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1. Abstract  

This study pertains to practical application of the GA for industrial applications where only a limited number of 

simulations can be afforded. Specifically, an attempt is made to find the optimal allocation of the total simulation 

budget (population size and number of generations) for constrained multi-objective optimization. A study is 

conducted to seek improvements while restricting the number of simulations to 1000. Parallelization is exploited 

using concurrent simulations for each GA generation on a HP quad-core cluster, and resulted in a significant time 

savings. Furthermore, the optimal distribution of computational effort to achieve the greatest improvement in 

performance was explored. Two analytical examples as well as an automotive crashworthiness simulation of a 

finite element model with 58,000 elements were used as test examples. Various population sizes and numbers of 

generations were tried while limiting the total number of simulations to 1000. The optimization performance was 

compared with Monte-Carlo and space filling sampling methods. It was observed that using the GA, many feasible 

and trade-off solutions could be found. It is shown that it is beneficial to allow a large number of generations to get 

good trade-off solutions. For the vehicle design, significant improvements in the performance were observed while 

this example also suggests that, for problems with a small feasible region, the number of feasible solutions can be 

significantly increased in the first few generations involving about 200 simulations. 

 

2. Keywords: Multi-objective evolutionary algorithm, crashworthiness, population sensitivity, resource 

allocation, NSGA-II, optimization. 

 

3. Introduction 

The genetic algorithm (GA) is a global optimization method for single- and multi-objective optimization [1]. 

Since the GA is a population-based method, it typically requires a large number of simulations to find an optimal 

solution. With expensive function evaluations such as vehicle crash simulations, the time to achieve a converged 

solution can therefore be unreasonably long. The only way to solve this predicament is to process the 

computational load in parallel with a large number of computer processors. The total computation time can be 

reduced a) by running the expensive simulation on many processors, and b) by running many simulations in 

parallel. The latter approach is highly suitable for population based optimization methods such as the GA. The 

genetic algorithm implementation in LS-OPT® ([2], [3]) enables the user to run many simulations in parallel while 

using many processors for each simulation using the MPP (parallel processing) version of LS-DYNA® [4]. 

Though most industries have adopted clusters of CPUs, the availability of resources for optimization is still finite. 

Hence, the issue of optimization with a reasonable budget of simulations is of very high significance.  

The performance of the GA might depend on the interplay between diversity and evolution characterized by 

population size and the number of generations, respectively. Obviously, a small population size would have a lack 

of diversity in the population and would be prone to convergence to a local optimal design (or local Pareto optimal 

front). On the other hand, a large population size would require significant computational effort for evolution. The 

influence of population size on performance has been studied in literature for single objective optimization [5]-[6] 

but not for multi-objective optimization. This issue is particularly important for engineering problems like vehicle 

crash simulations, which almost always have multiple objectives and a limit on the number of simulations due to 

the high cost of each simulation.  

This interplay between diversity, evolution, and computational expense is the subject of this paper. Three 

examples that include an analytical example, engineering example and a crashworthiness example are studied. The 

computational expense for all examples is limited by fixing the number of simulations to 1000. While the 

analytical and engineering examples are computationally inexpensive, the crashworthiness example is 

computationally intensive. The elapsed wall time for the crashworthiness example is reduced by using a cluster of 

HP ProLiant servers with quad-core Xeon processors (courtesy HP) to parallelize the optimization process. All 

individuals in the population at any generation are evaluated in parallel. The significant reduction in the 



 

 

2 

optimization time enabled the study of the convergence properties of a multi-objective optimizer with variation in 

the population size and number of generations.  

The next section provides details of the simulation strategy and test metrics adopted in this study. The 

example problems are described in the following section. Next, the results obtained are presented and analyzed. 

Finally, the main findings are recapitulated. 

