

The LS-TaSC™ Software

TOPOLOGY AND SHAPE COMPUTATIONS USING

THE LS-DYNA
®

 SOFTWARE

SETTING UP A QUEUING SYSTEM

November 2012
Version 3.0

Copyright © 2009-2012

LIVERMORE SOFTWARE

TECHNOLOGY CORPORATION

All Rights Reserved

 2

Corporate Address

Livermore Software Technology Corporation

P. O. Box 712

Livermore, California 94551-0712

Support Addresses

Livermore Software Technology Corporation

7374 Las Positas Road

Livermore, California 94551

Tel: 925-449-2500 ♦ Fax: 925-449-2507

Email: sales@lstc.com

Website: www.lstc.com

Livermore Software Technology Corporation

1740 West Big Beaver Road

Suite 100

Troy, Michigan 48084

Tel: 248-649-4728 ♦ Fax: 248-649-6328

Disclaimer

Copyright © 2009-2012 Livermore Software Technology Corporation. All Rights

Reserved.

LS-DYNA®, LS-OPT® and LS-PrePost® are registered trademarks of Livermore Software

Technology Corporation in the United States. All other trademarks, product names and

brand names belong to their respective owners.

LSTC reserves the right to modify the material contained within this manual without

prior notice.

The information and examples included herein are for illustrative purposes only and are

not intended to be exhaustive or all-inclusive. LSTC assumes no liability or responsibility

whatsoever for any direct of indirect damages or inaccuracies of any type or nature that

could be deemed to have resulted from the use of this manual.

Any reproduction, in whole or in part, of this manual is prohibited without the prior

written approval of LSTC. All requests to reproduce the contents hereof should be sent to

sales@lstc.com.

18-Dec-13

mailto:sales@lstc.com

 3

1. SETTING UP A QUEUING SYSTEM

1.1. Relationship with the LS-OPT and LS-PrePost queuing system

This queuing system is the same as used in LS-OPT version 4.2. If your queue setup

works for LS-OPT version 4.2 then it should work for LS-TaSC version 2.1 as well. This

appendix mostly repeats the information for people not using LS-OPT.

In the LS-TaSC GUI the queuing is defined in the Scheduling tab of the Case definition,

unlike in LS-OPT where the queuing system is defined in the run panel.

Also, you do not need to reinstall the wrapper program if it is already installed for LS-

OPT version 4.2.

The LS-TaSC and the LS-PrePost queuing systems are the same. You only need to do the

install process for one product. If it works for one, it should work for the other.

1.2. Experience may be required

Experience with the queuing system and help from the system administer may be

required. The queuing systems are not provided by LSTC. Getting the queue system to

work may therefore require work and insight from the customer.

1.3. Introduction

The LS-TaSC Queuing Interface interfaces with load sharing facilities (e.g. LSF
1

 or

LoadLeveler
2
) to enable running simulation jobs across a network. LS-TaSC will

automatically copy the simulation input files to each remote node, extract the results on

the remote directory and transfer the extracted results to the local directory. The interface

allows the progress of each simulation run to be monitored via the GUI. The

README.queue file should be consulted for the most up to date information about the

queuing interface.

1.4. Installation

To run LS-TaSC with a queuing (load-sharing) facility the following binary files are

provided in the LSOPT_EXE directory which un-tars (or unzips) from the distribution

during installation of LS-OPT:

 LSTASC_EXE/wrapper

 LSTASC_EXE/runqueuer

1 Registered Trademark of Platform Computing Inc.
2 Registered Trademark of International Business Machines Corporation

 4

The runqueuer executes the command line for the purpose of queuing and must remain in

the LS-TaSC environment (the same directory as the lstasc executable).

The following instructions should then be followed:

a) Installation for all remote machines running LS-DYNA

1. Create a directory on the remote machine for keeping all the executables

including lsdyna. Copy the appropriate executable wrapper program to the

new directory. e.g. if you are running lsdyna on a Linux machine, place the

wrapper appropriate for the architecture and operating system on this machine.

