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evaluating the alpha version. 

 



 5 

 

 

1. Topology Theory 

1.1. Background 

The methodology in this version is an optimality criteria method together with a multi-

tensor extension for the computation of numerical sensitivities. With the distinctive 

properties of the method subject to change between versions, the methodology is best 

referred to as LS-TaSC 3.2. The traditional approach for solving topology optimization 

problems is based on sensitivity analysis that is inexpensive to obtain for linear-static 

problems. However, deriving analytical sensitivities for dynamic analysis is very difficult 

due to the complex interactions among material nonlinearities, geometry and mesh, and 

transient nature of load and boundary conditions. Numerical computation of sensitivities 

is also not practical due to the high computational expense. Hence, the conventional 

sensitivity-based approach of topology optimization is not practical for crashworthiness 

problems. To overcome the aforementioned difficulties in topology optimization, a 

different approach was proposed. This approach does not require gradients and hence 

there is no need to compute the sensitivities. The approach in earlier versions such as LS-

TaSC 1.0 considered the work done at Notre Dame university (see e.g. [1] and [2]), 

which contained elements of the used fully stressed methodology (this also forms the 

basis for the perhaps better known optimality criterion method described in Bendsøe and 

Sigmund [3]). From the start the work differed from the Notre Dame project by omitted 

their signature use of a cellular algorithm; instead we reverted to older, proven 

knowledge by using a more traditionally filtering and amendment of the SIMP strategy. 

Additions such as the multipoint approach for constrained optimization are unique to 

LSTC and our vehicle crash applications.  Academics doing a literature review should 

therefore also consult other standard views of topology optimization and our patent 

portfolio to understand what is currently actually implemented. 

Topology optimization in structures has been studied since the 1970s resulting in many 

books and numerous papers. The books by Rozvany [4] and Bendsøe and Sigmund [3] 

provide a very comprehensive and contemporary survey of optimization techniques used 

in topology optimization. Most previous studies in topology optimization, e.g., [5] and 

[6], have focused on designing structures with static loading conditions but there is 

relatively little work on handling problems involving dynamic loads, like those observed 

in crashworthiness optimization [7]. In the context of crashworthiness, topology 
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optimization is a very complex problem due to non-linear interactions among material 

and geometry, and the transient nature of boundary conditions. 

The most efficient topology optimization methods use sensitivity information e.g., 

optimality criterion based methods by Rozvany [4] and Bendsøe and Kikuchi [8], to drive 

the search for an optimum. Sensitivity calculations are computationally inexpensive for 

linear-static problems but not for the problems that involve non-linearities. To use the 

same set of topology optimization methods, one needs to explicitly calculate sensitivities 

which is practically infeasible due to very high computational cost involved with 

simulations. Thus the theory used to solve the linear static load cases, though quite 

mature, is not practical for the crashworthiness problems and alternative methods need to 

be explored. 

Previously different approaches have been adopted by authors to solve topology 

optimization with non-linearities. Pedersen used the method of moving asymptotes 

(MMA) for crashworthiness optimization of two-dimension structures [9]. There, a quasi-

static non-linear FEA was used to account for geometric nonlinearities to handle large 

deformation and rotation of plastic beam elements. However, the method ignored the 

contact between elements arising due to non-linear structural behavior. Soto [10] and [11] 

presented a heuristics-based method using a prescribed plastic strain or stress criterion to 

vary the density to achieve the desired stress or strains with a constraint on mass. 

However, this method could not be generalized to solid structures. Pedersen [12] used 

beam elements to handle topology in crashworthiness optimization. Forsberg and Nilsson 

[13] proposed two algorithms to get a uniform distribution of the internal energy density 

in the structure. In the first method, they deleted inefficient elements and in the second 

method they updated the thicknesses of the shell elements. This method also was limited 

to a small set of optimization problems. Shin et al. [14] proposed an equivalent static load 

method where they calculated an equivalent static load for the dynamic problem and then 

used the linear-static topology optimization techniques to find the optimal topology. The 

main difficulty in this method is the requirement to accurately compute the equivalent 

loads. 