 

4. Test Methodology and Test Metrics 

 

4.1. Test Methodology 

An elitist non-dominated sorting genetic algorithm (NSGA-II) [1] is one of the most popular multi-objective 

evolutionary optimization methods. To study the impact of diversity and evolution on the performance of 

NSGA-II, various combinations of population size and number of generations were considered, as given in Table 

1. All other parameters of the NSGA-II algorithm are kept constant, i.e., tournament selection operator with a 

tournament size of two, and real-coded crossover and mutation operators are used to create child population. The 

crossover and mutation probabilities are taken as 0.99 and the inverse of the number of variables, respectively. The 

constraint-domination strategy proposed by Deb [1] is employed to handle constraints. Furthermore, the 

performance of different NSGA-II cases was compared with the random search method. Two strategies, 

Monte-Carlo method and Space filling design [7] (implemented in LS-OPT [2]), were used to sample 1000 random 

points in the design space. A maximum of 1000 simulations were allowed for each simulation to keep the 

computational expense close to practical limits and to provide equivalence among all cases. 

 

Table 1: Different configurations of population-size and number of generations. *Not a GA simulation 

Case Population size # of generations 

Monte-Carlo
 *
 1000 1 

SpaceFilling
*
 1000 1 

P20x50 20 50 

P40x25 40 25 

P50x20 50 20 

P100x10 100 10 

 

4.2. Test Metrics 

Unlike single objective optimization problems where the optimum design is a single solution, multi-objective 

optimization results in a set of optimal solutions. Thus, special metrics are needed to compare the results from 

different simulations. Typically, two criteria, convergence to the Pareto optimal front and diversity on the Pareto 

optimal front, are used to compare the multi-objective optimization results. To compare the two sets of weakly 

non-dominated solutions1 (candidate Pareto optimal designs), the number of solutions that are dominated in each 

set by the solutions in the other set is computed using a weak non-domination criterion [1]. The smaller the number 

of dominated solutions, the better is the convergence to the Pareto optimal front.  

Secondly, the diversity on the Pareto front is characterized by the spread of solutions and a uniformity 

measure [1], defined as 
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where di is the crowding distance
2
 of the solution in the function or variable space. As can be seen from Equation 1, 

the uniformity measure assesses how uniformly the points on the non-dominated front are spaced. A small value of 

this uniformity measure is desirable. Two uniformity measures, one in the function space and another in the 

variable space are considered in this study.  

 

5. Test Examples 

Three test problems, a mathematical function, an analytical engineering example, and a simulation based 

engineering problem, are used to study the interplay between evolution and diversity. The examples are described 

as follows: 

                                                           
1
 A solution x weakly dominates other solution y if x is not worse than y in any objective and x is strictly better than 

y for at least one objective. A solution x that is not dominated by any solution in a set of solutions is considered 

non-dominated with respect to that set. 
2 Crowding distance is defined as half the perimeter of the largest hypercube which can be allowed around a 

solution without including any other solution from the same non-dominated front. The crowding distance of the 

boundary points is taken as twice the regular crowding distance. 
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5.1. Analytical Example – OSY (Osyczka and Kundu [8]) 

This is a six variable analytical example, with two quadratic objective functions and six constraints.  
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The global Pareto front for this example lies on the boundary of the constraints. There are five connected 

regions on the Pareto front that all satisfy the condition .0*

6

*

4 == xx  

 

5.2. Analytical Engineering Example – WATER (Musselman and Talavage [9]) 

This engineering example describes planning for a storm drainage system in an urban area. The three design 

variables denote local detention storage (x1), maximum treatment rate (x2) and the maximum allowable overflow 

rate (x3). The five objectives to be minimized are the drainage network cost (f1), storage facility cost (f2), treatment 

facility cost (f3), expected flood damage cost (f4), and expected economic loss due to flood (f5). More details can be 

obtained from the original paper by Musselman and Talavage [9]. The description of the problem is as follows: 
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All objectives in this example are scaled [f1/8e4, f2/1500, f3/3e6, f4/6e6, f5/8e3] to avoid dimensionality issues.  