You do not need to reinstall the wrapper program if it is already installed for LS-

OPT.

b) Installation on the local machine

2. Select the queuer option in the GUI for the Case definition.

To pass all the jobs to the queuing system at once, select zero concurrent jobs in the

GUI or command file.

In this example, the arguments to the rundyna.hp script are optional and can be hard-

coded in the script.

3. Change the script you use to run the solver via the queuing facility by prepending

"wrapper" to the solver execution command. Use full path names for both the

wrapper and executable or make sure the path on the remote machine includes the

directory where the executables are kept.0.

The argument for the input deck specified in the script must always be the LS-OPT

reserved name for the chosen solver, e.g. for LS-DYNA use DynaOpt.inp.

1.5. Example

Example: The LS-TaSC command relating to the queue is

"/nec00a/mike/project/submit_pbs". The "submit_pbs" file is:

#!/bin/csh -f

Run jobs on a remote processor, remote disk

set newdir=`pwd | sed -n 's/.*\/\(.*\)\/\(.*\)/\1\/\2/p'`

Run jobs on a remote processor, local disk (no transmission)

set newdir=`pwd`

echo $newdir

cat > dynscr << EOF

#!/bin/csh -f

#PBS -l nodes=1:ncpus=1

 5

setenv LSOPT /nec00a/mike/codes/LSOPT_EXE

setenv LSOPT_HOST $LSOPT_HOST

setenv LSOPT_PORT $LSOPT_PORT

Run jobs on a remote processor, remote disk

mkdir -p lsopt/$newdir

cd lsopt/$newdir

The input file name is required for LS-TaSC

/nec00a/mike/codes/wrapper /nec00a/mike/codes/ls980.single

i=DynaOpt.inp

EOF

qsub dynscr

It is also possible to specify the queuer command directly on the command line.

Environment variables can be specified on the solver command line (e.g. for the PBS

queuing system) as well as LS-TaSC input data.

Example:

This example shows how the required environment variables LSOPT_PORT and

LSOPT_HOST set by the runqueuer program are specified on the solver command line

whereas the two user variables LSDYNA971_MPP and LSOPT_WRAPPER are defined

and stored as special input entities (see Section 1.13). These can also be set on the

command line using the Linux "setenv" command. qsub is a PBS queue submit

command and the –v directive defined the names of environment variables to be exported

to the job. The qsub manual pages should also be consulted for more details. Say we

submit to qsub using the command "qsub -v LSOPT_PORT,LSOPT_HOST

../../dynscr2". The dynscr2 file in this case is:

This is the dynscr2 file

#==========================

#!/bin/csh -f

#$ -cwd -pe mpi 2

setenv NP 2

setenv ROUNDROBIN 0

Define LSDYNA971_MPP environment variables in lsopt input

or shell command ("setenv").

$1 represents i=DynaOpt.inp and is automatically

tagged on as the last argument of the lsopt "solver command".

setenv EXE "$LSDYNA971_MPP $1"

rm -f mpd.hostfile mpp.appfile

filter_hostfile < $PE_HOSTFILE > mpd.hostfile

This python script builds an HPMPI specific "appfile" telling it

exactly what to run on each node.

 6

gen_appfile.hpmpi mpd.hostfile $SGE_O_WORKDIR $NP $ROUNDROBIN $EXE >

mpp.appfile

This actually executes the job

$LSOPT_WRAPPER /opt/hpmpi/bin/mpirun -f mpp.appfile

The solver command data and environment variable input are displayed below:

1.6. Mechanics of the queuing process

Understanding the mechanics of the queuing process should help to debug the

installation:

1. LS-TaSC automatically prepends runqueuer to the solver command and

executes runqueuer which runs the submit_pbs script.

o The runqueuer sets the variables LSOPT_HOST and LSOPT_PORT

locally.

o In the first example, the submit_pbs script spawns the dynscr script.

2. In Example 1 the queuing system then submits dynscr (see qsub command at

the end of the submit_pbs script above) on the remote node which now has fixed

values substituted for LSOPT_HOST and LSOPT_PORT.

