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OverviewOverview

Design Improvement and OptimizationDesign Improvement and Optimization
Best multi-criterion designs

Multiple objectives
Multiple constraints

Parameters
Continuous
Discrete (underlying continuous, e.g. off-the-
shelf plate thickness)
Integer (e.g. material types, binary)

Multiple cases/disciplines
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OverviewOverview

Reliability and RobustnessReliability and Robustness
Reliability: 

Constrain probability of failure
Robust Design: 

Minimize Standard Deviation of response
Consistent product performance

Reliability-based Design Optimization (RBDO)
Incorporates Reliability and Robustness into 
design improvement

Identify sources of uncertainty in the FE models: 
Outlier Analysis
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Gradient ComputationGradient Computation
Formulation and typesFormulation and types

Gradient based Gradient based OptimizationOptimization and certain and certain 
ReliabilityReliability algorithmsalgorithms require gradient computationrequire gradient computation

TypesTypes
Analytical:Analytical: Derivatives are formulated explicitly Derivatives are formulated explicitly 

and implemented into the code. Complicated.and implemented into the code. Complicated.
Numerical: Numerical: Design is perturbed and (n+1) Design is perturbed and (n+1) 

analyses are simulated. analyses are simulated. 

•• Simple but error prone.Simple but error prone.
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Gradient ComputationGradient Computation
Numerical gradients: accuracyNumerical gradients: accuracy
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Safe interval

∆x too large, too large, 
lose accuracylose accuracy

∆x too small, too small, 
find spurious gradientsfind spurious gradients
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Gradient ComputationGradient Computation
Causes of spurious derivativesCauses of spurious derivatives

Spurious derivatives computed using small intervals are Spurious derivatives computed using small intervals are 
due to:due to:

•• Highly nonlinear structural behaviorHighly nonlinear structural behavior. Especially in . Especially in 
crash analysis.crash analysis.

•• Adaptive mesh refinementAdaptive mesh refinement. Different designs have . Different designs have 
different meshes.different meshes.

•• Numerical RoundNumerical Round--off erroroff error. LS. LS--DYNA uses single DYNA uses single 
precision computation. precision computation. 
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ApproximationsApproximations
Sometimes referred to as Sometimes referred to as metamodelsmetamodels

Local ApproximationsLocal Approximations
Design Sensitivities (also called Gradients)

Numerical. Perturb the design. Uses n+1 simulations
Analytical. Incorporated in the analysis code

Midrange ApproximationsMidrange Approximations
Uses a region of interest in the design space to construct the 
approximations
Approximations can be simple polynomials, e.g. linear
Used in iterative methods, e.g. Sequential Response Surface 
Method in LS-OPT

Global ApproximationsGlobal Approximations
Use the full design space

Neural Networks
Radial Basis Function Networks
Response Surfaces (especially higher order polynomials)
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Response Surface MethodologyResponse Surface Methodology
How does it work?How does it work?

Design surfaces ( Design surfaces ( f f ) are fitted through points in the design space ) are fitted through points in the design space 
(results from simulations) to construct an approximate (results from simulations) to construct an approximate 
optimization problemoptimization problem

The idea is to find the surfaces with the best predictive capabiThe idea is to find the surfaces with the best predictive capabilitylity

Computed resultsComputed results

Response surfaceResponse surface
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Response Surface MethodologyResponse Surface Methodology

•• Creates Creates metamodelmetamodel based on based on polynomial approximationspolynomial approximations

•• Does not require Does not require analytical sensitivity analysis (analytical analytical sensitivity analysis (analytical 
derivatives).derivatives).

•• Smoothes the design response, hence stabilizes Smoothes the design response, hence stabilizes numerical numerical 
sensitivitiessensitivities

•• Avoids selection of outlier design points by averaging the desigAvoids selection of outlier design points by averaging the design n 
responseresponse

•• Accurate design surfaces in a subAccurate design surfaces in a sub--region allow for region allow for inexpensive inexpensive 
exploration of the design spaceexploration of the design space

Response Surface optimization
Reliability
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Design Space TerminologyDesign Space Terminology
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Response Surface MethodologyResponse Surface Methodology
Least squaresLeast squares
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Response Surface MethodologyResponse Surface Methodology
Least squaresLeast squares

Sum of the square error:

P: number of experimental points

yp is the exact functional response at the 
experimental point xp.
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Response Surface MethodologyResponse Surface Methodology
Least squaresLeast squares
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Response Surface MethodologyResponse Surface Methodology
Approximation modelsApproximation models

Linear Quadratic
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Response Surface MethodologyResponse Surface Methodology
1st vs. 2nd order approximations1st vs. 2nd order approximations

First order approximationsFirst order approximations
The most basic approximation
Inexpensive. Cost ~ n
Cycling (oscillation) can occur when used in sequential 
method for optimization. Successfully addressed by adaptive 
optimization algorithm (SRSM)

Second order approximationsSecond order approximations
More expensive. Full Quadratic: Cost ~ n-squared
More accurate. Good for trade-off studies

Linear Approximation is recommended in many cases, e.g.Linear Approximation is recommended in many cases, e.g.

Sequential approximations for Optimization, ReliabilitySequential approximations for Optimization, Reliability
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Response Surface MethodologyResponse Surface Methodology
Factors influencing accuracyFactors influencing accuracy

• Size of the region of interest.

The smaller the size, the more accurate the surface

• Number and distribution of experimental points.

More points give better predictive capability

• Order and nature of the approximating function.

Higher order is more accurate, but overfitting can occur

Number of points

RMS
Prediction Error

Min 1.5*Min
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Response Surface MethodologyResponse Surface Methodology
Factors influencing accuracyFactors influencing accuracy

•• OverfittingOverfitting.. Prediction Error increases due to Prediction Error increases due to 
overfittingoverfitting (the addition of more terms to the (the addition of more terms to the 
approximation model).approximation model).

•• Noise.Noise. Reduction of the size of the region of interest Reduction of the size of the region of interest 
will improve accuracy up to a point where only the will improve accuracy up to a point where only the 
noise dominates. noise dominates. 
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Experimental DesignExperimental Design
Design space and SubDesign space and Sub--regionregion
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Experimental Design (Point Selection)Experimental Design (Point Selection)
Factorial (Factorial (nn=3)=3)

2n 3 n
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Experimental DesignExperimental Design
Koshal (Koshal (nn=3)=3)

1st Order 2nd Order



15

29
Copyright © Livermore Software Technology Corporation 2009

Experimental DesignExperimental Design
Central composite design (Central composite design (nn=3)=3)
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Uses a subset of all possible design points as a basis to Uses a subset of all possible design points as a basis to 
solve (using genetic algorithm)solve (using genetic algorithm)

Experimental DesignExperimental Design
DD--optimal designoptimal design
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Experimental DesignExperimental Design
DD--optimal designoptimal design

•• Find the 'best' distribution of a fixed number of Find the 'best' distribution of a fixed number of 
sampling pointssampling points

•• The The 'basis experiment''basis experiment' is used as a superset from is used as a superset from 
which the which the DD--optimal points are selected.optimal points are selected.