 

5.3. Crashworthiness Example 

The third example is a crashworthiness optimization problem that involves simulation of a National Highway 

Transportation and Safety Association (NHTSA) vehicle undergoing a full frontal impact. The finite element 

model for the full vehicle (obtained from NCAC website [10]), shown in Figure 1, has approximately 55K 

elements. 
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Figure 1: Finite element crash model of a pickup truck 

 
Figure 2: Thickness design variables (with exploded view) 

The gauges of structural components in the vehicle are parameterized directly in the solver input file. Nine 

gauge thicknesses associated with front-right-inner, front-right-outer, front-left-inner, front-left-outer, back-left 

and back-right rails, bumper, bottom-under radiator MTG, and bottom-center cabin member, are taken as design 

variables. The parts affected by the design variables are shown in Figure 2. The range of these design variables is 

chosen as within +/-20 % of the baseline design variable values. The baseline design and the bounds on the 

variables are given in Table 2. 

Table 2: Baseline design and bounds on design variables 

Variable description Name Lower bound Baseline design Upper bound 

Rail front-right-inner t1 2.500 3.137 3.765 

Rail front-right-outer t2 2.480 3.112 3.750 

Rail front-left-inner t3 2.400 2.997 3.600 

Rail front-left-outer t4 2.400 3.072 3.600 

Rail right-back  t5 2.720 3.400 4.080 

Rail left-back t6 2.850 3.561 4.270 

Bumper t10 2.160 2.700 3.240 

Radiator bottom t64 1.000 1.262 1.510 

Cabin bottom t73 1.600 1.990 2.400 

 

The crash performance of the vehicle is characterized by considering the maximum acceleration, maximum 

displacement that links to intrusion, time taken by the vehicle to reach zero velocity state, and different stage 

pulses. These responses are taken at the accelerometer mounted in the middle of the front seat. To reduce the 

influence of numerical noise, SAE filtered acceleration (filter frequency 60Hz) is used and different entities are 

averaged over two accelerometer nodes. While constraints are imposed on some of these crash performance 

criteria (stage pulses), it is desirable to optimize the performance with respect to other criteria. Thus a 

multi-objective optimization problem can be formulated as follows: 

 

Minimize  

Mass and peak acceleration;  

Maximize  

Time-to-zero-velocity and maximum displacement; 

subject to constraints on variables and performance.  
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The design variable bounds are given in Table 2 and the performance constraints, namely maximum 

displacements and stage pulses, are specified in Table 3. 

Table 3: Design constraints 

 Upper bound 

Maximum displacement ( x crash) 721 mm 

Stage 1 pulse(SP1) 7.48 g  

Stage 2 pulse(SP2) 20.20 g 

Stage 3 pulse(SP3) 24.50 g 

 

The three stage pulses are calculated from the averaged SAE filtered (60Hz) acceleration x&& and displacement 

x of the accelerometer nodes in the following fashion: 

               Stage j pulse =  otherwise; 0.1,1for  5.0    d
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The integration limits (d1:d2) = (0:200); (200:400); (400:Max(xcrash)) for j = 1, 2, 3 respectively, represent 

different structural crash events. All displacement units are mm and the minus sign is used to convert acceleration 

to deceleration. During optimization, all objectives and constraints are scaled to avoid dimensionality issues. 

The LS-DYNA [4] explicit solver is used to simulate the crash. Each crashworthiness simulation takes 

approximately 5 hours using one core of a fully-loaded quadcore Intel Xeon 5365 processor and generates an 

output of 225 MB. Obviously running 1000 simulations in serial would be very time-consuming. Fortunately, the 

genetic algorithms are very amenable to parallelization such that all individuals in a generation can be 

simultaneously analyzed. A 640-core HP XC cluster, comprising 80 ProLiant server nodes of two Intel Xeon 5365 

quad-core processors (also known as Clovertown, with 2 processors/8 cores), with a 3.0 GHz clock rate and 8 GB 

memory, was used to run simulations3. More details about running the simulation appear elsewhere [11].  

