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Abstract 
 
LS-OPT is a standalone Design Optimization and Probabilistic Analysis package with an interface to LS-DYNA® that is capable of 
solving a variety of reliability assessment and single or multi-disciplinary design problems. It consists of a flexible framework with 
various methods that are suited to specific types of problems. The solution methods in LS-OPT are broadly categorized as direct or 
metamodel-based. Metamodel-based methods build approximations of the system responses using only a few samples, before applying 
core optimization or probabilistic analysis methods on these inexpensive surrogate models. They are particularly attractive due to 
higher efficiency compared to direct methods, which on the contrary can be prohibitively expensive in some scenarios.  However, 
metamodel-based approximation is hindered in certain situations, such as due to discontinuous or binary responses. Instances of such 
responses include buckling during impact, aerodynamic flutter, fluid leakage simulation, nonlinear energy sinks etc. To overcome 
such issues, a classification-based method has been developed, which only uses binary safe/failed (or feasible/infeasible) information 
to approximate the decision boundary in the design space.   
The version 6.0 of LS-OPT will introduce a new “Classifier” entity to provide greater flexibility in handling such problems. Instead of 
predicting the response value at an unknown design sample, a classifier predicts whether the design will be feasible. The decision 
boundary separating the feasible and infeasible samples is the zero level isocontour of an inexpensively computable mathematical 
expression. Clearly, the method is well suited for binary problems with only pass/fail information (e.g. whether a simulation 
succeeded or whether there was any blood leakage for an implanted stent for aneurysm etc.). For discontinuous responses also, the 
problem is greatly simplified as the method depends only on the category and not on the value of response at a sample, thus 
eliminating the need for fitting a discontinuity. The classification-based method is also very useful for system reliability assessment in 
the presence of multiple failure modes, as it can represent all the modes with a single classifier. Additional applications of classifiers 
have also been proposed in the field of multi-objective optimization. A statistical learning technique known as Support Vector 
Machine (SVM) is used to construct the decision boundaries in LS-OPT. This paper gives an overview of the classification capability 
of LS-OPT along with a few examples where classifiers can be useful, including examples with response discontinuities. 

 
 

 
Introduction 

 
Decision-making is an integral part of any design optimization or design reliability assessment process. One can 
explore several ways to make a decision, e.g. based on experience, physical tests, simulation results etc. or a 
combination of these results [1]. Physical tests and simulations provide an insight into the performance metrics 
of the designs under consideration. Different types of decisions are made based on the results, such as whether 
one design is better than another is, whether a particular design is feasible or not etc. However, obtaining the 
best design or calculating the failure probability of a design involves numerous calls to potentially expensive 
performance evaluation functions. Therefore, an important requirement is to improve the efficiency of the 
decision making process, i.e. to reduce the number of expensive evaluations needed to get the final solution.  

 
Machine learning techniques [2, 3] are often used to aid in the decision-making process in order to avoid the 
high cost (or computational time). They are able to provide an insight into the system behavior at an unknown 
design configuration by learning from a relatively small number of expensive evaluations. A widely used 
approach is to replace the actual expensive function evaluations with evaluations based on metamodels that act 
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as surrogate models [4]. Various types of metamodels can be trained based on different basis functions and 
different criteria for the "best" fit, several of which are also available in LS-OPT [5]. Several sampling 
strategies have also been developed to globally or locally enhance metamodel accuracy, based on specific 
applications such as deterministic single-objective design optimization, multi-objective optimization, reliability 
analysis or reliability-based design optimization [6-9].  
 
