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1. Topology Theory 

1.1. Background 

LS-TaSC contains two approaches for the topology optimization: (i) an optimality 

criterion approach called Optimality Criteria for Dynamic Problems and (ii) a 

mathematical programming approach called Projected Subgradient Method. 

Constraints on the responses are handled using global variables together with a multi-

tensor method is used – the multi-tensor method is an extension of the more familiar 

multi-point approaches modified for topology optimization. Geometry definitions are 

handled using equality constraints on the variables together with filtering. 

The traditional approach for solving topology optimization problems is based on 

sensitivity analysis that is inexpensive to obtain for linear-static problems. However, 

deriving analytical sensitivities for dynamic analysis is very difficult due to the 

complex interactions among material nonlinearities, geometry and mesh, and transient 

nature of load and boundary conditions. Numerical computation of sensitivities is also 

not practical due to the high computational expense. Hence, the conventional 

sensitivity-based approach of topology optimization is not practical for 

crashworthiness problems. To overcome the aforementioned difficulties in topology 

optimization, a different approach was proposed. This approach does not require 

gradients and hence there is no need to compute the sensitivities. The optimality 

criteria used is that of having a uniform internal energy density, a condition which (as 

far as we can ascertain) probably goes back to before Prager’s work in the 1960’s. The 

full method also contains elements of the used fully stressed methodology together 

with SIMP and results filtering (this also forms the basis for the perhaps better known 

optimality criterion method described in Bendsøe and Sigmund [1]). The approach of 

designing for a uniform internal energy density was first applied to impact problems 

in work done at Notre Dame university (see e.g. [2] and [3]), From the start our work 

differed from the Notre Dame project by omitted their signature use of a cellular 

algorithm; instead we reverted to the older and more established knowledge by using 

a more traditionally filtering and adding a solid/void (SIMP) strategy, because the 

established methodologies have all of the benefits while carrying none of the risk. 
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Additions such as the multipoint approach for constrained optimization are unique to 

LSTC and our vehicle crash applications.  Academics doing a literature review should 

therefore also consult other standard views of topology optimization and our patent 

portfolio to understand what is currently actually implemented.  

Topology optimization in structures has been studied since the 1970s resulting in many 

books and numerous papers. The books by Rozvany [4] and Bendsøe and Sigmund [1] 

provide a very comprehensive and contemporary survey of optimization techniques 

used in topology optimization. Most previous studies in topology optimization, e.g., 

[5] and [6], have focused on designing structures with static loading conditions but 

there is relatively little work on handling problems involving dynamic loads, like those 

observed in crashworthiness optimization [7]. In the context of crashworthiness, 

topology optimization is a very complex problem due to non-linear interactions among 

material and geometry, and the transient nature of boundary conditions. 

The most efficient topology optimization methods use sensitivity information e.g., 

mathematical programming methods [8], to drive the search for an optimum for large-

scale topology optimization problems. Sensitivity calculations are computationally 

inexpensive for linear-static problems but not for the problems that involve non-

linearities. To use the same set of topology optimization methods, one needs to 

explicitly calculate sensitivities which is practically infeasible due to very high 

computational cost involved with simulations. Thus the theory used to solve the linear 

static load cases, though quite mature, is not practical for the crashworthiness 

problems and alternative methods need to be explored. 

Previously different approaches have been adopted by authors to solve topology 

optimization with non-linearities. Pedersen used the method of moving asymptotes 

(MMA) for crashworthiness optimization of two-dimension structures [9]. There, a 

quasi-static non-linear FEA was used to account for geometric nonlinearities to handle 

large deformation and rotation of plastic beam elements. However, the method ignored 

the contact between elements arising due to non-linear structural behavior. Soto [10] 

and [11] presented a heuristics-based method using a prescribed plastic strain or stress 

criterion to vary the density to achieve the desired stress or strains with a constraint on 

mass. However, this method could not be generalized to solid structures. Pedersen [12] 

used beam elements to handle topology in crashworthiness optimization. Forsberg and 

Nilsson [13] proposed two algorithms to get a uniform distribution of the internal 

energy density in the structure. In the first method, they deleted inefficient elements 

and in the second method they updated the thicknesses of the shell elements. This 

method also was limited to a small set of optimization problems. Shin et al. [14] 

proposed an equivalent static load method where they calculated an equivalent static 

load for the dynamic problem and then used the linear-static topology optimization 

techniques to find the optimal topology. The main difficulty in this method is the 

requirement to accurately compute the equivalent loads. 



 7 

1.2. Overview of Topology Algorithm 

The algorithm for structural optimization is shown in   

Figure 1-1. After defining the problem, the topology is evolved using the simple rules 

defined on the variables. The constraints are accommodated during the state update 

procedure. 

 

Figure 1-1: The topology optimization algorithm 

1.2.1. Definition 

The input data is used to identify the design domain and design material model. The 

input data comprises of method data e.g., number of iterations, convergence tolerance, 

and the problem data, e.g. load cases and design part. 

1.2.2. Creating the variables 

The finite element model is mapped to design variables. Each design variable is 

assigned to a solid element in the design domain. For extrusion and symmetry 

constraints, the equality constraints are defined between the variables. For casting 

constraints, inequality constraints are established. 

1.2.3. Filtering of results 

Filtering is a standard operation in topology optimization used to enforce a minimum 

feature size and to prevent an instability named checkerboarding. 

A radius based strategy is used to identify neighbors. In this strategy, a virtual sphere 

of user-defined radius is placed at the centroid of an element. All elements that are 

within this sphere are considered the neighbors of the corresponding element, and the 

results are averaged over the elements in the neighborhood 
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𝑈𝑖 =
∑ 𝑤𝑗𝑈𝑗

𝑛
𝑗=1

∑ 𝑤𝑗
𝑛
𝑗=1

, (1.1) 

where the subscripts i and j are, respectively, the indices of the central element and 

elements around the central element within the sphere. 𝑤𝑗 are the filter weights and 𝑈𝑗 

are initially the internal energy density values as extracted from the d3plot file. 

Multiple values of the internal energy density are computed for a dynamic analysis; in 

this case the maximum value is used.   

If the user specifies a negative value then the value is assumed to be element specific 

and the radius used for an element is the absolute value of the specified value times 

twice the average distance from the center of the element to the nodes.  If the value is 

positive then the specified value is applied to all elements. The default value is -1.0, 

which means the results from all elements sharing a node with an element are likely 

to be used. 

