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Abstract Processes in engineering mechanics often contain
branching points at which the system can follow different
physical paths. In this paper a method for the detection of
these branching points is proposed for processes that are
affected by noise. It is assumed that a bundle of process
records are available from numerical simulations or from
experiments, and branching points are concealed by the noise
of the process. The bundle of process records is then evalu-
ated at a series of discrete values of the independent process
coordinates. At each discrete point of the process, the associ-
ated point set of process values is investigated with the aid of
cluster analysis. The detected branching points are verified
with a recursive algorithm. The revealed information about
the branching points can be used to identify the physical and
mechanical background for the branching. This helps to bet-
ter understand a mechanical system and to design it optimal
for a specific purpose. The proposed method is demonstrated
by means of both a numerical example and a practical exam-
ple of a crashworthiness investigation.
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List of symbols

b Branching point
C Cluster (point set)
C̃ Fuzzy cluster (discrete fuzzy set)
|C | Cardinality of cluster C
d

(
z1, z2

)
Distance between z1 and z2

D Real-valued domain of process coordinates
f, → Mapping
G Quality measure for cluster configuration
LU , L SC Length of record for check of uncertainty

and silhouette coefficient, respectively
M Set
O(.) Set of outliers
p(.) Representative process record
P(.) Process group
SC Silhouette coefficient
U Uncertainty
v Velocity
x(.) Mechanical input quantities
z(.) Process variables
X, Z Random variables
X ∼ (.) Specification of the distribution of X

according to (.)

Z Real-valued domain of process variables
| For which the following holds
ε Noise
θ Process coordinates
µ Membership value according to fuzzy set

theory
τ Single process coordinate
(a, b, c, . . .) Vector with elements a, b, c, . . .
(a, b) Open interval with limits a and b
(z, µ) Value pair with elements z and µ

[a, b] Closed interval with bounds a and b
{a, b, c} Set with elements a, b, c
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1 Introduction

Processes appear and must be analyzed in many engineer-
ing disciplines and industrial applications. The goal of these
analyzes is the engineering interpretation of the mathematical
characteristics of the processes. In a general case, a process
may be affected by randomness of input quantities, envi-
ronmental and boundary conditions, system properties, and
numerical operations (or experiments). A modeling as ran-
dom process Z(θ) according to [30] is, thus, appropriate.
In this context the process is an indexed family of random
variables Z defined over a domain D with θ ∈ D being the
real-valued parameters or coordinates of the process. The
value of the process is described—at each θ—in terms of
the variable z, which is, thus, referred to as the process vari-
able. Each single process realization z(θ)—as an outcome of
a single analysis or measurement—is, then, a deterministic
process record (state of the process). It represents one reali-
zation of the family of random variables Z for all θ in form
of a function of the process variable z in dependence on the
process coordinates θ .

Physically, processes can be of various types; they may
describe the behavior of any physical quantities in depen-
dence on any physical coordinates such as time, humidity,
temperature, or spatial location. Herein, our focus is on those
processes in engineering mechanics, in which the process
variables z represent mechanical quantities, such as displace-
ments v, forces F or energy E , which result from a numer-
ical analysis or experiment. The results from these analyses
or experiments are usually calculated or recorded in depen-
dence on time τ and/or spatial coordinates ξ1, ξ2, ξ3, which,
thus, represent the process coordinates θ in the subsequent
discussion. In this set-up the process Z(θ) may describe, for
instance, the behavior of a mechanical system in dependence
on time. And the analysis or the experiment to generate the
process Z(θ) may be understood as a mapping

f : X
(
θ
) → Z

(
θ
)
, (1)

with X(θ) summarizing mechanical input quantities such as
structural parameters, loads, environmental conditions, and
boundary conditions. The quantities contained in X(θ) may
be deterministic or random and may or may not depend on
the process coordinates θ .

An important issue in the analysis of those processes is the
detection of branching points, at which the mechanical sys-
tem can follow different physical paths. The identification
of these paths and the associated physical and mechanical
background is essential to understand a mechanical system
and to design it for a specific purpose. Branching points can
be associated with mechanical effects such as local buckling
in shell structures [8,14,24], multiple failure kinematics in
structural collapse after blasting [13,21], initialization of sub-
or super-harmonic vibrations [17] or even chaotic behavior

Fig. 1 Crash analysis, time history of wall-force z(τ ), m = 200
process records

[19]. Numerical approaches for respective investigations are
provided, in particular, on the basis of finite element analysis
[1,2].

Problems in the detection of branching points appear if
the process is superimposed by noise. Investigations can be
carried out with numerical methods of stochastic mechan-
ics [6,11,28]. If the available information is not sufficient
for a reliable stochastic modeling, an analysis can also be
pursued based on other uncertainty models [22,23]. In any
case, a bundle of noisy process records is obtained. If the
signal-to-noise ratio is low, branching points may be con-
cealed by noise making the various physical paths of the
mechanical system no longer distinguishable clearly. This
is a typical problem in crashworthiness investigations. Both
experiments and numerical analyses are characterized by
significant noise [9,20,25,27]. An example of a stochastic
numerical crash analysis is shown in Fig. 1.

A vehicle component is moved against a rigid wall, and the
time history of the wall-force z(τ ) is computed in a nonlinear
dynamical analysis with the tool LS-DYNA [12]. Distinctive
paths cannot be recognized. But it can be observed that the
uncertainty of the process grows significantly with increas-
ing time. This indicates the existence of branching points and
various physical paths of the system. An identification of the
branching points is, however, not feasible with a standard
approach. The dynamical crash analysis is associated with
large structures in terms of degrees of freedom and requires
a large number of time steps. The analysis of one process
record typically takes several hours. Consequently, a detec-
tion of branching points based on mechanical principles is not
reasonable due to a tremendous computational cost. Further,
the number of analyzed process records is usually too small to
obtain reliable results from a statistical approach. The prob-
lem becomes worse in multi-dimensional and multi-variate
cases, which exclude a visual support of the evaluation.

