑖) − 𝑈𝑙
∗)𝐿

𝑙=1
𝑁
𝑖=1 ,      (1-21) 

subject to, 
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∑ 𝜌(𝑥𝑖)𝑉𝑖

𝑁
𝑖=1 ≤ 𝑀∗

𝑥𝑚𝑖𝑛 ≤ 𝑥𝑖 ≤ 1.0
.     (1-22) 

where 𝑈𝑙(𝑥𝑖) represents the internal energy density of the ith element in the lth load case, Vi 

is the volume of ith element, and 𝑈𝑙
∗ represents internal energy density set point in the lth 

load case. The superscripts ‘low’ and ‘up’ represent lower and upper bounds on the 

constraints, respectively. 

The multipoint scheme can be used to introduce other objectives and constraints such 

as the maximization of energy absorption and limits on displacements or peak forces. 

To understand how these optimality criteria were derived consider saying a situation 

consisting of perfectly plastic flow under the condition of constant energy (typical of 

impact problems). Consider a fiber A with a plastic strain larger than that at another fiber 

B. The plastic work done will depend only on the strain, because the yield stress is constant. 

Therefore moving material from B to A will try to increase the total plastic work, because 

the material will absorb more energy at A than B. But the total energy is required to be 

constant, therefore the strains at A must be reduced in this new configuration. There may 

be a small corresponding increase in the strain at B, but overall the load resistance of the 

part increases – because more energy will be absorbed for the same displacement (strain 

field). Given that the total work is constant, the displacement (plastic strain level) must 

decrease, and the outcome is that of a structure with better load resistance. This is 

frequently expressed as an optimality criterion stating that the optimal part has a uniform 

energy density. The knowledge is due to a previous generation of engineers – research 

ceased long ago in favor of mathematical programming methods using derivatives. 

Considering the objective functions, the optimality criteria methods and the 

mathematical programming methods should yield similar designs, because both essentially 

solve the equation describing the energy in the structure. Differences in designs will 

however occur due to (i) local minima found by the solvers, which are quite probable for 

highly nonlinear and other tough problems; and (ii) the projected sub-gradient method 

being a more powerful method. 

1.5.2 Update Rules 

This is the heart of the optimality criteria topology optimization method. In this step, the 

state of a variable is updated based on the state of its neighbors. The state update is carried 

out in two steps: 

1. Field variable update: The field variable (internal energy density) of a variable is 

updated as accounting for the field variable values of its neighbors using the 

filtering described in section 1.2.3 as, 

 𝑈𝑖 =
∑ 𝑤𝑗𝑈𝑗

𝑛
𝑗=1

∑ 𝑤𝑗
𝑛
𝑗=1

,      (1-23) 

2. Variable/Material Update: Once the field-variable state of each variable is defined, 

the design variable is updated to reflect the changes. While numerous rules are 
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proposed in literature [7] to update design variables, the fully stressed method used 

by Patel [9] is implemented here (Figure 1-2). 

The change in the design variable of ith variable (Δxi) is computed as, 

 ( )* */ .t t

i ix K U U U = −     (1-24) 

where K is a scaling factor and 𝑈∗denotes the internal energy density set point. The design 

variable is updated as, 

 𝑥𝑖
𝑡+1 = 𝑥𝑖

𝑡 + 𝛥𝑥𝑖
𝑡 .     (1-25) 

The change in the variable is constrained by the bounds on the value of the design 

variable i.e., 

I. if 𝑥𝑖
𝑡+1 < 𝐿𝐵, then 𝑥𝑖

𝑡+1 = 𝐿𝐵,  

II. if 𝑥𝑖
𝑡+1 > 𝑈𝐵, then 𝑥𝑖

𝑡+1 = 𝑈𝐵, 

and only certain discrete values are allowed.  

 

 

Figure 1-2: Design variable update. 

The mass of each element is then calculated by using the appropriate material model 

associated with the design variables. If the total mass of the structure meets the constraint, 

the total change in design variables in this iteration is calculated, and the design variable 

update is considered completed. If the mass constraint is not satisfied, the IED set point is 

done using bisection method. 

1.6 Projected Sub-gradient Method 

This method works for combined impact, NVH, and linear load cases. It is the only 

available method for the fundamental eigenvalue problems. 

The method is similar to the steepest descent method which has an update written as 

If |M-M*| < ε

dXi=0 dXi=K(Ui/U
* – 1)

Xi
t+1 = xi

t + dXiCorrect Xi
t+1

dMi=Mi
t+1-Mi

t

Stop

U*=U*(M/M*)

dX=∑dXi

No

Yes

M=∑Mi
t+1

If |M-M*| < ε

dXi=0 dXi=K(Ui/U
* – 1)

Xi
t+1 = xi

t + dXiCorrect Xi
t+1

dMi=Mi
t+1-Mi

t

Stop

U*=U*(M/M*)

dX=∑dXi

No

Yes

M=∑Mi
t+1
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                                                     𝒙𝑡+1 = 𝒙𝑡 − 𝛼𝑡𝒅𝑡 ,      (1-26) 

where 𝒅𝑡 is the descent direction that leads optimum searching, which usually refers to the 

derivative vector of the objective with respect to the design variables in unconstrained 

optimization. 𝛼𝑡 is the desired step size. The design search vector between two iterations 

is represented as ∆𝒙𝑡 = −𝛼𝑡𝒅𝑡. The difference is that the projected sub-gradient decent 

method has a fixed step size and that the computations are projected onto a plane [16]. 

1.6.1 Design Objectives and Constraints 

The optimization problem is formulated as 

                       𝑚𝑖𝑛
𝒙

𝑓(𝒙),         (1-27) 

subject to, 

                                 

∑ 𝜌(𝑥𝑖)𝑉𝑖
𝑁
𝑖=1 ≤ 𝑀∗

𝐶𝑗
𝑙𝑜𝑤 ≤ 𝐶𝑗 ≤ 𝐶𝑗

𝑢𝑝, 𝑗 = 1, 2, ⋯ , 𝐽

𝑥𝑚𝑖𝑛 ≤ 𝑥𝑖 ≤ 1.0

.      (1-28) 

where 𝑓(𝒙) represents the objective, Vi is the volume of ith element, and Cj is the jth 

constraint. The superscripts ‘low’ and ‘up’ represent lower and upper bounds on the 

constraints, respectively. 