1.2.4. Material Parameterization 

The material model is parameterized using the (relative) density approach. In this 

approach, a design variable is directly linked to the individual material element such 

that each variable has its own material model. The material properties corresponding 

to the values of design variables are obtained using an appropriate interpolation model. 

The solid isotropic material with penalization (SIMP) model [15] is the most popular 

interpolation method. This model is a power law approach that drives the intermediate 

material properties towards the boundaries to obtain a 0-1 topology. According to the 

SIMP model, the material properties are defined as,  

 0( ) ,x x   (1.2) 

 𝐸(𝑥) = 𝑥𝑝𝐸0, (1.3) 

 𝜎(𝑥) = 𝑥𝑞𝜎0, (1.4) 

 𝐸ℎ(𝑥) = 𝑥𝑞𝐸ℎ0, (1.5) 

where 𝜌 denotes the density of the material, 𝐸 represents the Young’s modulus, 𝜎 is 

the yield stress, and 𝐸ℎ  is the strain hardening modulus. The last two material 

properties represent material non-linearities and are required for dynamic problems 

like crash that involve material yielding. The subscript 0 refers to the base material 

properties. The design variable x, with 0 ≤ 𝑥 ≤ 1 is also known as relative density, 

varies from 0 to 1 where 0 indicates void and 1 represents full material. A more 

detailed description of the material model parameterization, one should refer to 
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Bendsøe and Sigmund [1] and Patel [3]. Elements with design variable value smaller 

than a user-defined minimum value are deleted to improve numerical stability. To 

enable the use of very large FE models, this approached was implemented using a 

discrete material model approach [16]. 

For eigenvalue problems the method of setting the element mass to zero in sub-regions 

with low material density is used to prevent the localized eigenmodes. Thus, the 

interpolation formula for densities is parameterized as 

𝜌(𝑥) = {
𝑥𝜌        𝑖𝑓  �̂� < 𝑥

𝑥𝑟𝜌      𝑖𝑓  𝑥 ≤  �̂�
                                              (1.2a) 

with �̂� = 0.1,and 𝑟 = 6. Note that Eq. (1.2a) is discontinuous at the low value 𝑥 = 0.1 

of the material density. This is not a serious problem because the discontinuity only 

occurs at a single point. 

1.2.5. Solid/Void behavior 

Solid/void options force the elements to be either fully used or not used, instead of 

partially used.  

Forcing elements to be either fully used or not used will result in a target field that is 

less uniform over the part, because the intermediate variable values are required to 

obtain a uniform field.  

LS-TaSC has three methods: the SIMP method, the true mechanics method, and the 

SIMP with continuation. In this theory manual, the SIMP and true mechanics methods 

are introduced. The true mechanics method only works with the internal energy 

density approach, while the SIMP method works well with both the internal energy 

density and design sensitivity analysis (DSA) approaches. The true mechanics scheme 

is the default in LS-TaSC, because it has proved to work well in extensive industrial 

testing. 

1.2.6. Element volume vs material volume 

The issue is that there are two measures on energy density. The question is whether 

the density result is reported relative to the volume of the element, or relative to the 

amount of material in the element. The value reported in the d3plot file for solids is 

relative to the volume of the element. This must be scaled with the design variable (the 

volume of material in the element) to obtain the actual IED for the material in that 

element. For example, consider an element with E=3, volume=5, and x=0.1. The 

EID_e (per element volume) = 3/5 = 0.6. The EID_m (per material volume) = 3 / 

(5*.1) = 6. 

For shell elements this issues does not arise, because the thickness is the design 

variable. The element volume and material volume are therefore the same. 
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This applies only to energy density computations. The energies as reported in the glstat 

are always correct.  

1.2.7. The SIMP solid/void scheme 

Solid Isotropic Material with Penalization (SIMP) forces material to 0/1 using the 

following equations: 

𝜌(𝑥) = 𝑥𝜌0 

𝐸(𝑥) = 𝑥𝑝𝐸0 

𝜎(𝑥) = 𝑥𝑞𝜎0 

𝐸ℎ(𝑥) = 𝑥𝑞𝐸ℎ0 

To use SIMP, take p=3 and q=2.666 in the above equations using element material 

based fields. 

The use of SIMP have resulted in many problems when applied to industrial problems. 

For some non-linear material models the material model may not be valid for the 

values of p and q. An additional problem is elements being driven to a very low 

stiffness using through the 𝑥𝑝 term; these elements are likely to be inverted during 

nonlinear calculations. Also, for NVH computations, the speed of sound may be 

lowered so much that it interferes with the physics under consideration. The 

displacements and energies of the models will also be very high during initial iterations 

because the scaling of the stiffness with the 𝐸(𝑥) = 𝑥𝑝𝐸0 term. For a mass fraction of 

0.3, this may result in a factor 10 difference; for a mass fraction of 0.01, the potential 

difference grows to an astonishing 10000. 

Because of the above, the SIMP scheme is not recommended for industrial problems, 

specifically problems involving highly nonlinear mechanics and constraints. 

1.2.8. The true mechanics solid/void scheme 

The standard academic research on the topic, specifically the ubiquitous SIMP 

scheme, is not derived to allow the robust computation of highly nonlinear behavior. 

The structural mechanics should not be disregarded lightly, because this will yield 

various instabilities described in the previous section. The true mechanics scheme for 

solid/void scheme borrows from the mathematical field of dynamical systems [17] to 

be both respect to the structural mechanics of the problem and to force elements with 

small variable values to exit the equations.  

𝜌(𝑥) = 𝑥𝜌0 

𝑑𝐹/𝑑𝑥 = 𝑥𝑝d𝐹0(𝑥)/d𝑥 

𝐸(𝑥) = 𝑥𝑝𝐸0 

𝜎(𝑥) = 𝑥𝑞𝜎0 
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𝐸ℎ(𝑥) = 𝑥𝑞𝐸ℎ0 

This gives the required contraction if the SIMP parameters p is taken to be 1. Only the 

optimality criteria results can be scaled currently. 

This scheme is the default in LS-TaSC, because it has proved to work well in extensive 

industrial testing. 

1.2.9. Design Objectives and Constraints 

The typical goal of topology optimization is to obtain the layout of a structure; the 

structure supporting a load with a better structure needing less material to do so. 

Compliance is the most commonly used objectives for linear static problems. For 

dynamic problems, like crashworthiness simulations, the structure needs to absorb the 

energy while maintaining the structural integrity and keeping the peak loads 

transmitted to the occupants low. 