These difficulties counter the industrial ambition to
detect the branching points as a basis for an optimum
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(c) (d)

Fig. 2 Distinctive process groups Ci (τ ) and representative process records pi (τ ). a Process group C1(τ ). b Process group C2(τ ). c Process group
C3(τ ). d Representative processes records pi (τ )

crashworthiness design of vehicle structures [25]. Signifi-
cant effort is made to reveal the mechanical background for
the branching of the time histories to identify characteristic
failure modes. If the branching point have been detected, a
systematic mechanical investigation with limited numerical
effort can be conducted. This permits a detailed interpreta-
tion of the structural behavior within the time domain. Based
on this information constructive measures can be applied to
eliminate certain structural behavior modes. This reduces the
uncertainty of the system response and, consequently, the
failure probability. For instance, the design of stiffeners and
crimping can be adjusted to prevent certain buckling modes
of local parts of sheets.

A proper numerical method for the solution of this
conflict is not available to the authors’s best knowledge. Pre-
vious extensive research on the branching of processes, see
[31,32], involved stochastic process models, the construc-
tion of which is not feasible in the cases considered herein.
An attempt for solution is, thus, made following the approach
in [18]. Methods of cluster analysis [7,15] are employed as
the basis. This approach is purely mathematical and

independent of the physical problem. It may, thus, be applied
to various similar problems, in which the involved processes
can be understood as generated in the fashion of Eq. (1).
The potential of the approach pursued in [18] becomes obvi-
ous in Fig. 2a–c. Three distinctive process groups have been
identified, each associated with its own failure mechanism
of the vehicle structure. A representative process record has
been extracted for each group Fig. 2d.

Subsequently, the concept and the algorithm for the detec-
tion of branching points in noisy processes are elucidated in
Sect. 2. Then, the selected cluster method and the quality
measure for assessing the cluster configuration are discussed
in Sect. 3. Section 4 provides a numerical example as well
as a practical example from car industry. Finally, the paper
is summarized in a conclusions section.

2 Concept and algorithm

The method for the detection of branching points is devel-
oped for noisy processes generated according to Eq. (1).
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It is assumed that a bundle or set

M = {
zr

(
θ
)
, r = 1, . . . , m

}
(2)

of process records zr (θ) are available from numerical sim-
ulations or from experiments. Each process record zr (θ) is
known as a series of vectors zr (θ i ) for discretized process
coordinates θ i ,

zr

(
θ
) = {

zr

(
θ i

) ∀i
}
, r = 1, . . . , m. (3)

The discretization of the process coordinates is the same
for all process records. That is, a point set

Mi = {
zr

(
θ i

)
, r = 1, . . . , m

}
(4)

constituted by process variables zr (θ i ) is available for each
coordinate vector θ i . The idea is to detect branching points
by observing the point set Eq. (4) in dependence on a vary-
ing coordinates θ i . At a branching point b with i = ib and
θ i = θ ib, the set Mi is split into several subsets

M1,i ⊆ Mi , . . . , Mk,i ⊆ Mi , . . . , Mni ,i ⊆ Mi , i = ib, (5)

and with restriction to classical set theory

Mi =
ni⋃

k=1

Mk,i , i = ib. (6)

This splitting provides suitable information to subdivide
the set M of process records from Eq. (2) into homogeneous
process groups

Pk
(
θ
)={

zr

(
θ
) ∣∣ zr

(
θ i

)∈ Mk,i
}
, k =1, . . . , ni , i = ib,

(7)

M =
ni⋃

k=1

Pk
(
θ
)
, i = ib. (8)

This principle is shown in the upper part of Fig. 3 with a
respective indexing for the handling of various branching
points as described below.

In crashworthiness investigations the process records
zr (θ) typically represent time-dependent quantities such as
forces or energy measures. The processes are highly dynam-
ical and involve strong geometrical and physical nonlineari-
ties. Mechanical effects such as kinematics with large
deformations, buckling, material plastification, and fracture
appear and must be considered in the numerical analysis.
Consequently, the results of both experiments and numerical
analyses are very sensitive with respect to even very small
changes in the structural parameters and boundary condi-
tions. In addition, noise appears in the results. Numerical
noise is caused by, even small, approximation errors, round-
off errors, and random effects in the CPU. Experimental noise
comes from uncontrollable small changes in the experimental
set-up and in environmental conditions. The process records
obtained from test series or from repeated calculations within
a Monte Carlo simulation, then, usually show a non-uniform

Fig. 3 Illustration of two branching points; b1—branching of process
group P0(τ ) into the three process subgroups 0 P1(τ ), 0 P2(τ ), 0 P2(τ );
b2—branching of the process subgroup 0 P2(τ ) into the two process sub-
groups 0−2 P1(τ ), 0−2 P2(τ ); associated representative processes p(τ )

behavior, which is only partly caused by mechanical effects.
That is, the separation of the set Mi is interfered by noise.
And the subsets M1,i , . . . , Mk,i , . . . , Mni ,i cannot be identi-
fied clearly.