For most types of design problems, metamodel-based methods have been shown to perform efficiently and 
accurately. However, the use of metamodels is hampered for certain systems that have discontinuous or binary 
responses, e.g. buckling, on-off contact, hidden constraints etc. [10, 11]. The approximation of response values 
is difficult for such systems.  However, these problems are enormously simplified upon the realization that 
many of the decisions during optimization or reliability assessment, e.g. constraint feasibility check, do not 
actually need prediction of the response values for the different design configurations; instead, only a binary 
decision based on classification of the designs as feasible or infeasible is required in such instances. It is 
possible to obtain such a decision boundary using only the classification information of the training samples 
[10-14]. The key difference is that instead of substituting the response value evaluation, a classifier simply 
provides a pass/fail decision [15-19]. In order to have the ability to predict such binary decisions, the classifier 
only needs to learn from the pass/fail information at a few training samples (and not from the response values 
with potential discontinuities that can throw off the training process based on continuous basis functions). As a 
result, the classification-based constraint handling approach automatically mitigates issues such as not having a 
quantitative response value (binary data) [11, 20] or having a discontinuous response [10, 12]. 
 
This paper presents the LS-OPT implementation of classifiers and demonstrates their application to define the 
constraint boundaries for design optimization [14] or reliability assessment [10, 13]. The principal idea is to 
define a threshold or clustering-based [21] pass/fail criterion that classifies the training samples into two classes, 
and then to construct an "optimal" decision boundary in the design space that separates the samples belonging to 
the different classes. Once the decision boundary has been trained, it predicts the feasibility of any arbitrary 
design configuration without costly evaluations to enable efficient optimization or reliability assessment.  
 
The aim of this paper is to give an overview of a few engineering design applications where the classification-
based method can be advantageous, as well as to provide a general idea of how to use the classification-based 
design feature of LS-OPT. The paper presents several examples consisting of discontinuous and binary 
responses, multiple failure modes and adaptive sampling to provide some idea about the scope of applying the 
new classification-based design approach. 
 

Statistical Classification Background 
 
Statistical classification [2, 3, 16, 22] is a subset of machine learning [2, 3] in which the goal is to identify the 
category to which a new observation belongs, based on prior training data. The data consists of a sample set X 
and their labels Y. The possible labels in the vector Y are defined beforehand – e.g. three categories in the data 
implies three types of labels. The statistical classification problem is that of identifying the best pattern in the 
variable space that defines the boundary between distinct categories or classes. Figure 1 shows an example of 
three-class classification. 
 
The use of classification algorithms is prevalent in several disciplines, such as image recognition [23], financial 
decision making [24], spam filtering [25], gene analysis [26] etc. The same concept can also be used in design 
optimization [14] and reliability assessment [10, 13], for which it is typical to have two classes of data (feasible 
and infeasible). 
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Figure 1. Statistical classification of three distinct category samples (circle, square and triangle).  
 
Some of the common statistical classification algorithms are k nearest neighbors (kNN) [27], support vector 
machines (SVMs) [18], random forest (RF) [28] and neural networks (NN) [29, 30]. Particular emphasis is 
given to SVM [18] in this paper, as this algorithm has been implemented in LS-OPT. The basic idea in SVM 
classification is to construct a linear boundary in a feature space separating two classes of data. Even though the 
data is not necessarily linearly separable in the input variable space, they can be separated by a hyperplane in 
this feature space. Additionally, only the inner product of the feature space position vectors is needed, which 
can be represented by a kernel function in the input space (with some restrictions on the type of kernel 
function). As a result of this mapping, one can work with the input space variables to construct an optimal 
boundary in the feature space. The equation of the SVM decision boundary for two-class classification is 
obtained as s(x) = 0, where s(x) is given in Eq. (1). 
                                                                 𝑠𝑠(𝒙𝒙) = 𝑏𝑏 + ∑ 𝛼𝛼𝑖𝑖𝑦𝑦𝑖𝑖𝐾𝐾(𝒙𝒙,𝒙𝒙𝑖𝑖)𝑁𝑁

𝑖𝑖=1                                                              (1) 
 

Here, yi  = ± 1 is the class label, αi is the Lagrange multiplier for ith sample and b is the bias.  K is the kernel 
function that maps the design space and the feature space (a high-dimensional space consisting of basis 
functions as the variables) [18]. An SVM constructs the optimal boundary that maximizes the margin between 
two sample classes (+1) in a feature space. The boundary is linear in the feature space, but can be highly non-
linear in the design space. The margin is defined as the perpendicular distance between s(x) = -1 and s(x) = 1 in 
the feature space. The SVM is constructed such that there is no training sample within the margin. 
 