 

1.2. Implementation 

The algorithm for structural optimization is shown in Figure 1-1. After defining the 

problem, the topology is evolved using the simple rules defined on the variables. The 

constraints are accommodated during the state update procedure. 
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Figure 1-1: The topology optimization algorithm 

1.2.1. Definition 

The input data is used to identify the design domain and design material model. The input 

data comprises of method data e.g., number of iterations, convergence tolerance, and the 

problem data, e.g. load cases and design part. 

1.2.2. Creating the variables 

The finite element model is mapped to design variables. Each design variables is assigned 

to a solid element in the design domain. For extrusion and symmetry constraints, the 

equality constraints are defined between the variables. For casting constraints, inequality 

constraints are established. 

1.2.3. Filtering of results 

Past works were based on the structured grid arrangement of cells. This assumption 

would breakdown for industrial applications where structured grids are not always 

possible. Consequently, a radius based strategy is used to identify neighbors. In this 

strategy, a virtual sphere of user-defined radius is placed at the centroid of an element. 

All elements that are within this sphere are considered the neighbors of the corresponding 

element, and the results are averaged over the elements in the neighborhood 

𝑈𝑖 =
∑ 𝑤𝑗𝑈𝑗

𝑛
𝑗=1

∑ 𝑤𝑗
𝑛
𝑗=1

, (1.1) 

where w are the filter weights and U are initially the internal energy density values as 

extracted from the d3plot file. Multiple values of the internal energy density are 

computed for a dynamic analysis; in this case the maximum value is used.   
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If the user specifies a negative value then the value is assumed to be element specific and 

the radius used for an element is the absolute value of the specified value times twice the 

average distance from the center of the element to the nodes.  If the value is positive then 

the specified value is applied to all elements. The default value is -1.0, which means the 

results from all elements sharing a node with an element are likely to be used. 

 

1.2.4. Material Parameterization 

The material model is parameterized using the (relative) density approach. In this 

approach, a design variable is directly linked to the individual material element such that 

each variable has its own material model. The material properties corresponding to the 

values of design variables are obtained using an appropriate interpolation model. The 

solid isotropic material with penalization (SIMP) model [15] is the most popular 

interpolation method. This model is a power law approach that drives the intermediate 

material properties towards the boundaries to obtain a 0-1 topology. According to the 

SIMP model, the material properties are defined as,  

 
0

( ) ,x x   (1.2) 

 ,)(
0

ExxE
p

  (1.3) 

 
0

( ) ,
q

x x   (1.4) 

 
0

( ) ,
q

h h
E x x E  (1.5) 

where 𝜌 denotes the density of the material, 𝐸 represents the Young’s modulus, 𝜎 is the 

yield stress, and 𝐸ℎ is the strain hardening modulus. The last two material properties 

represent material non-linearities and are required for dynamic problems like crash that 

involve material yielding. The subscript 0 refers to the base material properties. The 

design variable x, with 0 ≤ 𝑥 ≤ 1 is also known as relative density, varies from 0 to 1 

where 0 indicates void and 1 represents full material. A more detailed description of the 

material model parameterization, one should refer to Bendsøe and Sigmund [3] and Patel 

[2]. Elements with design variable value smaller than a user-defined minimum value are 

deleted to improve numerical stability. To enable the use of very large FE models, this 

approached was implemented using a discrete material model approach [16]. 

1.2.5. Solid/Void behavior 

Solid/void options force the elements to be either fully used or not used, instead of 

partially used.  

Forcing elements to be either fully used or not used will results in a target field that is less 

uniform over the part, because the intermediate variable values are required to obtain an 

uniform field.  
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LS-TaSC has two methods: using volume based results and the SIMP method. In the 

original academic research the researchers found that the SIMP scheme was not really 

required for this implementation; this was because they used volume based results. This 

simple scheme is the default in LS-TaSC, seeing that the original research was reviewed 

by the academic sector and has proved to work well in extensive industrial testing. 