The splitting of the set Mi can, however, be detected with
the aid of cluster analysis. The pattern of the set Mi is inves-
tigated numerically for all coordinate vectors θ i to identify
the number and the arrangement of the subsets M1,i , . . . ,

Mk,i , . . . , Mn,i . Let τ be a component of the coordinate vec-
tor θ and i represent the counter for the coordinate discretiza-
tion in τ -direction. Then, only the component τ is changed
from τi−1 to τi , all other components in θ are frozen. For
convenience in notation (List of symbols), the indices of the
frozen components are abandoned subsequently so that the
vectors θ i−1 and θ i correspond to the values τi−1 and τi ,
respectively. In the overall investigation this is applied to all
coordinate vectors θ i and in a rotating fashion with respect
to all components of θ selected as τ . With this convention
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the following criteria are formulated for the existence of a
branching point b at θ i−1:

1. The uncertainty of the set Mi , grows significantly in the
step from θ i−1 to θ i .

2. A structure of subsets is formed within the set Mi in the
step from θ i−1 to θ i .

Criterion 1 can be evaluated with the aid of a suitable mea-
sure of uncertainty U . Depending on the characteristics of
the uncertainty of the process different options for the selec-
tion of the measure U exist. If the uncertainty is clearly of
stochastic nature, the variance is an appropriate choice for U .
This may be applied, for instance, to the individual coordi-
nates in the set Mi (not the coordinates of the process) or to
the distances of its points with respect to the center of gravity.
If the uncertainty of Mi is contaminated by non-stochastic
components such as chaotic or unclear influences, set theory
provides a variety of alternative energy and entropy measures
for U . Criterion 1 is satisfied if

U (Mi−1) � U (Mi ). (9)

Criterion 2 requires an evaluation of the sets Mi in a clus-
ter analysis; see Sect. 3. It is investigated if the structure of
the set Mi can be represented appropriately by a set of sub-
sets Mk,i . In terms of cluster analysis, each subset Mk,i is
identified as a cluster Ck,i = Mk,i . And the unity of all clus-
ters represents the set Mi . The set of all clusters is referred
to as cluster configuration

Ci = {
Ck,i , k = 1, . . . , ni

}
, (10)

and clustering of the set Mi refers to the mapping

Mi → Ci . (11)

As the clustering does usually not lead to a unique result, the
various possible cluster configurations Ci are assessed with
a quality measure

G : Ci × Ci → R (12)

to identify the most appropriate number ni of clusters. Herein,
the silhouette coefficient is selected as a quality measure,
G = SC(ni ); see Sect. 3.2. An appropriate cluster configura-
tion can then be identified by a silhouette coefficient SC(ni )

larger than a predefined minimum value SCmin. In a series
of practical applications the minimum value SCmin = 0.75
has been found as suitable, see also Table 1. The numerical
formulation of Criterion 2 is then

SC (ni−1) < SCmin ∀ ni−1 > 1

∧ SC (ni ) ≥ SCmin, ni > 1. (13)

In the case of a low signal-to-noise ratio Criteria 1 and 2
according to Eqs. (9) and (13) can be too sensitive and may

Table 1 Interpretation of the silhouette coefficient after [16]

SC Cluster configuration C
describes the structure of the dataset …

0.71–1.00 Very well

0.51–0.70 Well

0.26–0.50 Poorly; may be spurious

≤0.25 No applicable configuration

lead to spurious results. It is thus reasonable to extend both
criteria to a consideration of a series of process coordinate
values τi−1, τi , τi+1, . . . of specific length L . That is,
Eqs. (9) and (13) are rewritten as

U (Mi−1) � U (
M j

)
, j = i, . . . , i − 1 + LU , (14)

and

SC (ni−1) < SCmin∀ni−1 > 1

∧ SC
(
n j

) ≥ SCmin n j > 1,

j = i, . . . , i − 1 + L SC . (15)

The values for LU and L SC have to be selected in dependance
on the particular problem. In the investigation of processes
from crash analysis the setting LU = L SC = 4 has been
found as appropriate in most cases. Another phenomenon is
the occurrence of outliers with respect to the sets Mk,i . This
is associated with a low signal-to-noise ratio, too. A numeri-
cal identification of outliers and their exclusion from the sets
Mk,i can be achieved with the aid of fuzzy cluster analysis;
see Sect. 3.1. The identified outliers are summarized in a sep-
arate set Oi , and the union property from Eq. (6) is changed
to

Mi =
( ni⋃

k=1

Mk,i

)

∪ Oi , i = ib. (16)

The separation of outliers prevents a bias in the sets Mk,i .
Such bias may, otherwise, lead to problems in subsequent
mechanical evaluations.

For an efficient detection of branching points the spe-
cific features of Criteria 1 and 2 can be exploited. While
an increase of uncertainty (Criterion 1) is a strong indicator
but not a condition, the formation of subsets (Criterion 2) is
a sufficient condition for the existence of a branching point.
The numerical effort for the evaluation of Criterion 2 is, how-
ever, significantly higher compared to the evaluation of Cri-
terion 1. The latter applies, in particular, when searching for
all branching points bq , q = 1, . . . , nb, in a noisy process,
and when the number of process records and of discretization
points θ i is large. It is, thus, proposed to apply Criterion 1 in
a first fast run to pre-select parts of the process with poten-
tial branching points. The application of Criterion 2 can then
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Algorithm 1 Algorithm for the detection of branching points
Iteration over process group until all groups are analyzed completely

1. Select process group: ... Pk
(
θ
)

(initially, P0
(
θ
)
)

If all process groups are analyzed, then the detection of branching points is completed.
2. Optional: pre-select process parts with potential branching points (Criterion 1, Eq. (14))
3. Specify the values for SCmin and L SC for Criterion 2 (Eq. (15))
4. Iteration over θ i until Criterion 2 (Eq. (15)) is satisfied or end of process is reached

(a) Specify the starting point θ i−1 (systematic increase of the components of θ )
If the entire process group ... Pk

