STOCHASTIC ANALYSIS OF UNCERTAINTIES FOR METAL FORMING PROCESSES WITH LS-OPT

Heiner Müllerschön1, Willem Roux2, David Lorenz3, Karl Roll4

1,3 DYNAmore GmbH, {hm,dl}@dynamore.de
2 Livermore Software Technology Corporation, willem@lstc.com
3 Daimler AG, karl.roll@daimler.de

ABSTRACT: The purpose of this paper is to account for uncertainties in the manufacturing processes of metal forming in order to evaluate the random variations with the aid of FE-simulations. Various parameters of the Finite-Element model describing the investigated structural model are affected by randomness. This, of course, leads to a variation of the considered simulation responses such as stresses, displacements, and thickness reductions. On this, for the simulation engineer basic questions arise: (1) range of variation of the simulation responses (2) significance/contribution of the (input) parameters with respect to specific responses and (3) the reliability of the process design with respect to constraints (failure, damage, requirements ...).

In order to find solutions to these questions several methodologies may be applied that are available in the commercial optimization software LS-OPT. Some of the methodologies, such as Monte Carlo simulation, Meta-Model based Monte Carlo simulation, RBDO, variable screening and visualization of statistical resultson the FE-model are discussed in this paper and are demonstrated by means of a metal forming problem. For this, a non-robust design with respect to the specified constraints has been detected. By utilizing reliability based design optimization (RBDO) through LS-OPT, the failure probability (violation of constraints) could be reduced significantly.

KEYWORDS: Robustness, Uncertainties, Meta Model based Monte Carlo Simulation, Reliability based Optimization, Sensitivities, Spatial Discretization of Stochastic results

1 INTRODUCTION

The design of a metal forming process is focused on the accuracy of products and the minimization of forming failure such as fracture, wrinkling and excessive thickness reduction. Metal forming processes are highly non-linear applications and the results are strongly influenced by various parameters, e.g., the anisotropic material behaviour of the supplied steel or manufacturing process parameters such as friction, draw bead geometry or binder forces. In order to perform a realistic analysis of the metal forming process the uncertainty of those parameters must be appropriately considered within a FE-simulation. A proper consideration and treatment of uncertainty basically enable a reliability assessment and ensure the subsequent quality of the product.

The uncertainty of the parameters is conventionally considered with the uncertainty model randomness and modelled with the aid of probability distribution functions. The type of the probability distribution function and the distribution parameters are assumed by engineering knowledge and by quality requirements specified by the Daimler AG for the steel suppliers. Statistics of the uncertainties based on measurements are not available for this study. The subjectively assumed stochastic parameters are processed with a Monte Carlo simulation based stochastic FE-analysis. The obtained simulation results are randomly distributed respectively. In conjunction with further evaluations conclusions could be drawn regarding (1) the dimension of the range of variation of the simulation responses, (2) the significance/contribution of the parameters with respect to specific responses and (3) the reliability of the design with respect to constraints.

Basic concepts of stochastic investigations are discussed. A brief introduction in the reliability-
based design concept is provided. The standard approach to simulate stochastic variations is the Monte Carlo method, usually by using a structured sampling as Latin Hypercube. For very expensive simulations meta-models are applied to preserve the practical applicability of the stochastic analysis. The number of required FE-simulations is reduced significantly. Meta-models are established on the basis of interpolation points. The stochastic simulation with the aid of the Monte Carlo simulation is then performed with the meta-model exclusively – additional FE-simulations are not required. Apart from polynomials, non-linear approximation schemes, such as Neural Networks can be used (Stander et al. [5], Liebscher et al. [7]) to form meta-models, that might be suitable to replace the expensive FE-simulation within a stochastic simulation.

The considered metal forming application is introduced and the assumed probabilistic models of uncertain process parameters are discussed in detail. Results of the stochastic analysis for a metal forming application are presented. Finally, a brief conclusion and an outlook on future investigations are provided.