In LS-TaSC the layout of the structures is designed such as to maximize the stiffness, 

while other objectives and constraints such as the amount of energy absorbed and the 

amount of deflection is controlled by global variables such as the part mass fractions 

and load case weights. In theory any kind of response can be designed for, but in 

practice sophisticated responses requires sophisticated use of the global variables such 

as subdivided the part into a number of parts. 

1.2.10. Design Variable Initialization 

The design variables are initialized to satisfy the material constraint. All elements are 

assigned the same design variable values. All associated field variables are also 

initialized to zero. 

1.2.11. Simulation to Obtain Field Variables 

The elements in the finite element model are modified by changing the material 

models, i.e. adding or deleting elements in each iteration. To his end, the input deck is 

re-written at each iteration. This modified input deck is analyzed using LS-DYNA® 

[21]. One can take advantage of multiple processors using the MPP version of LS-

DYNA. The relevant field variables for all elements are obtained from the output to 

completely define the state of each variable. For multiple load case conditions, the 

state variable is based on the output from simulations of different load cases. 

For dynamic problems, it was observed that accounting for the history of evolution 

induces stability by reducing the element deletion rate. Hence, the internal energy 

density field variable of ith element at iteration t is updated by defining a weighted sum 

on the field variables of the current and three previous iterations as follows, 

                                  𝑈𝑖
𝑡 = ∑ (𝑥𝑖)

𝑘+1𝑈𝑖
𝑡−𝑘3

𝑘=0 ∑ (𝑥𝑖)
𝑘+13

𝑘=0⁄                                  (1.6) 
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where xi is the design variable associated with the ith variable at iteration t. If the load 

cases are a mixture of dynamic and static problems, then this weighing is followed for 

all the load cases. 

1.3. Global Constraint Handling using Control Theory 

In presence of constraints other than the mass constraints, the target mass constraint is 

adjusted to satisfy the structural constraints. The mass target (M*) is increased in 

proportion to the constraint violation for all constraints except force constraints for 

which the mass target is reduced.  

 

* * ,

/ ,c

j j

j

M M M

M K J

  

 
   

 


 (1.7) 

where J is the total number of constraints, 𝐾𝑗
𝑐  is the coefficient used to scale the 

constraint violation of the jth constraint, and εj is the violation of the jth constraint. The 

total change in mass target (ΔM) is bounded to allow gradual changes in the structure. 

1.4. Dynamic Load Case Weighing 

The desired behavior is 𝑘1𝐶1 + 𝑜𝑓𝑓𝑠𝑒𝑡1 = 𝑘2𝐶2 + 𝑜𝑓𝑓𝑠𝑒𝑡2  with C the constraint 

value, k a scale factor, and an offset added as shown. The weight lw of load case l is 

adjusted to change constraint 𝐶𝑙. The target value is computed as 

                                             𝐶𝑡𝑎𝑟𝑔𝑒𝑡 =
∑ (𝑘𝑙𝐶𝑙+𝑜𝑓𝑓𝑠𝑒𝑡𝑙)𝐿

𝑙=1

𝐿
                                             (1.8) 

from which we compute 

 𝛥𝑤𝑖 = (𝐶𝑡 𝑎𝑟𝑔 𝑒𝑡 − 𝑘𝑖𝐶𝑖 − 𝑜𝑓𝑓𝑠𝑒𝑡𝑖)/(0.1𝐶𝑡 𝑎𝑟𝑔 𝑒𝑡) (1.9) 

and a maximum bound of 0.05𝑤𝑙  is placed on  ∆𝑤𝑙  to ensure convergence in a 

reasonable number of iterations. 

1.5.  Optimality Criteria for Dynamic Problems 

1.5.1. Design Objectives 

The objective is that obtaining the stiffest structure for a given mass. These 

requirements yields the optimality criteria of designing for a uniform internal energy 

density. This approach to design dates back to at least work by Venkayya et al. [33] 
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and is adopted by many others. The history of these developments can be found in the 

book by Rozvany [4]. This concept is similar to the fully-stressed design and uniform 

strain energy density approaches, see e.g. Haftka and Gürdal [17] or Patnaik and 

Hopkins [18], which are well established in literature for linear-static problems.  

The optimization problem is formulated as 

                          min
𝑥

∑ ∑ (𝑤𝑙𝑈𝑙(𝑥𝑖) − 𝑈𝑙
∗)𝐿

𝑙=1
𝑁
𝑖=1 ,                                  (1.10) 

subject to, 

                                                        
∑ 𝜌(𝑥𝑖)𝑉𝑖

𝑁
𝑖=1 ≤ 𝑀∗

𝑥min ≤ 𝑥𝑖 ≤ 1.0
                                                 (1.11) 

where 𝑈𝑙(𝑥𝑖) represents the internal energy density of the ith element in the lth load 

case, Vi is the volume of ith element, and 𝑈𝑙
∗ represents internal energy density set point 

in the lth load case. The superscripts ‘low’ and ‘up’ represent lower and upper bounds 

on the constraints, respectively. 

The multipoint scheme can be used to introduce other objectives and constraints such 

as the maximization of energy absorption and limits on displacements or peak forces. 

To understand how these optimality criteria were derived consider saying a situation 

consisting of perfectly plastic flow under the condition of constant energy (typical of 

impact problems). Consider a fiber A with a plastic strain larger than that at another 

fiber B. The plastic work done will depend only on the strain, because the yield stress 

is constant. Therefore moving material from B to A will try to increase the total plastic 

work, because the material will absorb more energy at A than B. But the total energy 

is required to be constant, therefore the strains at A must be reduced in this new 

configuration. There may be a small corresponding increase in the strain at B, but 

overall the load resistance of the part increases – because more energy will be absorbed 

for the same displacement (strain field). Given that the total work is constant, the 

displacement (plastic strain level) must decrease, and the outcome is that of a structure 

with better load resistance. This is frequently expressed as an optimality criterion 

stating that the optimal part has a uniform energy density. The knowledge is due to a 

previous generation of engineers – research ceased long ago in favor of mathematical 

programming methods using derivatives. 