Support Vector Machine Classification-based Design Using LS-OPT  
 
LS-OPT 6.0 will introduce a new design framework in which the constraints are defined as SVM classifiers. In 
both design optimization and reliability assessment one of the main tasks is to differentiate between acceptable 
(feasible/safe) and unacceptable (infeasible/failed) designs. In optimization, the optimum design is located in 
the feasible space. Similarly, in reliability assessment, the failed samples contribute to the failure probability. 
Statistical classifiers are perfectly suited to construct a decision boundary that separates the two classes of data. 
Once trained, a classifier can predict the class (feasible/infeasible) of a new design configuration almost 
instantaneously, and is therefore well suited for use within an optimization or reliability assessment framework.  
 
A statistical classifier performs equally well for continuous functions and for discontinuous or binary responses, 
as it only uses pass/fail information at a few specified samples for training. This information is readily available 
even for problems with binary or discontinuous responses [12, 14, 20]. The classifier training or learning 
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process involves finding patterns in the design space that are capable of separating the samples belonging to the 
feasible and infeasible categories. This is in contrast to metamodeling, where the training involves a functional 
based on the response values. The difference between metamodel-based and classification-based methods to 
determine acceptability of any general design alternative is shown in Figure 2. The classification-based method 
takes a decision directly based on the position of the new sample in the design space, as the classifier is trained 
to find patterns in the design space, whereas in the metamodel-based method, the decision is taken based on the 
corresponding predicted response value and threshold. 
 
In general there are infinite patterns that can separate the feasible and infeasible category samples. However, the 
decision boundary is constructed such that it optimally separates the acceptable and unacceptable training 
samples using SVM. 

 

 
Figure 2 Summary of basic classification method (bottom) and comparison to metamodeling (top). 

In LS-OPT one can specify the use of classifiers in a problem in the add menu, which adds a “Classifier” box to 
the GUI flowchart. The definition of the classifier(s) is then specified in the classifier dialog (Figure 3). Three 
items are needed to complete the classifier definition: 

1. The component(s) of the classifier along with the corresponding classification criterion, e.g. threshold or 
clustering 

2. The type of system (series/parallel) in the case of multiple classifiers 
3. The classification algorithm (SVM) and its parameter selection preferences 

Once a classifier is defined, it can be used as a constraint in optimization or in Monte Carlo analysis. It is also 
possible to have a nested classifier definition to get a mixed series-parallel system. For example, one can define 
classifier 1 and classifier 2 as series and then define a third classifier that has classifier 1 and 2 as parallel 
components. 
 
The classification criterion based on a pre-defined threshold is quite straightforward, as the class of any design 
can be determined by comparing its response value to the threshold. However, the threshold is not known a 
priori always. In such cases, clustering is performed, which falls under the category of unsupervised machine 
learning [16]. The class of a sample is then determined not just by its response, but by the response of all the 
samples together. The k-means clustering algorithm is currently available in LS-OPT for this purpose. 
 
An SVM classifier can be trained with several types of kernels. LS-OPT currently allows Gaussian, polynomial 
and exponential kernels. Additionally, it gives one the option to use fixed kernel parameters or to let LS-OPT 
select the parameters based on an error rate. 
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Figure 3. Classifier definition dialog in LS-OPT. 
 
The use of classifiers to define constraint boundaries has several advantages that are presented though examples 
in the next section. The main advantages of using the classification-based method are also listed below. 

1. As evident in Figure 2, the classification-based method does not require the actual response values at the 
training samples; instead it only requires the class 1±  of the samples. As a result, it can be applied to 
problems with only binary pass/fail information available (Figure 4Figure ). For example, response 
evaluation may not be possible for a certain category of infeasible design configurations. In other 
instances, it is possible to evaluate the responses for all samples, but only as a qualitative indicator of a 
binary pass/fail status [10, 14]. In non-binary problems also, the presence of response discontinuities and 
noise hampers the accuracy of the metamodel-based approach [10]. Thus, it also automatically handles 
failed simulations that do not provide a response value. 