3. In Example 2 the LS-TaSC schedules the qsub command directly with

LSOPT_HOST and LSOPT_PORT as arguments and i=DynaOpt.inp

appended at the end of the command. It therefore serves as an argument to
dynscr2.

 7

4. The wrapper executes on the same machine as LS-DYNA, opens a socket and

connects back to the local host using the host/port information. The standard

output is then relayed to the local machine. This output is also written to the

logxxxx file (where xxxx is the process number) on the local host. To look at

the log of any particular run, the user can select a button on the Run page under

the View Log heading. The progress dialog is shown below, followed by the

popup log.

An example of an error message resulting from a mistype of “wrapper” in the

submit script is given in another example log file as follows:

 STARTING command /home/jim/bin/runqueuer

 PORT=56984

 JOB=LoadLeveler

 llsubmit: The job "1/1.1" has been submitted.

 /home/jim/LSOPT_EXE/Xrapper: Command not found.

 Finished with directory

/home/jim/LSOPT/4.1/optQA/QUEUE/EX4a_remote/remote/1/1.1

5. The wrapper will also extract the data immediately upon completion on the

remote node. A log of the database extraction is provided in the logxxxx file.0.

1.7. Environment variables

These variables are set on the local side by the runqueuer program and their values

must be carried to the remote side by the queuing software. The examples above illustrate

two methods by which this can be accomplished.

LSOPT_HOST : the machine where LS-TaSC (and therefore the runqueuer) is

running.

LSOPT_PORT : TCP/IP port runqueuer listens on for remote connections

1.8. Troubleshooting

1. Diagnostics for a failed run usually appear in the logxxxx file in the run directory.

If there is almost no information in this file, the wrapper path may be wrong or

the submission script may have the wrong path or permission. For any job, this

file can be viewed from the progress dialog on the Run page.

Please attach the log file (lsopt_output) when emailing support@lstc.com.

2. Make sure that the permissions are set for the executables and submission script.

3. Check all paths to executables e.g. "wrapper", etc. No diagnostic can detect this

problem.

4. Make sure that the result database is produced in the same directory as where the

wrapper is started, otherwise the data cannot be extracted. (E.g. the front end

program such as mpirun may have a specification to change the working directory

(-wd dir)).

mailto:support@lstc.com

 8

5. Running on a remote disk. Make sure that the file "HostDirectory" is not

copied by a user script to the remote disk if the simulation run is done on a remote

disk. The "HostDirectory" file is a marker file which is present only on the

local disk. Its purpose is to inform the wrapper that it is running on the local disk

and, if found on a remote disk, will prevent the wrapper from automatically

transferring extracted results back to the local disk. In general the user is not

required to do any file copying since input files (including LS-DYNA include

files) are copied to the remote disk automatically. The response.* and history.*

files are recovered from the remote disk automatically.

6. Termination of user-defined programs: LS-DYNA always displays a 'N o r m

a l' at the end of its output. When running a user-defined program which does

not have this command displayed for a normal termination, the program has to be

executed from a script followed by a command to write 'N o r m a l' to

standard output. The example file runscript shown below first runs the user-

defined solver and then signals a normal termination. 0.

 mpiexec –n 2 /home/john/bin/myprogram –i UserOpt.inp

 # print normal termination signal to screen

 echo 'N o r m a l'

which is submitted by the wrapper command in submit_pbs as:

 /home/john/bin/wrapper /home/john/bin/runscript

Note: Adding "echo N o r m a l" at the end of the wrapper command (after a

semicolon) does not work which is why it should be part of the script run by the

wrapper.

1.9. User-defined queuing systems

To ensure that the LS-TaSC job scheduler can terminate queued jobs, two requirements

must be satisfied:

1. The queuer must echo a string

 Job ”Stringa Stringb Stringc …” has been submitted

 or
 Job Stringa has been submitted

 e.g.
 Job ”Opteron Aqs4832” has been submitted

 Job aqs4832 has been submitted

The string will be parsed as separate arguments in the former example or as a single

argument in the latter example. The string length is limited to 1024 characters. The

syntax of the phrases “Job ” and “ has been submitted” must be exactly as

specified. If more than one argument is specified without the double quotes, the string

will not be recognized and the termination feature will fail.