Considering the objective functions, the optimality criteria methods and the 

mathematical programming methods should yield similar designs, because both 

essentially solve the equation describing the energy in the structure. Differences in 

designs will however occur due to (i) local minima found by the solvers, which are 

quite probable for highly nonlinear and other tough problems; and (ii) the projected 

subgradient method being a more powerful method. 
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1.5.2. Update Rules 

This is the heart of the optimality criteria topology optimization method. In this step, 

the state of a variable is updated based on the state of its neighbors. The state update 

is carried out in two steps: 

1. Field variable update: The field variable (internal energy density) of a variable is 

updated as accounting for the field variable values of its neighbors using the 

filtering described in section 1.2.3 as, 

 𝑈𝑖 =
∑ 𝑤𝑗𝑈𝑗

𝑛
𝑗=1

∑ 𝑤𝑗
𝑛
𝑗=1

, (1.12) 

2. Variable/Material Update: Once the field-variable state of each variable is defined, 

the design variable is updated to reflect the changes. While numerous rules are 

proposed in literature [15] to update design variables, the fully stressed method 

used by Patel [3] is implemented here (Figure 1-2). 

The change in the design variable of ith variable (Δxi) is computed as, 

  * */ .t t

i ix K U U U    (1.13) 

where K is a scaling factor and 𝑈∗denotes the internal energy density set point. The 

design variable is updated as, 

 𝑥𝑖
𝑡+1 = 𝑥𝑖

𝑡 + 𝛥𝑥𝑖
𝑡 . (1.14) 

The change in the variable is constrained by the bounds on the value of the design 

variable i.e., 

I. if 𝑥𝑖
𝑡+1 < 𝐿𝐵, then 𝑥𝑖

𝑡+1 = 𝐿𝐵,  

II. if 𝑥𝑖
𝑡+1 > 𝑈𝐵, then 𝑥𝑖

𝑡+1 = 𝑈𝐵, 

and only certain discrete values are allowed.  
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Figure 1-2: Design variable update. 

The mass of each element is then calculated by using the appropriate material model 

associated with the design variables. If the total mass of the structure meets the 

constraint, the total change in design variables in this iteration is calculated, and the 

design variable update is considered completed. If the mass constraint is not satisfied, 

the IED set point is done using bisection method. 

1.6. Projected Subgradient Method 

This method works for combined impact, NVH, and linear load cases. It is the only 

available method for the fundamental eigenvalue problems. 

The method is similar to the steepest descent method which has an update written as 

                                                     𝑥𝑡+1 = 𝑥𝑡 − 𝛼𝑡𝒅𝑡                                            (1.15) 

where 𝒅𝑡 is the derivative vector of the objective with respect to the design variables. 

𝛼𝑡  is the desired step size. The design search vector between two iterations is 

represented as ∆𝒙𝑡 = −𝛼𝑡𝒅𝑡. The difference is that the projected subgradient decent 

method has a fixed step size and that the computations are projected onto a plane. 

1.6.1. Design Objectives and Constraints 

The optimization problem is formulated as 

 min
𝑥

𝑓(𝑥),                                                                               (1.16) 

subject to, 

                                 

∑ 𝜌(𝑥𝑖)𝑉𝑖
𝑁
𝑖=1 ≤ 𝑀∗

𝐶𝑗
low ≤ 𝐶𝑗 ≤ 𝐶𝑗

up
, 𝑗 = 1, 2, ⋯ , 𝐽

𝑥min ≤ 𝑥𝑖 ≤ 1.0

                                             (1.17) 

If |M-M*| < ε

dXi=0 dXi=K(Ui/U
* – 1)

Xi
t+1 = xi

t + dXiCorrect Xi
t+1

dMi=Mi
t+1-Mi

t

Stop

U*=U*(M/M*)

dX=∑dXi

No

Yes

M=∑Mi
t+1

If |M-M*| < ε

dXi=0 dXi=K(Ui/U
* – 1)

Xi
t+1 = xi

t + dXiCorrect Xi
t+1

dMi=Mi
t+1-Mi

t

Stop

U*=U*(M/M*)

dX=∑dXi

No

Yes

M=∑Mi
t+1
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where 𝑓(𝑥) represents the objective, Vi is the volume of ith element, and Cj is the jth 

constraint. The superscripts ‘low’ and ‘up’ represent lower and upper bounds on the 

constraints, respectively. 

The objective for the NVH load case is to maximize the fundamental frequency, while 

for the impact and linear statics load cases the objective is essentially to maximize the 

stiffness of the structure; for linear material behavior the objective is actually the 

minimization of the work done which is equivalent to minimizing the compliance, 

while for plastic flow of the material the design process will result in smaller 

displacements and/or higher forces but not necessarily different energy absorption. 

The search directions for the fundamental frequency is the derivative with respect to 

the element variables as described in the standard literature on design sensitivity 

analysis. The search directions for the impact and static load cases are computed from 

the internal energy densities of the elements as described in a later section. 

The multipoint scheme can be used to introduce other objectives and constraints such 

as the maximization of energy absorption and limits on displacements or peak forces. 

Considering the objective functions, the optimality criteria methods and the 

mathematical programming methods should yield similar designs, because both 

essentially solve the equation describing the energy in the structure. Differences in 

designs will however occur due to (i) local minima found by the solvers, which are 

quite probable for highly nonlinear and other tough problems; and (ii) the projected 

subgradient method being a more powerful method. 

1.6.2. Design Variable Update 

In the projected subgradient method, the design search vector is projected onto the 

plane of an inequality structural constraint, so that the constraint function is satisfied 

with the update of the design. Assume that normal vector of the plane of the constraint 

function is presented as n. The design search vector projected onto the constraint plane 

can be expressed as, 

                                         ∆𝒙𝑃 = ∆𝒙 − (
∆𝒙∙𝒏

(|𝒏|)2

 
)  𝒏,                                                                (1.18) 

where ∆𝒙𝑃is the design change vector after the projection onto the constraint function. 

Besides the constraint function, the side bounds on the design variable should be taken 

into consideration as well, as the side bounds on the design variables may cause the 

computations to be off. In order to correct for the effect of the side bounds of the design 

variables, a parameter 𝜆 is introduced to compensate the side bound effect on the 

updated design. The design search vector is thus expressed as, 

                                ∆�̃�𝑃 = ∆𝒙 − (1 + 𝜆) (
∆𝒙∙𝒏

(|𝒏|)2

 
)  𝒏,                                                (1.19) 
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where ∆𝒙𝑃 is the design change vector after considering the side bound affects. In the 

above equation, the physical meaning of 𝜆 is to move the plane of the constraint 

function up and down, so that the constraint function is satisfied with updated designs 

within the side bounds. The value of 𝜆 can be positive, zero, or negative depending on 

how much the constraint plane should be moved. λ is typically found using a bisection 

algorithm such as to satisfy the constraint function. 