2 ABOUT STOCHASTIC INVESTIGATIONS

2.1 GOALS

Usually stochastic investigations are performed to obtain information on the

1. Variation of the simulation output (responses) due to variation of input (variables, parameters).
2. Significance/Contribution of the parameters with respect to specific responses.
3. Reliability with respect to constraints (failure, damage, requirements,...).
4. Visualization of simulation response variations by fringing statistical results on the FE-Model

2.2 SIMULATION OF STOCHASTIC VARIATIONS

2.2.1 Direct Monte Carlo Analysis

The Monte Carlo method is widely used because it is robust and easy to implement. The method may be understood as a numerical experiment that produces a sequence of numerical results (pseudo-outcomes) similar to the results (outcomes) expected in the actual use of the product. These numerical obtained results (pseudo-outcomes) are then examined using statistical techniques to predict the future properties of the product. For computing the mean and variance of the process variation only, it is probably the best known method. Given that the results from the Monte Carlo analysis are unbiased, we compute the confidence bounds similar as for any other statistic. These confidence intervals are tabulated in the standard books [4]. The number of simulations required depends on the statistical properties being computed. The properties are the mean and standard deviation of the processes as well as the probability of rare events (outliers). If the mean or the standard deviation is required, then the number of simulations can be computed considering the desired accuracy and by manipulating the formulas for computing the confidence bounds. For this, prerequisite is to guess the expected variance. Usually a structured Monte Carlo sampling as the Latin Hypercube method is used in order to improve the accuracy for a given number of simulations.

Figure 1: Scheme of stochastic analysis

2.2.2 Meta Model based methods

The finite element evaluations of metal forming problems can be extremely expensive (100+ CPU hours). Meta-models — approximations to the structural performance, built using FEA evaluations of a selected set of designs — are commonly used to reduce costs. Consider a scalar response \(y \) dependent on the variable vector \(x \) through the relationship \(y(x) \). We have

\[
y = y(x), \quad \text{(1)}
\]
where we want to approximate the relationship y using a polynomial response surface (Myers & Montgomery [6]). Utilizing the approximation function $f(x)$, inexpensive Monte Carlo analysis evaluations can be performed.

As afore mentioned the methodology is not restricted to polynomial response surfaces, but any non-linear approximation scheme, such as Neural Networks or Radial Basis Functions can be used (Stander et al. [5], Liebscher et al. [7], Simpson et al. [9]).

2.3 RELIABILITY-BASED DESIGN

The reliability of a given design may be assessed by comparing a numerically determined failure probability P_f with a given target probability P_t. Reliability of a specific design is achieved if

$$P_f < P_t \quad (2)$$

is satisfied. The selection of the target probability P_t is problem dependent and often orientated to the desired product quality vs. production costs. On the basis of this definition of reliability a safety distance

$$d_s = P_t - P_f \quad (3)$$

is defined. Positive values d_s indicate a permissible design, whereby higher positive values stand for a more reliable design.

The objective p of the reliability based design optimization (RBDO, Jensen [10]) may be formulated regarding two different aspects. In order to achieve a maximum reliability of an investigated subject with respect to a set R of problem dependent constraints, the objective p is given by

$$p : \max(d_s) \mid c(x) > 0 \quad (4)$$

where $c(x) > 0$ indicates that the set of constraints R is satisfied. The safety level d_s is maximized under the condition that all constraints are met. Conventional objectives q concern with e. g. the reduction of cost due to minimization of the mass.

In order to combine these optimization goals with the idea of a reliable design, the objective p of the reliability based design may also be reformulated as

$$p : \min(q) \mid d_s, c(x) > 0 \quad (5)$$

The safety distance d_s is additionally considered as constraint of an actual optimization problem. In most cases the objective Eq. (5) is suitable for practical relevant questions. Sometimes the term reliability-based optimization (RBO) is used instead of RBDO with the same meaning.

The optimization problem given with Eq. (4) or (5) may be solved by any appropriate optimization scheme. A First Order Second Moment (FOSM) approach is implemented in LS-OPT (Stander et al. [5]). In the FOSM method, the reliability of a structure is assessed by evaluating the standard deviation of a response, which is similar to the determination safety distance. The standard deviation is computed using the meta model gradients and the variable standard deviations; no additional computational cost is therefore incurred to compute the reliability information. The application of FOSM is reasonable for moderately small values of P_f.

In the general case the failure probability P_f has to be computed by numerical evaluation of the integral

$$P_f = P(x \mid g(x) \leq 0) = \int_{\{x \mid g(x) \leq 0\}} f(x) \, dx \quad (6)$$

in order to determine the safety distance d_s within the optimization procedure Eq. (4) or (5). In Eq. (6) x is the vector of random parameters, $f(x)$ denotes the joint probability density function of the random quantities x, and $g(x)$ represents the limit state function. The limit state function is usually highly non-linear and given only in a non closed form. The design space is divided in the safety region $g(x) > 0$ and the failure region $g(x) \leq 0$. Generally, Eq. (6) is reformulated with the aid of the indicator function

$$I_f(x) = \begin{cases}
1 & \text{if } x \in F \\
0 & \text{if } x \not\in F
\end{cases} \quad \text{with } F = \{x \mid x \leq g(x)\} \quad (7)$$