•• OversamplingOversampling improves the predictive capability of improves the predictive capability of 
the response surface. 50% is used as a thumb rule.the response surface. 50% is used as a thumb rule.

•• Previous points can be used and new points added Previous points can be used and new points added DD--
optimally (optimally (augmentedaugmented DD--optimal).optimal).

•• IrregularIrregular design spaces (e.g. bounded by nonlinear design spaces (e.g. bounded by nonlinear 
constraints) can be used. In this case the basis set is constraints) can be used. In this case the basis set is 
irregularly distributed. (see Reasonable Design irregularly distributed. (see Reasonable Design 
Space)Space)
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•• Default subset  (basis experiment) taken from factorial  Default subset  (basis experiment) taken from factorial  
designdesign

•• Linear:                        Linear:                        
•• QuadraticQuadratic

as n increasesas n increases

•• Space Filling used for largeSpace Filling used for large

•• Can choose discrete points whenCan choose discrete points when

using discrete variables. using discrete variables. 

Experimental DesignExperimental Design
DD--optimal design: Basis pointsoptimal design: Basis points

2,3,5,7,9,11   ; =mmn

3,5,7,9,11   ; =mmn

n Basis pointBasis point

Selected pointSelected point
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Experimental DesignExperimental Design
DD--optimal augmented pointsoptimal augmented points

•• The DThe D--optimality criterion for the additional points is:optimality criterion for the additional points is:

•• E.g. starting point + Augmented DE.g. starting point + Augmented D--OptimalOptimal
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Reasonable Design SpaceReasonable Design Space
• Some designs may not be analyzable, e.g. 

incompatible geometries can be created

• Causes the solver to terminate with an error or give 
nonsensical results

• Can be prevented by specifying a reasonable design 
space. 

• A flag can be set for any constraint
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Reasonable Design SpaceReasonable Design Space
LSLS--OPT displayOPT display

Constraints for 
reasonable 
design space, 
REAS1, REAS2

Optimization 
Constraint C3
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Reasonable Design SpaceReasonable Design Space
Selection in LSSelection in LS--OPTOPT

Constraints for 
reasonable design space
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Design CycleDesign Cycle

Performance
index
(response)

Design variable 1

Design variable 2
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Performance
index
(response)

Design variable 1

Design variable 2

Design
space

Design CycleDesign Cycle
Design spaceDesign space
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Performance
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Design variable 1
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Design
space
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Starting (base)
design

Design CycleDesign Cycle
SubSub--regionregion

40
Copyright © Livermore Software Technology Corporation 2009

Performance
index
(response)

Design variable 1

Design variable 2

Design
space

Subregion
(Range)

Experimental
Design points

Starting (base)
design

Design CycleDesign Cycle
Experimental designExperimental design



21

41
Copyright © Livermore Software Technology Corporation 2009

Performance
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Design variable 1
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Design
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Performance
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Experimental
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Optimization of subproblem
(response surface) using
LFOPC algorithm

Optimum (predicted
by response surface)

Optimum (predicted
by simulation using
design variables)

Starting value on response
surface

Design CycleDesign Cycle
OptimizationOptimization
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Variable ScreeningVariable Screening
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Variable ScreeningVariable Screening

00

From regression
Analysis (sensitivity) 90%

Importance of VariableUncertainty of variable
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Variable Screening: Sensitivities ChartVariable Screening: Sensitivities Chart

Normalized Sensitivity

Error bar: 90% Confidence Interval

Note: Values are normalized with respect to design spaceNote: Values are normalized with respect to design space
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Variable Screening: ExampleVariable Screening: Example

Crash model
30 000 elements

Displacement = 552mm

Stage1Pulse = 14.34g

Stage2Pulse = 17.57g

Stage3Pulse = 20.76g

BIW model
18 000 elements

Torsional mode 1

Frequency = 38.7Hz

CourtesyCourtesy
DaimlerChryslerDaimlerChrysler
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Variable Screening: ParametersVariable Screening: Parameters

Left and right
apron

Inner and outer 
rail

Front cradle upper and lower 
cross members

Left and right
cradle rails

Shotgun outer 
and inner
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Variable Screening: ANOVAVariable Screening: ANOVA
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Variable Screening: ANOVAVariable Screening: ANOVA
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METAMETA--MODELINGMODELING
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MetamodelingMetamodeling
What is a metamodel ?What is a metamodel ?

An An approximationapproximation to the design response, usually a simple to the design response, usually a simple 
function of the design variables. Is used instead of actual function of the design variables. Is used instead of actual 
simulations during exploration hence also called simulations during exploration hence also called surrogatesurrogate..
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Metamodel Types in LSMetamodel Types in LS--OPTOPT
Response Surface Methodology (RSM)Response Surface Methodology (RSM)

Polynomial-based
Typically regional approximation (especially linear)
Linear regression

Feedforward Neural Networks (FF)Feedforward Neural Networks (FF)
Simulation of a biological network, sigmoid basis function
Global approximation
Nonlinear Regression: more expensive

Radial Basis Function Networks (RBF)Radial Basis Function Networks (RBF)
Bell curve type basis functions in a linear system
Global approximation
Linear Regression (assuming constant spread and center)

UserUser--defineddefined
Dynamically linked (.so, .dll)
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MetamodelingMetamodeling
MotivationMotivation

Why Neural Nets / Why Neural Nets / RBFNRBFN’’ss
Model for any number of simulation runs

Different polynomial orders require discrete numbers of 
runs (e.g. 10var: L=11+, Q=66+)

Local refinement
Refine regionally, but maintain global relevance

High accuracy (with enough points)
Regression (smoothing) vs. Interpolation

Smoothing required to quantify noise
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Metamodel ApplicationsMetamodel Applications

Variable screening Variable screening 

OptimizationOptimization
Sequential construction/updating
Pareto-optimal front using GA

Outlier AnalysisOutlier Analysis
Locate sources of response noise

Reliability EstimationReliability Estimation
Monte-Carlo simulations
Robust design
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Radial Basis Function NetworksRadial Basis Function Networks
Network constructionNetwork construction

Linear output layer:

Hidden layer:

Center:                                                       
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Radial Basis Function NetworksRadial Basis Function Networks

is the mean 

of the distances to 

the      closest points

“Spread” coefficient      

hmhhh Cdr == σσ     ;2/1 2
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hmd
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Center of basis function