Therefore, the updated design in the projected subgradient method is presented as, 

                                      𝒙𝑡+1 = 𝒙𝑡 + ∆�̃�𝑃 .                                                           (1.20) 

Due to the compensation of the side bound affects in the computation, the above 

updated design may exceed the range of the side bounds. Thus the updated design 

should be trimmed so that all the design variables have values within the range of the 

side bounds. The final updated design is obtained as 

𝑥𝑖
𝑡+1 = {

𝑥min if  𝑥𝑖
𝑡 + ∆�̃�𝑖

𝑃 ≤ 𝑥min

𝑥𝑖
𝑡 + ∆�̃�𝑖

𝑃 if 𝑥min < 𝑥𝑖
𝑡 + ∆�̃�𝑖

𝑃 < 1.0

1.0 if  𝑥𝑖
𝑡 + ∆�̃�𝑖

𝑃 ≥ 1.0

 .                                      (1.21) 

1.6.3. Step Size and Scaling of the Gradients 

For the class of problems considered here, there is a natural choice of step size: the 

amount of material allowed to flow during an iteration. This means the step size 

depends on the mechanics of the problem and not the number of variables. Numerical 

concerns such as the mesh size therefore do not affect the step size. 

To implement material flow as controlling the allowable step size requires that the 

difference between two sequential designs in computation should be considered. The 

material flow is a scaled version of the L1 norm of the variable changes, 

                                           𝑚𝑓 =
1

𝑁
∑ |∆𝑥𝑖|

𝑖=𝑁
𝑖=1 ,                                                       (1.22) 

while the step size is the L2 norm of the variable changes,  

                                            𝑠 = √∑ (∆𝑥𝑖)2𝑖=𝑁
𝑖=1 ,                                                     (1.23) 

where N is the total number of elements in the structure. 𝑚𝑓 represents the L1-norm-

based mass flow and s is the step size. The L1 norm and L2 norm of the variable 

changes are equal if all the variable changes have the same absolute value. In such a 

case, a material flow of 𝑚𝑓̅̅ ̅̅ requires an absolute change of 𝑚𝑓̅̅ ̅̅  for each variable, given 

that the material flow is, 

                                𝑚𝑓 =
1

𝑁
∑ |∆𝑥𝑖|

𝑖=𝑁
𝑖=1 =

1

𝑁
∑ 𝑚𝑓̅̅ ̅̅𝑖=𝑁

𝑖=1 = 𝑚𝑓̅̅ ̅̅ ,                                (1.24) 

For this case, the step size is therefore computed as 
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                          𝑠 = √∑ (∆𝑥𝑖)2𝑖=𝑁
𝑖=1 = √∑ 𝑚𝑓̅̅ ̅̅ 2𝑖=𝑁

𝑖=1 = √𝑁𝑚𝑓̅̅ ̅̅  ,                             (1.25) 

Thus, different from the linear-search-based step sizes in the steepest decent method, 

a constant step size is used in the projected subgradient method.  

In order to improve the computational stability, the value of N should be taken as the 

number of grey elements, 𝑁𝑔 in the design space, where the grey elements means the 

associated design variables of elements not at the side bounds. Besides the mass flow 

of the grey elements, the gradients of the objective must be scaled to its norm such 

that it matches the step size. Thus, the step size in the computation is obtained as, 

                                       𝛼𝑡 =
𝑠𝑡

|𝒅𝑡|
= √𝑁𝑔

(𝑡) 𝑚𝑓̅̅ ̅̅ ̅

|𝒅𝑡|
 .                                                  (1.26)  

1.6.4. Search Direction (Subgradients) for Impact and Statics Problems 

The sequence of design improvements is found by understanding that a structure 

resists a load and that a better structure expends less energy doing so.  A design is 

therefore improved by a change that reduces the energy – which is implemented very 

efficiently by constructing a search direction from the internal energy densities. The 

requirement of using the internal energy density originally came from rigorous 

considerations of linear problems. Introducing nonlinear effects such as impact and 

plastic flow, being more difficult to handle rigorously, complicates matters, leaving us 

with the statement the design improvements actually maximizes load resistance 

(stiffness). 

This use of the internal energy density in optimization, its relationship with the design 

sensitivity information for crash problems, and its usefulness for ranking variables 

have been studied by Öman and others [19], [20] at the Linköping research group. It 

is important to note that for topology optimization it is the ranking of the variables that 

are important, and not quite the values of the derivatives, because the addition of the 

solid/void scheme makes it a question of which variables are important and not a 

question of how much of each variable to use. 

For linear problems the internal energy densities therefore comprise the best search 

direction considering the analytically correct solution, while for nonlinear problems 

the internal energy densities are known to be a good, but not necessarily the best, 

search direction given extensive numerical experiments, engineering knowledge, and 

the linear derivations. For an intuitive understanding of the engineering mechanics see 

section Error! Reference source not found.. 

The topology design process therefore always increases load resistance, but whether 

the energy absorption increase or decrease depends on loading conditions such as 

whether it is an applied load, applied displacement, or prescribed initial velocity 

problem, together with impact and material yield slope effects.  
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The noise in the explicit dynamics problems make the use of subgradients attractive 

over the use of gradients information. Again the use of the internal energy densities is 

beneficial. 

1.6.5. Multidisciplinary Optimization 

The typical goals of topology optimization are to maximize stiffness or the 

fundamental frequency as described in section 1.6.1. 

These goals can be combined into a multidisciplinary design optimization problem as 

                                       min 
𝒙

  ∑ 𝑤𝑙𝑓𝑙(𝒙)𝐿
𝑙=1                                                          (1.27) 

1.6.6. Auxiliary Variables for Multiple Eigenvalues 

In the NVH problems, a problem exists when the eigenmodes swaps between 

iterations. For example, the first eigenmode in the current iteration can become the 

second eigenmode in the next iteration. This causes a convergence issue to the 

topology design optimization of the NVH problems. 

This comes from the optimization problem which is 

                                              max
𝑥

[min[𝜆1, 𝜆2, ⋯ , 𝜆𝑛]]                                            (1.28) 

This is problematic when one wishes to compute the derivatives of the objective. The 

auxiliary variables are used to resolve the derivative of the objective. This is shown 

below using only two frequencies. Hence the optimization problems is rewritten as, 

                                                               min
𝜇,𝑥

𝜇                                                      (1.29) 

subject to 

                                                         1 𝜆1⁄ − 𝜇 ≤ 0                                                (1.30) 

1 𝜆2⁄ − 𝜇 ≤ 0 

𝜇 > 0 

In the above formulations, one auxiliary variable 𝜇 , and 𝑛 Lagrange variables are 

included. 