1.2.6. Element volume vs material volume 

The issue is that there are two measures on energy density.  The question is whether the 

density results is reported relative to the volume of the element, or relative to the amount 

of material in the element. The value reported in the d3plot file for solids is relative to the 

volume of the element. This must be scaled with the design variable (the volume of 

material in the element) to obtain the actual IED for the material in that element. For 

example, consider an element with E=3, volume=5, and x=0.1. The EID_e (per element 

volume) = 3/5 = 0.6. The EID_m (per material volume) = 3 / (5*.1) = 6..  

For shell elements this issues does not arise, because the thickness is the design variable. 

The element volume and material volume are therefore the same. 

This applies only to energy density computations. The energies as reported in the glstat 

are always correct, because they are not scaled.  

1.2.7. The SIMP solid/void scheme 

Solid Isotropic Material with Penalization (SIMP) force material to 0/1: 

𝜌(𝑥) = 𝑥𝜌0 

𝐸(𝑥) = 𝑥𝑝𝐸0 

𝜎(𝑥) = 𝑥𝑞𝜎0 

𝐸ℎ(𝑥) = 𝑥𝑞𝐸ℎ0 

To use SIMP, take p=3 and q=2.666 in the above equations using element material based 

fields. 

Using SIMP with non-linear material models may results in problems, because for some 

values of p and q the material model may not be valid. An additional problem is elements 

being driven to a very low stiffness using through the  𝑥𝑝 term; these elements are likely 

to be inverted during nonlinear calculations. Like many other schemes, the SIMP scheme 

results in gray areas in which the elements are partially filled with material, which may 

be undesirable. 

1.2.8. The element volume solid/void scheme 

In this case the SIMP parameters p and q are both taken to be 1. and 0.66. respectively. 

The field results are however used on an element volume based instead of an element 

material basis. This results in the desired solid/void behavior. 

In the original academic research the researchers found that the SIMP scheme was not 

really required for this implementation, this was true because they used this volume based 
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results. This simple scheme is the default in LS-TaSC, because it was reviewed by the 

academic sector and has proved to work well in extensive industrial testing. 

1.2.9. Design Objectives and Constraints 

The typical goal of topology optimization is to obtain a structure with the best use of the 

material. Compliance and the strain energy density are the most commonly used 

objectives for linear static problems. For dynamic problems, like crashworthiness 

simulations, the structure needs to absorb the maximum energy while maintaining the 

structural integrity and keeping the peak loads transmitted to the occupants low. 

Following the formulation proposed by Patel [2], the goal of obtaining uniform internal 

energy density in the structure is defined as the objective for optimization. This concept 

is similar to the fully-stressed design and uniform strain energy density approaches, see 

e.g. Haftka and Gürdal [17] or Patnaik and Hopkins [18], that are well established in 

literature for linear-static problems. The use of the internal energy density in 

optimization, its relationship with the design sensitivity information for crash problems, 

and its usefulness for ranking variables has been extensively studied by Öman [19], [20]. 

The optimization problem is formulated as 

  
*

1

m in ( ) ,

N L

j j i j
x

i j

w U x U

 

   (1.6) 
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, 1, 2 , . . . ,
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j j j

i

x V M

C C C j J

x x







  

 



 (1.7)                                         

where U represents the internal energy density of the i
th

 element, Vi is the volume of i
th

 

element, U
*
 represents internal energy density set point, and Cj is the j

th
 constraint. There 

are L load cases with a total of J constraints. The superscripts ‘l’ and ‘u’ represent lower 

and upper bounds on the constraints, respectively. 

1.2.10. Design Variable Initialization 

The design variables are initialized to satisfy the material constraint. All elements are 

assigned the same design variable values. All associated field variables are also 

initialized to zero. 

1.2.11. Simulation to Obtain Field Variables 

The elements in the finite element model are modified by changing the material models, 

i.e. adding or deleting elements in each iteration. To his end, the input deck is re-written 

at each iteration. This modified input deck is analyzed using LS-DYNA
®

 [21]. One can 
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take advantage of multiple processors using the MPP version of LS-DYNA. The relevant 

field variables for all elements are obtained from the output to completely define the state 

of each variable. For multiple load case conditions, the state variable is based on the 

output from simulations of different load cases. 