2. As the response values are not approximated and are instead classified, the method is unaffected by the 
presence of discontinuities [10, 31]. 

3. Different failure modes can be represented by a single classifier. This feature can be used to devise a 
mechanism in which only a few failure modes need to be evaluated at a sample to obtain the class label, 
thus increasing the efficiency [14]. 

4. Because only the classification information is required, it is possible to terminate a simulation before the 
end time in order to save time. 

 
Examples: Statistical Classification in Design 

 
As mentioned in the previous section, statistical classification has some obvious advantages compared to 
metamodeling when defining design constraint boundaries, especially for non-smooth responses. This section 
presents a few examples where the use of classifiers can be useful or even necessary in some instances. 
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Example 1: Failure Boundary Definition for Binary Response – Ball Impacting Plate 
This example consists of a ball impacting a plate modelled with solid elements and the MAT24 material card in 
LS-DYNA (Figure 4). The plate elements erode upon reaching a specified limiting plastic strain of 0.5. Upon 
reaching the limit state, an element fails and undergoes an instantaneous drop in strain to zero value. The exact 
limit state may or may not be captured for a particular simulation in the LS-DYNA output databases, depending 
on the output intervals. As a result, only pass/fail information is available in the messag file. This example is 
studied with only two variables, plate thickness and the yield stress, for simplification of the visual 
interpretation. An experimental design consisting of 50 space filing samples is generated. The corresponding 
binary states represented by +1 (no erosion) and -1 (element erosion) are shown in Figure 4 right. In Figure 5, 
the metamodel-based approach is compared to the classification-based approach. Metamodels have problems 
while approximating such binary or discontinuous responses and are sensitive to the selection of arbitrary 
numeric labels. However, this is a very simple problem from a classification perspective. The SVM boundary 
can be used for optimization or for reliability assessment. 

 

 
 

 
 

Figure 4: Element erosion upon impact on plate (left). Binary response (right). -1 shows erosion. 
 

        
Figure 5: Fitting metamodel to binary response (left). SVM classification of the designs (right) 
 
Example 2: Design Optimization with Mode Tracking (Discontinuous Frequency Constraint) 
This example consists of an LS-DYNA simplified car model (Figure 6) for which the mass is minimized while 
constraining the first torsional mode to be greater than a certain limit. The thickness values of the bumper 
(tbumper) and the rail (trailb) are the optimization variables.  Thus the optimization problem is: 
 

                                                                          min
𝑥𝑥1,   𝑥𝑥2

   𝑀𝑀𝑀𝑀𝑠𝑠𝑠𝑠                                                                        (2) 

𝑠𝑠. 𝑡𝑡. 𝜈𝜈𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑡𝑡𝑡𝑡 > 220 
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where νtorsion is the first torsional mode frequency, x1 and x2 are the thicknesses of bumper and rail, respectively. 
The first torsional mode for the baseline design was identified manually before automatically detecting the 
closest mode shape for the other samples, based on the modal assurance criterion (MAC). As the torsional mode 
is tracked, the mode number can switch from one design to another. This is also typically accompanied by a 
sudden jump in the frequency, leading to a response discontinuity (Figure 7). The problem is solved using a 
feedforward neural net (FNN) approximation of the frequency as well as with SVM classification and the 
results are compared. Figure 8 provides the comparison between the metamodel and classification-based 
constraint boundary approximation. The FNN-based approximation clearly misclassifies some of the feasible 
training samples and predicts them as infeasible. This leads to a conservative design with tbumper = 4.71496 
and trailb 5.20927. The corresponding scaled mass objective is 1.78755. Using an SVM-based constraint, the 
optimal design is located at (tbumper = 4.42104, trailb 5.06372) with a lower mass value of 1.74285. 
 