However, the above scheme of using auxiliary variables cannot be used in the 

projected subgradient descent method. Instead we can solve for the derivatives of the 

objective with known step size. With the step size, we know which frequencies can be 

active (i.e., starting swapping). An auxiliary variable 𝑤 , and variations of design 

variables, Δ𝑥, are introduced to maximize the lowest eigenfrequency. The frequency 

for the next iteration is estimated by using a Taylor series expansion around the current 

point and from that a weighting of the eigenvalues can be computed to yield the best 

update. So we solve the below optimization problem, 
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             max
𝑤

[min [𝜆1 + ∑ Δ𝑥𝑖
𝜕𝜆1

𝜕𝑥𝑖

𝑁
𝑖=1 , 𝜆2 + ∑ Δ𝑥𝑖

𝜕𝜆2

𝜕𝑥𝑖

𝑁
𝑖=1 ]]                                     (1.31) 

where Δ𝑥𝑖 = 𝑘[𝑤
𝜕𝜆1 𝜕𝑥𝑖⁄

‖𝜕𝜆1 𝜕𝑥𝑖⁄ ‖
+ (1 − 𝑤)

𝜕𝜆2 𝜕𝑥𝑖⁄

‖𝜕𝜆2 𝜕𝑥𝑖⁄ ‖
] with 𝑘  chosen such that ‖Δ𝑥𝑖‖ = 𝑠 

with 𝑠 the step size and 0 ≤ 𝑤 ≤ 1. 

1.6.7. Design Contribution Histories and Plots 

The design contribution of a load case specifies the amount of material added to design 

for that specific load case. For histories this is a fraction of the total material, therefore 

a design contribution of 0.75 indicates that 75% of all the mass were added to design 

for that specific load case. The fringe plots of the design contributions on the other 

hand show where in the structure where in the structure the material was added for the 

load cases. 

To compute, note that the design update for the whole structure is composed from the 

individual contribution as 

                                                     𝒈 = ∑ 𝑤𝑙
𝐿
𝑙=1

𝒈𝑙

‖𝒈𝑙‖
                                               (1.32) 

with 𝒈𝑙 and 𝐿 representing the gradient for the l-th load case and the total number of 

load cases, respectively. 

The mass flow (mass redistribution) for the whole structure is summed from the 

contributions of the elements as  

                                                �̇� =
∑ ‖Δ𝑥𝑖‖𝑣𝑖

𝑁
𝑖=1

∑ 𝑉𝑖
𝑁
𝑖=1

                                                      (1.33) 

with each element’s contribution Δ𝑥𝑖 computed from 𝒈. 

The mass flow for a specific load case is taken as 

                                              �̇�𝑐𝑎𝑠𝑒 =
∑ ‖Δ𝑥𝑖

𝑐𝑎𝑠𝑒‖𝑣𝑖
𝑁
𝑖=1

∑ 𝑉𝑖
𝑁
𝑖=1

                                             (1.34) 

with Δ𝑥𝑖
𝑐𝑎𝑠𝑒 =

𝑤𝑐𝑎𝑠𝑒𝑔𝑖
𝑐𝑎𝑠𝑒

∑ 𝑤𝑙𝑔𝑙𝐿
𝑙=1

Δ𝑥𝑖. 

The mass contribution of a load case is summed over the design iterations as  

                                                 𝑀𝑐𝑎𝑠𝑒 = ∑ �̇�𝑐𝑎𝑠𝑒
𝑖𝑡𝑟𝑎𝑡𝑖𝑜𝑛𝑠                                     (1.35) 

The design contribution for the case can now be computed as  

                                                   𝐷𝑐𝑎𝑠𝑒 =
𝑀𝑐𝑎𝑠𝑒

∑ 𝑀𝑙𝐿
𝑙=1

                                                   (1.36) 

The history plots available include: 

1) �̇�: the mass flow (also in previous versions) 

2) �̇�𝑐𝑎𝑠𝑒: the mass flow for the case 
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3) 𝐷𝑐𝑎𝑠𝑒: the design distribution of each case 

The fringe plots are similar, except that it is reported per element. 

For element 𝑒 at the variable change for the final iteration is  

                      Δ𝑥𝑖
𝑐𝑎𝑠𝑒,𝑓𝑖𝑛𝑎𝑙

= ∑ Δ𝑥𝑖
𝑐𝑎𝑠𝑒,𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑓𝑖𝑛𝑎𝑙

𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛=1                                   (1.37) 

Therefore several load cases can contribute to the material in an element. Only the 

ones that significantly contribute are plotted in the fringe plots. These load cases are 

those which 

                                     Δ𝑥𝑖
𝑐𝑎𝑠𝑒,𝑓𝑖𝑛𝑎𝑙

≥
1−𝑚𝑎𝑠𝑠𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛

𝐿+1
                                         (1.38) 

The part fraction is included because that is the starting value for the design variables. 

1.7. DSA for NVH Problems 

The generalized eigenvalue problem can be formulated as 

                                               (𝑴 − 𝜇𝑗𝑲)𝜓𝑗 = 0,                                                (1.39) 

where 𝜓𝑗 denotes the eigenmode corresponding to 𝜇𝑗. Consequently, the mode shapes 

are orthonormalized with respect to the linear stiffness matrix such that 

                                                  𝜓𝑗𝑲𝜓𝑘 = 𝛿𝑗𝑘 .                                                            (1.40) 

Differentiating equation with respect to a design variable 𝑥𝑖 ∈ 𝒙 (𝑖 = 1, ⋯ , 𝑁) yields 

                                   (𝑴 − 𝜇𝑗𝑲)
𝜕𝜓𝑗

𝜕𝑥𝑖
−

𝜕𝜇𝑗

𝜕𝑥𝑖
𝑲𝜓𝑗 = − (

𝜕𝑴

𝜕𝑥𝑖
− 𝜇𝑗

𝜕𝑲

𝜕𝑥𝑖
) 𝜓𝑗 ,             (1.41) 

In what follows, it is assumed that the mass as well as the stiffness matrices are smooth 

functions of the design variables. If an eigenvalue is distinct or unimodal, i.e. 𝜇𝑗−1 <

𝜇𝑗 < 𝜇𝑗+1 , the corresponding eigenvector 𝜓𝑗  will be unique (up to a sign) and 

differentiable with respect to the design variables. The sensitivity of an eigenvalue 𝜇𝑗 

with respect to an arbitrary design variable 𝑥  may be obtained by premultiplying 

equation (1.41) by 𝜓𝑗 and invoking equations (1.39) and (1.40) to obtain 

                                          
𝜕𝜇𝑗

𝜕𝑥𝑖
= 𝜓𝑗

T (
𝜕𝑴

𝜕𝑥𝑖
− 𝜇𝑗

𝜕𝑲

𝜕𝑥𝑖
) 𝜓𝑗 .                                              (1.42) 