For dynamic problems, it was observed that accounting for the history of evolution 

induces stability by reducing the element deletion rate. Hence, the internal energy density 

field variable of i
th

 element at iteration t is updated by defining a weighted sum on the 

field variable of three previous iterations as follows, 

 
3 3

1 1

0 0

( ) ( ) .
t j t j j

i i i i

j j

U x U x
  

 

    (1.8) 

where xi is the design variable associated with the i
th

 variable at iteration t. If the load 

cases are a mixture of dynamic and static problems, then this weighing is followed for all 

the load cases. 

1.2.12. Global Constraint Handling 

In presence of constraints other than the mass constraints, the target mass constraint is 

adjusted to satisfy the structural constraints. The mass target (M
*
) is increased in 

proportion to the constraint violation for all constraints except force constraints for which 

the mass target is reduced.  

 

* *
,

/ ,
c

j j

j

M M M

M K J

  

 
   

 


 (1.9) 

where J is the total number of constraints, 
c

j
K  is the coefficient used to scale the 

constraint violation of the j
th

 constraint, and εj is the violation of the j
th

 constraint. The 

total change in mass target (ΔM) is bounded to allow gradual changes in the structure. 

1.2.13. Dynamic Load Case Weighing 

The desired behavior is offsetCkoffsetCk 
22111

 with C the constraint value, k a scale 

factor, and an offset added as shown.  The weight 
i

w of load case i is adjusted to change 

constraint
i

C . The target value is computed as 

 
a rg

( )

i n

i i i

i

t e t

k C o f f s e t

C
n








 (1.10)  

from which we compute 
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a r g a r g

( ) / ( 0 .1 )
i t e t i i i t e t

w C k C o f f s e t C     (1.11) 

and a maximum bound of 
i

w05.0  is placed on w  to ensure convergence in a reasonable 

number of iterations. 

1.2.14.  State Update Rules 

This is the heart of topology optimization method. In this step, the state of a variable is 

updated based on the state of its neighbors. The state update is carried out in two steps: 

1. Field variable update: The field variable (internal energy density) of a variable is 

updated as accounting for the field variable values of its neighbors using the 

filtering described in section 1.2.3 as, 

 𝑈𝑖 =
∑ 𝑤𝑗𝑈𝑗

𝑛
𝑗=1

∑ 𝑤𝑗
𝑛
𝑗=1

, (1.12) 

2. Variable/Material Update: Once the field-variable state of each variable is 

defined, the design variable is updated to reflect the changes. While numerous 

rules are proposed in literature [15] to update design variables, a control based 

rule used by Patel [2] is implemented here (Figure 1-2). 

The change in the design variable of i
th

 variable (Δxi) is computed as, 

  
* *

/ .
t t

i i
x K U U U    (1.13) 

where K is a scaling factor and 
*

U denotes the internal energy density set point. The 

design variable is updated as, 

 
1

.
t t t

i i i
x x x


    (1.14) 

The change in the variable is constrained by the bounds on the value of the design 

variable i.e., 

I. if ,
1

LBx
t

i




then ,
1

LBx
t

i




  

II. if ,
1

UBx
t

i




then ,
1

UBx
t

i




 

and only certain discrete values are allowed.  
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Figure 1-2: Design variable update. 

The mass of each element is then calculated by using the appropriate material model 

associated with the design variables. If the total mass of the structure meets the 

constraint, the total change in design variables in this iteration is calculated, and the 

design variable update is considered completed. If the mass constraint is not satisfied, the 

IED set point is updated iteratively to accommodate the material constraint as, 

 
* * * *

/ .U U U M M   (1.15) 

where M is the mass of the structure. 

1.2.15.  Stopping Criteria 

Two termination conditions are used to stop the optimization process. 

1. The number of iterations has exceeded the maximum number of iterations, or 

2. The change in the topology is smaller than the tolerance, i.e.,  

 
1

.