 9

2. A termination script (or program) LsoptJobDel must be placed either in the

main working directory (first default location) or in the directory containing the

LS-TaSC binaries (second default). This script will be run with the arguments

stringA, stringB, etc. and must contain the command for terminating the queue.

An example of a Unix C shell termination script that uses two arguments is:0.

#!/bin/csh -f

aadmin –c $1 –j $2 stop

1.10. Blackbox queueing system

The Blackbox queueing system is another flavor of the User-defined queueing system. It

can be used when the computers running the jobs are separated from the computer

running LS-TaSC by means of a firewall. The key differences between User-defined and

Blackbox are:

1. It is the responsibility of the queueing system or the user provided scripts to

transfer input and output files for the solver between the queueing system and the

workstation running LS-TaSC. LS-TaSC will not attempt to open any

communications channel between the compute node and the LS-TaSC

workstation.

2. Extraction of responses and histories takes place on the local workstation instead

of on the computer running the job.

3. LS-TaSC will not run local placeholder processes (i.e. extractor/runqueuer) for

every submitted job. This makes Blackbox use less system resources, especially

when many jobs are run in each iteration.0.

When using the Blackbox queueing system, a LsoptJobDel script is required, just as

in the User-defined case. Furthermore, another script named LsoptJobCheck must

also be provided. This script takes one parameter, the job ID, as returned by the

submission script. The script should return the status of the given job as a string to

standard output.

The Blackbox queuer option requires the user to specify a command that will queue the

job. The Blackbox option can also be specified in the Scheduling panel when defining a

Case. The command to queue the job must return a job identifier that has one of the

following two forms:

Job "Any Quoted String" has been submitted

Job AnyUnquotedStringWithoutSpaces has been submitted

The Word "Job" must be the first non-white space on the line, and must appear exactly

as shown. Any amount of white space may appear between "Job" and the job identifier,

as well as after the job identifier and before "has been submitted".

The Blackbox queuer requires the presence of two executable scripts LsoptJobCheck

and LsoptJobDel. These scripts must be located in either in the current LS-TaSC

project directory or in the directory where the running LS-TaSC program is located. (For

 10

Windows, the scripts must have an added extension .exe, .vbs, .cmd or .bat). If

the Blackbox queuer option is invoked for some solver, then LS-TaSC checks for the

existence of executable scripts in one of these locations, and refuses to run if the

LsoptJobCheck and/or LsoptJobDel scripts cannot be found or are not executable.

The project directory is searched first.

LsoptJobCheck script

The user-supplied LsoptJobCheck script is run each time LS-TaSC tries to update the

current status of a job. The LsoptJobCheck script is run with a single commandline

argument:

LsoptJobCheck job_identifier

The working directory of the LsoptJobCheck script is set to the job directory

associated with job_identifier.

The script is expected to print a status statement that LS-TaSC can use to update its status

information. The only valid status statements are:

String Description

WAITING The job has been submitted and is waiting to start

RUNNING The job is running.
RUNNING N/M After RUNNING, the script may also report the progress as a

fraction. RUNNING 75/100 means that the job has ¼ to go. The

progress information will be relayed to the user, but not used in

any other way by LS-TaSC.

FAILED The job failed. This is only to be used when the underlying

queueing system reports some kind of problem. Hence, a solver

that has terminated in error does not have to be deteceted by the

LsoptJobCheck script.

FINISHED The job has completed and any output files needed for extraction

has been copied back to the run directory.

Any amount of white space may appear at the beginning of a status statement, and

anything may appear after these statements. The optional N/M argument for RUNNING is

interpreted as an estimate of the progress; in this case N and M are integers and N/M is

the fractional progress. N must be not be larger than M.

If LsoptJobCheck terminates without printing a valid status statement, then it is

assumed that LsoptJobCheck does not function properly, and LS-TaSC terminates the

job using the LsoptJobDel script. All output from the LsoptJobCheck script is

logged to the job log file (logxxxx) in the run directory for debugging purposes.