Assuming all design variables are changed simultaneously a linear increment in the 

single eigenvalue can be found as 

                                               ∆𝜇𝑗 =
𝜕𝜇𝑗

𝜕𝑥𝑖
∆𝑥𝑖.                                                                (1.43) 

If the solution of the eigenvalue problem in equation (1.39) yields 𝑠  repeated 

eigenvalues, i.e. �̅� ≔ 𝜇𝑙 = ⋯ = 𝜇𝑚  and 𝑠 = 𝑚 − 𝑙 + 1 , the eigenvalues are not 

Fr´echet differentiable and consequently, equations (1.41) and (1.42) are no longer 

valid. To find sensitivities of repeated eigenvalues, Seyranian et al. [34] used 
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directional derivatives in the design space. As a result, the increment in the multiple 

eigenvalue ∆�̅� is obtained as the solution of an s-dimensional sub-eigenvalue problem, 

i.e. 

                                             det(𝑭 − ∆�̅�𝑰) = 0,                                                          (1.44) 

and the elements of the matrix 𝑭 are defined as 

                    𝑭(𝑗 − 𝑙 + 1, 𝑘 − 𝑚 + 1) =
𝜕�̅�𝑗𝑘

𝜕𝑥𝑖
∆𝑥𝑖   with 𝑗, 𝑘 = 𝑙, ⋯ , 𝑚,                  (1.45) 

where 
𝜕�̅�𝑗𝑘

𝜕𝑥𝑖
 are the generalized gradient vectors defined in component form as 

                                            
𝜕�̅�𝑗𝑘

𝜕𝑥𝑖
= 𝜓𝑗

T (
𝜕𝑴

𝜕𝑥𝑖
− �̅�

𝜕𝑲

𝜕𝑥𝑖
) 𝜓𝑘.                                             (1.46) 

Due to the symmetry of the mass and stiffness matrices, the matrix 𝑭 in equation 

(1.44) is also symmetric. Considering the sub-eigenvalue problem in equation (1.43), 

two special cases are highlighted. First note that equation (1.43) reduces to (1.41) in 

the unimodal case, i.e. 𝑙 = 𝑚 and 𝑠 = 1. Second, if all off-diagonal elements of the 

matrix 𝑭 are zero, the sub-eigenvalue problem becomes determined as 

                                    ∆𝜇𝑗 =
𝜕�̅�𝑗𝑗

𝜕𝑥𝑖
∆𝑥          ∀𝑗 = 𝑙, ⋯ , 𝑚,                                          (1.47) 

and hence 
𝜕�̅�𝑗𝑗

𝜕𝑥𝑖
≡

𝜕𝜇𝑗

𝜕𝑥𝑖
. 

Once the eigenvalue analysis in equation (1.39) is performed, computing the 

sensitivities of an eigenvalue can be performed locally, i.e. equations (1.42) and (1.44) 

hold on the element level. Furthermore, the element stiffness and mass matrices are 

linear function of the (interpolated) elastic modulus and material density, respectively. 

Consequently, their derivatives may be written by virtue of equations (1.48) and (1.49) 

as 

                                        
𝜕𝐾𝑒

𝜕𝑥𝑖
= 𝑝𝑥𝑖

𝑝−1𝐾𝑒(𝐸),                                                                   (1.48) 

                              
𝜕𝑀𝑒

𝜕𝑥𝑖
= {

𝑀𝑒(𝜌) if �̂�𝑖 < 𝑥𝑖

𝑟𝑥𝑖
𝑟−1𝑀𝑒(𝜌) if 𝑥𝑖 ≤ �̂�𝑖

,                                            (1.49) 

where the superscript 𝑒 designates the standard element matrices. Since the element 

matrices are computed using the penalized material properties, i.e. 𝐸0 and 𝜌0 in LS-

DYNA, it is meaningful to rewrite equations (1.48) and (1.49) in terms of these 

parameters. Hence, making use of equations (1.2a) and (1.3) in Section 1.2.4 yields 

                                        
𝜕𝐾𝑒

𝜕𝑥𝑖
= 𝑝𝑥−1𝐾𝑒(𝐸0),                                                      (1.50) 

                                 
𝜕𝑀𝑒

𝜕𝑥𝑖
= {

𝑥𝑖
−1𝑀𝑒(𝜌0) if �̂�𝑖 < 𝑥𝑖

𝑟𝑥𝑖
−1𝑀𝑒(𝜌0) if 𝑥𝑖 ≤ �̂�𝑖

,                                        (1.51) 
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Consequently, the information exchange between LS-DYNA and LS-TaSC reduces to 

the two scaling terms being input to LS-DYNA and the 𝑠(𝑠 + 1) 2⁄  gradients being 

input to LS-TaSC. 

1.8. Constrained optimization using the Multipoint Scheme 

1.8.1. Problem Formulation 

This formulation allows any response to be used as an objective or constraint. The 

mass fractions and load case weights are used as global variables and their values are 

selected to minimize the objective and satisfy the constraints. The topology of the parts 

are however still computed using the mass fraction and load case weights to create the 

stiffest part.  

The optimization problem using the global variables is: 

min
𝛏 

f(𝛏)  with 𝛏 = (𝑀1, … , 𝑀𝑝, 𝑤1, … , 𝑤𝐿) ,                                     (1.52) 

subject to 

𝑔𝑖(𝛏) < 0 𝑤𝑖𝑡ℎ 𝑖 = 1, … , 𝑚                                        (1.53) 

ξ𝑖
𝐿 ≤ ξ𝑖 ≤ ξ𝑖

𝑈 

1.8.2. Numerical Derivatives 

The derivatives with respect to the global variables can be estimated using finite 

differences using a multipoint scheme [22]. The Taylor expansion for a function g 

around a point 𝛏0 is simply: 

𝐺(𝛏) = 𝑔(𝛏0) +  ∑ (ξ𝑖 − ξ0𝑖) (
𝜕𝑔

𝜕ξ𝑖
)

ξ0

𝑛
𝑖=1  .                                 (1.54) 

Using 𝐹(𝛏) and 𝐺𝑖(𝛏) as the Taylor expansion to 𝑓(𝛏) and 𝑔𝑖(𝛏) , and the move limits 