Table 4: Measured elapsed times for the six cases 

Case Population size 
Number of 

generations 

Elapsed 

time (h) 

Ave. elapsed time per 

generation (h) 

Monte-Carlo 1000 1 16 16 

Space-Filling 1000 1 16 16 

P20x50 20 50 334 6.68 

P40x25 40 25 145 5.8 

P50x20 50 20 120 6.0 

P100x10 100 10 54 5.4 

 

It is obvious from Table 4 that smaller population size resulted in higher wall time because only a single 

processor per simulation was used and hence many processors were left idle. However, the wall-time can be 

significantly reduced by running MPP version of LS-DYNA with multiple processors
4
. The variation in average 

time per generation reflects the waiting time due to sharing of the cluster.  

 

5. Results and Discussion 

The optimization results for all test examples are given in this section. It is noted that the global Pareto 

optimal front is not obtained with so few simulations instead the focus of this study is to assess the best resource 

allocation strategy to find the best non-dominated solution set. Table 5 summarizes the results for different cases 

for all examples. 

 

5.1. Number of Simulations 

While the total number of budgeted simulations was 1000 for each example and case, the actual number of 

simulations for NSGA-II was slightly lower because duplicate designs were simulated only once. This resulted in 

cost savings for computationally expensive problems like those encountered in crashworthiness simulations. The 

analytical engineering example (WATER) yielded the highest number of duplicate solutions for GA simulations.  

 

 

 

                                                           
3
 It is important to note that the cluster was shared by many users and each node was fully populated by the queuing 

system. 
4
 Only SMP processor with a single-processor was used in this study to ensure complete equivalence of all 

simulations. 
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Table 5: Comparison of different cases for the three examples. ∆var-uniformity measure in variable space, 

∆obj-uniformity measure in function space (smaller value is desired). 

  # of 

simulations 

# of 

feasible 

points 

# of local 

non-domin

ated points 

# of true 

non-dominate

d points 

∆var ∆obj 

Monte-Carlo 1000 18 6 0 0.89 26.26 

SpaceFilling 1000 22 3 0 4.93 99.35 

P20x50 994 787 7 7 0.47 2.34 

P40x25 999 721 32 10 0.23 0.57 

P50x20 994 617 23 17 0.50 1.40 

OSY 

P100x10 995 509 19 1 0.57 4.45 

Monte-Carlo 1000 919 230 86 0.013 0.024 

SpaceFilling 1000 921 228 87 0.011 0.020 

P20x50 958 857 422 386 0.011 0.014 

P40x25 964 896 475 373 0.009 0.009 

P50x20 977 905 449 323 0.008 0.009 

WATER 

P100x10 962 904 449 259 0.009 0.009 

Monte-Carlo 1000 2 2 0 - - 

SpaceFilling 1000 5 4 0 0.076 0.542 

P20x50 997 150 26 25 0.405 0.180 

P40x25 996 67 31 20 0.349 0.191 

P50x20 995 99 32 9 0.274 0.121 

CRASH 

P100x10 995 46 20 15 0.270 0.204 

 

5.2. Number of Feasible Solutions 

The random sampling techniques like Monte-Carlo method and space-filling methods provided an estimate 

of the size of the feasible region. It could be concluded from the results (Table 5) that the analytical example OSY 

and the crashworthiness example had very small feasible regions (2.5% and less than 0.5% of the entire design 

space, respectively), whereas the analytical engineering example was largely feasible (~92%).  
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Figure 3: Feasible points as a percentage of total number of simulations. A point on any curve denotes the end of 

GA generation 
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A graphical view of the number of feasible points as a percentage of the total number of simulations is shown 

in Figure 3. As expected, the total number of feasible solutions obtained from the NSGA-II simulations was 

significantly higher compared to the random sampling method because the former focuses on finding feasible 

solutions. The proportion of feasible points generally increased because with evolution the GA search learned to 

avoid generating infeasible designs. The results of analytical and crash examples indicated that evolution (lower 

population size) was favorable for finding feasible designs, particularly for the problems with very small feasible 

regions. For the WATER example, the relatively poor performance of low population size was observed because 

the GA search was focused near the constraint boundary where optimal solutions are located and hence many 

infeasible solutions were found. 