 11

Note: The LsoptJobCheck script may print more than one status statement, but only

the first one will be used to update the status.

LsoptJobDel script

The user-supplied LsoptJobDel script is run whenever the user chooses to terminate a

job, or whenever LS-TaSC determines that a job should be killed (for example, if

LsoptJobCheck fails). The LsoptJobDel script is run with a single commandline

argument:

LsoptJobDel job_identifier .

The working directory of the LsoptJobDel script is set to the job directory associated

with job_identifier.

1.11. Honda queuing system

The Honda queuing system interface is based on the Blackbox queuing system, but is

dedicated to the particular needs of this system.

Mechanics of the Honda queuing process

The queuing system generates a status file for which an environment variable has been

defined in LS-TaSC as:

$HONDA_STATUSFILE

The status file is the output of the PBS queue check command. During the initialization

phase, LS-TaSC checks whether this variable setting points to a valid file. If it does not,

LS-TaSC terminates before starting the scheduler, and prints a standard LSOPT-style

error message.

The line which marks the fields in the status file is used to determine how to parse the

file; this line has the form "----- ----------- - ----- ----". Fields are extracted based on

this line which consists solely of space and dash characters. The following fields are

used:

4 name

6 status: 'R' for running or 'Q' for queued

10 total wall clock time allowed

11 total wall clock time consumed.

Fields 10 and 11 are used to set the progress indicator. If the indicator ever reaches

100%, then it will terminate due to total wall clock time restrictions.

If a job cannot be found in the status file, then it is assumed to be dead. The job status

entry is not looked for until a minimum of 3 seconds after the job has been started. A

 12

status file is searched for a particular job status entry only if the status file has a

modification time that is later than the start time of the job.

Since there is no way to determine the exit status of a job by looking only at this status

file, the determination of the final exit status depends on whether or not the job is an LS-

DYNA job. If the job is an LS-DYNA job, then the messag file is parsed for the status

statements "N o r m a l" and "E r r o r" termination. If no messag file is found 10 seconds

after the job is no longer listed in the status file, then we assume an error termination.

If the job is a non-LS-DYNA job, then LsoptJobCheck (see Section 1.10) is executed just

once after the job no longer appears in the status file. LsoptJobCheck should print either

(a) FINISHED or (b) ERROR in order to communicate the final exit status. If

LsoptJobCheck cannot be found or cannot be executed, then ERROR is assumed. The job

log file will contain a message indicating any problem that may exist which prevents

LsoptJobCheck from being run.

The HONDA queued jobs do not use LsoptJobDel as defined in the Blackbox queuing

selection. Jobs are deleted using the standard PBSPro qdel command.

Various statements concerning how status information is gathered are logged to the job

log files. These are:

1. Job status for LSDYNA jobs found in 'messag' file:

 [HONDA] Termination status found in 'messag' file

 [HONDA] exact termination statement

2. The job status line for the current job found in $HONDA_STATUSFILE is saved:

 [HONDA] status line

3. The job is assumed finished if there is no status line found:

 [HONDA] Job 23551 not found in STATUS file - assuming job is

finished.

4. Indication that LsoptJobCheck is run at the end of a non-LS-DYNA job:

 [HONDA] Non LS-DYNA job. Running LsoptJobCheck to determine

exit status.

5. Status returned from LsoptJobCheck.

 [HONDA] Job finished - LsoptJobCheck reports normal

termination

 [HONDA] Job finished - LsoptJobCheck reports error termination

Any errors while gathering status information are logged to the job log files such as

log12345.

6. Missing messag file after LSDYNA terminates:

 [HONDA] Failed to find 'messag' file while FINISHING.

 [HONDA] Assuming ERROR termination for LSDYNA job.

 13

7. Found no termination status statement in messag file

 [HONDA] Found no termination status in 'messag' file

 [HONDA] Assuming ERROR termination for LSDYNA job.

8. HONDA_STATUSFILE variable not set

 [HONDA] *** Error $HONDA_STATUSFILE not set.