The objective for the NVH load case is to maximize the fundamental frequency, while 

for the impact and linear statics load cases the objective is essentially to maximize the 

stiffness of the structure; for linear material behavior the objective is actually the 

minimization of the work done which is equivalent to minimizing the compliance, while 

for plastic flow of the material the design process will result in smaller displacements 

and/or higher forces but not necessarily different energy absorption. The search directions 

for the fundamental frequency is the derivative with respect to the element variables as 

described in the standard literature on design sensitivity analysis. The search directions for 

the impact and static load cases are computed from the internal energy densities of the 

elements as described in a later section. 

The multipoint scheme can be used to introduce other objectives and constraints such 

as the maximization of energy absorption and limits on displacements or peak forces. 

Considering the objective functions, the optimality criteria methods and the 

mathematical programming methods should yield similar designs, because both essentially 

solve the equation describing the energy in the structure. Differences in designs will 

however occur due to (i) local minima found by the solvers, which are quite probable for 

highly nonlinear and other tough problems; and (ii) the projected sub-gradient method 

being a more powerful method. 
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1.6.2 Design Variable Update 

In the projected sub-gradient method, the design search vector is projected onto the plane 

of an inequality structural constraint, so that the constraint function is satisfied with the 

update of the design. Assume that normal vector of the plane of the constraint function is 

presented as n. The design search vector projected onto the constraint plane can be 

expressed as, 

                                         ∆𝒙𝑃 = ∆𝒙 −  (
∆𝒙∙𝒏

(|𝒏|)2

 
)  𝒏,      (1-29) 

where ∆𝒙𝑃is the design change vector after the projection onto the constraint function.  

         Besides the constraint function, the side bounds on the design variable should be 

taken into consideration as well, as the side bounds on the design variables may cause the 

computations to be off. In order to correct for the effect of the side bounds of the design 

variables, a parameter 𝜆 is introduced to compensate the side bound effect on the updated 

design. The design search vector is thus expressed as, 

                                ∆�̃�𝑃 = ∆𝒙 − (1 + 𝜆) (
∆𝒙∙𝒏

(|𝒏|)2

 
)  𝒏,      (1-30) 

where ∆�̃�𝑃 is the design change vector after considering the side bound affects. In the 

above equation, the physical meaning of 𝜆 is to move the plane of the constraint function 

up and down, so that the constraint function is satisfied with updated designs within the 

side bounds. The value of 𝜆 can be positive, zero, or negative depending on how much the 

constraint plane should be moved. λ is typically found using a bisection algorithm such as 

to satisfy the constraint function. 

Therefore, the updated design in the projected sub-gradient method is presented as, 

                                      𝒙𝑡+1 = 𝒙𝑡 + ∆�̃�𝑃.        (1-31) 

Due to the compensation of the side bound affects in the computation, the above 

updated design may exceed the range of the side bounds. Thus the updated design should 

be trimmed so that all the design variables have values within the range of the side bounds. 

The final updated design is obtained as 

             𝑥𝑖
𝑡+1 = {

𝑥𝑚𝑖𝑛 𝑖𝑓  𝑥𝑖
𝑡 + ∆�̃�𝑖

𝑃 ≤ 𝑥𝑚𝑖𝑛

𝑥𝑖
𝑡 + ∆�̃�𝑖

𝑃 𝑖𝑓 𝑥𝑚𝑖𝑛 < 𝑥𝑖
𝑡 + ∆�̃�𝑖

𝑃 < 1.0

1.0 𝑖𝑓  𝑥𝑖
𝑡 + ∆�̃�𝑖

𝑃 ≥ 1.0

 .    (1-32) 

1.6.3 Step Size and Scaling of the Gradients 

For the class of problems considered here, there is a natural choice of step size: the amount 

of material allowed to flow during an iteration. This means the step size depends on the 
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mechanics of the problem and not the number of variables. Numerical concerns such as the 

mesh size therefore do not affect the step size. 

To implement material flow as controlling the allowable step size requires that the 

difference between two sequential designs in computation should be considered. The 

material flow is a scaled version of the L1 norm of the variable changes, 

                                           𝑚𝑓 =
1

𝑁
∑ |∆𝑥𝑖|

𝑖=𝑁
𝑖=1 ,       (1-33) 

while the step size is the L2 norm of the variable changes,  

                                            𝑠 = √∑ (∆𝑥𝑖)2𝑖=𝑁
𝑖=1 ,       (1-34) 

where N is the total number of elements in the structure. 𝑚𝑓 represents the L1-norm-based 

mass flow and s is the step size. The L1 norm and L2 norm of the variable changes are 

equal if all the variable changes have the same absolute value. In such a case, a material 

flow of 𝑚𝑓̅̅ ̅̅ requires an absolute change of 𝑚𝑓̅̅ ̅̅  for each variable, given that the material flow 

is, 

                                𝑚𝑓 =
1

𝑁
∑ |∆𝑥𝑖|

𝑖=𝑁
𝑖=1 =

1

𝑁
∑ 𝑚𝑓̅̅ ̅̅𝑖=𝑁

𝑖=1 = 𝑚𝑓̅̅ ̅̅ ,     (1-35) 

For this case, the step size is therefore computed as 

                          𝑠 = √∑ (∆𝑥𝑖)2𝑖=𝑁
𝑖=1 = √∑ 𝑚𝑓̅̅ ̅̅ 2𝑖=𝑁

𝑖=1 = √𝑁𝑚𝑓̅̅ ̅̅ ,      (1-36) 

Thus, different from the linear-search-based step sizes in the steepest decent method, 

a constant step size is used in the projected sub-gradient method.  

In order to improve the computational stability, the value of N should be taken as the 

number of grey elements, 𝑁𝑔  in the design space, where the grey elements means the 

associated design variables of elements not at the side bounds. Besides the mass flow of 

the grey elements, the gradients of the objective must be scaled to its norm such that it 

matches the step size. Thus, the step size in the computation is obtained as, 

                                       𝛼𝑡 =
𝑠𝑡

|𝒅𝑡|
= √𝑁𝑔

(𝑡) 𝑚𝑓̅̅ ̅̅ ̅

|𝒅𝑡|
.       (1-37) 

1.6.4 Search Direction (Sub-gradients) for Impact and Statics Problems 

The sequence of design improvements is found by understanding that a structure resists a 

load and that a better structure expends less energy doing so.   

A design is therefore improved by a change that reduces the energy – which is 

implemented very efficiently by constructing a search direction from the internal energy 

densities. The requirement of using the internal energy density originally came from 
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rigorous considerations of linear problems. Introducing nonlinear effects such as impact 

and plastic flow, being more difficult to handle rigorously, complicates matters, leaving us 

with the statement the design improvements actually maximizes load resistance (stiffness). 