Specifically,

$$P_f = \int \{I_f(x) \cdot f(x)\} \, dx = E[I_f(x)] \quad (8)$$

This enables the point estimation of the failure probability based on the sampling results of a Monte Carlo simulation according to

$$\hat{P}_f = \frac{1}{N} \sum_{k=1}^{N} I_f(x_k) \quad (9)$$

with N as sample size. This estimator is unbiased and efficient. A minimum sample size is estimated by

$$N \geq \frac{1-P_f}{P_f \delta^2 P_f} \quad (10)$$

in dependence on a reasonable level of precision prescribed via the coefficient of variation δP_f of P_f. It becomes obvious that the computational effort
becomes tremendous for small values of the failure probability P_f. On this account it is advisable to apply meta-model based stochastic simulation techniques that preserve the practical applicability of the reliability based design.

2.4 Visualization of Statistical Results on the FE-MODEL

Variation of node and element results due to changes/uncertainties in the input parameters, can be displayed on the FE-model by colours. This can give an indication where big scatter of the results occur. It can also show mean values of specific responses or minimum and maximum values of all applied simulations. For more information it is referred to [1].

3 Example – Metal Forming Application

The influence of the random variation of material and manufacturing parameters on the forming process of an automotive deck lid outer panel is investigated in this study. The geometry of the forming die is shown in Figure 2. The material used for the part is the steel grade DCO6 (1.0873), a typical mild steel used for complex outer panels.

![Die geometry of the deck lid forming tool](image)

Figure 2: Die geometry of the deck lid forming tool (Courtesy of Daimler AG)

3.1 CONSIDERED UNCERTAINTIES

3.1.1 Material Properties

The base material parameters for the study are given by DaimlerChrysler. The ranges and lower bounds for typical material parameters of the used steel grade are listed in Table 1. These are quality requirements specified by Daimler for the steel suppliers.

<table>
<thead>
<tr>
<th>Rp</th>
<th>120…160 MPa</th>
<th>Yield strength</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rm</td>
<td>> 270 MPa</td>
<td>Ultimate tensile strength (engineering stress)</td>
</tr>
<tr>
<td>n</td>
<td>> 0.23</td>
<td>Hardening exponent</td>
</tr>
<tr>
<td>A_ε</td>
<td>> 24%</td>
<td>Uniform elongation (engineering strain)</td>
</tr>
<tr>
<td>r_m</td>
<td>> 2.20</td>
<td>Mean anisotropy coefficient</td>
</tr>
</tbody>
</table>

Table 1: Quality requirements for steel grade DCO6

In real sheet metal forming processes the material properties of the blank material may vary within a specific range depending on the used steel grade. According to Table 2 the yield strength vary between a minimum and a maximum tolerance limit. The uniform elongation and the ultimate tensile strength must be above a minimum value. Within this ranges the mechanical properties of the blank material are afflicted with an uncertainty, which can partially cause failures in a real forming process. In almost the same manner the anisotropy coefficients r_0, r_{45} and r_{90} may underlie variation within a certain range and thus probably also impact the forming results.

Yield Strength / Elasto-Plastic Hardening

The first variation taken into account is the use of different hardening curves. In the used LS-DYNA material model *MAT_3-PARAMETER_BARLAT the hardening curves are described in analytical form with the Swift law

$$\sigma = K \cdot (\varepsilon_0 + \varepsilon)^n$$ (11)

with the strength coefficient K, the strain parameter ε_0, the true strain ε and the hardening exponent n. The parameters for the base simulation are listed in Table 2.

<table>
<thead>
<tr>
<th>K</th>
<th>ε_0</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>550</td>
<td>6.90e-03</td>
<td>0.275</td>
</tr>
</tbody>
</table>

Table 2: Base Parameters of Swift Law

As an example, the variation of the hardening exponent n between 0.25 and 0.30 leads approximately to a variation of Rp between 120 and 160 MPa for constant values of ε_0 and K. The corresponding hardening curves are shown in Figure 3.
Figure 3: True Strain vs. true stress; Hardening curves for varying hardening exponent n (Swift Law)

The values for the lower and upper hardening exponent let the corresponding hardening curves start at the minimum and the maximum allowed yield strength (see Table 1) respectively. In Figure 3 the point Rm,min corresponds to the minimum tensile strength reached at the minimum uniform elongation Ag, whereby the engineering strain Ag is converted to true (logarithmic) strain and the tensile strength Rm,min is displayed as true stress. Finally for the robustness study, in consideration of not violating the quality requirements in Table 1, the variation of the parameters of the swift law is applied by a uniform distribution within the ranges displayed in Table 3.