 

5.3. Convergence/Non-dominated Solutions 

The number and quality of non-dominated solutions offered insights about the convergence of different 

optimization cases. Non-dominated solutions for each case were identified using a weak non-domination criterion 

on the respective set of solutions (~1000 simulations) for all example problems (Column 5, Table 5). The resulting 

non-dominated set was referred as local non-dominated solution set.  

It was noted that the large number of feasible points did not guarantee a large number of local non-dominated 

points. While the random search strategies expectedly performed poorly, the NSGA-II simulation based on 

population sizes of 40 and 50 resulted in the highest number of locally non-dominated solutions (non-dominated 

with respect to corresponding set of 1000 simulations). This result suggested that there was a need to balance 

evolution and diversity in the GA search.  

OSY
Monte-

Carlo

Space-

Filling P20x50 P40x25 P50x20 P100x10

Monte-Carlo 0.00 0.00 0.00 0.00 0.00 0.00

Space-Filling 16.67 0.00 0.00 0.00 0.00 15.79

P20x50 66.67 33.33 0.00 18.75 13.04 31.58

P40x25 100.00 66.67 0.00 0.00 26.09 63.16

P50x20 100.00 100.00 0.00 50.00 0.00 63.16

P100x10 100.00 66.67 0.00 6.25 13.04 0.00

WATER
Monte-

Carlo

Space-

Filling P20x50 P40x25 P50x20 P100x10

Monte-Carlo 0.00 21.93 1.42 2.74 8.24 7.57

Space-Filling 19.57 0.00 1.18 3.16 4.45 9.58

P20x50 34.35 33.33 0.00 11.16 13.14 19.60

P40x25 42.17 40.79 5.21 0.00 17.59 22.05

P50x20 37.83 34.65 4.50 8.00 0.00 17.82

P100x10 32.17 34.21 3.79 6.53 8.02 0.00

TRUCK
Monte-

Carlo

Space-

Filling P20x50 P40x25 P50x20 P100x10

Monte-Carlo 0.00 0.00 0.00 0.00 0.00 0.00

Space-Filling 0.00 0.00 0.00 0.00 0.00 0.00

P20x50 100.00 50.00 0.00 22.58 37.50 25.00

P40x25 100.00 75.00 3.85 0.00 50.00 25.00

P50x20 100.00 50.00 0.00 6.45 0.00 25.00

P100x10 50.00 50.00 0.00 12.90 28.13 0.00
  

Figure 4: Percentage of local non-dominated points (case shown in column) that were dominated by the local 

non-dominated solution set from other strategies (shown in rows). Lower %age is desired.  

 

Non-dominated solution sets from different cases were compared according to the weak non-domination 

criterion. Figure 4 shows the percentage of local non-dominated points that were dominated by the local 

non-dominated solution set identified using other cases. The space-filling sampling strategy was slightly better 

than the Monte-Carlo sampling because fewer local non-dominated solutions were dominated by local 

non-dominated solutions identified using other methods. Among all NSGA-II configurations tested, the lower 

population size cases were better than the higher population size NSGA-II cases. The case of 50 individuals 

evolved for 50 generations performed the best, and the case of 100 individuals evolved for 10 generations was the 

worst among all the NSGA-II cases. This result justified the benefits of evolution over diversity.  

The relative quality of these local non-dominated solutions from different cases was determined by 

identifying the non-dominated solution set over entire set of simulation points (~6000 points) for each problem. 
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This set of non-dominated solutions was referred as the true non-dominated solution set
5

. Many local 

non-dominated solutions were found dominated by the solutions in the true non-dominated solution set. The 

number of points from the local non-dominated set that were included in the true non-dominated solution set is 

furnished in Table 5. 
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Figure 5: Percentage of local non-dominated solutions from different cases in the true non-dominated solution set 

(NDS) identified using all simulation points for each problem 

The quality of local non-dominated solutions from different cases was quantified by computing the ratio of 

the number of local non-dominated points that were included in the true non-dominated solution set, to the total 

number of true non-dominated solutions. This ratio was plotted for all cases and examples in Figure 5. It is obvious 

that the best quality local non-dominated solutions are obtained when a population of 20 individuals is evolved for 

50 generations. Lower population sizes are apparently more desirable than the large population size though the 

results for higher population sizes were dependent on the example problem. 

