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SUMMARY  

The aim of this paper is to summarize several optimization and robustness 

applications, which have been performed over the past years in automotive 

industry with LS-OPT. The examples include Multi-Objective Optimization 

(MOO), Multi-Load Case Optimization and Reliability Based Design 

Optimization (RBDO). In addition, user-friendly visualization of optimization 

and stochastic results is demonstrated. 

The approach for all the optimization and robustness studies is based on the 

usage of Meta-Models. This is inevitable for very long and costly solver runs, 

which is usually the case for crashworthiness and for metal forming 

applications as well. The challenging task is to establish methodologies, which 

require as few as possible solver calls. 
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1:  Introduction 

In this paper three industrial applications dealing with multi-load case, multi-

objective and reliability based optimization are presented. The examples are 

performed in cooperation with Daimler AG, AUDI AG and Alcan Ltd. The 

used software for optimization is exclusively LS-OPT. In addition, for these 

projects the program D-SPEX is used, which interfaces with LS-OPT as an 

advanced optimization and stochastic post-processor. D-SPEX has been 

developed by DYNAmore in cooperation with AUDI. 

An outstanding capability of LS-OPT is the available meta-models for 

optimization as well as for Monte Carlo and reliability analysis. For very 

expensive simulations meta-models are applied to preserve the practical 

applicability of the optimization. The number of required FE-simulations is 

reduced significantly. Meta-models are established on the basis of interpolation 

points. Apart from polynomials, non-linear approximation schemes, such as 

Neural Networks can be applied (Stander et al. [5], Liebscher et al. [7]), in 

order to evaluate meta-models that might be suitable to replace the expensive 

FE-simulation within an optimization or stochastic analysis. 

2:  Example - Optimization of an Adaptive Restraint System for Several 

Front Crash Load Cases 

For this example we would like to express acknowledgement to Marcel van 

den Hove and Dr. Bernd Mlekusch (AUDI AG, Germany). 

Load Cases 

The ideal restraint system decelerates the occupant as fast as possible on a 

constant acceleration level. Different masses of the occupants and thus 

different load cases mean for an ideal deceleration behaviour, that the restraint 

system must be adapted to the required force levels (F = ma). With the today’s 

state of technology it is possible to identify the load case and the different types 

of occupants. This means, system parameters of the restraint system, such as 

trigger time for seat-belt, airbag and steering column might be adapted to 

specific load cases. 

For the optimization problem presented in this Section, 4 different front-crash 

load cases (FMVSS208) are taken into account: 

• H305a: Hybrid III 5th female dummy; 56km/h - belted 

• H305p: Hybrid III 5th female dummy; 40km/h - not belted 

• H350a: Hybrid III 50th male dummy; 56km/h - belted 

• H350p: Hybrid III 50th male dummy; 40km/h - not belted 
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FE-models for Hybrid-III 5th female and Hybrid III 50th dummy male from 

FTSS are used. In Figure 1 the FE-Model with a belted Hybrid III 50th male 

dummy is shown. It represents the load case H350a. 

 

 

 

 

 

 

 

Figure 1: FE-Element crash model with a belted Hybrid III 50th male dummy 

Multi-Load Case Optimization Problem 

Goal of the optimization is to adapt the adjustments of the restraint system in 

order to optimize the occupant safety performance for all four load cases 

H305a, H305p, H350a and H350p simultaneously. 

Design Variables 

Some system parameters as for example time to fire (TTF) of the airbag might 

be set individually for each load case. Due to different identification 

technologies the restraint system can recognize a specific load case and assign 

an associated TTF-value. Other system parameters such as vent hole diameter 

of the airbag can of course not be adapted individually to the different load 

cases. Thus, these parameters have to be set globally. After each iteration of the 

SRSM, in LS-OPT the variables are updated to ensure a unique intermediate 

design for the multiple disciplines (load cases).  

Objective 

The objective of the optimization is to minimize the thorax acceleration in 

terms of the a3ms-criteria described in [12]. This is applied to all four solver 

cases with respect to a multi-objective function with equal weights. 

Constraints 

Four different, typical dummy responses for each load case are evaluated: 
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• HIC15 - Head Injury Criteria for 15ms, evaluation see [12] 

• Femur Forces (left/right) 

• Thorax Acceleration 

• Thorax Intrusion 

These responses are considered as constraints in order to not exceed 80% of the 

maximal value required by regulations. The starting design does violate some 

of these constraints significantly. 

Results 

As optimization method the successive response surface scheme (SRSM) is 

applied. Detailed description of the methodology is available in Stander et al. 