 
 

Figure 6 Simplified car LS-DYNA model for modal analysis 
 
 

 
Figure 7. Modal Analysis Example. FNN approximation built for mass minimization with torsional frequency constraint. The 
frequency response is discontinuous due to mode switching. 
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Figure 8. Modal analysis example with discontinuous frequency constraint. Comparison of FNN and SVM constraint boundaries. 
 
Example 3: System Reliability Assessment for Side Impact Noisy Intrusion Constraint 
The following example consists of a Monte Carlo analysis of a vehicle impacting a pole. The LS-DYNA finite 
element model of the vehicle used in the study is shown in Figure 9. The model [32] consists of approximately 
30,000 elements and therefore, it is a generalized model intended only for demonstration of application of 
optimization concepts discussed in this study. The majority of the elements in the model were defined using 
shell section with ELFORM 2 formulation of LS-DYNA. The finite element model also consisted of a rigid 
cylindrical wall with a radius of 150mm. The vehicle model was subjected to a side impact against the rigid 
cylindrical wall at a velocity of 29 mph.  

 

 
Figure 9: Finite element model of the vehicle-pole side impact analysis 

 
The shell thicknesses of a few design parts, selected based on their contribution to overall internal energy 
absorption, were selected as the design variables for the Monte Carlo analysis. To simplify the setup into a two 
variable example to enable visualization, the thickness of the b-pillar and the lower beams was defined as 
variable 1 and the thickness of the two floor parts was defined as variable 2. The intrusion distance of b-pillar, 
lower beam, and the door were defined as the design constraints for the Monte Carlo analysis. The intrusion 
distance was calculated as the difference of displacements of the nodes in the intrusion location and a reference 
node. The design parts and the location of intrusions are shown in Figure 10. 
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Figure 10: Design parts, shown in darker shade (left), location of b-pillar and door intrusion (right). 
 
In the Monte Carlo analysis, the two noise variables, beam and b_floor, are normally distributed with a mean 
and standard deviation of 4, 0.4 mm and 2.5, 0.25 mm, respectively. The intrusion distances were defined as the 
design constraints to determine the probability of exceeding the constraint bounds using Monte Carlo analysis. 
The probability of failure for the system is defined as the probability of exceeding the constraint bound of any 
of the intrusion constraints, given as: 
 
               𝐹𝐹𝑀𝑀𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑃𝑃𝐹𝐹𝑃𝑃𝑏𝑏𝑀𝑀𝑏𝑏𝐹𝐹𝐹𝐹𝐹𝐹𝑡𝑡𝑦𝑦 𝑃𝑃𝑓𝑓 = 𝑃𝑃 [(𝑔𝑔1 > 585𝑚𝑚𝑚𝑚 )  ∪ (𝑔𝑔2 > 710𝑚𝑚𝑚𝑚) ∪ (𝑔𝑔3 > 638.23𝑚𝑚𝑚𝑚)]              (3) 
 
where g1, g2, g3 are the intrusion distances of the b-pillar, lower beam, and the door.  
 
In order to get an insight into the nature of the intrusion responses, FFN metamodels were constructed and 
visualized. The response approximations and simulation points are plotted in Figure 11 top, which shows the 
presence of noise in the constraint functions.  
 
The metamodel-based Monte Carlo framework of LS-OPT was used to calculate the failure probability using 
the FNN metamodels. The corresponding predicted failure region is shown in Figure 11 bottom left. It is quite 
clear that the quality of the approximation is lacking in the vicinity of the failure boundary, as a result of which 
5 of the training samples are misclassified among 75 (6.67 % training misclassification).  
 