(
θ
)

is analyzed, then proceed with the next process group ... Pk
(
θ
)
, step 1

(b) Select the component τ of θ (search direction)
If all search directions are evaluated, then proceed with a new starting point θ i−1, step 4a

i. Evaluate Criterion 2
– Build the point sets M j =

{
zr

(
θ j

) ∣
∣ zr

(
θ
) ∈... Pk

(
θ
)}

at θ j for j = i, . . . , i − 1 + L SC

– Determine the clustering M j → C j
(
n j

)
for n j = 2, 3, 4, . . . clusters and j = i, . . . , i − 1 + L SC (Sect. 3.1)

– Calculate the silhouette coefficient SC(n j ) for all determined cluster configurations C j (n j ) = {Cl, j , l = 1, . . . , n j } (Sect. 3.2)
– Check Eq. (15)
– If Eq. (15) is not satisfied, then set i = i + 1

– If end of process is exceeded in τ -direction, then proceed with the next component τ of θ , step 4b
– Otherwise, evaluate Criterion 2 for the new θ i−1, step 4(b)i

– If Eq. (15) is satisfied, then
– Register the branching point bq as detected at θ i−1
– Build the subsets Ml,i = Cl,i from the cluster configuration C j (n j ) = {Cl, j , l = 1, . . . , n j } with the largest SC(n j ) for j = i
– Determine the process subgroups ...−k Pl

(
θ
) = {

zr

(
θ
) ∣
∣ zr

(
θ i

) ∈ Ml,i
}
, l = 1, . . . , ni

– Subdivide the current process group ... Pk
(
θ
) → ...−k P1

(
θ
)
, . . . , ...−k Pl

(
θ
)
, . . . , ...−k Pni

(
θ
)
, ...−k Oi

(
θ
)

ii. Terminate investigation of process group ... Pk
(
θ
)

iii. Add the determined process subgroups ...−k P1
(
θ
)
, . . . , ...−k Pl

(
θ
)
, . . . , ...−k Pni

(
θ
)

to the investigation portfolio
iv. Proceed with the analysis of the next process group ... Pk

(
θ
)
, step 1

be limited to the pre-selected process parts to verify the exis-
tence of the branching points and to detect their position more
specifically.

When a branching point has been detected, the set of pro-
cess records is subdivided into homogeneous process groups
according to Eq. (7). The cluster analysis in Criterion 2 pro-
vides sufficient information for this subdivision in form of
the subsets Mk,i = Ck,i and the separated outliers Oi . The
identified homogeneous process groups are then investigated
separately to detect further branching points. This is realized
in a systematic analysis in a recursive fashion as summarized
in Algorithm 1. The analysis starts at a point of the process,
at which only one homogeneous process group P0(θ) exists.
This can be the initialization point of the process or a pre-
selected starting point specified with the aid of Criterion 1.
It is proceeded point by point with increasing i until the first
branching point b1 is detected at θ i , i = ib1. The process
group P0(θ) is then subdivided in the subgroups

P0
(
θ
) → 0 P1

(
θ
)
, . . . , 0 Pk

(
θ
)
, . . . ,

0 Pni

(
θ
)
, 0 Oi

(
θ
)
, i = ib1, (17)

P0
(
θ
) =

( ni⋃

k=1

0 Pk
(
θ
)
)

∪ 0 Oi
(
θ
)
, i = ib1, (18)

with 0 Pk
(
θ
) = Pk(θ) according to Eq. (7) and Mk,i =

Ck,i from cluster analysis at b1. The separated outliers Oi

are summarized in a special process group 0 Oi
(
θ
)
.

The detection procedure is then repeated separately for each
subgroup 0 Pk

(
θ
)
, k = 1, . . . , ni , i = ib1, again starting

from the initialization point of the process or from a pre-
selected point determined with Criterion 1. When a branching
point bq is detected in subgroup 0 Pk

(
θ
)
, further subdivision

of 0 Pk
(
θ
)

is carried out,

0 Pk
(
θ
) → 0−k P1

(
θ
)
, . . . , 0−k Pl

(
θ
)
, . . . ,

0−k Pni

(
θ
)
, 0−k Oi

(
θ
)
, i = ibq , (19)

0 Pk
(
θ
) =

( ni⋃

l=1

0−k Pl
(
θ
)
)

∪ 0−k Oi
(
θ
)
, i = ibq . (20)

Then, all the subgroups 0−k Pl
(
θ
)
, l = 1, . . . , ni , i = ibq

are investigated. It is proceeded in this recursive fashion until
no more branching points are found; see Algorithm 1. Finally,
a representative process record p—with respective index-
ing—is selected from each process subgroup P as illustrated
in the lower part of Fig. 3. For example, the record with the
smallest distance to the mean of the process subgroup, in an
integral sense, may be selected as the representative record
p. The mechanical background of the branching can then
be investigated by means of the representative records p.
A separate investigation of the outliers from the process
groups Oi (θ) may be carried out, in addition, to identify
rare but momentous mechanical effects and possible spuri-
ous behavior modes.
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It is important for the overall analysis to separate the sub-
groups of processes immediately after the identification of a
branching point. This ensures that crossovers and spurious
reunifications of process groups can be identified as such;
see first example in Sect. 4. A misinterpretation of these
phenomena may, otherwise, lead to wrong mechanical con-
clusions or unnecessary mechanical investigations. Further-
more, the immediate separation of subgroups prevents the
multiple detection of branching points which are associated
with the same mechanical effects. If θ has more than one
component, branching occurs along a parameter curve in the
space of the process coordinates. It is then sufficient to iden-
tify the branching at one point on this curve to separate the
subgroups. But the subsequent mechanical investigation of
the associated representative process records p includes the
entire domain of branching. If the branching characteristics
change at some point on such parameter curve, this is identi-
fied as a new branching point in one of the process subgroups.