Table 3: Lower and upper bounds for the Swift Law parameters

<table>
<thead>
<tr>
<th>Rp [MPa]</th>
<th>K [MPa]</th>
<th>n [-]</th>
</tr>
</thead>
<tbody>
<tr>
<td>120-160</td>
<td>440-660</td>
<td>0.23-0.3</td>
</tr>
</tbody>
</table>

Anisotropy Coefficients

For metal stamping simulations it is common practice to consider anisotropic effects of the sheet metal blank. These effects originate from the rolling process in manufacturing the metal coils. To account for the anisotropic properties, the material model *MAT_3-PARAMETER_BARLAT for the LS-DYNA simulations is used (Hallquist [8]). The initial values for the anisotropy coefficients are listed in Table 4.

Table 4: Base values of anisotropy coefficients for *MAT_3-PARAMETER_BARLAT

<table>
<thead>
<tr>
<th>r0</th>
<th>r45</th>
<th>r90</th>
<th>r00</th>
<th>Δr</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>1.8</td>
<td>2.7</td>
<td>2.1</td>
<td>0.6</td>
</tr>
</tbody>
</table>

Beside the uncertainty of the hardening behaviour the uncertainty of varying anisotropy coefficients r0, r45 and r90 is investigated. For this, uniform distributions are applied as well with the ranges listed in Table 5.

Table 5: Lower/Upper limits of uniform distributions for anisotropy coefficients

<table>
<thead>
<tr>
<th>r0</th>
<th>r45</th>
<th>r90</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.0-2.5</td>
<td>1.4-2.0</td>
<td>2.5-3.2</td>
</tr>
</tbody>
</table>

3.1.2 Manufacturing Process Parameters

Variation of Friction Coefficient

The friction between punch and blank and in the draw beads depend on the applied lubrication (usually oil) and on the surface properties. To account for this a uniform distribution of the static friction coefficient within 0.05 and 0.10 is assumed.

Binder Force

A possible variation of the binder force in the manufacturing process is considered by a uniform distribution with a lower bound of 1720 kN and an upper bound of 2100 kN.

Draw Bead Forces

In the FE-simulation the resistance of the blank while passing through the draw bead is approximated by a corresponding load (draw bead force). The draw bead properties may vary during manufacturing due to variation in lubrication and possibly due to mechanical wear. For this study a normal distribution with a standard deviation of 10% with respect to the mean value is assume.

Blank Sheet Thickness

Blanks for sheet metal forming are commonly manufactured by cold rolling. In this process the mills are charged by high forces and rolling speed can be fairly high. Many times this leads to an effect, called mill chatter, which causes a variation in the sheet thickness in longitudinal (rolling) direction with a specific frequency. A reason for “mill chatter” can be slight eccentric suspension of the mill or slight deviation of the desired circular shape of the mill, see Figure 4.

Figure 4: Example of an Eccentric mill (Source: Rolling Automation, Gerhard Rath, © 2003)
In addition, in lateral direction thickness variations may occur due to non-uniform down forces of the mill. The most likely case is displayed in Figure 5.

![Figure 5: Non-uniform contact forces (Source: Rolling Automation, Gerhard Rath, © 2003)](image)

Due to these effects for the numerical stochastic investigations a harmonic perturbation is applied in longitudinal as well as in lateral direction. The variation of the amplitude in both directions is assumed to be normal distributed with a mean of 0mm and a standard deviation of 0.005mm. The total target thickness is 0.8mm.

Figure 6 shows a plot of a possible total shell thickness perturbation (superposition in both directions) displayed on the FE-model of the blank. This is realized by the LS-DYNA Keyword *PERTURBATION.

![Figure 6: Random field capturing thickness perturbation due to the manufacturing process of rolling](image)

3.2 RESULTS OF RANDOM VARIATION (MONTE CARLO ANALYSIS)

For this, in total only 21 simulations are performed. The wall clock simulation time on 2 CPUs is about 10h per run. It turned out, that although the baseline run is a feasible design (Figure 7a and 7b), the perturbations due to the considered uncertainties leads in 15 runs to an infeasible design. The main criteria for the feasibility of the design are the minimum shell thickness after the forming process and the performance with respect to the FLC-diagram. In 15 runs localization occurs and the minimum sheet thickness becomes very low.