9. Could not open $HONDA_STATUSFILE

 [HONDA] *** Error Failed to open $HONDA_STATUSFILE=pbsq_status

10. LsoptJobCheck script not found for non-LSDYNA job

 [HONDA] *** Error LsoptJobCheck cannot be found.

 [HONDA] Assuming error termination for non-LSDYNA job.

11. LsoptJobCheck script did not print either (a) FINISHED or (b) FAILED.0.

 [HONDA] *** Error LsoptJobCheck did not return a valid status.

 [HONDA] Assuming error termination for non-LSDYNA

job.

If $HONDA_STATUSFILE is not updated in a timely fashion, then the scheduler can

hang forever, never moving forward. A message is passed to lsopt through the

communication socket if this happens:
 *** Warning HONDA_STATUSFILE out of date by more than 5 minutes

 *** Job progress monitoring suspended until next update

Even though the status file is checked before starting the scheduler, it is still possible for

file errors to occur. These are also sent directly to LS-TaSC.
 *** Error $HONDA_STATUSFILE not set

 *** Error Failed to open $HONDA_STATUSFILE=pbsq_status

1.12. Microsoft Windows Compute Cluster server

LS-TaSC supports submission of jobs to the Microsoft Compute Cluster Pack Scheduler.

Two scripts called submit.cmd and submit.vbs, that work together, are available

to interface LS-TaSC with CCP. The script can be downloaded from

ftp://ftp.lstc.com/ls-opt/QUEUING/MSCCS. Before using the scripts the

variables in the beginning of the file submit.cmd needs to be changed to fit your local

environment. Most users do not need to change the submit.vbs file.

The case panel of LS-TaSC when using the CCP scripts requires that the executable is

submit.cmd (or the local name) and the queuing system is set to Microsoft CCP/CCS.

1.13. Passing environment variables

LS-TaSC provides a way to define environment variables that will be set before

executing a solver command. The desired environment variable settings can be specified

directly in the com file with solver commands:

They can be specified within the Scheduling tab when defining a Case.

 14

1.13.1. Adding a new environment variable definition

Select the New button. After selecting this option, an empty, editable environment

variable definition will appear.

We do not allow the names of variables to contain anything other than upper- or lower-

case letters, numbers, and underscore (_) characters. Variable values are not so limited.

1.13.2. Editing an existing environment variable definition

To edit an environment variable, double-click on the environment variable in the

Environment variables list. The display mode of the variables will change to make it

editable.

1.13.3. Set by browsing

Select the Select by Browsing button. In order for this option to work, user-supplied

executables must be present in the directory

$HOME/LSOPT_SCRIPTS

The directory LSOPT_SCRIPTS must exist as a subdirectory of the user's home

directory, and it must contain executables. If the directory LSOPT_SCRIPTS does not

exist, or if there are no executables in this directory, an error box will appear. Setting the

LSOPT_SCRIPT Unix/Linux/Windows system environment variable may specify an

alternative script directory.

After selecting the Set by browsing option, a dialog of buttons will appear, one for each

executable in this directory. For example, suppose this is the directory listing for

$HOME/LSOPT_SCRIPTS:

 15

-rwxr-xr-x 1 joe staff 13597 2009-12-01 18:09 lsdyna_submit.autounion*
-rw-r--r-- 1 joe staff 13597 2009-12-01 17:46 stdin.save

-rwxr-xr-x 1 joe staff 9 2009-08-10 14:23 test*

-rwxr-xr-x 1 nielen staff 9 2009-08-10 14:26 testb*

Then, when you select the Set by browsing option, the following dialog appears:

A valid browse command must print environment variable definitions to standard output

in the form name='value'; the single quotes are optional if value does not contain spaces.

A valid sample output is shown below (the line is wrapped because of its length).

exe=/home/trent/LSTC/PERL/lsdyna-caec01_pbs_sub.pl menu=batch

time=1:00 host=abcdefgh07 procs=1 jobname=’My Job’ project=isd

email=No delay=No preemptable=No version=’LS-DYNA 970 MPP SP

6763’ ioloc=/home/trent inpfile=DynaOpt.inp mem1=auto mem2=auto

pfile=Generic dumpbdb=No dynamore=No clean=No tail=No copycont=No

optimization=LsOpt

All of the name='value' strings are directly imported into the Env Vars tab in bulk. In

addition to these Browse List variables, a special browse variable is created that should

not be edited. This variable records the program name used to create the Browse List.