[5]. Since the simulation time of a single occupant safety run is rather time 

consuming, fast convergence of the algorithm is important. In order to achieve 

for design exploration a meta-model with a reasonable global approximation, 

simulation points in sparse regions are added and a neural network is fitted to 

all points. 

The approach can be summarized as follows: 

• Constrained optimization using SRSM 

• Augment points within global design space using Space Filling DOE 

• Create Meta-Models (Neural Network) for design exploration 

Optimization using SRSM with Linear Polynomials 

For the baseline design the constraints are heavily violated. The main goal of 

the optimization is to find a feasible design, which satisfies the constraints of 

all four load cases. SRSM is applied with linear polynomials by zooming into 

local regions of interest until it converges to an optimum, see Figure 2. 

 

 

 

 

 

 

 

 

Figure 2:  Deployment of the optimum in the SRSM-optimization process with 

respect to the two variables FAB-VENT and SBA-VENT 
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In Figure 3 (left) the optimization history of the constraint violation is shown. 

The values of the max constraint violations for the eight iterations do not 

always refer to the same constraint criteria. Small changes of the parameter 

values can lead to a significant change in the responses and thus swap the 

maximum violated constraint. This is for example the case when the airbag is 

too soft and the head of the dummy strike through onto the steering wheel. In 

this case, the HIC15 response is almost like a discontinuous function. This 

effect can be seen in iteration 4 and 6 in the optimization history plot of the 

maximum constraint violation (Figure 3, left), where the HIC15 value cause a 

very large maximum constraint violation. Such effects are a challenging task 

for an optimization algorithm. In the 8th iteration the constraint violation drops 

down to zero and minimization of the multi-objective function is performed 

subsequently. 

 

 

 

 

 

 

 

Figure 3: Left: Optimization history of maximum constraint violation. In Iteration 0 

(baseline design) the violation is approx. 1000, after 8 iterations the maximum constraint 

violation is equal to zero. This means, all the constraints listed in 3.2.3 are for each load 

case fulfilled. Right:As an example the deployment of the variable FAB-VENT is shown 

during the successive response surface scheme. 

For the displayed optimization results in Figure 3 adaptive variables for the 

steering wheel are not considered. This means, in total there are only 9 design 

variables for the four load cases, 5 variables for the active load cases H305a 

and H350a, 2 variables for the passive load cases H305p and H350p and 2 

global variables for all load cases. In total 272 crash simulations for all four 

load cases are performed within the 8 iterations. Within previous studies for the 

same problem an evolutionary algorithm has been tested. For this, approx. 30-

40% more simulations had been necessary to achieve a similar result. 

Summary and Conclusions for the Restraint System Optimization 

Example 

The successive response surface scheme has been applied successfully to the 

optimization of an adaptive restraint system considering several front crash 
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load cases at AUDI. Starting from a highly infeasible design, after eight 

iterations a feasible solution was established by the meaning of satisfying all 

constraints for all load cases. With the optimization a combination of 

parameters for the adaptive restraint system has been found, which results for 

the FE-simulations in response values significantly lower than the pre-defined 

requirements. In total nine design variables have been considered. However, 

not all variables are used in each load case, some of them are fully shared and 

some are partially shared. For this type of optimization problem the SRSM is a 

suitable and effective methodology. Among system optimization it might be 

useful to have a mathematical approximation model (meta-model) in order to 

explore relationships between variables and responses. This has been 

performed for the considered restraint system problem using a feed-forward 

neural network approximation. 

3:  Example – Reliability Based Design Optimization for a Metal Forming 

Application 

For this example we would like to express acknowledgement for cooperation to 

Prof. Dr. Karl Roll (Daimler AG, Germany) 

Considered Uncertainties in Metal Forming Process 

The influence of the random variation of material and manufacturing 

parameters on the forming process of an automotive deck lid outer panel is 

investigated in this study. The geometry of the forming die is shown in 

Figure 4. The material used for this part is 

the steel grade DCO6 (1.0873), a typical 

mild steel used for complex outer panels.   

Figure 4: Die geometry of the deck lid forming 

tool (Courtesy of Daimler AG) 

Considered uncertainties regarding material 

properties are yield stress, hardening 

properties and anisotropy coefficients. As 

uncertainties of the manufacturing process friction, draw bead and binder 

forces and blank thickness due to cold rolling process are taken into account. 