![Figure 7a: Final shell thickness distribution of the baseline run (minimum shell thickness ~0.51mm)](image)

A similar behavior is observed for the distance of the strain-ratios to the FLC-Curve. A positive value indicates the maximal perpendicular distance of a point above the FLC-Curve (infeasible), a negative value indicates the minimum distance below the FLC-Curve (feasible). Most simulation responses show a positive maximal value (infeasible).

![Figure 7b: FLC-Diagram for the baseline run, no points above the FLC-Curve](image)

Conclusions after Random Latin Hypercube Simulations

Considering the chosen baseline design, the FE-simulation is very sensitive regarding the assumed variations of the uncertain process parameters. The failure probability is very high and the baseline configuration must be declared as non-robust. Consequently, the next step has to be the improvement and optimization of the robustness of the model. Therefore, reliability based design optimization is investigated. Approach and results are discussed in the next section.
3.3 RELIABILITY BASED DESIGN OPTIMIZATION

The methodology of the applied RBDO study is FOSM (First Order Second Moment) in combination with the successive response surface scheme. FOSM is based on the assumption of normal distributed probability density function. The representation of the distribution function is just by the mean and the standard deviation. For the meta-model, which is adapted sequentially through the successive scheme iterations, a neural network approach is used, see Fig. 11. Details regarding the RBDO approach and the successive response surface scheme with neural networks are discussed in the LS-OPT Users Manual [5].

Figure 8: FLC-Diagram for the baseline run, no points above the FLC-Curve

3.3.1 Definition of the Optimization Problem

Here, the objective of the RBDO is to minimize the failure probability under consideration of the uncertainties described in Section 3.1. Failure is defined by exceeding a threshold for the minimum shell thickness and for the violation of the FLC-Line. For the RBDO in total 17 variables are considered. Thereof, 10 variables are pure “noise variables” which take into account the uncertainties. To drive the optimization process 7 “control variables” are introduced (see Table 6), simultaneously these variables operate as noise variables with specific probability distributions.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
<th>Range (“control variable”)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DBF1</td>
<td>Draw Bead Force #1</td>
<td>20 kN - 200 kN</td>
</tr>
<tr>
<td>DBF2</td>
<td>Draw Bead Force #2</td>
<td>20 kN - 200 kN</td>
</tr>
<tr>
<td>DBF3</td>
<td>Draw Bead Force #3</td>
<td>50 kN - 120 kN</td>
</tr>
<tr>
<td>DBF4</td>
<td>Draw Bead Force #4</td>
<td>60 kN - 120 kN</td>
</tr>
<tr>
<td>DBF5</td>
<td>Draw Bead Force #5</td>
<td>70 kN - 130 kN</td>
</tr>
<tr>
<td>DBF6</td>
<td>Draw Bead Force #6</td>
<td>20 kN - 200 kN</td>
</tr>
<tr>
<td>FORCFN</td>
<td>Binder Force</td>
<td>1400 kN - 2400 kN</td>
</tr>
</tbody>
</table>

Table 6: Seven variables are defined simultaneously as control and noise variables. Control variables drive the optimization process, noise variables are to consider uncertainties.

3.3.2 Meta-Model Based RBDO

For the successive surface scheme, 26 runs are performed per iteration. The density of the sampling points increases towards the optimum. The neural network is updated with additional training points after each iteration (see Figure 9).

Fig. 10 displays a global approximation of the entire design space after the 10th iteration for the variables DBFORC4, FORCFN and the response THICK_MIN. It shows a D-SPEX window where the Meta-Model can be explored by rotating, zooming, visualization of analysis results, residuals, etc. Especially useful is the fact that the visualized constraints do not only consist of constraints of the displayed response, but of the other response describing the violation of the FLC-line. For the 15 not displayed remaining variables, D-SPEX offers the possibility to vary these variables through sliders in an additional control panel.
window. For more information regarding D-SPEX it is referred to [11].

Figure 10: Global approximation of the Design Space with a Neural Network Meta-Mode. Green means feasible region for design variables.

3.3.3 Optimization History for the Responses THICK_MIN and FLD

Figure 11 shows the optimization history of exceeding the lower bound for the minimum sheet thickness THICK_MIN. The probability of failure drops down from about 55% for the base line design to 3.3515e-4 after 10 iterations. The “computed” value at the optimum is fairly close to the “predicted” value. “Computed” means the simulation value for the optimum parameter combination and “predicted” means the approximated value of the meta-model for this parameter combination.