Nevertheless, the results presented in this section clearly indicate that evolution is more important than 

diversity (high population size) in order to find good convergence properties for NSGA-II.  

 

5.4. Diversity of Non-dominated Solutions 

While the convergence in multi-objective optimization is important to reach the global Pareto front, the 

diversity of the Pareto front is also very important. The diversity reflects different trade-off solutions that might be 

interesting for a designer.  
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Figure 6: Different local non-dominated fronts for OSY example 

 

The local non-dominated solutions obtained from different cases for the OSY example were visualized in the 

                                                           
5
 This is not the global Pareto optimal front. The term ‘true’ is used here to indicate that all simulations were used 

to identify non-dominated solutions. 
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function space (Figure 6). The global Pareto optimal front for this example was also plotted. Random sampling 

methods had very poor convergence but offered very good spread and uniformity in distribution. The results from 

different NSGA-II cases revealed that while population size 20 yielded the best convergence, the simulations 

points were largely focused in one region of the Pareto front (poor spread). This behavior is due to the fact that 

NSGA-II tries to converge to the global Pareto optimal front before spreading the points on the front. The local 

non-dominated solutions from the case with population size 50 resulted in the most reasonable convergence and 

spread. The lack of evolution was obvious for the case with population 100 as many local non-dominated solutions 

were found very far from the global Pareto front.  
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Figure 7: Best solution (sum of objectives) for each case and the range of local non-dominated solutions (shown by 

error bars) for different examples. Objectives f1 and f2 for the OSY problem are scaled by 300 and 80, respectively. 

 

Similar graphical analysis is not possible for other examples and the variable space of OSY example due to 

high dimensionality. So the spread (ranges of all-objectives/variables) of local non-dominated solutions from 

different configurations are shown in both variable and objective function space in Figure 7 (analytical examples) 

and Figure 8 (crash example). The so-called “best” design is chosen by defining a weighted sum of all scaled 

objectives with equal importance to each objective function. The spread of non-dominated solutions in the 

function and variable space was quite comparable for all configurations on WATER example. This is perhaps due 

to a sufficient number of local non-dominated points for all cases. The spread of local non-dominated points for the 

CRASH example was comparable for all objectives except scaled acceleration which was also the most dominant 

objective function. The objective Mass (which is the total vehicle mass) did not vary much because only a part of 

the total mass was linked to the variables. The performance of low population size (particularly 20) was the most 

reasonable. There was ample diversity in the variable space also. 

The uniformity of the distribution of the points on the local non-dominated front was reasonable for all 

examples and the same is reflected in Table 5. The lack of points on the non-dominated front for both random 

sampling techniques and NSGA-II case with population size 20 resulted in high values on the uniformity metrics 

due to dominant boundary effects. Relatively, moderate population-sized NSGA-II simulations resulted in more 

uniform distribution of non-dominated solutions for all examples.  

 

5.5. Selection of the Best Available Design for the Crashworthiness Example 

To compare the performance of a single design selected from the corresponding trade-off solution sets, a 

weighted sum of objectives was maximized, when unit weight was assigned to each objective function. The design 

variables, objectives, and constraints corresponding to the selected best designs for all cases are shown in Table 6 

and Table 7, respectively. The performance of the baseline design was also provided for comparison. 
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Figure 8: Best solution (sum of objectives) for each case and the range of local non-dominated solutions (shown by 

error bars) for crash examples. All objectives and the weighted sum are maximized.  