This use of the internal energy density in optimization, its relationship with the design 

sensitivity information for crash problems, and its usefulness for ranking variables have 

been studied by Öman and others [17], [18] at the Linköping research group. It is important 

to note that for topology optimization it is the ranking of the variables that are important, 

and not quite the values of the derivatives, because the addition of the solid/void scheme 

makes it a question of which variables are important and not a question of how much of 

each variable to use. 

For linear problems the internal energy densities therefore comprise the best search 

direction considering the analytically correct solution, while for nonlinear problems the 

internal energy densities are known to be a good, but not necessarily the best, search 

direction given extensive numerical experiments, engineering knowledge, and the linear 

derivations. For an intuitive understanding of the engineering mechanics see section 1.2.8. 

The topology design process therefore always increases load resistance, but whether 

the energy absorption increase or decrease depends on loading conditions such as whether 

it is an applied load, applied displacement, or prescribed initial velocity problem, together 

with impact and material yield slope effects.  

The noise in the explicit dynamics problems make the use of sub-gradients attractive 

over the use of gradients information. Again the use of the internal energy densities is 

beneficial. 

1.7 Multidisciplinary Design Optimization 

The typical goals of multidisciplinary topology optimization are to minimize mass, 

maximize stiffness or the fundamental frequency involving multiple load cases such as 

impact, linear statics, and NVH. 

These goals can be combined into a multidisciplinary design optimization (MDO) 

problem as 

𝑚𝑖𝑛 
𝒙

  ∑ 𝑤𝑙𝑓𝑙(𝒙)𝐿
𝑙=1 ,                                                             (1-38) 

𝑠. 𝑡. 𝑔𝑙𝑗(𝒙) ≤ 0   (𝑗 = 1, 2, … ) 

where 𝑙  represents the index of load cases and 𝐿 is the total number of load cases. 𝑤𝑙 

denotes the weight for the 𝑙-th load case. 𝑗 represents the index of design requirements. glj 

denotes the 𝑗-th design requirement and constraint in the 𝑙-th load case. For practical 

engineering problems with number of design considerations or requirements more than the 

number of load cases, the approach of choosing weights for each load case and doing a 

trade-off study is not workable anymore. Thus, a more general method, the Lagrange dual 

programming method is introduced to solve the above MDO problem. 
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1.7.1 Maximum Energy Absorption Design in MDO Problems 

Considering the load resistance of a part -- the energy 𝐸  is 𝐸 =  ∫ 𝑅(𝑢)𝑑𝑥  with 𝑅  the 

resistance and 𝑢 the displacement. Design techniques in impact energy management and 

occupant protection are often stated as maximizing energy absorption, 𝑚𝑎𝑥𝒙𝐸(𝒙) with 𝒙 

the topology variables. However, a structure must be at its minimum energy state to be 

stable - simply maximizing the energy can result in infinite displacements and other 

instabilities. Therefore, the design problem is rather stated as maximizing energy 

absorption ability of the structure or system at its most stable energy state, which can be 

achieved by addressing the problem of 𝑚𝑖𝑛𝒙𝐸(𝒙).  

By introducing some additional variables 𝝃 (known as the spatial kernel), the above 

design problem can be formulated as the max-min or saddle point optimization problem 

𝑚𝑎𝑥𝝃𝑚𝑖𝑛𝒙𝐸(𝝃, 𝒙)                                                   (1-39) 

Equation (1-39) thus indicates two saddle directions: a load-bearing structure is found 

by computing the minimum energy state using 𝒙, while energy absorption of the structure 

is maximized by solving for the spatial kernel variables 𝝃. 

Besides maximum energy absorption design, the MDO problem usually has other 

design requirements from different load cases. By following the design concept described 

in Equation (1-39), a generalized express of design requirements can be formulated as 

𝑚𝑖𝑛𝝃𝐹(𝝃(𝒙))                                                        (1-40) 

where x is computed using 

𝑚𝑖𝑛𝒙𝑓(𝒙(𝝃))                                                        (1-41) 

with 𝑓 usually taken as the compliance, or the negative value of fundamental frequency, 

which means the analyst only have to specify 𝐹 according to the design requirements. For 

example, one can maximize energy absorption using 𝐹 while maximize stiffness using 𝑓, 

or minimize mass using 𝐹 while maximizing stiffness using 𝑓. 

1.7.2 Lagrangian of A Primal Problem 

We have the standard objective is 

𝑚𝑖𝑛 𝑓(𝒙)                                                                   (1-42) 

𝑠. 𝑡.  𝑔𝑖( 𝒙) ≤ 0 

The constraints can be split into two sets - for the one set design sensitivity information 

can be analytically computed 
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𝑔𝑖
ana(𝒙) ≤ 0 with 𝑖 = 1, … , 𝑛                                             (1-43) 

while the other set requires the computation of numerical derivatives using the spatial 

kernel in the upper problem Equation (1-40) 

𝑔𝑗
num(𝒙) ≤ 0 with 𝑗 = 1, … , 𝑚                                          (1-44) 

We define the Lagrangian of Equation (1-42) as 

𝐿(𝒙, 𝝀, 𝝃) =  𝑓(𝒙) +  ∑ 𝜆𝑖𝑔𝑖
ana(𝒙)𝑖 +  ∑ 𝜉𝑗𝑔𝑗

num(𝒙)𝑗                              (1-45) 

In order to obtain the numerical derivatives of the constraints in Equation (1-45), a 

spatial kernel is introduced as below to satisfy these constraints, 

𝑠( 𝝃) = ∑ 𝜉𝑗𝑆𝑗(𝜻)𝑗                                                              (1-46) 

The kernel is composed of basis functions referring to 𝜻 the spatial coordinates associated 

with variable x and is applied to 𝑓(𝒙)which is the function that generates the load bearing 

structure, which yields 

𝐿(𝒙, 𝝀, 𝝃) = [1 + 𝑠( 𝝃)]𝑓(𝒙) + ∑ 𝜆𝑖𝑔𝑖
ana(𝒙)𝑖                                        (1-47) 

The current implementation of the spatial kernel is to roll up all the spatial kernel 

functions [19] into a surface written as a summation over both the basis functions and the 

elements as: 

ℎ(𝒙) =  
1

𝑛
∑  𝑁

𝑒=1
𝑥𝑒

𝑒𝑥 𝑝(𝜉0+𝜉1𝑆1(𝜁𝑒)+𝜉2𝑆2(𝜁𝑒)+⋯ )
  = 1                             (1-48) 

with 𝑥𝑒  a spatial value at element e (𝑒 = 1, … , 𝑁), and ξ the solved for to satisfy the 

constraints. 