N

t t

i

i

d X x 



    (1.16) 

The numerical oscillations in convergence are limited by averaging the total change in 

topology over two iterations. 

1.2.16. Constrained optimization 

Optimization using global variables (mass fractions and load case weights) is: 

min𝛏 f(𝛏)  with 𝛏 = (𝑀1, … , 𝑀𝑝, 𝑤1, … , 𝑤𝐿) ,  

subject to 

𝑔𝑖(𝛏) < 0 𝑤𝑖𝑡ℎ 𝑖 = 1, … , 𝑚 

ξ𝑖
𝐿 ≤ ξ𝑖 ≤ ξ𝑖

𝑈 

If |M-M*| < ε

dXi=0 dXi=K(Ui/U
* – 1)

Xi
t+1 = xi

t + dXiCorrect Xi
t+1

dMi=Mi
t+1-Mi

t

Stop

U*=U*(M/M*)

dX=∑dXi

No

Yes

M=∑Mi
t+1

If |M-M*| < ε

dXi=0 dXi=K(Ui/U
* – 1)

Xi
t+1 = xi

t + dXiCorrect Xi
t+1

dMi=Mi
t+1-Mi

t

Stop

U*=U*(M/M*)

dX=∑dXi

No

Yes

M=∑Mi
t+1
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The derivatives with respect to the global variables can be estimated using finite 

differences using a multipoint scheme [22]. The Taylor expansion for a function g around 

a point 𝛏0 is simply: 

𝐺(𝛏) = 𝑔(𝛏0) + ∑(ξ𝑖 − ξ0𝑖) (
𝜕𝑔

𝜕ξ𝑖
)

ξ0

𝑛

𝑖=1

 

 

Using 𝐹(𝛏) and 𝐺𝑖(𝛏) as the Taylor expansion to 𝑓(𝛏) and 𝑔𝑖(𝛏) , and the move limits ξ𝑖
𝐿′ 

and ξ𝑖
𝑈′, the optimization problem becomes: 

min𝛏 F(𝛏)  with 𝛏 = (𝑀1, … , 𝑀𝑝, 𝑤1, … , 𝑤𝐿) ,  

subject to 

𝐺𝑖(𝛏) < 0 𝑤𝑖𝑡ℎ 𝑖 = 1, … , 𝑚 

ξ𝑖
𝐿′ ≤ ξ𝑖 ≤ ξ𝑖

𝑈′ 

The global variable move limits ξ𝑖
𝐿′ and ξ𝑖

𝑈′ are centered around the optimum of the 

previous iteration and are chosen here as  

𝜉𝑖
𝐿′ = 𝜉𝑖𝑘(1 − 𝑒−𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛/10) 

𝜉𝑖
𝑈′

= 𝜉𝑖𝑘 (1 + 𝑒−
𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛

10 ) 

The weight for the first load case need not be a variable, and the load case weights 

(𝑤1, 𝑤2, ⋯ , 𝑤𝐿) variables are therefore rewritten as (1, 𝑤2, ⋯ , 𝑤𝐿). 

1.2.17. Metamodels and Numerical derivatives 

Metamodels (multi-point approximations to the structural behavior) is a mature field with 

some highly cited papers [23]. The methodology followed here has its origin in the work 

of Schoofs [24] and Roozen-Kroon [25] with the added refinement of intermediate 

variables and responses as described by Barthelemy and Haftka [26] as described by 

Roux et al [27]. Earlier work using global variables together with local variables and 

responses surfaces is that of Venkataraman [28].  
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2. Surface Design Theory 

1.3. Background 

The traditional approach for solving shape design problems is based on sensitivity 

analysis that is inexpensive to obtain for linear static problems. However, deriving 

analytical sensitivities for dynamic analysis is very difficult due to the complex 

interactions among material nonlinearities, geometry and mesh, and transient nature of 

load and boundary conditions. Numerical computation of sensitivities is also not practical 

due to the high computational expense. Hence this approach is not practical for 

crashworthiness problems. To overcome the aforementioned difficulties, a different 

approach was proposed. This approach does not require gradients and hence there is no 

need to compute the sensitivities. The methodology is best referred to as LS-TaSC 3.2. 