1
2
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Radial Basis Function NetworksRadial Basis Function Networks

Mean Squared Error:Mean Squared Error:

Requires Requires linearlinear regression to solve for coefficientsregression to solve for coefficients

if                  is constant.if                  is constant.

typically centered on the design pointtypically centered on the design point
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Feedforward Neural NetworksFeedforward Neural Networks

Network constructionNetwork construction

Linear output layer:Linear output layer:

Hidden layer (sigmoid):Hidden layer (sigmoid):
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Feedforward Neural NetworksFeedforward Neural Networks

Mean Squared Error:

Requires nonlinear regression to solve for coefficients

RPROP, Levenberg-Marquardt, BFGS
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Feedforward Neural NetworksFeedforward Neural Networks
Regularization

Minimize:

• Causes the network to have smaller weights

• Response will be smoother

• Aids numerical robustness of the non-linear regression

• cannot be too big, otherwise increasing modeling error
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Feedforward Neural NetworksFeedforward Neural Networks

Finding a suitable topology (number of hidden nodes)Finding a suitable topology (number of hidden nodes)

•• Construct Construct ensembleensemble of of 

architectures (different architectures (different 

numbers of hidden nodes)numbers of hidden nodes)
Single layer architectures 
(0 – 5 hidden nodes)
Select the “best” net using 
Min. Generalized Cross Validation (GCV)

= Effective number of 
model parameters

Leave-one-out is too expensive

2)/1( P
MSE
υ−

υ
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Feedforward Neural NetworksFeedforward Neural Networks

Variability of FFVariability of FF

•• Neural nets have natural variability due toNeural nets have natural variability due to
Local behavior of the FF training algorithms
Uncertainty (noise) in the training data

•• Variability is induced by random initial weights in the Variability is induced by random initial weights in the 
regression procedureregression procedure

•• Sequential Response Surface Method: Recommended Sequential Response Surface Method: Recommended 
to use to use Linear surfaceLinear surface (D(D--optimal sampling) in optimal sampling) in 
iteration 1 (default in GUI)iteration 1 (default in GUI)
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Feedforward Neural NetworksFeedforward Neural Networks

Variability (contd.)

• Committees (families of nets) are used to average 
the result. (default = 9)

• Nets with highest and lowest training MSE are 
discarded (default = 2x2) trying to avoid 
over/underfitting

• Committees dramatically affect the cost of 
computation
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Metamodels: EfficiencyMetamodels: Efficiency

Example

12 variables

305 points

31 responses

2.6GHz AMD Opteron

322220

minutesminutesminutes

RBFFF Neural Net (NN1)

(1 committee member: 
typically lower accuracy 
option)

FF Neural Net (NN9)

(9 committee members: 
preferred accuracy 
setting)
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Metamodels: Experimental DesignMetamodels: Experimental Design

NN + RBFNNN + RBFN
Space Filling 
Simulated Annealing to locate new points
Max. Min. distance between 

new points
new points + fixed points

New points bounded by sub-region
1.5(n+1) points per iteration: relatively sparse!

Response Surface MethodResponse Surface Method
Use D-Optimality (GA)
1.5(n+1) points per iteration (for linear)
No updating (do not consider previous points)
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Metamodels: SummaryMetamodels: Summary

Global approximationGlobal approximation
Can apply global trade-off study or robustness analysis after optimization 
run
Maintains local smoothness, filters noise

AccuracyAccuracy
Nonlinear method. Will develop curvature as soon as enough points are 
available. Faster convergence.
RBF more accurate than NN in many cases because of cross-validation.
NN appears to be more accurate for smooth problems.

User decision User decision 
Choice of NN/RBFN architectures is automated 
Independent of number of points chosen (default same as for linear)
No initial range specification required.

A regression methodA regression method
NN/RBFN Smoothes (as opposed to e.g. Kriging, which interpolates)
Committees allow the extraction of point-wise variance information
High variance an indication of sparsity (NN’s only)
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Metamodels: SummaryMetamodels: Summary

FastVery slowVery fast

Linear regression within 
nonlinear loop. Cross-
validation for high 
accuracy

Nonlinear regression. 
High accuracy. 
Robustness requires 
committee (e.g. NN9)

Linear regression. 
Accuracy is limited by 
order of polynomial.

Global approximationGlobal approximationRegional approximation

Local Gaussian or 
multi-quadric basis 
functions

Simulation of a 
biological network. 
Sigmoid basis fns.

Polynomial basis 
functions

Radial Basis 
Function Networks 

(RBF)

Feedforward Neural 
Networks (FF)

Response Surface 
Methodology (RSM)
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Error AnalysisError Analysis
Random vs. ModelingRandom vs. Modeling

.
.

.

.
. .

. .
..
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.
..

.
Random error

Modeling error

f

x

Response surface
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Error AnalysisError Analysis
Parameters in LSParameters in LS--OPT outputOPT output

•• RMS errorRMS error

•• Average errorAverage error

•• Maximum errorMaximum error

•• PRESS errorPRESS error

•• RR22 indicatorindicator
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Error AnalysisError Analysis
Root mean square error and Maximum errorRoot mean square error and Maximum error

.ˆmaxmax ii yy −=ε
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Error AnalysisError Analysis
RR22
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Error AnalysisError Analysis
Significance of Significance of RR22

•• A fraction of the variation in the data explained by A fraction of the variation in the data explained by 
the modelthe model

•• A measure of the ability of the response surface to A measure of the ability of the response surface to 
quantify the variability of the design responsequantify the variability of the design response
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Error AnalysisError Analysis
RR22

RR22 0                                              0 << 0                                              0 << RR22 < 1< 1

Mean

Approximation

Approximation

RR22 = 1= 1
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Accuracy of Response SurfaceAccuracy of Response Surface
Noise detectionNoise detection

RMSRMS RR22

SmallSmall ~ 1~ 1 High variability detection: low noise, High variability detection: low noise, 
good fitgood fit

SmallSmall ~ 0~ 0 Low noise/good fit, small gradientLow noise/good fit, small gradient

LargeLarge ~ 1~ 1 High variability detection with noiseHigh variability detection with noise

LargeLarge ~ 0~ 0 Lack of fit, perhaps accompanied by Lack of fit, perhaps accompanied by 
noise.noise. Must shrink the move limits.Must shrink the move limits.
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Error AnalysisError Analysis
Remarks: Remarks: RR22 and RMSand RMS

Note:Note: Too few points implies that Too few points implies that 

RMS       0 and RMS       0 and RR22 1  1  

•• The parameters  reveal nothing about the The parameters  reveal nothing about the 
predictive capability of the curves.predictive capability of the curves.