1.7.3 Lagrange Dual Problem of MDO 

For a generalized MDO problem described in Equation (1-38), also a primal problem, the 

load case weights in the objective function can be used to solve for a subset of the 

constraints, and all of the constraints can be split into two sets as described in Section 1.7.2. 

The Lagrangian of the primal problem for MDO can be defined as 

𝐿(𝒙, 𝒘, 𝝀, 𝝃) = ∑ 𝑤𝑙𝑐[1 + 𝑠( 𝝃)]𝑓𝑙𝑐(𝒙)𝑙𝑐 + ∑ 𝜆𝑖𝑔𝑖
ana(𝒙)𝑖                      (1-49) 

which contains the high-level variables [𝒘, 𝝀, 𝝃] used to solve for the constraints. 

Given a Lagrangian in Equation (1-49), we define its Lagrange dual problem as  
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𝑚𝑎𝑥
𝒘,𝝀,𝝃≥𝟎

𝑚𝑖𝑛
𝒙∈𝑿

 𝐿(𝒙, 𝒘, 𝝀, 𝝃)                                             (1-50) 

This Lagrange dual problem is solved as an upper level problem for the Lagrange 

multipliers and a lower level problem for the topology variables. The Projected Sub-

gradient method described in Section 1.6 is employed to address the lower level problem, 

while the Finite Difference method or Surrogate modeling is used to address the upper level 

problems.  

1.7.4 Design Contribution Histories and Plots 

The design contribution of a load case specifies the amount of material added to design for 

that specific load case. For histories this is a fraction of the total material, therefore a design 

contribution of 0.75 indicates that 75% of all the mass were added to design for that specific 

load case. The fringe plots of the design contributions on the other hand show where in the 

structure where in the structure the material was added for the load cases. 

To compute, note that the design update for the whole structure is composed from the 

individual contribution as 

                                                     𝒈 = ∑ 𝑤𝑙
𝐿
𝑙=1

𝒈𝑙

‖𝒈𝑙‖
,      (1-51)  

with 𝒈𝑙 and 𝐿 representing the gradient for the l-th load case and the total number of load 

cases, respectively. 

The mass flow (mass redistribution) for the whole structure is summed from the 

contributions of the elements as  

                                                �̇� =
∑ ‖𝛥𝑥𝑖‖𝑣𝑖

𝑁
𝑖=1

∑ 𝑉𝑖
𝑁
𝑖=1

,       (1-52) 

with each element’s contribution Δ𝑥𝑖 computed from 𝒈. 

The mass flow for a specific load case is taken as 

                                              �̇�𝑐𝑎𝑠𝑒 =
∑ ‖𝛥𝑥𝑖

𝑐𝑎𝑠𝑒‖𝑣𝑖
𝑁
𝑖=1

∑ 𝑉𝑖
𝑁
𝑖=1

.      (1-53)              

with Δ𝑥𝑖
𝑐𝑎𝑠𝑒 =

𝑤𝑐𝑎𝑠𝑒𝑔𝑖
𝑐𝑎𝑠𝑒

∑ 𝑤𝑙𝑔𝑙𝐿
𝑙=1

Δ𝑥𝑖. 

The mass contribution of a load case is summed over the design iterations as  

                                                 𝑀𝑐𝑎𝑠𝑒 = ∑ �̇�𝑐𝑎𝑠𝑒
𝑖𝑡𝑟𝑎𝑡𝑖𝑜𝑛𝑠 ,     (1-54)     

The design contribution for the case can now be computed as  

                                                   𝐷𝑐𝑎𝑠𝑒 =
𝑀𝑐𝑎𝑠𝑒

∑ 𝑀𝑙𝐿
𝑙=1

,       (1-55) 

The history plots available include: 
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1) �̇�: the mass flow (also in previous versions); 

2) �̇�𝑐𝑎𝑠𝑒: the mass flow for the case; 

3) 𝐷𝑐𝑎𝑠𝑒: the design distribution of each case; 

The fringe plots are similar, except that it is reported per element. 

For element 𝑒 at the variable change for the final iteration is  

                      𝛥𝑥𝑖
𝑐𝑎𝑠𝑒,𝑓𝑖𝑛𝑎𝑙

= ∑ 𝛥𝑥𝑖
𝑐𝑎𝑠𝑒,𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑓𝑖𝑛𝑎𝑙

𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛=1 ,    (1-56) 

Therefore several load cases can contribute to the material in an element. Only the 

ones that significantly contribute are plotted in the fringe plots. These load cases are those 

which 

                                     𝛥𝑥𝑖
𝑐𝑎𝑠𝑒,𝑓𝑖𝑛𝑎𝑙

≥
1−𝑚𝑎𝑠𝑠𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛

𝐿+1
.      (1-57) 

The part fraction is included because that is the starting value for the design variables. 

1.8 NVH Problems  

1.8.1 Auxiliary Variables for Multiple Eigenvalues 

In the NVH problems, a problem exists when the eigenmodes swaps between iterations. 

For example, the first eigenmode in the current iteration can become the second eigenmode 

in the next iteration. This causes a convergence issue to the topology design optimization 

of the NVH problems. 

This comes from the optimization problem which is 

                                              𝑚𝑎𝑥
𝑥

[𝑚𝑖𝑛[𝜆1, 𝜆2, ⋯ , 𝜆𝑛]],       (1-58) 

This is problematic when one wishes to compute the derivatives of the objective. The 

auxiliary variables are used to resolve the derivative of the objective. This is shown below 

using only two frequencies. Hence the optimization problems is rewritten as, 

                                                               𝑚𝑖𝑛
𝜇,𝑥

𝜇,       (1-59) 

subject to 

1 𝜆1⁄ − 𝜇 ≤ 0,   

1 𝜆2⁄ − 𝜇 ≤ 0,
𝜇 > 0.

      (1-60) 

In the above formulations, one auxiliary variable 𝜇, and 𝑛 Lagrange variables are included. 