1.4. Implementation 

The algorithm is shown in Figure 2-1. After defining the problem, the surface shape is 

evolved using the simple rules defined on the variables. 

 

Figure 2-1: The surface design algorithm 
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1.4.1. Definition 

The input data is used to identify the design problem. The input data comprises of method 

data e.g., number of iterations, convergence tolerance, and the problem data, e.g. load 

cases and design surface. 

1.4.2. Creating the variables 

The discrete surface is mapped to design variables. The normal displacement to each 

node in the design surface assigned to a design variable. For extrusion and symmetry 

constraints, the equality constraints are defined between the variables. 

1.4.3. Filtering of results 

A radius based strategy is used to identify neighbors. In this strategy, a virtual sphere of 

user-defined radius is placed at the centroids of an element. All elements that are within 

this sphere are considered the neighbors of the corresponding element, and the results are 

averaged over the elements in the neighborhood 

 
1 1

.

n n

i j j j

j j

U w U w

 

    (1.17) 

1.4.4. Design Objective 

The goal of shape design is to obtain surface with a uniform stress.  

The optimization problem is formulated as, 

 
a rg

1

m in [ ( ) ]

i n

i t e t
x

i

U x U





  (1.18) 

where U represents the design field at the node associated with design variable 
i

x , and 

ett
U

arg
 represents the target value of the design field. The design field is typically the von 

Mises stress field. 

1.4.5. Target Stress 

The goal of shape design is to obtain surface with a uniform stress. In order to complete 

this task we need to define a target stress. There are the following possibilities of 

selecting a target stress: 

 Average over the surface 

 The maximum value on the surface 

 The minimum value on the surface 

 A user-defined value 
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Using the above target stresses it should be noted that the goal becomes more subtle than 

obtaining the a surface with a uniform stress: if selecting the maximum is as the target 

stress, then the weight of the structure will be reduced; while if the minimum is selected, 

then the average stress is reduced. 

1.4.6. Design Variable Initialization 

All design variables are also initialized to zero.  

1.4.7. Simulation to Obtain Field Variables 

The elements in the finite element model are modified the nodal locations for all 

iterations. So the input deck is re-written for all iterations. The relevant field variables for 

all nodes are obtained from the output to completely define the state of each variable. For 

multiple load case conditions, the state variable is based on the output from simulations 

of different load cases.  

For dynamic problems, it was observed that accounting for the history of evolution 

induces stability by reducing the element deletion rate. Hence, the field variable (internal 

energy density) of i
th

 variable at iteration t is updated by defining a weighted sum on the 

field variable of three previous iterations as follows, 

 
3 3

1 1

0 0

( ) ( ) .
t j t j j

i i i i

j j

U x U x
  

 

    (1.19) 

where xi is the design variable associated with the i
th

 variable at iteration t. If the load 

cases are a mixture of dynamic and static problems, then this weighing is followed for all 

the load cases. 

1.4.8.  Variable Update 

This is the heart of shape design method. In this step, the state of a variable is updated 

based on the state of its neighbors. The state update is carried out in two steps: 

1. Field variable update: The field variable (internal energy density) of a variable is 

updated as accounting for the field variable values of its n neighbors as, 

 
0 0

1 .

n n

i j

j j

U U

 

    (1.20) 

2. Variable update: Once the field-variable state of each variable is defined, the 

design variable is updated to reflect the changes..  

The change in field value required is 
ettii

UU
arg

 . Now compute 
x

U
x

ii




 / with 

i
x  the required movement of node i normal to the surface. 
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1.4.9.  Stopping Criteria 

Two termination conditions are used to stop the optimization process. 

1. The number of iterations has exceeded the maximum number of iterations, or 

2. The change in the topology is smaller than the tolerance, i.e.,  

 
1

.

N

t t

i

i

d X x 



    (1.21) 
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