The results from the proposed algorithm are not unique
for the following reasons. First, the adjustment of the thresh-
olds to activate Criteria 1 and 2 (sufficiently large difference
in U and value of SCmin, respectively) influence the result.
This includes the specification of LU and L SC in Eqs. (14)
and (15). Second, if the process depends on more than one
process coordinate, the order of selection of τ out of θ may
change the result. Thus, sensitivities of the result with respect
to the thresholds and to the order of selection of the coordi-
nates in the set Mi (not the coordinates of the process) should
always be investigated to verify the results.

3 Cluster analysis of the process variables

3.1 Determination of clusters

Cluster analysis is a general numerical method to identify
structures in data; its major field of application is pattern rec-
ognition [5,10,15,16]. The goal is to subdivide a given set of
elements into homogeneous subsets, which are referred to as
clusters. And homogeneity is understood as a high degree of
similarity between the elements of each subset. Herein, the
given set is the point set M ; see Eqs. (10), (11) and Algorithm
1. And its elements are process variables zr ∈ Z ⊆ R

n ; see
Eq. (4). The similarity between elements zr and zscan then
be expressed as a distance d(zr , zs) with

d : Z × Z → R. (21)

The most popular choice for d is the Euclidean distance. The
goal of the cluster analysis can be expressed in terms of the
distance d with the following two components:

1. The degree of similarity between elements within each
particular cluster Ck is maximum,

∑

zr , zs∈Ck

d
(
zr , zs

) ⇒ Min ∀ Ck, k = 1, . . . , n. (22)

This represents homogeneity within the clusters.
2. The degree of similarity between elements from different

clusters Ck and Cl is minimum,

∑

zr ∈Ck , zs∈Cl

d
(
zr , zs

) ⇒ Max

∀Ck, Cl , k, l = 1, . . . , n, k �= l. (23)

This characterizes heterogeneity between different
clusters.

Solving Eqs. (22) and (23), simultaneously, cluster analysis
is a two-criteria optimization problem. A variety of solution
methods and procedures are available, which lump the two
criteria together in one functional and determine a Pareto-
optimal cluster configuration; see [5,10,15,16].

A basic distinction between cluster analysis methods can
be made by means of the manner in which the elements
are assigned to the clusters. This assignment can be either
unique, which is referred to as deterministic clustering, or
it can be uncertain, which includes stochastic clustering and
fuzzy clustering. In the case of deterministic clustering, each
element is assigned to exactly one cluster. This is reasonable
if the cluster structure is obvious as shown in Fig. 4a. In many
cases, a deterministic clustering does, however, not comply
with the data structure and may lead to a loss of informa-
tion. A typical example is overlapping of clusters as appears
in the noisy process data. In Fig. 4b, the element in the cen-
ter can neither be uniquely assigned to the left, nor to the
right cluster. If this element is assigned uniquely to one of
the clusters, the information that the data set is almost sym-
metric is lost. Moreover, the cluster result does not provide
any information on how typical the particular elements are
for the cluster. In this manner, outliers cannot be identified.
Thus, an uncertain clustering is more appropriate for our
application.

In the investigations fuzzy cluster analysis [15,26] has
provided the most suitable basis for the clustering of noisy
process data. Fuzzy cluster algorithms consider a smooth
transitions between clusters (see Fig. 5) and take this into
account when solving the optimization Eqs. (22) and (23).
A gradual assignment of the elements zr to the clusters Ck is
described with characteristic values µk,r ∈ [0, 1] (member-
ship values) according to fuzzy set theory [33],

µk,r = µ
(
zr ∈ Ck

)
. (24)
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(a) (b)

Fig. 4 Example point sets. a Point set with three obvious clusters.
b Problem of unique assignment of elements to clusters

Fig. 5 Result of a fuzzy c-means clustering

The clusters Ck become discrete fuzzy sets

C̃k = {(
zr, µk, r

)}
. (25)

A membership of µk,r = 1 indicates a definite assignment of
object zr to cluster C̃k , whereas µk,r = 0 stands for assign-
ing zr to C̃k on no account. These features are provided by
the fuzzy c-means algorithm (FCM) [4,15], which has been
selected for the present work. An example of a result from
FCM is shown in Fig. 5. Two clusters were detected. The
degree of membership of the elements with respect to the
clusters C̃1 and C̃2, respectively, decrease with increasing
distance from the cluster centers.

The problem in Fig. 4 is now solved by assigning the mem-
bership value µk,r = 0.5 to the element in the center with
respect to both clusters. The symmetry property remains vis-
ible. Further, the other elements would obtain higher mem-
bership values so that the central element can be identified
as less typical for both clusters. Outliers can be identified
by their low membership values and filtered out. With the
requirement of a minimum cluster membership µk, min sets
of typical elements for the clusters

Ck,typ = {
zr

∣∣µk,r > µk, min
}
. (26)

and, hence, groups of typical process records, can be found.
This strategy has been adopted from the design of structures
under uncertainty proposed in [3].

3.2 Quality assessment of cluster configuration

The determination of clusters requires a predefined number n
of clusters; see Eqs. (22) and (23). This number n is, however,
not known in advance. A common method for its specifica-
tion is the search for a cluster configuration C = {Ck, k =
1, . . . , n} of optimal quality. In Fig. 4 it is obvious that a clus-
ter configuration with n = 3 clusters is most appropriate and
thus of optimal quality for the given data set. In general, the
optimum number of clusters nopt must be identified numeri-
cally. The cluster analysis is repeated for a series of numbers
of clusters n = 2, 3, . . .. Then, the quality of the cluster con-
figuration is evaluated for each n, and nopt is selected for
the final clustering. In practice, the series n = 2, 3, . . . is
terminated

– if n reaches a reasonable predefined maximum number
n = nmax,

– if a peak value of the quality has been clearly identified,
or

– if all possible cluster configurations have been investi-
gated, which is indicated by n attaining the number of
elements in the data set.