In order to compare the metamodel-based and classification-based approaches, a single SVM decision boundary 
was constructed using the same 75 samples to represent all three constraints. The SVM kernel parameters were 
selected automatically by LS-OPT, using five-fold cross-validation to minimize the error rate. The SVM 
decision boundary (Figure 11 bottom right) correctly classifies most of the samples, except for one. The system 
failure probabilities using the FNN metamodel and the SVM classifier are compared in Table 1. The failure 
probability obtained using 3000 Latin Hypercube finite element runs (direct MC) is also listed.  The 95% 
confidence intervals of the failure probabilities are shown. Both the SVM and FNN based probabilities fall 
within the 95% confidence interval of the direct MC failure probability value, but the mean values of the  direct 
MC and the SVM estimate coincide almost exactly. Therefore, although it is difficult to provide a conclusive 
decision due to the relatively large confidence interval of the direct MC, based on the mean failure probability 
the SVM-based method seems to outperform the FNN metamodel. Visually also, as well as based on the 
training misclassification, the SVM failure boundary seems to be much more intuitive and accurate. In the 
future we will need to conduct a direct MC analysis with much higher number of samples to provide a more 
precise comparison.  
 
Table 1: Training error and 95% failure probability intervals of Ford Taurus side impact intrusion  
Method FNN SVM Direct MC 
Training error 6.67% 1.33% - 
Failure Probability 95% CI 0.0221+ 0.0029 0.0237 + 0.0030 0.0237 + 0.0094 
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Another point to note is that failure probability calculation for parallel or mixed systems is not supported using 
metamodels in LS-OPT. Using a classifier-based constraint one can now define any type of system failure 
criterion (series/parallel/mixed). This is useful when there is redundancy in the system and as long as one of the 
redundant units is functional, the system will remain functional. 

 
Figure 11. Ford Taurus example with noisy response. FNN response approximations are shown on the top for the three intrusion 
constraints. The bottom figures depict the failure boundary approximation in the design space using FNN (left) and SVM (right). 
 
Example 4: Adaptive Sampling with SVM-based sampling constraint 
One can also use classifiers to define the regions of the design space that need to be sampled further. In many 
scenarios, sampling large portions of the design space does not bring any useful information [31-33]. For 
instance, the designs corresponding to those regions may be non-physical or the simulation may fail for those 
parameter combinations. One may also want to restrict the sampling space simply because the optimum solution 
is likely to be in a specific part of the design space. Such restrictions can be enforced using a classifier-based 
sampling constraint.  Figure 12 shows one such instance of adaptive sampling with SVM-based sampling 
constraint, where the goal was to sample in the vicinity of the failure boundary to accurately estimate it. The 
sample set in the figure is the result of eight iterations with ten samples each. The samples are constrained to lie 
within the margin of the SVM by defining a sampling constraint in LS-OPT. The SVM margin adapts itself as 
more samples are added. 
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Figure 12. Adaptive sampling using SVM sampling constraint in the vicinity of the decision boundary. 
 
Another special case of SVM-based adaptive sampling is Adaptive Explicit Multi-Objective Optimization 
(AEMOO) [34]. However this algorithm is not implemented yet in LS-OPT. Nevertheless, the basic concept of 
AEMOO is presented here with an example. It is indeed possible to set up the AEMOO algorithm in LS-OPT 
using a multilevel framework, but that would require significant expertise on part of the user.  
 
In general, MOO problems consist of two or more objectives that are maximized or minimized simultaneously 
and are conflicting in nature. As a result, the solution of a MOO problem is typically a set of Pareto-optimal 
points instead of a single solution. A part of the design space is Pareto-optimal whereas the other regions are 
dominated. Thus, MOO can be seen as a binary classification problem in which the two classes are dominated (-
1 class) and non-dominated or ND (+1 class) (Figure 13). Once a classifier (e.g. SVM) separating the dominated 
and non-dominated samples are trained, Pareto-optimality of any design is determined using a single classifier 
evaluation, in contrast with all existing methods.  
 