Simulation Results of Random Variation of Uncertainties 

For this, in total only 21 simulations are performed. The wall clock simulation 

time on 2 CPUs is about 10h per run. It turned out, that although the baseline 

run is a feasible design (Figure 5), the perturbations due to the considered 

uncertainties leads in 15 runs to an infeasible design. The main criteria for the 

feasibility of the design are the minimum shell thickness after the forming 

process and the performance with respect to the FLC-diagram. In 15 runs 

localization occurs and the minimum sheet thickness becomes very low, see 

Figure 6. Consequently the FLC requirement is also violated (Figure7). 
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Figure 5: Left - Final shell thickness distribution of the baseline run (min. shell thickness 

~0.51mm) Right – FLC-Diagram for the baseline run, no points above the FLC-Curve. 

 

Figure 6: Minimum sheet thickness of the blank (THICK_MIN) vs. considered parameter 

variations. Initial target value of sheet thickness is 0.8mm, acceptable: > 0.5mm 

A similar behaviour is observed for the distance of the strain-ratios to the FLC-

Curve. A positive value indicates the maximal perpendicular distance of a point 

above the FLC-Curve (infeasible), a negative value indicates the minimum 

distance below the FLC-Curve (feasible), see Figure 7. 

 

Figure 7: Points indicate the distance to the FLC-Curve,  

positive: infeasible, negative: feasible 
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Conclusions after Random Latin Hypercube Simulations 

Considering the chosen baseline design, the FE-simulation is very sensitive 

regarding the assumed variations of the uncertain process parameters. The 

failure probability is very high and the baseline configuration must be declared 

as non-robust. Consequently, the next step has to be the improvement and 

optimization of the robustness of the model. Therefore, reliability based design 

optimization is investigated. Approach and results are discussed in the next 

section. 

Reliability Based Design Optimization (RBDO) 

The methodology of the applied RBDO study is FOSM (First Order Second 

Moment) in combination with the successive response surface scheme. FOSM 

is based on the assumption of normal distributed probability density function. 

The representation of the distribution function is just by the mean and the 

standard deviation. For the meta-model, which is adapted sequentially through 

the successive scheme iterations, a neural network approach is used. Details 

regarding the RBDO approach and the successive response surface scheme 

with neural networks are discussed in the LS-OPT Users Manual [5]. 

Definition of the Optimization Problem 

Here, the objective of the RBDO is to minimize the failure probability under 

consideration of the introduced uncertainties. Failure is defined by exceeding a 

threshold for the minimum shell thickness and for the violation of the FLC-

Line. For the RBDO in total 17 variables are considered. Thereof, 10 variables 

are pure “noise variables” which take into account the uncertainties. To drive 

the optimization process 7 “control variables” are introduced (see Table 1), 

simultaneously these variables operate as noise variables with specific 

probability distributions.  

Variable  Description 
Distribution 

”noise variable” 
Range 

“control variable” 

    Type mean std min max 

DBF1 Draw Bead Force #1 normal 70 5 kN 20 kN 200 kN 

DBF2 Draw Bead Force #2 normal 20 5 kN 20 kN 200 kN 

DBF3 Draw Bead Force #3 normal 80 5 kN 50 kN 120 kN 

DBF4 Draw Bead Force #4 normal 90 5 kN 60 kN 120 kN 

DBF5 Draw Bead Force #5 normal 100 5 kN 70 kN 130 kN 

DBF6 Draw Bead Force #6 normal 140 5 kN 20 kN 200 kN 

FORCFN Binder Force normal 1910 50 kN 1400 kN 2400 kN 

Table 1: Seven variables are defined as control and noise variables. Control variables 

drive the optimization process, noise variables are to consider uncertainties. 
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Meta-Model Based RBDO 

For the successive surface scheme 26 runs 

are performed per iteration. The density of 

the sampling points increases towards the 

optimum. The neural network is updated 

with additional training points after each 

iteration (see Figure 8). 

Figure 8: Successive Response SurfaceScheme 

with Neural Nets after 10 iterations 

Optimization History for the Responses 

THICK_MIN and FLD 

Figure 9 shows the optimization history of exceeding the lower bound for the 

minimum sheet thickness THICK_MIN. The probability of failure drops down 

from about 55% for the base line design to 3.3515e-4 after 10 iterations. The 

“computed” value at the optimum is fairly close to the “predicted” value. 

“Computed” means the simulation value for the optimum parameter 

combination and “predicted” means the approximated value of the meta-model 

for this parameter combination. 