If the quality of C is low for all n ≥ 2, no suitable subdivi-
sion of the point set M exists so that only one cluster appears,
and n = 1 is retained. This approach is called unsupervised
clustering as no user interaction is involved.

The quality of a cluster configuration C is evaluated by
means of a quality measure G according to Eq. (12). In lit-
erature, a variety of quality measures G are proposed, which
possess different features and characteristics [15,16]. For the
present application, the silhouette coefficient SC has been
found as most suitable. This is available for the evaluation of
deterministic cluster configurations. With |Ck | denoting the
cardinality of cluster Ck , the silhouette coefficient is defined
as

SC = 1

n

n∑

k=1

1

|Ck |
∑

zr ∈Ck

b
(
zr

) − ak
(
zr

)

max
[
ak

(
zr

)
, b

(
zr

)] , (27)

in which

ak
(
zr

) = 1

|Ck |
∑

zh∈Ck

d
(
zr , zh

) ∣∣ zr ∈ Ck , (28)

b
(
zr

) = min
zh∈Ck ,k=1,...,n, h �=r

[
ak

(
zh

)]
. (29)

It measures the homogeneity and heterogeneity of a
cluster configuration C, simultaneously, which makes it
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particularly effective. This quality measure varies in the inter-
val SC ∈ [−1, 1]. Large values SC ≈ 1 indicate a high
quality of the cluster configuration. That is, the data set pos-
sesses a clear structure with n clusters of elements. In [16]
an interpretation of the values SC is proposed according to
Table 1.

The silhouette coefficient in Eq. (27) is only applicable
to deterministic cluster configurations. As, herein, the fuzzy
c-means algorithm is selected for clustering, an extension of
the silhouette coefficient is formulated to deal with fuzzy
clusters. This includes the membership values µk,r from
Eqs. (24) and (25) in the evaluation of the fuzzy cluster
configuration C̃ = {C̃k, k = 1, . . . , n}. Let m be the total
number of elements zr in the entire cluster configuration C̃.
The silhouette coefficient SCF for fuzzy clusters is proposed
as

SCF = 1

m

n∑

k=1

m∑

r=1

(
bFk

(
zr

) − aFk
(
zr

)

max
[
aFk

(
zr

)
, bFk

(
zr

) ] · µk,r

)

,

(30)

with

aFk
(
zr

) =
∑m

h=1 d
(
zr , zh

) · µk,h∑m
h=1

(
µk,h, r �= h

) , (31)

bFk
(
zr

) = min
l=1, ..., nC , l �=k

[∑m
h=1 d

(
zr , zh

) · µl,h∑m
h=1

(
µl,h, r �= h

)

]

. (32)

The extended silhouette coefficient SCF for fuzzy cluster
configurations takes on values in the interval [−1, 1].
For deterministic cluster configurations, SCF according to
Eq. (30) and SC from Eq. (27) lead to identical results.
For the interpretation of the values of SCF Table 1 remains
applicable.

4 Examples

4.1 Numerically generated process

The algorithm for the detection of branching points is dem-
onstrated for a random process with a one-dimensional pro-
cess variable depending on a single process coordinate and
obvious branching points. Specifically,

f : X (τ ) → Z (τ ), (33)

with X (τ ) = (X1 (τ ), . . . , X5 (τ )) involving five indepen-
dent random variables with a standard uniform distribution,
Xq(τ ) ∼ (0, 1), q = 1, . . . , 5. These produce the noise ε of
the process. The process is synthesized numerically as a set

Fig. 6 Process records zr (τ )

of five functions,

Z (τ ) = {√
τ + ε (X1, τ ),

1.5 · ln (τ ) +
( τ

55

)
+ ε (X2, τ ),

2.0 ·
(

sin
(π · τ

60

)
+

( τ

30

))
+ 1.5 + ε (X3, τ ),

5.0 ·
(

sin
(π · τ

100

)
−

( τ

500

))
+ 1.5 + ε (X4, τ ) ,

(
60

τ + 30

)
· ln

(
τ + 2

2

)
+ ε (X5, τ )

}
(34)

with

ε
(
Xq , τ

)

=
{

τ
10 · (1 − Xq) if τ < 10
(τ+90)

100 · (1 − 2Xq) otherwise
, q = 1, . . . , 5.

(35)

A set of 100 process records zr (τ ) are generated for τ =
0, . . . , 200 with a step width of ∆τ = 1; see Fig. 6.

The records zr (τ ) appear as a single bundle at the begin-
ning of the process and split into four branches with increas-
ing τ . The process includes three branching points and one
crossover.

The numerical detection of the branching points is car-
ried out with Criterion 2 only. The values SCmin = 0.75
and L SC = 4 are selected for the evaluation of Eq. (15). The
cluster analysis is realized with the fuzzy c-means algorithm,
and the extended silhouette coefficient SCF from Eq. (30)
is calculated for each cluster configuration. Three branching
points are detected at τb1 = 38, τb2 = 121, and τb3 = 161 as
shown in Fig. 7. The process is subdivided into four process
groups, and representative process records p are identified
as a moving average over 11 successive process values. The
representative process records p show a good agreement with
the actual functions from Eq. (34) without noise; see Fig. 7.
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Fig. 7 Detected branching points b, representative process records p,
and actual process without noise

The information about the branching points and process
groups becomes important not only in the mechanical inter-
pretation but also in the statistical evaluation of the process.
Let τ = 200 be a point of interest, for which histograms of the
process value z(τ ) are investigated. Without the knowledge
about the branching points, the result in Fig. 8a is obtained.
The two different components in the first frequency hill in
the range z = −1.3, . . . , 3.5 cannot be separated. But a joint
statistical evaluation is unjustified and may lead to erroneous
results and interpretations. In contrast to this, the subdivision
of the process in process groups enables the determination of
individual histograms for the process groups; see Fig. 8b. The
process values in the range z = −1.3, . . . , 3.5 now appear
in a separated form, ready for a sound statistical evaluation.