However, the above scheme of using auxiliary variables cannot be used in the 

projected sub-gradient descent method. Instead we can solve for the derivatives of the 

objective with known step size. With the step size, we know which frequencies can be 



 26 

active (i.e., starting swapping). An auxiliary variable 𝑤, and variations of design variables, 

Δ𝑥, are introduced to maximize the lowest eigenfrequency. The frequency for the next 

iteration is estimated by using a Taylor series expansion around the current point and from 

that a weighting of the eigenvalues can be computed to yield the best update. So we solve 

the below optimization problem, 

             𝑚𝑎𝑥
𝑤

[𝑚𝑖𝑛 [𝜆1 + ∑ 𝛥𝑥𝑖
𝜕𝜆1

𝜕𝑥𝑖

𝑁
𝑖=1 , 𝜆2 + ∑ 𝛥𝑥𝑖

𝜕𝜆2

𝜕𝑥𝑖

𝑁
𝑖=1 ]] .    (1-61) 

where Δ𝑥𝑖 = 𝑘[𝑤
𝜕𝜆1 𝜕𝑥𝑖⁄

‖𝜕𝜆1 𝜕𝑥𝑖⁄ ‖
+ (1 − 𝑤)

𝜕𝜆2 𝜕𝑥𝑖⁄

‖𝜕𝜆2 𝜕𝑥𝑖⁄ ‖
] with 𝑘 chosen such that ‖Δ𝑥𝑖‖ = 𝑠 with 

𝑠 the step size and 0 ≤ 𝑤 ≤ 1. 

1.8.2 DSA of Eigenvalues 

The generalized eigenvalue problem can be formulated as 

                                               (𝑲 − 𝜇𝑗𝑴)𝜓𝑗 = 0,      (1-62) 

where 𝜓𝑗 denotes the eigen mode corresponding to 𝜇𝑗. Consequently, the mode shapes are 

orthonormalized with respect to the linear mass matrix such that 

                                                  𝜓𝑗𝑴𝜓𝑘 = 𝛿𝑗𝑘 ,         (1-63) 

Differentiating equation with respect to a design variable 𝑥𝑖 ∈ 𝒙 (𝑖 = 1, ⋯ , 𝑁) yields 

                                   (𝑲 − 𝜇𝑗𝑴)
𝜕𝜓𝑗

𝜕𝑥𝑖
−

𝜕𝜇𝑗

𝜕𝑥𝑖
𝑴𝜓𝑗 = − (

𝜕𝑲

𝜕𝑥𝑖
− 𝜇𝑗

𝜕𝑴

𝜕𝑥𝑖
) 𝜓𝑗 ,  (1-64) 

In what follows, it is assumed that the mass as well as the stiffness matrices are smooth 

functions of the design variables. If an eigenvalue is distinct or unimodal, i.e. 𝜇𝑗−1 < 𝜇𝑗 <

𝜇𝑗+1, the corresponding eigenvector 𝜓𝑗 will be unique (up to a sign) and differentiable with 

respect to the design variables. The sensitivity of an eigenvalue 𝜇𝑗  with respect to an 

arbitrary design variable 𝑥 may be obtained by pre-multiplying Equation (1-64) by 𝜓𝑗 and 

invoking Equations (1-62) and (1-63) to obtain 

                                          
𝜕𝜇𝑗

𝜕𝑥𝑖
= 𝜓𝑗

𝑇 (
𝜕𝑲

𝜕𝑥𝑖
− 𝜇𝑗

𝜕𝑴

𝜕𝑥𝑖
) 𝜓𝑗 .      (1-65) 

Assuming all design variables are changed simultaneously a linear increment in the 

single eigenvalue can be found as 

                                               ∆𝜇𝑗 =
𝜕𝜇𝑗

𝜕𝑥𝑖
∆𝑥𝑖,       (1-66)  

If the solution of the eigenvalue problem in Equation (1-62) yields 𝑠  repeated 

eigenvalues, i.e. �̅� ≔ 𝜇𝑙 = ⋯ = 𝜇𝑚 and 𝑠 = 𝑚 − 𝑙 + 1, the eigenvalues are not Fr´echet 



 27 

differentiable and consequently, Equations (1-64) and (1-65) are no longer valid. To find 

sensitivities of repeated eigenvalues, Seyranian et al. [34] used directional derivatives in 

the design space. As a result, the increment in the multiple eigenvalue ∆�̅� is obtained as 

the solution of an s-dimensional sub-eigenvalue problem, i.e., 

                                             𝑑𝑒𝑡(𝑭 − ∆�̅�𝑰) = 0,       (1-67) 

and the elements of the matrix 𝑭 are defined as 

                    𝑭(𝑗 − 𝑙 + 1, 𝑘 − 𝑚 + 1) =
𝜕�̅�𝑗𝑘

𝜕𝑥𝑖
∆𝑥𝑖   with 𝑗, 𝑘 = 𝑙, ⋯ , 𝑚,   (1-68) 

where 
𝜕�̅�𝑗𝑘

𝜕𝑥𝑖
 are the generalized gradient vectors defined in component form as 

                                            
𝜕�̅�𝑗𝑘

𝜕𝑥𝑖
= 𝜓𝑗

𝑇 (
𝜕𝑲

𝜕𝑥𝑖
− �̅�

𝜕𝑴

𝜕𝑥𝑖
) 𝜓𝑘.     (1-69)  

Due to the symmetry of the mass and stiffness matrices, the matrix 𝑭 in Equation (1-

67) is also symmetric. Considering the sub-eigenvalue problem in Equation (1-66), two 

special cases are highlighted. First note that Equation (1-66) reduces to Equation (1-64) in 

the unimodal case, i.e. 𝑙 = 𝑚 and 𝑠 = 1. Second, if all off-diagonal elements of the matrix 

𝑭 are zero, the sub-eigenvalue problem becomes determined as 

                                    ∆𝜇𝑗 =
𝜕�̅�𝑗𝑗

𝜕𝑥𝑖
∆𝑥          ∀𝑗 = 𝑙, ⋯ , 𝑚.    (1-70) 

and hence 
𝜕�̅�𝑗𝑗

𝜕𝑥𝑖
≡

𝜕𝜇𝑗

𝜕𝑥𝑖
. 

Once the eigenvalue analysis in Equation (1-62) is performed, computing the 

sensitivities of an eigenvalue can be performed locally, i.e. Equations (1-65) and (1-67) 

hold on the element level. Furthermore, the element stiffness and mass matrices are linear 

function of the (interpolated) elastic modulus and material density, respectively. 