Optimum of Meta-Model (Neural Network) after
10 Iterations (260 Points)

3.3515e-40.58250.5776THICK_MIN

PfPredictedComputed

Optimum of Meta-Model (Neural Network) after
10 Iterations (260 Points)

3.3515e-40.58250.5776THICK_MIN

PfPredictedComputed

 

Figure 9: Optimization history of the probability of exceeding the bound for 

THICK_MIN 

Figure 10 shows the optimization history of exceeding the upper bound for the 

FLD criterion. Finally the probability of failure could be reduced to 0.01191. 

This means, approximately 1 of 100 designs will exceed the FLC-line. 
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Verification of Optimum with Direct Monte Carlo Simulations 

The failure probabilities displayed in Figure 9 and Figure 10 are estimated by 

the use of a Meta-Model. This means, the Monte Carlo evaluations are 

performed by the functional analysis of the meta-model.  

Optimum of Meta-Model (Neural Network) 

after 10 Iterations (260 Points)

0.01191-0.05774-0.04979FLD

PfPredictedComputed

Optimum of Meta-Model (Neural Network) 

after 10 Iterations (260 Points)

0.01191-0.05774-0.04979FLD

PfPredictedComputed

 

Figure 10: Optimization history of the probability of exceeding the bound for the  

FLD-criterion 

The number of Monte Carlo evaluations on the meta-model is in LS-OPT by 

default 100000, but of course there is an unknown approximation error of the 

meta-model. In order to verify the failure probability determined on the meta-

model, 160 additional direct Monte Carlo simulations are applied. The mean 

values for the parameters are taken from the optimal design and the variance is 

applied according to the considered uncertainties. Table 2 shows that the 

failure probabilities estimated by the use of meta-models are in the same order 

of magnitude as for the direct Monte Carlo simulation. Within the 160 Monte 

Carlo simulations no constraint violation could be observed, see Figure 11. The 

estimated failure probability in Table 2 is evaluated by the assumption of 

normal distributed responses THICK_MIN and FLD. 

Failure Probability Meta-Model vs. direct Monte Carlo  
(normal distribution assumed) 

  Pf – Meta Model Pf  - Direct MC 

THICK_MIN 3.35e-4 0.59e-4 

FLD 0.0119 0.0103 

Table 2: Comparison of the failure probability Pf determined by the usage of Meta-

Models and by the conventional Monte Carlo approach. 
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no constraint violation
for the 160 MC runs

 

Figure 11: Green colour of the points indicate feasible designs 

 

Summary and Conclusions of the Metal Forming Study 

For the metal forming study considering the chosen baseline design, the FE-

simulation is very sensitive regarding the assumed variations of the uncertain 

process parameters. Frequently violation of the FLC requirements and under-

run of the minimum sheet thickness appear. This represents a high probability 

of failure . Thus, the design is referred as non reliable. Furthermore, it is 

considered as non robust due to assumed random variation of the input 

parameters (material properties, manufacturing process parameters) and their 

strong effects on the results. In order to establish a feasible design the problem 

is reformulated in view of the reliability-based design concept. The objective of 

the RBDO is to minimize the probability of failure  and thus to maximize the 

reliability of the design. The limit state function  is formulated with respect 

to the failure criteria minimum shell thickness and distance of the strain-ratios 

to the FLC-Curve. The reliability-based design optimization is investigated 

using LS-OPT. Due to the fact that the computational cost of the metal forming 

simulation is quite high, a meta-model based approach is applied. Utilizing 

RBDO leads to a design, which has a significantly improved failure 

probability. The verification of the optimum design by conventional Monte 

Carlo simulations justify the use of meta-models for reliability investigations 

for metal forming applications, at least for  values not less than 0.01.  

4:  Example – Multi-Objective Optimization of a Crash Management 

System 

For this example we would like to express acknowledgement to Martin 

Feuerstein (Alcan Ltd., Germany). 

This study describes the design of a bumper in a given constructed space. Two 

load cases are considered and the objectives are to remove the impact energy 

by plastic deformation of the bumper and to reduce the mass of the bumper. 

The given constraints are a maximal force level of the barrier contact force for 

the AZT crash repair test and that the bumper has an extruded section. The idea 
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is to use the ANSA Morphing Tool to modify the geometry from a starting 

design, and to modify some sheet thicknesses using LS-OPT. 

Load Cases 

Two load cases are considered, the AZT crash repair test and the RCAR test. 

AZT Crash Repair Test 

The AZT barrier has a mass of 1000kg, it impacts the vehicle with a velocity of 

16 km/h and an impact angle of 10°, see Figure 12. 