•• 50% oversampling is the default for 50% oversampling is the default for DD--
optimal experimental design in LSoptimal experimental design in LS--OPT.OPT.
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Error AnalysisError Analysis
Prediction errorsPrediction errors

PRESS (PRESS (PREdictionPREdiction Sum of Squares):Sum of Squares):

Estimates the predictive capability of the Estimates the predictive capability of the reponsereponse
surface. Also known as surface. Also known as LeaveLeave--oneone--outout (LOO) (LOO) 

1.1. Remove one point from the least squares calculation. Remove one point from the least squares calculation. 
Fit a surface to the remaining points and predict the Fit a surface to the remaining points and predict the 
error at the chosen point.error at the chosen point.

2. Sum the square of errors.2. Sum the square of errors.

An alternative formulation is done without the outer An alternative formulation is done without the outer 
loop: loop: 
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Error AnalysisError Analysis
Prediction errorsPrediction errors
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Error AnalysisError Analysis
Prediction errorsPrediction errors
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RR--squared indicator for predictionsquared indicator for prediction
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OPTIMIZATIONOPTIMIZATION
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Design FormulationDesign Formulation
EntitiesEntities

Design variablesDesign variables

Design parameters which can be changed e.g. size or shapeDesign parameters which can be changed e.g. size or shape

Design objectivesDesign objectives

A measure of goodness of the design, e.g. cost, weight, lifetimeA measure of goodness of the design, e.g. cost, weight, lifetime. . 
Can involve more than one function Can involve more than one function ffii((xx).).

Design constraintsDesign constraints

Limits on the design, e.g. strength, intrusion, decelerationLimits on the design, e.g. strength, intrusion, deceleration
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Mathematical OptimizationMathematical Optimization
Constrained minimizationConstrained minimization
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Mathematical OptimizationMathematical Optimization
Equality constraintsEquality constraints
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Mathematical OptimizationMathematical Optimization
Example: inequality constrained problem in 2DExample: inequality constrained problem in 2D

f (contours)

Feasible Region

Optimum

xx11

x2

11

22

Infeasible Region

01 =g

02 =g
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Mathematical OptimizationMathematical Optimization
Example: inequality constrained problem (LSExample: inequality constrained problem (LS--OPT display)OPT display)

Infeasible

Feasible

Optimum
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OptimalityOptimality CriteriaCriteria

Lagrange Multipliers:Lagrange Multipliers:

KarushKarush--KuhnKuhn--Tucker conditions for constrained optimization:Tucker conditions for constrained optimization:

Feasibility:Feasibility:

0x =∇ )(fUnconstrained optimization:Unconstrained optimization:
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Optimization Algorithms in LSOPTOptimization Algorithms in LSOPT

There are three coreThere are three core--optimization algorithmsoptimization algorithms

LFOPC is a gradient based optimizer. Multiple starting LFOPC is a gradient based optimizer. Multiple starting 
points are used to avoid local optima.points are used to avoid local optima.

Genetic Algorithm (GA) is a population based global Genetic Algorithm (GA) is a population based global 
optimizer that emulates natureoptimizer that emulates nature

Adaptive Simulated Annealing (ASA) is a probabilistic Adaptive Simulated Annealing (ASA) is a probabilistic 
optimizer that simulates metallurgical processoptimizer that simulates metallurgical process

Two hybrid algorithms Hybrid ASA and Hybrid GA are also Two hybrid algorithms Hybrid ASA and Hybrid GA are also 
available. available. 

In the hybrid approach, a ASA or GA run is followed by a single 
LFOPC run. The idea is to find a good starting point using global 
optimizers and then switch to local optimizer to speed 
convergence.
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Optimization Algorithm Optimization Algorithm –– LFOPCLFOPC

LeapLeap--Frog method for Constrained Optimization Frog method for Constrained Optimization 
(LFOPC)(LFOPC)

•• Gradient methodGradient method

•• Generates a dynamic trajectory pathGenerates a dynamic trajectory path

•• Does not use any line searchesDoes not use any line searches

•• Penalty formulation for constraintsPenalty formulation for constraints
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Optimization Algorithm LFOPCOptimization Algorithm LFOPC
Adjustable ParametersAdjustable Parameters

•• Initial penalty valueInitial penalty value

•• Maximum penalty valueMaximum penalty value

•• Gradient of the Lagrangian Gradient of the Lagrangian 
function (tolerance)function (tolerance)

•• Convergence tolerance on Convergence tolerance on 
the step movementthe step movement

•• Maximum number of steps Maximum number of steps 
per phaseper phase

Not necessary to adjustNot necessary to adjust
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Feasibility Handling: LFOPCFeasibility Handling: LFOPC
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:stop)otherwise  0,e (if IIPhase 

x

x

:IPhase 
:nformulatio internal Standard

Strict constraints (must
be satisfied)

Slack constraints (e >0
if feasibility not possible)

e = Slack variable

Note: Note: e is automatic,is automatic,
internalinternal
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Optimization Algorithm Optimization Algorithm –– Genetic Algorithm (GA)Genetic Algorithm (GA)

GA was developed by John Holland in 
1965

Inspired by nature – “Nature does not 
waste resources”, GA emulates 
Darwin’s “Survival of the fittest”
principle

Specific GA features are 
Population based stochastic optimizer
Robust global optimization method
Does not require gradient of function
Works with any function evaluator
Can be easily used on parallel 
architecture of machines

Requires a large number of function 
evaluations Optimization problems

Ef
fic

ie
nc

y

GA

Specialized 
algorithms

x

f
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GA TerminologyGA Terminology
GeneGene –– each design variable (x)each design variable (x)
ChromosomeChromosome –– group of design variables group of design variables 
IndividualIndividual –– each design point each design point 
FitnessFitness –– how good is the individual?how good is the individual?
PopulationPopulation –– group of individualsgroup of individuals

Genetic operators Genetic operators –– drive the searchdrive the search
Selection – select the high fitness individuals – exploit the info.
Crossover – parents create children - explore the design space
Mutation – sudden random changes in chromosomes

GenerationGeneration –– each cycle of genetic operationseach cycle of genetic operations

H

D

t

Chromosome [4.00,2.80,19.0] or [0100111010011]
Fitness 25.8  (sum of variables)

Individual
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Flowchart of a Simple Genetic AlgorithmFlowchart of a Simple Genetic Algorithm

Simple GA caters to single objective optimization problems

Randomly 
initialize parent 

population

Evaluate parent 
population Selection

Crossover

Mutation

Evaluate child 
population

Apply elitism

Copy child 
population to 

parent population

Is stopping 
criterion 

met?