Consequently, their derivatives may be written by virtue of Equations (1-71) and (1-72) as 

                                        
𝜕𝑲𝑒

𝜕𝑥𝑖
= 𝑝𝑥𝑖

𝑝−1𝑲𝑒(𝐸0),      (1-71) 

                              
𝜕𝑴𝑒

𝜕𝑥𝑖
= {

𝑴𝑒(𝜌0) 𝑖𝑓 �̂�𝑖 < 𝑥𝑖

𝑟𝑥𝑖
𝑟−1𝑴𝑒(𝜌0) 𝑖𝑓 𝑥𝑖 ≤ �̂�𝑖

,    (1-72) 

where the superscript 𝑒  designates the standard element matrices. Since the element 

matrices are computed using the penalized material properties, i.e. 𝐸 and 𝜌 in LS-DYNA, 

it is meaningful to rewrite Equations (1-71) and (1-72) in terms of these parameters. Hence, 

making use of Equation (1-6) and equations in Section 1.2.4 yields 
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𝜕𝑲𝑒

𝜕𝑥𝑖
= 𝑝𝑥−1𝑲𝑒(𝐸),      (1-73) 

                                 
𝜕𝑴𝑒

𝜕𝑥𝑖
= {

𝑥𝑖
−1𝑴𝑒(𝜌) 𝑖𝑓 �̂�𝑖 < 𝑥𝑖

𝑟𝑥𝑖
−1𝑴𝑒(𝜌) 𝑖𝑓 𝑥𝑖 ≤ �̂�𝑖

.     (1-74) 

Consequently, the information exchange between LS-DYNA and LS-TaSC reduces to 

the two scaling terms being input to LS-DYNA and the 𝑠(𝑠 + 1) 2⁄  gradients being input 

to LS-TaSC. 

1.8.3 Mode Tracking 

Design optimization of eigenfrequencies of a structure is to improve the eigenfrequencies 

of interest by changing the structural design at every iteration. However, due to changes of 

the structural design, all other eigenfrequencies are also affected. Some eigenmodes will 

be inevitably switched order in terms of optimizing eigenfrequency. For the case where 

eigenmode of the structure matters, it is better to keep tracking the eigenmode 

corresponding to the eigenfrequency of interest, such as bending mode and torsion mode, 

during the entire optimization process.  

Model Assurance Criterion (MAC) has been used in LS-TaSC for mode tracking, and 

it compares the reference mode shapes to the new mode shapes from the iterative design 

by computing the below MAC value,  

𝑀𝐴𝐶(∅𝑟, ∅𝑖) =
|∅𝑟

𝑇∅𝑖|
2

(∅𝑟
𝑇∅𝑟)(∅𝑖

𝑇∅𝑖)
.      (1-75) 

where ∅𝑟 is the eigenmode of interest, also reference mode, and ∅𝑖 is the eigenmode of the 

new design.  MAC relies on comparing the shape of two eigenmodes, and the MAC-value 

represents the projection of the new mode shape on the reference mode shape. This value 

equals to 1 for aligned vectors and 0 for orthogonal vectors. 

1.8.4 Frequency Constraints 

A sub-gradient update scheme is described in below sections to solve NVH problems of a 

structure with frequency constraints while using Projected Sub-gradient Method.  

1.8.4.1 Searching Direction Update Scheme 

The main idea of the search direction update scheme is to integrate gradients of frequency 

constraints into the sub-gradients with weighing multipliers, so that the new sub-gradients 

ensure the descendancy of the objective value as well as the satisfactory of the constraints 

at the same time. 

Assume that a total of 𝑚 frequency constraints are considered, and all the frequency 

constraints are written into a standard form of  



 29 

𝑔𝑗 ≤ 0, 𝑤𝑖𝑡ℎ 𝑗 = 1, ⋯ , 𝑚,      (1-76) 

∇𝑔𝑗 represents the derivative vector of the j-th frequency constraint. g𝑚𝑎𝑥 represents the 

maximum constraint value among all constraints, which means that this particular 

constraint is either the most unsatisfied (with a positive value) or the least inactive (with a 

negative value). ∇gmax refers to the corresponding gradients of g𝑚𝑎𝑥.  

With ∇gmax , an approximation of the constraint related to  g𝑚𝑎𝑥  is conducted by 

assuming the search direction is led only by the objective gradients in the next iteration, 

and the approximated value of gmax is expressed as, 

𝑔𝑚𝑎𝑥,𝑎𝑝𝑝 = 𝑔(𝒙(𝛻𝑓)),      (1-77) 

where ∇𝑓 is the derivative vector of the objective with respect to the design variables. Thus, 

a possible movement of the constraint related to g𝑚𝑎𝑥  between the feasible and infeasible 

domains can be predicted according to the signs of g𝑚𝑎𝑥 and 𝑔𝑚𝑎𝑥,𝑎𝑝𝑝. Based on different 

sceneries of this movement prediction, the searching direction 𝒅𝑡 for the NVH problems 

with frequency constraints can be updated based on below schemes. 

If g𝑚𝑎𝑥 > 0  and 𝑔𝑚𝑎𝑥,𝑎𝑝𝑝 > 0 , the searching direction is pointing from the 

INFEASIBLE domain to the INFEASIBLE domain. The searching direction of the 

optimization process will be updated by 

𝒅𝑡 = 𝛻𝑓𝑡 + 𝜆(𝛻𝑔𝑚𝑎𝑥)𝑡,      (1-78) 

If g𝑚𝑎𝑥 > 0  and 𝑔𝑚𝑎𝑥,𝑎𝑝𝑝 ≤ 0 , the searching direction is pointing from the 

INFEASIBLE domain to the FEASIBLE domain. The searching direction of the 

optimization process will be updated by 

𝒅𝑡 = 𝛻𝑓𝑡 + ∑ 𝜆𝑗(𝛻𝑔𝑗)𝑡𝑚
𝑗=1 ,      (1-79) 

If g𝑚𝑎𝑥 ≤ 0  and 𝑔𝑚𝑎𝑥,𝑎𝑝𝑝 > 0 , the searching direction is pointing from the 

FEASIBLE domain to the INFEASIBLE domain. The searching direction of the 

optimization process will be updated by 

𝒅𝑡 = 𝛻𝑓𝑡 + ∑ 𝜆𝑗(𝛻𝑔𝑗)𝑡𝑚
𝑗=1 ,     (1-80) 

If g𝑚𝑎𝑥 ≤ 0  and 𝑔𝑚𝑎𝑥,𝑎𝑝𝑝 ≤ 0 , the searching direction is pointing from the 

FEASIBLE domain to the FEASIBLE domain. The searching direction of the optimization 

process will be updated by 
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𝒅𝑡 = 𝛻𝑓𝑡.        (1-81) 

where 𝝀𝒋 denotes the weighing multiplier of the j-th constraint. The solution of weighing 

multipliers of frequency constraints is described in the following section. 