ξ𝑖
𝐿′ and ξ𝑖

𝑈′, the optimization problem becomes: 

min
𝛏 

F(𝛏)  with 𝛏 = (𝑀1, … , 𝑀𝑝, 𝑤1, … , 𝑤𝐿) ,                                 (1.55) 

subject to 

𝐺𝑖(𝛏) < 0 𝑤𝑖𝑡ℎ 𝑖 = 1, … , 𝑚                                      (1.56) 

ξ𝑖
𝐿′ ≤ ξ𝑖 ≤ ξ𝑖

𝑈′ 

The global variable move limits ξ𝑖
𝐿′ and ξ𝑖

𝑈′ are centered around the optimum of the 

previous iteration and are chosen here as  

𝜉𝑖
𝐿′ = 𝜉𝑖𝑘 (1 − 𝑒−

𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛

10 )                                         (1.57) 
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𝜉𝑖
𝑈′

= 𝜉𝑖𝑘 (1 + 𝑒−
𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛

10 )                                          (1.58) 

The weight for the first load case need not be a variable, and the load case weights 

(𝑤1, 𝑤2, ⋯ , 𝑤𝐿) variables are therefore rewritten as (1, 𝑤2, ⋯ , 𝑤𝐿). 

1.8.3. Metamodels 

Linear metamodels is one of the option for estimating the numerical derivatives. 

Metamodels (multi-point approximations to the structural behavior) is a mature field 

with some highly cited papers [23]. The methodology followed here has its origin in 

the work of Schoofs [24] and Roozen-Kroon [25] with the added refinement of 

intermediate variables and responses as described by Barthelemy and Haftka [26] as 

described by Roux et al [27]. Earlier work using global variables together with local 

variables and responses surfaces is that of Venkataraman [28].  

1.9. Stopping Criteria 

Two termination conditions are used to stop the optimization process. 

1. The number of iterations has exceeded the maximum number of iterations, or 

2. The change in the topology is smaller than the tolerance, i.e.,  

 1

.
N

t t

i

i

dX x 


  
 (1.59) 

The numerical oscillations in convergence are limited by averaging the total change 

in topology over two iterations. 
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2. Surface Design Theory 

1.1. Background 

The traditional approach for solving shape design problems is based on sensitivity 

analysis that is inexpensive to obtain for linear static problems. However, deriving 

analytical sensitivities for dynamic analysis is very difficult due to the complex 

interactions among material nonlinearities, geometry and mesh, and transient nature 

of load and boundary conditions. Numerical computation of sensitivities is also not 

practical due to the high computational expense. Hence this approach is not practical 

for crashworthiness problems. To overcome the aforementioned difficulties, a 

different approach was proposed. This approach does not require gradients and hence 

there is no need to compute the sensitivities. The methodology is best referred to as 

LS-TaSC 3.2. 

1.2. Implementation 

The algorithm is shown in Figure 2-1. After defining the problem, the surface shape 

is evolved using the simple rules defined on the variables. 
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1.6.3.1.Figure 2-1: The surface design algorithm 

1.2.2. Definition 

The input data is used to identify the design problem. The input data comprises of 

method data e.g., number of iterations, convergence tolerance, and the problem data, 

e.g. load cases and design surface. 

1.2.3. Creating the variables 

The discrete surface is mapped to design variables. The normal displacement to each 

node in the design surface assigned to a design variable. For extrusion and symmetry 

constraints, the equality constraints are defined between the variables. 

1.2.4. Filtering of results 

A radius based strategy is used to identify neighbors. In this strategy, a virtual sphere 

of user-defined radius is placed at the centroids of an element. All elements that are 

within this sphere are considered the neighbors of the corresponding element, and the 

results are averaged over the elements in the neighborhood 

 
1 1

.
n n

i j j j

j j

U w U w
 

   (1.15) 

1.2.5. Design Objective 

The goal of shape design is to obtain surface with a uniform stress.  

The optimization problem is formulated as, 

 arg

1

min [ ( ) ]
i n

i t et
x

i

U x U




  (1.16) 



 27 

where U represents the design field at the node associated with design variable ix , 

and 
ettU arg

 represents the target value of the design field. The design field is typically 

the von Mises stress field. 

1.2.6. Target Stress 

The goal of shape design is to obtain surface with a uniform stress. In order to complete 

this task we need to define a target stress. There are the following possibilities of 

selecting a target stress: 

 Average over the surface 

 The maximum value on the surface 

 The minimum value on the surface 

 A user-defined value 

Using the above target stresses it should be noted that the goal becomes more subtle 

than obtaining the a surface with a uniform stress: if selecting the maximum is as the 

target stress, then the weight of the structure will be reduced; while if the minimum is 

selected, then the average stress is reduced. 

1.2.7. Design Variable Initialization 

All design variables are also initialized to zero.  

1.2.8. Simulation to Obtain Field Variables 

The elements in the finite element model are modified the nodal locations for all 

iterations. So the input deck is re-written for all iterations. The relevant field variables 

for all nodes are obtained from the output to completely define the state of each 

variable. For multiple load case conditions, the state variable is based on the output 

from simulations of different load cases.  

For dynamic problems, it was observed that accounting for the history of evolution 

induces stability by reducing the element deletion rate. Hence, the field variable 

(internal energy density) of ith variable at iteration t is updated by defining a weighted 

sum on the field variable of three previous iterations as follows, 

 
3 3

1 1

0 0

( ) ( ) .t j t j j

i i i i

j j

U x U x  

 

   (1.17) 

where xi is the design variable associated with the ith variable at iteration t. If the load 

cases are a mixture of dynamic and static problems, then this weighing is followed for 

all the load cases. 
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1.2.9.  Variable Update 

This is the heart of shape design method. In this step, the state of a variable is updated 

based on the state of its neighbors. The state update is carried out in two steps: 

1. Field variable update: The field variable (internal energy density) of a variable is 

updated as accounting for the field variable values of its n neighbors as, 

 
0 0

1.
n n

i j

j j

U U
 

   (1.18) 

2. Variable update: Once the field-variable state of each variable is defined, the 

design variable is updated to reflect the changes..  

The change in field value required is 
ettii UU arg . Now compute 

x

U
x ii




 /

with ix  the required movement of node i normal to the surface. 

1.2.10.  Stopping Criteria 

Two termination conditions are used to stop the optimization process. 

1. The number of iterations has exceeded the maximum number of iterations, or 

2. The change in the topology is smaller than the tolerance, i.e.,  

 
1

.
N

t t

i

i

dX x 


    (1.19) 
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