Report best 
solution and 

Stop

G
eneration

G
enetic operators
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Optimization Algorithm – Adaptive Simulated 
Annealing (ASA)

This global stochastic optimization method simulates annealing process 
– starts at a high temperature and slow cooling would allow to achieve 
the lowest energy state 

Objective function is defined as the energy function E

Points are accepted using a Metropolis criterion

Temperature is periodically updated and search terminates when the 
temperature has fallen substantially

Conventional SA updates the temperature as 

Ingber modified sampling to focus in the fast varying parameters such 
that faster cooling rates were feasible 

Periodic re-annealing was also used to update the sensitivities

{ })/)'(exp(,1min),',( TEETEEA −−=

)log(/0)1( kTT p
k

p =+

)exp( /1)1( nk
p

k
p ckTT −=+
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Discrete OptimizationDiscrete Optimization

Discrete variables can have only Discrete variables can have only distinctdistinct values, e.g. { 1.0, 2.0, 2.5, 4.5 }values, e.g. { 1.0, 2.0, 2.5, 4.5 }

In most cases In most cases too expensive to evaluate all possible designstoo expensive to evaluate all possible designs, e.g. 30 , e.g. 30 
design variables with 5 possible values result in 10design variables with 5 possible values result in 102121 possible designspossible designs

Discrete and continuous variables can be used togetherDiscrete and continuous variables can be used together. . 

User decides the User decides the sampling typesampling type to be continuous or discreteto be continuous or discrete

The optimization solution using LFOPC is a three stage procedureThe optimization solution using LFOPC is a three stage procedure::
Find continuous optimum (using LFOPC)
Freeze continuous variables and do discrete optimization using Genetic 
Algorithm
Freeze new discrete variables and do continuous optimization

Optimization using adaptive simulated annealing or genetic algorOptimization using adaptive simulated annealing or genetic algorithm is a ithm is a 
single stage procedure. single stage procedure. 

Sequential strategy: Uses Sequential strategy: Uses SRSMSRSM with special modifications to the region with special modifications to the region 
of interest for discrete variablesof interest for discrete variables
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Normalization of ConstraintsNormalization of Constraints
Required by userRequired by user

sconstraint individual scalingby 
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The Design Improvement CycleThe Design Improvement Cycle
Point Selection

(DOE)
Simulation

Build response surfaces

Optimization

Solution

No

Trial 
Design Approximate solution

Converged? Sensitivity Analysis

Trade-Off

Preprocessing

Error Analysis

Convergence

Design Formulation

Mechanical 
Model

Approximation
Model

Region
of Interest

(Move Limits)

StartStart

…
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Defining the Design ProblemDefining the Design Problem

Response 2
(Solver 1)1)

Response 3
(Solver 2)2)

Response 4
(Solver 2)2)

Response 5
(Solver 2)2)

Response 11
(Solver 1)1)

Composite 1 Composite 2

Objective 2

Constraint 2

Objective 1

Multi-Objective Constraint 1

Variables

Dependents
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Design FormulationsDesign Formulations
StandardStandard composite functionscomposite functions

Mean Squared Error (MSE)Mean Squared Error (MSE)

WeightedWeighted
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Most Feasible DesignMost Feasible Design
TheoryTheory

Strict constraints (mustStrict constraints (must
be satisfied)be satisfied)

Note: Note: e is automatic,is automatic,
internalinternal

Slack constraints (e>0Slack constraints (e>0
if feasibility not possible)if feasibility not possible)
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:stop)otherwise  0,e (if IIPhase 

x

x

:IPhase 
:nformulatio internal Standard

ee = = SlackSlack variablevariable
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Most Feasible DesignMost Feasible Design
ApplicationsApplications

Minimize the maximum of various responses

Targeted formulation (System identification)
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Most Feasible DesignMost Feasible Design
Example: MinExample: Min--MaxMax

Minimize the Minimize the maximum knee forcemaximum knee force
subject to subject to 

constraints on the constraints on the knee displacementsknee displacements

0)(
0)(

)(
)(

subject to
 Min.

22

11

2

1

≤−
≤−

≤
≤

Dd
Dd
eF
eF

e

x
x
x
x Knee force # 1Knee force # 1

Knee force # 2Knee force # 2
Knee displacement #1Knee displacement #1
Knee displacement #2Knee displacement #2

SlackSlack
SlackSlack
StrictStrict
StrictStrict
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OPTIMIZATION STRATEGIESOPTIMIZATION STRATEGIES
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Optimization StrategiesOptimization Strategies
SpaceSpace--filling point selectionfilling point selection

Single stage Sequential

Stage 1: open circle, white region
Stage 2: solid point, blue region

Subregion

Sequential with domain reduction

Design Space

I II 

III 
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Optimization StrategiesOptimization Strategies

•• Single stageSingle stage
All the points are determined in one stage, using Space Filling
Highly suitable to create a global surrogate model
Choose a large number of Space Filling points to use NN or RBF

•• SequentialSequential
Choose a small number of points for each iteration
Add Space Filling points in each iteration
Highly suitable to create a surrogate model, e.g. NN or RBF
Accuracy is similar to single stage
More flexible than single stage. Can stop depending on accuracy
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Optimization StrategiesOptimization Strategies

•• Sequential with domain reductionSequential with domain reduction
Domain reduction in each iteration: all points within a subregion
Two types:

Sequential Adaptive Metamodeling (SAM):
Use RBF or NN
Global strategy: Points belonging to previous iterations are 
included
Same as Sequential but with domain reduction.
Moderately good for constructing global approximations

Sequential Response Surface Method (SRSM)
The original LS-OPT strategy using Polynomials with D-Optimality
Points belonging to previous iterations are ignored
Uses polynomials (typically linear) with D-Optimality
No global approximation available, so cannot construct Pareto 
optimal front

Reference:Reference: Stander, N. and Goel, T. Metamodel sensitivity to sampling strategies: a crashworthiness 
design study. Proceedings of the 10th International LS-DYNA User’s Conference, Dearborn, MI. June 9-
10, 2008
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Sequential Response Surface Method: SRSMSequential Response Surface Method: SRSM
ConvergenceConvergence

Design Variable 1

D
e
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start

2
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•• Sequential approximations are used to solve the Sequential approximations are used to solve the 
optimization optimization subproblemsubproblem

•• Depending upon the approximate optimum, the Depending upon the approximate optimum, the 
region of interest can either region of interest can either ‘‘panpan’’ (shift) or (shift) or ‘‘zoomzoom’’

Sequential Response Surface MethodSequential Response Surface Method
ParametersParameters
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1

2

1

2

1

2

Sequential Response Surface MethodSequential Response Surface Method
Subregion reduction schemeSubregion reduction scheme