 

Table 6: Design variables corresponding to the selected optimal design obtained using different configurations 

Case t1 t2 t3 t4 t5 t6 t10 t64 t73 

Monte-Carlo 2.693 3.247 2.618 3.125 3.870 3.678 2.391 1.330 2.376 

Space Filling 2.670 2.917 3.548 2.509 2.724 3.727 2.271 1.104 1.946 

P20x50 3.165 2.710 2.767 2.834 2.829 3.829 2.505 1.345 2.357 

P40x25 3.340 2.679 2.652 2.828 2.978 3.916 2.464 1.215 1.894 

P50x20 2.899 3.197 2.762 2.655 3.036 2.963 2.250 1.331 2.343 

P100x10 2.708 3.018 3.256 2.737 3.478 3.843 2.510 1.504 2.347 

Baseline 3.137 3.112 2.997 3.072 3.400 3.561 2.700 1.262 1.990 

 

The baseline design was infeasible and resulted in high peak acceleration. The designs obtained from random 

search methods were feasible and had slightly better performance compared to the baseline design. However, 

major improvements were obtained by using NSGA-II simulations. All designs were not only feasible but also, 

significant reductions in peak acceleration (32–55%) and increase in time-to-zero-velocity (4-6%) were obtained 

with same or lower mass and maximum displacement values. While no design variable hit the bound, no patterns 

were identified among all feasible designs. 

 

Table 7: Performance of the selected optimal design obtained using different configurations. SP: Stage Pulse 

 Objectives Constraints 

Case Xcrash Accel Mass Time-to-0V Xcrash SP-1 SP-2 SP-3 

Monte-Carlo 719.3 112019 1.8187 0.0836 719.3 6.96 19.87 23.82 

Space Filling 719.0 111248 1.8030 0.0761 719.0 7.02 20.15 23.57 

P20x50 719.3 53645 1.8123 0.0979 719.3 7.29 19.96 24.28 

P40x25 720.2 52667 1.8061 0.0950 720.2 7.43 20.02 22.15 

P50x20 717.3 80132 1.8059 0.1042 717.3 6.86 20.13 23.61 

P100x10 720.0 65615 1.8181 0.1000 720.0 7.21 19.84 24.08 

Baseline 711.1 116601 1.8122 0.0936 711.1 7.90 21.18 25.23 
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Overall, the results showed merits of using evolution for multi-objective optimization. For the same amount 

of computational effort, the evolution helped find more feasible solutions and yielded many trade-off solutions. 

Probably, the GA simulation P20x50 performed the best. In general, there might be some variability in the 

performance because of the dependence on initialization procedures. 

 

6. Summary 

The practical operability of the elitist non-dominated sorting genetic algorithm is studied in this paper. 

Specifically, the focus is on finding the best compromise in evolution (number of generations) and diversity 

(population size) when the total number of simulations is fixed. Three examples that include one analytical, one 

engineering, and one crashworthiness simulation problem are used to study different combinations of population 

size and number of generations. The maximum number of simulations for each case was fixed at 1000. Four cases 

of NSGA-II simulations and two random sampling methods were studied.  

As expected, it was observed that all NSGA-II simulations performed significantly better than Monte-Carlo 

sampling and space-filling methods. Low population size resulted in the most number of feasible points 

particularly when the size of feasible region was very small. Moderate population size also resulted in a high 

number of local non-dominated solutions. However, the NSGA-II case where a population of 20 individuals 

evolved for 50 generations resulted in the best convergence characteristics. In general, more evolution led to better 

convergence.  

While all cases resulted in fairly uniformly distributed points on respective local non-dominated fronts, the 

spread of the local non-dominated solutions was the best for moderately sized populations. It can be concluded that 

evolution is more important to obtain good convergence and large population size are needed to preserve diversity. 

As a compromise, one can use moderate population size (e.g. 40) to balance convergence and diversity on the 

Pareto front. 

The simulations of the crashworthiness example also demonstrated the significance of using parallel 

processing to reduce the wall clock time. Furthermore, it was observed that multi-objective optimization resulted 

in significant improvement in the performance. While the baseline design was infeasible, the best optimal design 

(obtained using a population of size 20 evolved for 50 generations) resulted in more than 50% reduction in the 

peak-acceleration and nearly 6% increase in the time to reach zero velocity while keeping the mass of the vehicle 

and maximum displacement nearly constant. All constraints were also satisfied. This example also demonstrated 

that, for problems with a small feasible region, the number of feasible solutions can be significantly increased in 

the first few generations involving about 200 simulations. 
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