     

Figure 13: Boundary defining non-dominated regions in design space (left). Design-Objective space Mapping (right). 
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In order to train an SVM, each training sample's class needs to be assigned prior to the construction of the 
decision boundary. An issue in using classification for MOO is that although it is known that dominated 
samples (class -1) cannot be Pareto-optimal, the opposite is not true; being non-dominated among current 
samples isn't sufficient to be Pareto-optimal. However, the +1 samples represent Pareto-optimal designs if the 
data is sufficient. A decision boundary obtained by assigning +1 class to the current non-dominated samples 
represents an estimate of the Pareto-optimal front, and is refined adaptively. As points are added, samples may 
switch from +1 to -1 as non-dominated samples may be dominated by newer samples until convergence. As 
class definition of existing samples can change during the course of AEMOO, the classifier is referred to as 
dynamic. 
 
An example of two objective optimization with 30 variables is presented here. The objective functions f1 and f2 
are: 
 
                                                                                    𝑓𝑓1 = 𝑥𝑥1                                                                               (4) 

𝑓𝑓2 = 𝐹𝐹(𝒙𝒙)ℎ�𝑓𝑓1(𝒙𝒙)𝐹𝐹(𝒙𝒙)�,𝑤𝑤ℎ𝐹𝐹𝐹𝐹𝐹𝐹 𝐹𝐹(𝒙𝒙) = 1 +
9

𝑚𝑚 − 1
�𝑥𝑥𝑖𝑖

𝑚𝑚

𝑖𝑖=2

,ℎ(𝒙𝒙) = 1 −�
𝑓𝑓1(𝒙𝒙)
𝐹𝐹(𝒙𝒙)

 

 
where x1and x2 are the two variables. The Pareto front is constructed using three methods – NSGAII [35], Pareto 
Domain Reduction (PDR) [36] and the adaptive SVM-based AEMOO [34]. The fronts using the three methods 
are shown in Figure 14, along with the actual one. AEMOO located all five disjoint regions within first 10 
iterations, following which it enhanced the diversity. Both NSGAII and PDR were significantly slower and 
lacked accuracy. Using population size of 48, direct NSGAII completely missed 2 out of 5 regions. PDR was 
able to sample 4 of the regions satisfactorily at 40-50 iterations (1880-2350 samples). It found one non-
dominated sample close to the fifth region, but not on it. Overall, the result demonstrates the superiority of the 
SVM classification-based approach. 
 

 

   

Figure 14: Example 4. Direct NSGAII (left), PDR (center) and metamodel-assisted AEMOO (right). 
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Summary and Future Work 
 
A new methodology of approximating constraint boundaries in design, based on statistical classification, was 
implanted in LS-OPT and was applied to problems with binary, discontinuous and noisy functions. The 
classification algorithm implemented in LS-OPT is referred to as SVM, which is capable of defining highly 
nonlinear decision boundaries and disjoint regions, as seen in some of the examples. The SVM-based approach 
has a distinct advantage in my problems that have non-smooth responses. Additionally, using this approach one 
can construct a single boundary for multiple failure constraints. This is a very useful feature when system 
failure probability is calculated, as it allows a classifier to inherently include all the constraint dependencies 
while being constructed. In addition to non-smooth problems, the application of classifiers to adaptive sampling 
was also demonstrated, which again is a very useful feature that can increase the efficiency by avoiding 
sampling of unwanted regions of the design space. 
 
Apart from the examples presented in the above section there can be several other applications of classifiers in 
design. Examples of binary response can be found in many disciplines and situations, e.g. in biomedical 
engineering, aeroelasticity, failed evaluations etc. Additionally, classifiers can be used to reduce the simulation 
time in MDO problems where multiple failure modes and solvers are involved. The simulation time can also be 
reduced if classification information is extracted before the termination time, which is possible in certain cases. 
They have applications in the field of material parameter identification as well. 
 
Future work in this area entails the development of some special features as ready to use packages, such as pre-
defined adaptive sampling algorithms, reliability-based design optimization with SVM boundaries, efficient 
global optimization using SVM constraints (EGOSVM) etc. Additionally, probabilistic classification models 
will also be implemented, such as probabilistic SVM (PSVM) and Random Forest classifiers. Another 
important development involves the integration of statistical classification with the post-processing tool 
(Viewer) of LS-OPT to turn it into a powerful machine learning tool.  
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