Pan

Zoom

Pan & Zoom
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Sequential Response Surface MethodSequential Response Surface Method
Explanation of parametersExplanation of parameters
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Sequential Response Surface MethodSequential Response Surface Method
TheoryTheory
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Sequential Response Surface MethodSequential Response Surface Method
Contraction rateContraction rate

|d| 

λ,γ 
λ 

η 

0 

1 

-1 
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γosc 

γpan 

ĉ
)](abs,ˆ[ dcλ

114
Copyright © Livermore Software Technology Corporation 2009

Sequential Response Surface MethodSequential Response Surface Method
Convergence criteriaConvergence criteria

•• Using error norm of design variables:Using error norm of design variables:

•• Using objective functionUsing objective function

•• Can choose Can choose whichever comes firstwhichever comes first or or bothboth
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Sequential Approximation SchemeSequential Approximation Scheme
Iteration 1Iteration 1

Design Variable 1

D
es

ig
n 

V
ar

ia
bl

e 
2

Design Space

start

2 RSM: Use only 
points from current 
iteration

NN: Use all 
available points
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Sequential Approximation SchemeSequential Approximation Scheme
Iteration 2Iteration 2

Design Variable 1
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Sequential Approximation SchemeSequential Approximation Scheme
Iteration 3Iteration 3

Design Variable 1
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start
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Sequential Approximation SchemeSequential Approximation Scheme
ConvergedConverged

Design Variable 1

D
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V
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Design Space
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interest

optimum

start

2
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RSM: Use only 
points from current 
iteration

NN: Use all 
available points
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Metamodels: ExampleMetamodels: Example
Crash model

30 000 elements

Intrusion = 552mm

Stage1Pulse = 14.34g

Stage2Pulse = 17.57g

Stage3Pulse = 20.76g

BIW model

18 000 elements

Torsional mode 1

Frequency = 38.7Hz

CourtesyCourtesy
DaimlerChryslerDaimlerChrysler
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Two Design Variables (Thickness)Two Design Variables (Thickness)

Inner rails (Y)

Left and right
cradle rails (X)
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Sampling: Space Filling MethodSampling: Space Filling Method
Iteration 1Iteration 1

Start
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Opt 1

Start

Sampling: Space Filling MethodSampling: Space Filling Method
Iteration 2Iteration 2



62

123
Copyright © Livermore Software Technology Corporation 2009

Opt 2

Start

Sampling: Space Filling MethodSampling: Space Filling Method
Iteration 3Iteration 3
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Opt 3

Start

Sampling: Space Filling MethodSampling: Space Filling Method
Iteration 4Iteration 4



63

125
Copyright © Livermore Software Technology Corporation 2009

OptimizationOptimization
Design variables (Thickness)Design variables (Thickness)

Left and right
apron

Inner and outer 
rail

Front cradle upper and 
lower cross members

Left and right
cradle rails

Shotgun outer 
and inner
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DDesign Formulationesign Formulation
Design Objective:Design Objective:

Minimize (Mass of components)Minimize (Mass of components)

Design Constraints:Design Constraints:

Intrusion < 552.38mmIntrusion < 552.38mm

Stage1Pulse > 14.58gStage1Pulse > 14.58g

Stage2Pulse > 17.47gStage2Pulse > 17.47g

Stage3Pulse > 20.59gStage3Pulse > 20.59g

41.38Hz < Torsional mode 1 frequency < 42.38Hz41.38Hz < Torsional mode 1 frequency < 42.38Hz

Crashworthiness design variablesCrashworthiness design variables:: 4 screened out of 7 total4 screened out of 7 total

Rails (inner and outer); Aprons; Cradle railsRails (inner and outer); Aprons; Cradle rails

NVH design variablesNVH design variables:: 7 (all)7 (all)

Crashworthiness responsesCrashworthiness responses:: Intrusion, Stage PulsesIntrusion, Stage Pulses

NVH responsesNVH responses:: Mass, Frequency, Mode number (for tracking internally)Mass, Frequency, Mode number (for tracking internally)
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Instrument Panel with Knee Bolster SystemInstrument Panel with Knee Bolster System

Courtesy: 
Ford Motor Company
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Instrument Panel: LSInstrument Panel: LS--DYNA SimulationDYNA Simulation

LS-POST
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Instrument Panel: Design VariablesInstrument Panel: Design Variables
4 screened out of 11 total4 screened out of 11 total

Gauge

Radius

Gauge

Width

Width

Depth
Depth

Depth

Width

Gauge Radius
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Instrument Panel: Design FormulationInstrument Panel: Design Formulation

Design Objective:Design Objective:

min ( max (Knee_F_L, Knee_F_R) )min ( max (Knee_F_L, Knee_F_R) )

Design Constraints:Design Constraints:

Left Knee intrusion      Left Knee intrusion      <   <   115mm115mm

Right Knee intrusion  Right Knee intrusion  <   <   115mm115mm

Yoke intrusion Yoke intrusion < < 85mm85mm

Design variablesDesign variables

Reduced from 11 to 4 (ANOVA)Reduced from 11 to 4 (ANOVA)
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Instrument Panel: OptimizationInstrument Panel: Optimization
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MULTIMULTI--OBJECTIVE OPTIMIZATIONOBJECTIVE OPTIMIZATION
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MultiMulti--objective Optimizationobjective Optimization

• Most engineering problems 
deal with multiple objectives 
e.g., cost, weight, safety, 
efficiency etc.

• Often conflicting requirements 
e.g., weight vs. efficiency

• Mathematical formulation –
Minimize fi(x)    i = 1, M,  

x= {xj: j = 1, N} 
Subject to: 
Ck(x) ≤ 0, k = 1, P
hl(x) = 0,  l = 1, Q

• No single optimal solution

M
in

 f
2

Min f1



68

135
Copyright © Livermore Software Technology Corporation 2009

Concept of Pareto OptimalityConcept of Pareto Optimality

•• NonNon--dominated dominated 
solutionssolutions

•• Pareto optimal solutions Pareto optimal solutions 
•• Pareto optimal frontPareto optimal front
•• Salient featuresSalient features

continuous or 
discontinuous
convex or non-convex

f2

f1

a

b
CD=a+b
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Different Methods in LSDifferent Methods in LS--OptOpt

Weighted sum strategyWeighted sum strategy
convert multiple objectives 
into a single objective using 
weights

εε--constraint strategyconstraint strategy
all but one objectives are 
treated as constraints and 
optimize for the left-out 
objective

MultiMulti--objective genetic algorithmobjective genetic algorithm
all objectives are 
simultaneously optimized

M
in

 f
2

Min f1
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Transition: Single to MultiTransition: Single to Multi--objective GAobjective GA
GA is wellGA is well--suited to solve multisuited to solve multi--objective optimization objective optimization 

problemproblem
Results in a set of potential Pareto optimal solutions
Extra computational effort in optimization can be justified by the 
outcome – Pareto optimal front

Issues that need to be addressed are Issues that need to be addressed are 
How to compare individuals? – easy for simple GA but not so 
intuitive for multi-objective GA – use ranking to identify ‘fitter’
individuals
Need to preserve diversity in the solutions – complete Pareto 
optimal front is desired
Convergence to the global Pareto optimal front

Popular MOGA are NSGA, Popular MOGA are NSGA, SPEASPEA, PAES, , PAES, NSGANSGA--IIII..
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How to Use MultiHow to Use Multi--Objective GA?Objective GA?