Figure 11: Optimization history of the probability of exceeding the lower bound for THICK_MIN=0.5mm. Abscissa: Probability of exceeding bound, e.g. 0.2 means 20% exceeding probability; Ordinate: Number of optimization iteration of Successive Response Surface Method.

Fig. 12 shows the optimization history of exceeding the upper bound for the FLD criterion. Finally the probability of failure could be reduced to 0.01191. This means, approximately 1 of 100 designs will exceed the FLC-line.

3.3.4 Verification of Optimum with Direct Monte Carlo Simulations

The failure probabilities displayed in Figures 13 and 14 are estimated by the use of a Meta-Model. This means, the Monte Carlo evaluations are performed by the functional analysis of the meta-model. The number of Monte Carlo evaluations on the meta-model is in LS-OPT by default 100000, but of course there is an unknown approximation error of the meta-model. In order to verify the failure probability determined on the meta-model, 160 additional direct Monte Carlo simulations are applied. The mean values for the parameters are taken from the optimal design and the variance is applied according to the distribution functions described in Section 3.1.

Table 7 shows that the failure probabilities estimated by the use of Meta-Models are in the same order of magnitude as for the direct Monte Carlo simulation. Within the 160 Monte Carlo simulations no constraint violation could be observed. The estimated failure probability in Table 7 is evaluated by the assumption of normal distributed responses THICK_MIN and FLD.

<table>
<thead>
<tr>
<th>Failure Probability</th>
<th>Meta-Model vs. direct Monte Carlo (normal distribution assumed)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pf – Meta Model</td>
<td>Pf - Direct MC</td>
</tr>
<tr>
<td>THICK_MIN</td>
<td>3.35e-4</td>
</tr>
<tr>
<td>FLD</td>
<td>0.0119</td>
</tr>
</tbody>
</table>

Table 7: Comparison of failure probability Pf determined by the use of Meta-Models and by the conventional Monte Carlo approach.
3.3.5 Visualization of Statistical Results on the FE-Model

The latest version of LS-OPT V3.3 provides the capability of fringing statistical results also on the basis of mesh adaptive simulations. For this, mapping of element and node results of several runs onto a reference mesh is performed. In Figure 12 the standard deviation of the percentage thickness reduction is plotted. The maximum standard deviation in this plot is 18.9%. This means, at this point there is a variation with a standard deviation of 18.9% considering all applied simulation runs with different parameter combinations.

![Figure 12: Standard deviation of sheet thickness reduction. Red spots indicate high variation of percentage thickness reduction.](image)

4 SUMMARY / CONCLUSIONS / OUTLOOK

For the metal forming study considering the chosen baseline design, the FE-simulation is very sensitive regarding the assumed variations of the uncertain process parameters. Frequently violation of the FLC requirements and under-run of the minimum sheet thickness appear. This represents a high probability of failure P_f. The design is thus referred as non reliable. Furthermore, it is considered as non robust due to assumed random variation of the input parameters (material properties, manufacturing process parameters) and their strong effects on the results.

In order to establish a feasible design the problem is reformulated in view of the reliability-based design concept. The objective of the RBDO is to minimize the probability of failure P_f and thus to maximize the reliability of the design. The limit state function $g(x)$ is formulated with respect to the failure criteria minimum shell thickness and distance of the strain-ratios to the FLC-Curve.

The reliability-based design optimization is investigated using LS-OPT. Due to the fact that the computational cost of the metal forming simulation is quite high, a meta-model based approach is applied. Utilizing RBDO leads to a design, which has a significantly improved failure probability. The verification of the optimum design by conventional Monte Carlo simulations justify the use of meta-models for reliability investigations for metal forming applications, at least for P_f values not less than 0.01.

Presumably future work will be investigated in

- evaluation and usage of plots, which visualize statistical results on the FE-model. It will be examined if and how such plots can be beneficial for metal forming simulation engineers.
- correlation of input variables. Uncertainty and variation of some material and manufacturing parameters are clearly correlated, e.g. yield strength and ultimate tensile strength, see [12]. In the present study correlation is not considered.
- restrictions/constraints between random variables, e.g. noise variable r_0 varies randomly from 2.0 to 2.5 and noise variable r_{45} from 1.7 to 2.2, but r_0 has always to be greater than r_{45}
- variable screening using linear correlation analysis and possibly non-linear indicators such as Sobol Indices.

5 REFERENCES