1.8.4.2 Solution of Weighing Multipliers 

The updated searching direction of the optimization process should satisfy the feasible 

condition as follows, 

∑ 𝜇𝑗
𝑚
𝑗=1 → 𝑚𝑖𝑛,

𝑠. 𝑡.  𝜇𝑗 = −(𝛻𝑔𝑗)
𝑇

𝒙(𝒅(𝝀), 𝛼) − 𝑔𝑗 ≥ 0,

𝜆𝑗 ≥ 0.

    (1-82) 

The feasible condition refers to that the constraint values computed based on the updated 

searching direction satisfy the required bound conditions but not too far away from the 

constraint bounds. This ensures the constraints are active during the optimization process. 

Equation (1-82) can be solved by using a linear programming method, e.g. Big-M Simplex 
algorithm. 

1.8.4.3 Step Size Scaling Scheme 

Following with the searching direction update, the step size will be updated accordingly by 

following the step size estimation described in Equation (1-37). However, this step size 

should be scaled, otherwise it may cause severe oscillations in eigenfrequencies due to 

overshooting. Thus, a scheme of iteratively driving a scale of 1.0 gradually approaching to 

a proper scale value of step size is added along with the process of solving Equation (1-

82).  

The step size scaling scheme is based on the rate of the mass flow drawn from the 

original sub-gradient and step size to the updated sub-gradient and step size. Assume that 

the original sub-gradient and step size before considering frequency constraints are 

represented as 𝒅𝑜𝑟𝑖𝑔 and 𝛼𝑜𝑟𝑖𝑔, respectively, where 𝒅𝑜𝑟𝑖𝑔 and 𝛼𝑜𝑟𝑖𝑔 are computed with the 

objective gradients as described in Section 1.6. The tempera sub-gradient and step size 

after considering frequency constraints are denoted as 𝒅𝑡𝑒𝑚𝑝 and 𝛼𝑡𝑒𝑚𝑝, respectively. Two 

mass flow values can be evaluated as below 

𝑚𝑓1 = 𝑚𝑓(𝒅𝑡𝑒𝑚𝑝, 𝛼𝑡𝑒𝑚𝑝),     (1-83) 

𝑚𝑓2 = 𝑚𝑓(𝒅𝑜𝑟𝑖𝑔, 𝛼𝑜𝑟𝑖𝑔).     (1-84) 

where “𝑚𝑓” denote the mass flow evaluation function. 𝑚𝑓1 is the mass flow evaluated 

from the tempera sub-gradient and step size that are meant to be updated. 𝑚𝑓2 is the mass 

flow evaluated with the original sub-gradient and step size. The ratio of the above two mass 

flow evaluations is expressed as 
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𝜂 =
𝑚𝑓2

𝑚𝑓1
,      (1-85) 

Then, update the tempera step size as below 

𝛼𝑡𝑒𝑚𝑝 = 𝜂 ∗ 𝛼𝑡𝑒𝑚𝑝.      (1-86) 

By substituting the above step size into Equation (1-82), the constraint weighing 

multipliers will be updated, so will the sub-gradient  𝒅𝑡𝑒𝑚𝑝. With the updated 𝒅𝑡𝑒𝑚𝑝 and 

𝛼𝑡𝑒𝑚𝑝, the mass flow will be evaluated again. This procedure will repeat until the mass 

flow ratio equals to 1.0, and the final 𝒅𝑡𝑒𝑚𝑝
∗  and 𝛼𝑡𝑒𝑚𝑝

∗  will be used in the following 

optimization. 

1.9 Constrained optimization using the Multipoint Scheme 

1.9.1 Problem Formulation 

This formulation allows any response to be used as an objective or constraint. The mass 

fractions and load case weights are used as global variables and their values are selected to 

minimize the objective and satisfy the constraints. The topology of the parts is however 

still computed using the mass fraction and load case weights to create the stiffest part.  

The optimization problem using the global variables is: 

𝑚𝑖𝑛
𝝃 

𝑓(𝝃)  𝑤𝑖𝑡ℎ 𝝃 = (𝑀1, … , 𝑀𝑝, 𝑤1, … , 𝑤𝐿) ,      (1-87) 

subject to 

𝑔𝑖(𝝃) < 0 𝑤𝑖𝑡ℎ 𝑖 = 1, … , 𝑚,      (1-88) 

ξ𝑖
𝐿 ≤ ξ𝑖 ≤ ξ𝑖

𝑈  

1.9.2 Numerical Derivatives 

The derivatives with respect to the global variables can be estimated using finite differences 

using a multipoint scheme [20]. The Taylor expansion for a function g around a point 𝛏0 is 

simply: 

𝐺(𝝃) = 𝑔(𝝃0) +  ∑ (𝜉𝑖 − 𝜉0𝑖) (
𝜕𝑔

𝜕𝜉𝑖
)

𝜉0

𝑛
𝑖=1  .   (1-89) 

Using 𝐹(𝛏) and 𝐺𝑖(𝛏) as the Taylor expansion to 𝑓(𝛏) and 𝑔𝑖(𝛏) , and the move limits 

ξ𝑖
𝐿′ and ξ𝑖

𝑈′, the optimization problem becomes: 

𝑚𝑖𝑛
𝝃 

𝐹(𝝃)  𝑤𝑖𝑡ℎ 𝝃 = (𝑀1, … , 𝑀𝑝, 𝑤1, … , 𝑤𝐿) ,   (1-90) 

subject to 
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𝐺𝑖(𝝃) < 0 𝑤𝑖𝑡ℎ 𝑖 = 1, … , 𝑚,      (1-91) 

𝜉𝑖
𝐿′ ≤ 𝜉𝑖 ≤ 𝜉𝑖

𝑈′
. 

The global variable move limits ξ𝑖
𝐿′ and ξ𝑖

𝑈′ are centered around the optimum of the 

previous iteration and are chosen here as  

𝜉𝑖
𝐿′ = 𝜉𝑖𝑘 (1 − 𝑒−

𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛

10 ),      (1-92) 

𝜉𝑖
𝑈′

= 𝜉𝑖𝑘 (1 + 𝑒−
𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛

10 ).      (1-93) 

The weight for the first load case need not be a variable, and the load case weights 

(𝑤1, 𝑤2, ⋯ , 𝑤𝐿) variables are therefore rewritten as (1, 𝑤2, ⋯ , 𝑤𝐿). 

1.9.3 Metamodels 

Linear metamodels is one of the option for estimating the numerical derivatives. 