Direct simulation based GADirect simulation based GA
optimize without creating meta-
models
use simulations to evaluate 
designs – high computational 
cost!
accurate results

MetaMeta--model based GAmodel based GA
use metamodels to evaluate 
functions
accuracy depends on the quality 
of metamodels
computationally inexpensive

Select task

Create Pareto Optimal Frontier
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Validation of GA Using Benchmark ExamplesValidation of GA Using Benchmark Examples

Unconstrained test problemsUnconstrained test problems
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Goel T, Stander N, Multi-Objective Optimization Using LSOPT, 6th

German LS-Dyna Forum, Oct 11-12, 2007, Frankenthal, Germany.
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Min. (Min. (MassMass, , IntrusionIntrusion))

Subject to:Subject to:

Intrusion Intrusion ≤≤ 551mm551mm

Stage 1 pulse > 14.5Stage 1 pulse > 14.5gg

Stage 2 pulse > 17.6Stage 2 pulse > 17.6gg

Stage 3 pulse > 20.7Stage 3 pulse > 20.7gg

41.38Hz 41.38Hz ≤≤ freqfreq ≤≤ 42.38Hz 42.38Hz 

Crash

Vibration

7 Crash variables
7 Vibration variables
(2 discrete)

Direct MultiDirect Multi--Objective Optimization: Example 1Objective Optimization: Example 1
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IBM x3455 IBM x3455 clustercluster. 40 nodes (160 cores). 40 nodes (160 cores)

QueuingQueuing through through LoadlevelerLoadleveler

Crash simulation time 3,400Crash simulation time 3,400--3,900 sec3,900 sec

Modal analysis time 40 secModal analysis time 40 sec

PopulationPopulation: 80: 80

GenerationsGenerations: 100: 100

Total of Total of 8,0008,000 crash runs + crash runs + 8,0008,000 modal analysis runs (run modal analysis runs (run 
to to convergenceconvergence!)!)

Direct MultiDirect Multi--Objective Optimization: Simulation Objective Optimization: Simulation 
StatisticsStatistics
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Pareto Optimal Front HistoryPareto Optimal Front History

Li G, Goel T, Stander N, Assessing the convergence properties of NSGA-II for direct crashworthiness 
optimization, 10th International LS-Dyna Conference, Jun 8-10, 2008, Detroit, MI.
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Direct MultiDirect Multi--Objective Optimization: Example 2Objective Optimization: Example 2

Thickness design variables

Lin Y-Y, Goel T, Stander N, Direct Multi-Objective Optimization Through LS-OPT Using a Small 
Number of Crashworthiness Simulations, 10th International LS-Dyna Conference, Jun 8-10, 2008, 
Detroit, MI.
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Design CriteriaDesign Criteria
Minimize

Mass  
Acceleration 

Maximize
Intrusion 
Time to zero velocity

9 thickness variables of main crash members

Intrusion < 721

Stage 1 pulse < 7.5g

Stage 2 pulse < 20.2g

Stage 3 pulse < 24.5g
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Simulation StatisticsSimulation Statistics

640-core HP XC cluster (Intel Xeon 5365 80 nodes of 2 quad-core)

Queuing through LSF

Elapsed time per generation ~ 6 hours

Population: 20

Generations: 50

Total of 1,000 crash runs
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Results

Minimize 
Mass 0.3%
Acceleration 45%

Maximize 
Intrusion 1%
Time to zero velocity 10%

Intrusion < 721 (711  → 719)

Stage 1 pulse < 7.5g (7.9 → 6.9g)

Stage 2 pulse < 20.2g (21.1 → 20.1g)

Stage 3 pulse < 24.5g (25.2 → 23.6g)
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Mapping: Design Space Mapping: Design Space ↔↔ Objective SpaceObjective Space

Obj1

Obj2 Obj3

Var1

Var2

Feasible Design Space

Pareto optimal designs

Pareto Optimal Frontier
(Multi-Objective Optimization)

Feasible Objective Space

Simulation

User select
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Visualization of Pareto Optimal FrontierVisualization of Pareto Optimal Frontier
Hyper Radial VisualizationHyper Radial Visualization

• Hyper Radial Visualization (HRV) maps any number of objectives 
to 2D

• Objectives are placed in X and Y groups

• Grouping does not matter as points on the same contour have 
the same indifference “value” “Best” point (closest to Utopian 
point) is always the same

• Objectives can be weighted by moving sliders to adjust Wi
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Hyper Radial VisualizationHyper Radial Visualization

• Conversion of the multi-objective optimization problem to a two-
objective optimization problem using the objective:

subject to 

and 

• 2D Mapping: The two additive components represent the 
objectives assigned to the two plot axes (see figure)
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Axis 2 
Pareto 
frontier 

Best design 

Indifference 
curves 

Utopian point and 
origin of the plot 

Frontier of 
Pareto 
frontier 

0 
0 

Hyper Radial VisualizationHyper Radial Visualization
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Hyper Radial VisualizationHyper Radial Visualization

Mapped Pareto 
Frontier
All points are 
Pareto optimal

“Best” design for
Selected weighting

Indifference curves
(Utopian level)

Utopian point (origin)

Sliders for adjusting weights
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Visualization of the Pareto Optimal FrontierVisualization of the Pareto Optimal Frontier
Other methodsOther methods

• 4-D Scatter plot: 3D + color

• Parallel coordinate plot
Handles any number of dimensions

• Self-Organizing Maps
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MULTIMULTI--DISCIPLINARY DISCIPLINARY 
OPTIMIZATIONOPTIMIZATION
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Copyright © Livermore Software Technology Corporation 2009

Multidisciplinary Design OptimizationMultidisciplinary Design Optimization

•• Specify multiple solvers to Specify multiple solvers to subdividesubdivide optimization process, e.g. optimization process, e.g. 
multiple casesmultiple cases (Crash: Frontal, Offset, Side, Rollover) or (Crash: Frontal, Offset, Side, Rollover) or 
disciplinesdisciplines (e.g. crash, vibration)(e.g. crash, vibration)