4.2 Crash analysis

The results from a stochastic crash simulation of a vehi-
cle component are investigated to reveal the characteristic
mechanical behavior modes. In the crash analysis the com-
ponent shown in Fig. 9 was moved, with a constant velocity
v0, against a rigid wall. The force acting on the wall was
analyzed. This dynamic analysis was carried out with the
nonlinear Finite Element code LS-DYNA [12]. A time-step
integration was performed over the entire crash process
resulting in a force-time dependency. On this basis it was
investigated whether the design of the component is appro-
priate to comply with a required upper limit of the wall-force.
Uncertainties and fluctuations of selected structural parame-
ters were taken into account with the aid of random quantities.
The sheet thicknesses of the four labeled parts in Fig. 9 and

(a)

(b)

Fig. 8 Histograms for z(τ = 200). a Histogram for z(τ = 200) with-
out separated process groups. b Histogram for z(τ = 200) with sepa-
rated process groups

Fig. 9 Vehicle component; courtesy of Daimler AG [29]

a scaling factor for the yield surface were modeled with nor-
mal distributions according to Table 2. Then, a direct Monte
Carlo simulation was carried out, in which a total of 1,500
process records zr (τ ) for the force-time dependency were
produced; see Fig. 10. And a probability for exceeding the
limit of the stonewall force was estimated.
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Table 2 Random structural parameters, values standardized

Random Description Part Expected Standard
variable Xq value µq deviation σq

X1 Sheet thickness 1,139 10.0 0.20

X2 Sheet thickness 1,134 10.0 0.21

X3 Sheet thickness 1,210 10.0 0.62

X4 Sheet thickness 1,221 10.0 0.50

X5 Scaling factor 1,134 10.0 0.50

Fig. 10 Process records zq (τ ) from Monte Carlo simulation, branch-
ing point b1, representative process records 0 p1 (τ ) and 0 p2 (τ ) and
associated deformation characteristics at τb1 = 27.5 ms

In view of a steady product improvement, those investiga-
tions raise the following questions: Which mechanical effects
are associated with an exceedance of the limit? How can the
probability of exceedance be reduced by simple mechan-
ical measures? A detailed investigation of the 1,500 pro-
cess records is not feasible due to a tremendous effort. This
is the starting point for the proposed method. In an initial
evaluation of Criterion 1 (Eq. (14)) the process part up to
τ = 12.5 ms is found as homogeneous and prospectively
not containing branching points. The consideration of
Criterion 2 is limited to the process part τ ∈ [12.5, 32.5] ms.
The parameters for the evaluation of Eq. (15) are selected as
SCmin = 0.75 and L SC = 4. The cluster analysis is car-
ried out with the fuzzy c-means algorithm. The silhouette
coefficient is calculated according to Eq. (30). A branching
point is detected at τb1 = 27.5 ms, and the process P0 (τ )

is subdivided into two homogeneous process groups 0 P1 (τ )

and 0 P2 (τ ). The representative process records 0 p1 (τ ) =
z p1(τ ) ∈0 P1 (τ ) and 0 p2 (τ ) = z p2(τ ) ∈0 P2 (τ ) are iden-
tified for the two process groups; see Fig. 10. The mechanical
behavior is then investigated in detail for these two process
records 0 p1 (τ ) and 0 p2 (τ ) with focus on the branching point
at τb1 = 27.5 ms. The reason for the branching is revealed
as a significant difference in the deformation characteristics
associated with 0 p1 (τ ) and 0 p2 (τ ). Based on this insight,
slight changes in the design of the vehicle component can
now be introduced to eliminate the behavior mode which
leads to an exceedance of the limit of the stonewall force.
This reduces the uncertainty of the structural response as
well as of the failure probability, and it increases the product
quality.

5 Conclusions

A numerical method has been presented in this paper for the
detection of branching points in noisy processes. The devel-
opment was driven by the desire of the car industry to iden-
tify different mechanical behavior modes out of a set of noisy
process records from crash analyses. As respective attempts
with traditional methods did not lead to satisfying results,
a novel approach based on cluster analysis has been pur-
sued. The formulated algorithm has been verified in numer-
ical tests and is applied in practice. The branching of noisy
processes from crash simulations and from experiments can
so be detected properly, and the associated mechanical behav-
ior modes can be identified. This helps to improve the design
and product quality of vehicle components. In this frame-
work, the proposed method has been applied with a very
limited dimensionality of process coordinates and process
variables.

The proposed detection method is a form of data analysis
and is not connected to a physical or mechanical background.
It may, thus, also be applied to similar problems in further
engineering fields and applications. A potential utilization is
seen in the evaluation of time records of loads to filter out
the major characteristics. This might be helpful, for example,
to adjust design loads based on earthquake records for spe-
cific regions. The step to further application fields may also
initiate an extension to a higher dimensionality of process
coordinates and process variables.

Acknowledgments The authors gratefully acknowledge the elabo-
ration of the numerical example in Section 4.1 by Dipl.-Ing.
Christoph Zopf within his Master Thesis at the Institute of Structural
Analysis, TU Dresden, Germany. Further appreciation is given to
M. Thiele, Dynamore GmbH, Germany, for raising the question for a
suitable method to identify branching points in vehicle crash processes.
Sincere thanks are expressed to the Daimler AG for providing us with
the specific sample structure of the vehicle component for the example
in Sect. 4.2.