Metamodels (multi-point approximations to the structural behavior) is a mature field with 

some highly cited papers [21]. The methodology followed here has its origin in the work 

of Schoofs [22] and Roozen-Kroon [23] with the added refinement of intermediate 

variables and responses as described by Barthelemy and Haftka [24] as described by Roux 

et al [25]. Earlier work using global variables together with local variables and responses 

surfaces is that of Venkataraman [26].  

1.10   Stopping Criteria 

Three termination conditions are used to stop the optimization process. 

1. The number of iterations has exceeded the maximum number of iterations, or 

2. The change in the topology is smaller than the tolerance, i.e.,  

 1

.
N

t t

i

i

dX x 
=

=  
     (1-94) 

3. The numerical oscillations in convergence are limited by averaging the total change 

in topology over two iterations. 

4. Solidification is defined to measure the discreteness of the optimized designs. A 

higher Solidification value indicates better topological designs. Assuming the total 

number of design variables as 𝑁 = 𝑁𝑣𝑜𝑖𝑑 + 𝑁𝑔𝑟𝑒𝑦 + 𝑁𝑠𝑜𝑙𝑖𝑑 , we define 

Solidification 
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                                𝑀 = 𝑚𝑖𝑛(𝑀1,  𝑀2).      (1-95) 

 where 𝑀1 =
𝑁𝑣𝑜𝑖𝑑+𝑁𝑠𝑜𝑙𝑖𝑑

𝑁
 , and 𝑀2 = 1 −

∑ 4𝑥𝑖(1−𝑥𝑖)𝑁
𝑖=1

𝑁
. A default Solidification    value of 

0.95 is used in LS-TaSC. 

Normally, both of maximum number of iterations and topology change are used as 

termination conditions in Optimality Criteria algorithm; both of maximum number of 

iterations and solidification are used as termination conditions in Projected Sub-gradient 

algorithm.  
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2 Surface Design Theory 

2.1 Background 

The traditional approach for solving shape design problems is based on sensitivity analysis 

that is inexpensive to obtain for linear static problems. However, deriving analytical 

sensitivities for dynamic analysis is very difficult due to the complex interactions among 

material nonlinearities, geometry and mesh, and transient nature of load and boundary 

conditions. Numerical computation of sensitivities is also not practical due to the high 

computational expense. Hence this approach is not practical for crashworthiness problems. 

To overcome the aforementioned difficulties, a different approach was proposed. This 

approach does not require gradients and hence there is no need to compute the sensitivities. 

The methodology is best referred to as LS-TaSC 2021 R1. 

2.2 Implementation 

The algorithm is shown in Figure 2-1. After defining the problem, the surface shape is 

evolved using the simple rules defined on the variables. 

 
Figure 2-1: The surface design algorithm 

2.2.1 Definition 

The input data is used to identify the design problem. The input data comprises of method 

data e.g., number of iterations, convergence tolerance, and the problem data, e.g. load cases 

and design surface. 

2.2.2 Creating the variables 

The discrete surface is mapped to design variables. The normal displacement to each node 

in the design surface assigned to a design variable. For extrusion and symmetry constraints, 

the equality constraints are defined between the variables. 

2.2.3 Filtering of results 

A radius based strategy is used to identify neighbors. In this strategy, a virtual sphere of 

user-defined radius is placed at the centroids of an element. All elements that are within 

Read input data Identify neighbors Create geometry definitions 

Initialize variable Run simulations 

Evaluate 

objective and 

constraints 

Update field and 

design variables 
Converged? Stop  

No 

Yes 
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this sphere are considered the neighbors of the corresponding element, and the results are 

averaged over the elements in the neighborhood 

 
1 1

.
n n

i j j j

j j

U w U w
= =

=      (2-1) 

2.3 Design Objective 

The goal of shape design is to obtain surface with a uniform stress. The optimization 

problem is formulated as, 

 arg

1

min [ ( ) ]
i n

i t et
x

i

U x U
=

=

− .    (2-2) 

where U represents the design field at the node associated with design variable ix , and 

ettU arg
 represents the target value of the design field. The design field is typically the von 

Mises stress field. 

2.4 Target Stress 

The goal of shape design is to obtain surface with a uniform stress. In order to complete 

this task we need to define a target stress. There are the following possibilities of selecting 

a target stress: 

• Average over the surface 

• The maximum value on the surface 

• The minimum value on the surface 

• A user-defined value 

Using the above target stresses it should be noted that the goal becomes more subtle than 

obtaining the a surface with a uniform stress: if selecting the maximum is as the target 

stress, then the weight of the structure will be reduced; while if the minimum is selected, 

then the average stress is reduced. 

2.5 Design Variable Initialization 

All design variables are also initialized to zero.  

2.6 Simulation to Obtain Field Variables 

The elements in the finite element model are modified the nodal locations for all iterations. 

So the input deck is re-written for all iterations. The relevant field variables for all nodes 

are obtained from the output to completely define the state of each variable. For multiple 

load case conditions, the state variable is based on the output from simulations of different 

load cases.  
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For dynamic problems, it was observed that accounting for the history of evolution induces 

stability by reducing the element deletion rate. Hence, the field variable (internal energy 

density) of ith variable at iteration t is updated by defining a weighted sum on the field 

variable of three previous iterations as follows, 

 
3 3

1 1

0 0

( ) ( ) .t j t j j

i i i i

j j

U x U x+ − +

= =

=      (2-3) 

where xi is the design variable associated with the ith variable at iteration t. If the load cases 

are a mixture of dynamic and static problems, then this weighing is followed for all the 

load cases. 

2.7 Variable Update 

This is the heart of shape design method. In this step, the state of a variable is updated 

based on the state of its neighbors. The state update is carried out in two steps: 

1. Field variable update: The field variable (internal energy density) of a variable is 

updated as accounting for the field variable values of its n neighbors as, 

 
0 0

1.
n n

i j

j j

U U
= =

=        (2-4) 

2. Variable update: Once the field-variable state of each variable is defined, the design 

variable is updated to reflect the changes..  

The change in field value required is 𝛿𝑖 = 𝑈𝑖 − 𝑈𝑡 𝑎𝑟𝑔 𝑒𝑡. Now compute 𝛥𝑥𝑖 = 𝛿𝑖/
𝜕𝑈

𝜕𝑥
with 

ix  the required movement of node i normal to the surface. 

2.8 Stopping Criteria 

Two termination conditions are used to stop the optimization process. 

1. The number of iterations has exceeded the maximum number of iterations, or 

2. The change in the topology is smaller than the tolerance, i.e.,  
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