•• Each solver has Each solver has uniqueunique solvers, input files, job information, solvers, input files, job information, 
preprocessor, histories and responsespreprocessor, histories and responses

•• Variables can be exclusive or can be Variables can be exclusive or can be shared shared with other solvers. with other solvers. 
Variable Variable screeningscreening can be used to remove variables from can be used to remove variables from 
disciplines prior to optimizationdisciplines prior to optimization

•• GUI: Variables: Participating solvers can be selected for each GUI: Variables: Participating solvers can be selected for each 
variablevariable

•• Optimization Solution: All variables are updated after each Optimization Solution: All variables are updated after each 
iterationiteration
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Multidisciplinary Design OptimizationMultidisciplinary Design Optimization

•• Dependents and Composites are always Dependents and Composites are always globalglobal

•• See MDO See MDO exampleexample involving involving crashworthinesscrashworthiness and and vibrationvibration
properties elsewhereproperties elsewhere
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APPLICATIONSAPPLICATIONS



79

157
Copyright © Livermore Software Technology Corporation 2009

Metal Forming CriteriaMetal Forming Criteria
TypesTypes

•• Thickness, Thickness reductionThickness, Thickness reduction

•• Forming Limit criterion based on inForming Limit criterion based on in--plane principal plane principal 
strainsstrains

•• Average principal stressAverage principal stress
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Metal Forming CriteriaMetal Forming Criteria
FLD criterionFLD criterion
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Metal Forming CriteriaMetal Forming Criteria
FLD criterionFLD criterion
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Metal Forming CriteriaMetal Forming Criteria
Example: Stamping With LSExample: Stamping With LS--DYNADYNA
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Metal FormingMetal Forming
Deformed blankDeformed blank
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Metal FormingMetal Forming
ParametersParameters
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Design Objective:Design Objective:

Minimize MaximumMinimize Maximum RadiusRadius

Design Constraints:Design Constraints:

Maximum thinning (Maximum thinning (ΔΔtt)    <   20%)    <   20%

FLD                               <   0FLD                               <   0

Radius design variables:Radius design variables:

3 radii: r1, r2, r3 (see diagram)3 radii: r1, r2, r3 (see diagram)

FE model:FE model:

Adaptive meshingAdaptive meshing

Metal FormingMetal Forming
Design criteriaDesign criteria
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Metal FormingMetal Forming
Optimization history: ResponsesOptimization history: Responses
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Metal FormingMetal Forming
Optimization history: VariablesOptimization history: Variables
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Metal FormingMetal Forming
FLD improvementFLD improvement
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Metal FormingMetal Forming
Final product thickness distributionFinal product thickness distribution

Δt_max=20.46

LS-PrePost
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Mode TrackingMode Tracking

• During NVH optimization necessary to track mode as 
mode switching can occur due to design changes

• Use eigenvalues and mass-orthogonalized
eigenvectors of modal analysis

• Search for maximum scalar (dot) product between 
eigenvector of base mode and each solved mode:
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Reference mode Compared mode
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Parameter IdentificationParameter Identification

Used for calibrating material or system propertiesUsed for calibrating material or system properties

Methodology uses optimization of the Mean Squared Error to Methodology uses optimization of the Mean Squared Error to 
minimize differences between test and computed resultsminimize differences between test and computed results

Response surfaces constructed at each point instead of for the Response surfaces constructed at each point instead of for the 
total MSEtotal MSE

MSE can be pointMSE can be point--based or historybased or history--basedbased
Point-based: The target value has to be specified for each point 
(selected as a “Composite” in Responses panel)
History-based: The target values can be specified in a history file 
and imported as a history. A single function computes the MSE
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HistoryHistory--based Parameter Identificationbased Parameter Identification
Test pointsTest points

Test results 

2
3

4
5

6
7

1

z

G
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HistoryHistory--based Parameter Identificationbased Parameter Identification
Test points + Computed curveTest points + Computed curve

1

2
3

4
5

6
7

z

G,F
Re

si
du

al
 e

1
Computed curve: F(x,z)

Response Surface constructed 
for each interpolated matching 
point

Test results 
Interpolated test curve G(z)
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HistoryHistory--based Parameter Identificationbased Parameter Identification
Mean squared errorMean squared error

2

1

2

1

)(1)(1
∑ ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=∑ ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −
==

P

p i

i
i

P

p i

ii
i s

eW
Ps

GFW
P

xx
 

Test ValueResponse Surface Value

Weight (Importance of error)
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Number of points

Variables (material
or system constants)
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Confidence IntervalsConfidence Intervals
of Individual Parametersof Individual Parameters

ε+= ),()( xtFtG

∑
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−
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p
pp FG

P 1

2))((1min x
x

Nonlinear regression model:Nonlinear regression model:

Discrete nonlinear least squares problem Discrete nonlinear least squares problem 

Unknown parametersUnknown parameterstimetime

Residual

Number of pointsNumber of points

HistoryHistoryMeasured resultsMeasured results
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Confidence IntervalsConfidence Intervals
of Individual Parametersof Individual Parameters
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The variance  is estimated by The variance  is estimated by 

The 100(1The 100(1-- )% confidence interval for each variable  is: )% confidence interval for each variable  is: 

where where 

and          is the Student and          is the Student tt--distribution fordistribution for α2/α
nPt −

α

Number of variablesNumber of variables
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HistoryHistory--based Parameter identificationbased Parameter identification
Relevant commandsRelevant commands

Get test dataGet test data
History 'History 'testcurvenametestcurvename' file ' file ""testfilenametestfilename""

Construct Construct crossplotcrossplot
History 'History 'curvenamecurvename' {' {CrossplotCrossplot ((

history_x_name, history_y_name, history_x_name, history_y_name, 

[[numpointsnumpoints, begin, end], begin, end] )})}

Construct error norm of curve mismatchConstruct error norm of curve mismatch
Composite Composite ’’namename’’ {{MeanSqErrMeanSqErr ((

''testcurvenametestcurvename', '', 'curvenamecurvename', ', 

[[numpointsnumpoints, begin, end, , begin, end, 

weighting_type, scaling_type, weighting_type, scaling_type, 

weighting_value, scaling_value, weighting_value, scaling_value, 

weighting_curve, scaling_curve]weighting_curve, scaling_curve] )} )} 

Dyna 
time-histories

Curves

176
Copyright © Livermore Software Technology Corporation 2009

Material Identification: Concrete Material 159Material Identification: Concrete Material 159
11 parameters, 9 test types, 20 different test sets 11 parameters, 9 test types, 20 different test sets 
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PRSPRS
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Par.Par.

Multiple cases, shared variables
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Material Identification:  Material Identification:  
Optimization (10 iterations) and Stress vs. Strain ResultsOptimization (10 iterations) and Stress vs. Strain Results
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