NOTE: All variables must be printed on one line, which must be the last line of output

from the program. Lines before the last line are ignored.

WARNING: The user-supplied browse program should never define the browse variable

in its output. The name browse should be treated as a reserved name.

 16

A simple Linux browse command could be a shell script:

#!/bin/bash

echo This line is ignored. Only the last line survives

echo A=B C=D

Running the browse command shown above will import two variables, A and C, into the

browse list.

NOTE: Strings in the Env Vars List appearing above the browse= line are all part of the

Browse List. Strings in the Env Vars tab that appear below browse= are never part of the

Browse List. User-defined environment variables will always follow after the browse

variable definition (e.g., last=first in the figure above was not defined by the browse

command.)

1.13.4. Edit browse list

Select the Edit Browse list button. Choosing this option does nothing unless a Browse

List has been previously created. If a valid Browse List is present in the Env Vars tab,

then selecting this option will run the original program that created the Browse List,

together with all of the current Browse List options passed as command line arguments,

one per existing environment variable. Each command-line argument has the form

name=value. However ‘value’ is not single-quoted because each name=value argument is

a separate command-line argument. The customer-supplied browse command should

offer the user an opportunity to edit the existing variables, and the browse command

should return the newly edited list on one line, in the same format as described above.

This would normally be done through some sort of graphical user interface. The returned

list will be used to replace all of the previous Browse List.

The next example script returns an initial Browse List consisting of two variables, A and

C. Invoking the editing feature appends a new variable (tN=N) to the list.

#!/bin/bash

echo This line will be ignored. Only the last line survives.

if [“$1” == “”]; then

 echo A=B C=D;

else

 echo $* “t”$$”=”$$;
fi

When this script is invoked using the “Create by Browse” feature, there are no command-

line arguments, and the script prints “A=B C=D” to standard output. However, when the

script is invoked using the edit feature for the first time, two command-line arguments

“A=B” and “C=D” are passed to the script. This time the return line consists of the

original command-line arguments (printed using $*) and tN=N, where N is the PID of the

shell process. If the editing feature is invoked a second time, then three command-line

arguments are passed to the script (“A=B”, “C=D”, and “tN=N”). Another new variable

tN is appended, where N is the newest PID of the script process. This sample script has

little practical value, except to illustrate how existing variable settings are passed by

 17

command-line to the previous browse command, and to illustrate how one can use the

editing feature to modify or add new variables.

Note: The browse command can ABORT the replacement operation by printing a blank

line to the standard output and immediately terminating. Otherwise the current Browse

List may be deleted. If the browse command abnormally terminates, then an error box

will appear with a title bar indicating that the command failed.

1.13.5. How the browse list is used by LS-TaSC

The Browse List (indeed, the complete Env Vars List) is used to set environment

variables before running the solver command specified by LS-TaSC. However, if the first

variable returned by the browse command is exe, then a pre-processing command is run

before running the actual solver command. The pre-processing command is the value of

the exe variable. The pre-processing command has a command line
$exe var1=$var1, var2=$var2, ... varN=$varN

That is, the command executed is the value of the exe variable; additional command line

arguments consist of all Browse List strings with a comma delimiter appended to each

intermediate one. (The final argument is not followed by a comma.)

Note: Such a pre-processing command is always run from within the current LS-TaSC

Job Directory. Therefore, any file that the pre-processing command references must be

specified by a fully-qualified path or must be interpreted relative to the current LS-TaSC

Job Directory. So, the LS-TaSC Case Directory will be ".." and the LS-TaSC Project

Directory will be "../..”.

1.14. Enabling LSTCVM job proxy support

The LSTCVM proxy server is distributed separately from LS-TaSC. The installation is

usually handled by a systems administrator, who is advised to contact his local LSTC

support site beforehand to see whether support is available before attempting installation.

 18