123



Comput Mech

References

1. Argyris JH, Mlejnek H-P (1991) Dynamics of structures, volume
V of Texts on computational mechanics. Elsevier, Amsterdam

2. Bathe K-J (1991) Finite element procedures, vols 1, 2. Prentice-
Hall, Upper Saddle River

3. Beer M, Liebscher M (2008) Designing robust structures—a non-
linear simulation based approach. Special Issue Comput Struct
86(10):1102–1122

4. Bezdek JC, Ehrlich R, Full W (1984) FCM: the fuzzy c-means
clustering algorithmn. Comput Geosci 10:191–203

5. Bezdek JC, Pal SK (eds) (1992) Fuzzy models for pattern rec-
ognition—methods that search for structures in data. IEEE Press,
Piscataway

6. Deodatis G, Spanos PD (eds) (2007) Computational stochastic
mechanics. Millpress, Rotterdam

7. Duran BS, Odell PL (1974) Cluster analysis—a survey. Lecture
notes in economics and mathematical systems. Springer, Berlin

8. Eckstein U, Harte R, Krätzig WB, Wittek U (1987) Simulation
of static and kinetic buckling of unstiffened and stiffened cooling
tower shells. Eng Struct 9(1):9–18

9. Gandhi UN, Hu SJ (1995) Data-based approach in modeling auto-
mobile crash. Int J Impact Eng 16(1):95–118

10. Gath I, Geva AB (1989) Unsupervised optimal fuzzy clustering.
IEEE Trans Pattern Anal Mach Intell 11(7):773–781

11. Ghanem RG, Spanos PD (1991) Stochastic finite elements: a spec-
tral approach. Springer, New York. Revised Edition 2003, Dover
Publications, Mineola

12. Hallquist JO (1998) LS-DYNA theoretical manual. Livermore
Software Technology Corporation, Livermore

13. Hartmann D, Breidt M, Nguyen VV, Stangenberg F, Höhler S,
Schweizerhof K, Mattern S, Blankenhorn G, Möller B,
Liebscher M (2008) Structural collapse simulation under consid-
eration of uncertainty—Fundamental concept and results. Comput
Struct 86(21–22):2064–2078

14. Hilburger MW, Starnes JHJr (2005) Buckling behavior of com-
pression-loaded composite cylindrical shells with reinforced cut-
outs. Int J Non-Linear Mech 40(7):1005–1021

15. Höppner F, Klawonn F, Kruse R, Runkler T (1999) Fuzzy clus-
ter analysis: methods for classification, data analysis and image
recognition. Wiley, Chinchester

16. Kaufman L, Rousseeuw PJ (1990) Finding groups in data: an intro-
duction to cluster analysis. Wiley, Chinchester

17. Lee YS, Vakakis AF, Bergman LA, McFarland DM,
Kerschen G (2005) Triggering mechanisms of limit cycle oscilla-
tions due to aeroelastic instability. J Fluids Struct 21(5–7):485–529

18. Liebscher M (2007) Design and assessment of structures under
uncertainty—solving the inverse problem with methods of the
explorative data analysis. PhD thesis, TU Dresden, Institute for
Statics and Dynamics of Structures, vol. 13 (in German), Dresden,
Germany

19. Litak G, Borowiec M, Friswell MI, Szabelski K (2008) Chaotic
vibration of a quarter-car model excited by the road surface pro-
file. Commun Nonlinear Sci Numer Simulation 13(7):1373–1383

20. Livermore Software Technology Corp. (ed) (2008) 10th Interna-
tional LS-DYNA users conference, Dearborn, MI

21. Möller B, Liebscher M, Schweizerhof K, Mattern S, Blankenhorn
G (2008) Structural collapse simulation under consideration of
uncertainty—improvement of numerical efficiency. Comput Struct
86(19–20):1875–1884

22. Möller B, Beer M (2004) Fuzzy randomness—uncertainty in civil
engineering and computational mechanics. Springer, Berlin

23. Moens D, Vandepitte D (2005) A survey of non-probabilistic
uncertainty treatment in finite element analysis. Comput Methods
Appl Mech Eng 194(1):1527–1555

24. Reitinger R, Ramm E (1995) Buckling and imperfection sensitivity
in the optimization of shell structures. Thin-Walled Struct 23(1–
4):159–177

25. Roux WJ, Stander N, Günther F, Müllerschön H (2006) Stochastic
analysis of highly non-linear structures. Int J Numer Methods Eng
65(8):1221–1242

26. Ruspini EH (1969) A new approach to clustering. Inf Control
15(1):22–32

27. Safety Test Instrumentation Stds Comm. (2003) Instrumentation
for impact test-part 1-electronic instrumentation (j211/1). Techni-
cal report, SAE

28. Schenk CA, Schuëller GI (2005) Uncertainty assessment of large
finite element systems. Springer, Berlin

29. Thiele M, Liebscher M, Graf W (2005) Fuzzy analysis as alter-
native to stochastic methods—a comparison by means of a crash
analysis. In: Proceedings of the 4th German LS-DYNA forum,
pp D–I–45–63, Bamberg

30. VanMarcke E (1983) Random fields: analysis and synthesis. MIT
Press, Cambridge

31. Vatutin VA, Zubkov AM (1987) Branching processes. I. J Math Sci
39(1):2431–2475

32. Vatutin VA, Zubkov AM (1993) Branching processes. II. J Math
Sci 67(6):3407–3485

33. Zimmermann H-J (1992) Fuzzy set theory and its applications.
Kluwer, Boston

123


	Detection of branching points in noisy processes
	Abstract
	1 Introduction
	2 Concept and algorithm
	3 Cluster analysis of the process variables
	3.1 Determination of clusters
	3.2 Quality assessment of cluster configuration

	4 Examples
	4.1 Numerically generated process
	4.2 Crash analysis

	5 Conclusions
	Acknowledgments
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /DEU <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