 

 

 

 

 

Figure 12: AZT repair crash test 

RCAR Test 

For the RCAR test, the vehicle impacts the barrier with a velocity of 10km/h, 

see Figure 13. 

 

 

 

 

 

Figure 13: RCAR test 

Optimization Problem 

Shape Optimization using ANSA’s Morphing Tool 

As a starting geometry, a shape with constant cross section in the given 

constructed space is selected to obtain an extruded profile. This geometry is 

modified during the optimization using ANSA’s Morphing Tool. Four 

morphing parameters are defined to modify the shape of the bumper. The 

10 km/h 

10° 

16km/h 

m=1000kg 
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morphing boxes and parameters are defined such that the constant cross section 

of the bumper is preserved. As an additional geometrical restriction is given 

that the back part of the bumper keeps its height. Some resulting shapes are 

presented in Figure 14. For the definition of the morphing boxes and the 

optimization task in ANSA, we refer to [14]. 

Design Variables 

The bumper is subdivided into five parts. In addition, to the morphing 

parameters, the sheet thicknesses of these five parts are defined as design 

variables. Hence we get 9 design variables in total. 

Objectives 

(1) To optimize the energy absorption by plastic deformation of the bumper for 

the AZT crash repair test, the contact force between the barrier and the vehicle 

should be as near as possible to the maximal force level. Hence the sum of 

squares error between the calculated force curve and a target curve with a 

constant value, which is the given maximal force level, is considered, see 

Figure 15.  

Figure 14: Shapes resulting from ANSA morphing 

(2) For the load case RCAR, the maximal intrusion of the bumper is important. 

The intrusion is defined as the difference of the displacement of the center of 

mass of the vehicle and a node at the inner edge of the bumper. 

(3) The last objective considered is to minimize the total mass of the bumper. 

For an optimization that leads to one single result, a weighted sum of all 

objectives is optimized. If the objectives are conflicting, the result strongly 

depends on the selected weights. LS-OPT offers in addition the possibility to 

compute multiple Pareto optimal solutions on a selected meta model. 
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Figure 15: Objective MSE_Force to maximize energy absorbtion 

Optimization Results 

Figure 16 displays the results of the optimization of a weighted sum of the 

three objectives. The weights are selected so, that the objective values are 

normalized with respect to the starting design results. Thus all objectives are 

treated equally. The optimized force curve and the intrusion improved 

compared to the starting design, but the mass of the optimal run is too high. 

That is a typical effect with conflicting objectives. Hence we look at the set of 

Pareto optimal solutions calculated on the meta-model to select a solution that 

suits better to the application. 

Pareto Optimal Solutions 

If the user adopts the successive response surface methodology, LS-OPT offers 

the possibility to compute a set of Pareto optimal solutions at the same time. 

The meta-models are used to evaluate designs to determine the Pareto optimal 

solutions. Using meta-models reduces the computational cost of identifying the 

Pareto optimal set, but the accuracy of the resulting solution depends on the 

quality of the meta-models. In this example radial basis function networks are 

used to approximate the responses. In order to aid the engineer in 

understanding different trade-offs, the optimization post-processing tool D-

SPEX provides dedicated features to visualize Pareto optimal solutions, an 

example is given in Figure 17. 

As an additional dimension, a variable, response or composite can be selected 

to colour the points. To visualize the relation between objectives and variables, 

responses or composites, it is also possible to plot objectives against variables, 

responses or composites in any combination, see Witowski et al. [11]. 
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Figure 16: Force curve starting design vs. force curve optimized design 

Summary and Conclusions of the Multi-Objective Example 

The example shows a multi-objective optimization of a crash management 

system using LS-OPT. Two different load cases and three objectives are 

considered. To realize shape variations, ANSA’s Morphing Tool is used, that 

provides easy coupling with LS-OPT. In addition, sheet thicknesses of five 

parts of the bumper are considered as design variables. In total, 9 design 

variables are introduced. For the multi objective optimization, the conversion 

to a single-objective optimization is not sufficient hence the calculation of 

Pareto optimal solutions is necessary. These solutions are calculated meta-

model based to keep the computational costs (number of solver calls) within an 

acceptable range. 

 

 

 

 

 

 

 

 

 

Figure 17: Pareto optimal solutions calculated on the meta-model for the considered 

three objectives 

Selected 

Pareto optimal 

solution 

m = 100% 

Intrusion = 50.27mm 

MSE_Force = 84.14 

m = 157% 

Intrusion = 14.27mm 

MSE_Force = 72.69  

A start 

B optimized 

11.1 
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